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The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approxima-
tion are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence
process in the early-time evolution is numerically obtained and it is shown that the characteristic time de-
creases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over
time, is employed to describe the influences of both quantum phase transition and corresponding classical
chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum
uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that
the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular
initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with
small amplitude in strong coupling and for chaotic initial conditions.
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I. INTRODUCTION

In recent years, entanglement has been extensively stud-
ied since it has been recognized as a quantum resource for
quantum computation[1], quantum dense coding[2], quan-
tum teleportation[3], and quantum secret protocols[4]. Al-
though the definition of entanglement itself is not of dynami-
cal nature, entangled states are often generated dynamically;
that is, even if subsystems are not entangled initially, the
interaction between them produces entanglement in the sys-
tem as time evolves. This is an important dynamical origin of
decoherence. Consequently, a lot of work has been devoted
to understanding decoherence, dynamics of quantum en-
tanglement, quantum chaos, and quantum phase transitions.
For example, an approximate but very simple classical
theory of linear entropy production of intrinsic decoherence
dynamics associated with localized initial states was derived
for smooth Hamiltonian systems[5], indicating that the rate
of entropy production is closely related to the stability prop-
erties of classical trajectories, and that the small-amplitude
oscillations of entropy may be regarded as fingerprints of the
underlying classical chaos. For an open quantum system the
entropy production rate could be used as a diagnostic for
quantum chaos[6]. In general, chaotic systems tend to pro-
duce larger entanglement than the regular systems. However,
exceptions for classically regular systems are found in Ref.
[7]. Furthermore, since quantum entanglement is responsible
for the appearance of long-range correlations, it is expected
to play a crucial role in the study of quantum phase transi-
tions (QPT). It is demonstrated that the entanglement is
maximum for the parameter values corresponding roughly to
a bifurcation of a fixed point in the corresponding semiclas-
sical dynamics in a driven dissipative quantum system[8]. A
similar property also exists in theXY spin chain[9], where
one- and two-spin entanglement measures are employed,
while the entanglement between a blockL contiguity and the
rest of the chain at the critical point displays a logarithmic
divergence for largeL [10]. These mean that the entangle-

ment behavior near and at the QPT depends on the measure
of entanglement and the studied model. Therefore, it will be
very interesting to further understand these properties of en-
tanglement for other systems. In the present paper, we study
the Dicke model(DM) without rotating-wave approximation
(RWA), investigating how the quantum entanglement de-
pends on the coupling parameter that describes the interac-
tion between atoms and radiation field. Thereby the decoher-
ence, the classical chaos, and the QPT are discussed.

Since the pioneering work of Dicke[11] on cooperative
spontaneous emission, much attention has been paid to the
interaction of the radiation field with a collection of two-
level atoms located within a distance much smaller than the
wavelength of the radiation. Such a system is commonly
referred to as Dicke model, which is usually considered in
the RWA when the atom-field coupling strength is weak. This
makes the DM integrable, simplifying the analysis of some
important phenomena such as super-radiance, collapses, and
revivals of Rabi oscillations, squeezing, and phase transition
[12]. Recently, the DM has been extensively studied without
RWA, with its quantum-chaotic properties being discussed
by several authors[13] without being connected with the
QPT. This case has been very recently investigated by Emary
and Brandes[14] by numerically analyzing the level statis-
tics. They have demonstrated that the DM undergoes a tran-
sition from quasi-integrability to quantum chaotic and that
this transition is caused by the precursors of QPT. However,
the dynamical entanglement near and at QPT has not yet
been studied. Although Furuyaet al. [15] studied entangle-
ment process in a varied version of DM and concluded that
for short times there is a faster increase in decoherence for
the chaotic initial conditions as compared to regular ones,
which have oscillatory increase, the impact of QPT on en-
tanglement and how the decoherence depends on the cou-
pling parameter were not discussed. In this work, we study
the dynamical entanglement that is quantitatively expressed
in terms of the reduced-density linear entropy, with the var-
ied couplings in DM. When the initial state is taken to be the
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ground state without the interaction between the atoms and
the field, we are able to investigate the characteristic time of
the decoherence and the entanglement properties with differ-
ent numbers of atoms with the coupling parameter that cov-
ers the QPT point.

We also study the behavior of entanglement dynamics
with different initial states, assuming the coupling parameter
fixed. For a given energy, initial states are prepared as mini-
mum uncertainty wave packets placed at regular and chaotic
regions of the classical phase space. Therefore, the influence
of chaos on the entanglement will be explored.

The paper is organized as follows. Section II introduces
the Dicke model, and its classical version and classical bifur-
cation are derived in terms of coherent state theory. In Sec.
III, the characteristic time of decoherent process in the early-
time evolution is numerically obtained with the coupling pa-
rameter. The mean entanglement, which is defined to be av-
eraged over time, is used to study the relations between the
entanglement and the quantum phase transition, and between
the entanglement and the classical chaos. Conclusion is
given in Sec. IV.

II. THE DICKE MODEL

We consider the Dicke model that describes a collection
of N two-level atoms interacting with a single-mode radia-
tion field via a dipole interaction with an atom-field coupling
parameterl. The Dicke Hamiltonian without rotating-wave
approximation is written as("=1 hereafter)

H = v0 Jz + va†a +
l

Î2j
sa† + adsJ+ + J−d, s1d

wherev0 and v are the splitting ofN two-level atoms and
the frequency of a single bosonic mode, respectively,Jz is
the operator of atomic inversion,a and a† are the annihila-
tion and creation operators of the field mode,j is the length
of the collective spin operators, andJ+ andJ− are the collec-
tive atomic raising and lowing operators. They satisfy the
sus2d Lie algebra:

fJ+,J−g = 2Jz, fJz,J±g = ± J±. s2d

The Hilbert space of this algebra is spanned by the Dicke
statesu j ,ml sm=−j ,−j +1, . . . ,j −1,jd, which are the eigen-
states ofJ2 and Jz with the eigenvaluesjs j +1d and m. The
raising and lowering operators act on these states as
J±u j ,ml=Îjs j +1d−msm±1du j ,m±1l. Note that, in general,
the set of atomic configurations forN.2 is nontrivial
f16g, and the states are nonseparable and have entangle-
ment f17g in terms of the individual atom configurations.
In this work, we also takej to be its maximal valuej
=N/2 as done in Refs.f14,15g.

The Hamiltonian (1) has a conserved parityP
=expfipsa†a+Jz+ jdg with the eigenvalues ±1. An interesting
physical realization of the Hamiltonian(1) is given by the
coupling of the internal levels of atoms or ions to a mode of
their quantized oscillatory motion in a harmonic trap[18].
Recently, reversible entanglement of ions has been proposed
[19], and the experimental realizations have been reported in
the cases of several ions[20].

Once the quantum Hamiltonian(1) is at hand, we are able
to study its entanglement dynamics. Before doing that, one
must choose initial quantum states. Most works have taken
the initial states to be the ground states under considered
quantum systems, and then ground-state entanglement is
analyzed[8–10,21,22]. In our case, we take the initial states
to be coherent states, namely, minimum uncertainty wave
packets centered in the corresponding classical phase space.
That allows us to explore the relation between the entangle-
ment and classical chaos. The initial quantum states chosen
in the present study are as follows:

uc s0dl = utl ^ ubl ; utbl, s3d

whereutlsubld are the atomicsfield-d coherent states given by
f23g

utl = s1 + tt*d−jetJ+u j ,− jl,

ubl = e−bb* /2eba†
u0l, s4d

where

t =
q1 + ip1

Î4j − sq1
2 + p1

2d
,

b =
1
Î2

sq2 + ip2d, s5d

u0l is the bosonic field ground state, andq1,p1,q2,p2 de-
scribe the phase space of the system under consideration
with indices 1 and 2 for the atomic and field subsystem,
respectively. Thus the classical Hamiltonian corresponding
to Eq. (1) can be obtained by a standard procedure as[23]

Hcl ; ktbuHutbl

=
v0

2
sq1

2 + p1
2 − 2jd +

v

2
sq2

2 + p2
2d

+ 2lÎ4j − q1
2 − p1

2

4j
q1q2, s6d

then the corresponding Hamilton’s equations of motion are
given by

q̇1 = v0p1 − 2l
p1q1q2

Î4js4j − q1
2 − p1

2d
,

q̇2 = vp2,

ṗ1 = − v0q1 − 2lq2Î4j − q1
2 − p1

2

4j
+ 2l

q1
2q2

Î4js4j − q1
2 − p1

2d
,

ṗ2 = − vq2 − 2lq1Î4j − q1
2 − p1

2

4j
. s7d
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We now determine the fixed points in the classical phase
spacesq1,p1,q2,p2d by settingq̇1= q̇2= ṗ1= ṗ2=0. The sim-
plest fixed point is given byq1=q2=p1=p2=0, the coordi-
nate origin. By calculating the Hessian stability matrix from
the second derivatives ofHcl, we see that this fixed point is
only stable when

v0
2 + v2 − Îsv0

2 − v2d2 + 16l2v0v . 0, s8d

i.e., when l,Îv0v /2=lc. There are two other fixed
points, both of which havep1=p2=0, with q1 andq2 given
by

q1 = ±Î2jS1 −
lc

2

l2D ,

q2 = 7
2l

v
ÎjS1 −

lc
4

l4D . s9d

These two quantities only remain real and stable provided
that l.lc. So, below the couplinglc, only one fixed point
exists, which lies at the coordinate’s origin and is stable.
Above lc, this fixed point becomes unstable and two new
stable fixed points appear at the coordinatess−q1, +q2d and
s+q1,−q2d given by Eq.(9) with p1=p2=0.

The above obtained classical bifurcation point atlc cor-
responds to the quantum phase transition[14] by the exact
Holstein-Primakoff transformation of the Hamiltonian(1) in
the thermodynamics limitN→`. It is demonstrated that the
quantum phase transition is the second-order one and quan-
tum chaos is triggered by precursors of this transition by
in-detail investigations of the ground-state energy and wave
function, and the nearest-neighbor level-spacing distribution
[14]. In the following section, the behavior of entanglement
dynamics is studied with the several different values ofN.

III. THE ENTANGLEMENT DYNAMICS

Several measures of quantum entanglement have been
proposed. These include entanglement of formation[24], en-
tanglement of distillation[25], relative entropy of entangle-
ment [26], linear entropy of entanglement[27], concurrence
[28], negativity[29], and so on. In our case the entanglement
can be described by the linear entropy or the von Neumann
entropy. We calculate the linear entropy and the von Neu-
mann entropy, and the similar behavior of the two measures
is found. Thus we only present the results of the linear en-
tropy. Furthermore, the linear entropy is extensively used in
the study of decoherence[5,6,8,9,30–34]. It is important that
the characteristic time of decoherence[33] can be obtained
in the calculation of the linear entropy.

The linear entropy of entanglement is defined as[27]

Sstd = 1 − Tr1r1std2, s10d

where Tr1 denotes a trace over the first subsystem, and
r1std is the reduced-density matrix,r1std=Tr2ucstdlkcstdu,
where indices 1 and 2 stand for the atomic and field sub-
system, anduc stdl is the quantum state of the full system,
which evolves in time under the action of Hamiltonians1d.

The quantitySstd describes the degree of purity of the
subsystem in a scale from 0spure stated to 1 sstatistical
mixtured. It also describes the degree of decoherencef5g.
Thus in this section we discusssid the characteristic time
of decoherence,sii d the influence of the quantum phase
transition on the entanglement, andsiii d the relation be-
tween the entanglement and classical chaos.

A. The characteristic time of decoherence

The physics of decoherence has been extensively studied
during the last few years both from the theoretical and also
from the experimental point of view. As part of these studies
it has been recognized that the docoherence process has
rather unique properties for systems whose classical analogs
are chaotic. Reference[6] suggested that entropy production
rate during decoherence could be used as a diagnostic for
quantum chaos in open quantum system. The quantum-
classical correspondence between classical and quantum de-
scriptions of dynamics of decoherence was studied for
smooth Hamiltonian systems[5], where the classicality of
early-time decoherence dynamics was described using
second-order perturbative treatment. It is now understood
that the decoherence is closely related to the nonlinear pa-
rameter describing interactions[30]. Thus it is important to
look for the characteristic time of decoherence upon variance
of the coupling parameter. In particular, it becomes very in-
teresting if the quantum systems have a quantum phase tran-
sition.

Most works on decoherence have focused on using
second-order perturbative treatment[5,30,31] and the inter-
action of the quantum system with its environment that has
many degrees of freedom[30,32,33]. A latest important work
has shown that decoherence of the center-of-mass motion of
a composed system can occur through the entanglement of
its own subsystems with even a few degrees of freedom due
to the chaotic nature of internal dynamics[34]. However, to
our best knowledge, how the characteristic time of decoher-
ence depends on the model parameter has not yet been dis-
cussed. We have determined the characteristic timetd for the
DM, which is defined as the instant when the slope of the
curve of the entropySstd decreases appreciably in the early-
time evolution [33], that is, td is determined by setting
dSstd /dtut=td=0.

The characteristic timetd of the decoherence process is
calculated in the resonant case,v=v0=1, with the initial
state, for simplicity, being taken to be the ground state with-
out the coupling between the atoms and the field. Figure 1
shows the characteristic timetd of decoherence vs the model
parameter l with several numbers of atoms,N
=1,2,3,9,25,wherel is changed from 0.001 to 1. A num-
ber of observations are in order. First, the characteristic time
td decreases as the coupling parameterl increases. Second, if
l is less than 0.08,td is almost the same for different number
of atoms. The curvestd for N=9 and 25 have a little differ-
ence compared with those for small number of atoms,N
=1,2,3.Finally, and most importantly, all the curvestd do
not have any distinct change near and at the critical point
lc=0.5. It is straightforward to get the similar curves for
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large coupling parameter and the large number of atoms in
the model.

B. The entanglement near and at the quantum phase
transition

Investigations of the behaviors of entanglement near and
at the quantum phase transition have been so far restricted to
interacting-1/2 systems on a one-dimensional lattice
[9,10,35] or on a simplex[36], which requires the more or
less artificial splitting into two-spin subsystems. It is shown
that the entanglement measured by the von Neumann en-
tropy or the pairwise concurrence is largest near quantum
critical points. This is also demonstrated by the latest studies
of the entanglement between a qubit and the environment in
the spin-boson model[21] and the entanglement between
atoms and field in the Dicke model[22]. Those works, how-
ever, focused solely on static properties of the entanglement.
In this section, we explore the behavior of entanglement dy-
namics near and at the quantum phase transition. To this end,
we introduce the mean entanglementSm, which is defined by

Sm =
1

T
E

0

T

Sstddt, s11d

whereT is the total time of evolution, which is taken to be 20
in scaled unit in the resonant casesv=v0=1d hereafter.

Figure 2 shows that the mean entanglementSm varies with
the coupling parameterl, where the number of atomsN is
taken to be 1, 2, 3, 9, and 25, for example, and the initial
state is also taken to be the ground state without the coupling
between the atoms and the field for simplicity. Some impor-
tant properties are observed in Fig. 2. First, the mean en-
tanglementSm increases as the number of atoms increases.
The increasing quantity above the critical pointslc=0.5d is

larger than that below the critical point. The mean entangle-
ment also increases with coupling strengthl, but it saturates
after a certain magnitude of coupling strength that will be
seen to roughly correspond to the emergence of complete
classical chaos in the following section. This observation
agrees with that for coupled standard maps[37]. Further-
more, the mean entanglement above the critical point fluctu-
ates in small amplitude with the coupling parameterl,
whose frequency increases with the number of atoms. This
may also be regarded as a fingerprint of the underlying quan-
tum chaos[5] that was demonstrated in Ref.[14]. Finally, the
mean entanglementSm has more distinct change at the quan-
tum critical pointslc=0.5d for the larger number of atoms.
This relation between the entanglement and the number of
atoms agrees with that obtained in Ref.[22], where the
ground-state static entanglement measured by concurrence is
maximum exactly at the critical point when the number of
atoms is infinity. The different measures of entanglement for
mixed quantum states are referred to Ref.[38].

C. The relation between entanglement and classical chaos

The relation between entanglement and classical chaos
has been previously studied with the example of a varied
Dicke model[15]. It was found that the entanglement rate is
considerably enhanced if the initial wave packet is placed in
a chaotic region. Such rates have been related to classical
Lyapunov exponents with the help of a coupled kicked top
model[39]. It is shown that the increment in the strength of
chaos does not enhance the production rate of entanglement
when the coupling is weak enough and the kicked tops are
strongly chaotic[40]. Another work of similar kind has been
done for coupled standard maps[37]. In this section we ex-
tend such a study to the Dicke model.

We numerically integrate Hamilton’s equations of motion
(7) for a variety of parameters and initial conditions. In order
to analyze classical chaos resulting from these integrations,

FIG. 1. The dependence of the characteristic timetd (in scaled
unit) of decoherence process in the early-time evolution on the cou-
pling parameterl. The solid curves from bottom to top are forN
=1, 2, 3, and dashed and dotted curves forN=9 and 25, respec-
tively, whereN is the number of atoms in the Dicke model. Here
there is no obvious change at the critical couplinglc=0.5 with v
=v0=1.

FIG. 2. The dependence of the mean entanglementSm on the
coupling parameterl. The curves from bottom to top are forN=1,
2, 3, 9, 25, respectively. A distinct change at the critical pointlc

=0.5 is nicely observed forN=9, 25 withv=v0=1.
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we employ Poincaré sections through the four-dimensional
phase space. As this system is Hamiltonian, the energy

E =
v0

2
sq1

2 + p1
2 − 2jd +

v

2
sq2

2 + p2
2d+ 2lÎ4j − q1

2 − p1
2

4j
q1q2

s12d

is conserved, and thus we define our surface of section by
q2=0 with p1 being fixed by the energyE. We only record
traversals forp2.0. Poincaré sections for illustrative param-
eter values are shown in Fig. 3. At lowl sl=0.1d, the
Poincaré section consists of a series of regular, periodic
orbits and irregular orbits. Approaching to the critical
coupling sl=0.5d, we see a change in the character of the
periodic orbits, and also the emergence of a number of
chaotic trajectories. Increasing the coupling further results
in the breakup of the remaining periodic orbits and the
whole phase space becomes chaotic for coupling a little
over the critical value. The section atl=0.9 is given as an
example.

We now determine behaviors of the mean entanglement
with different initial states that are taken to be coherent states
placed at the corresponding classical phase space. For com-
parison, we take the coherent states constructed from the
points in the straight line atq1=0 at the three sections(Fig.
3). Thus the initial states are only determined by the values
of p1. Figure 4 shows that the mean entanglementSm varies
with p1 for the corresponding sections. Some observations in
Fig. 4 are the following. For the weak couplingsl=0.1d, the
regular, periodic orbits produce smaller mean entanglement
than the irregular orbits. For the critical couplingsl=0.5d,
the mean entanglement fluctuates withp1 in small amplitude,
and the smallest mean entanglement almost corresponds to
the regular orbits atp1=3.0 in the island in the section since
the chaotic orbits occupy most of the classical phase space.
For the strong couplingsl=0.9d, the mean entanglement also
fluctuates withp1 with the smaller amplitude, and the small-
est mean entanglement remains atp1=3.0, but here the orbits
are chaotic. Hence, the conclusion that the chaotic regime
tends to produce larger entanglement than the regular regime
[15,37] is also applicable to the Dicke model only in the
weak coupling. Finally, we notice that the mean entangle-

ment at the border of the sections also has a larger value than
that at the regular orbits. This therefore appears to be a bor-
der effect.

IV. CONCLUSION

We have studied the entanglement dynamics in the Dicke
model without rotating-wave approximation with varied cou-
pling parameter and initial quantum states. The entanglement
is measured by the reduced-linear density entropy. The char-
acteristic time of decoherent process in the early-time evolu-
tion is numerically obtained from the linear entropy. It is
found that the characteristic time decreases as the coupling
parameter increases when the initial state is taken to be the
ground state without coupling between atoms and field. An
obvious variance of the characteristic time at the critical cou-
pling is not observed in our study.

The mean entanglement averaged over time has been used
for the description of behaviors of entanglement dynamics
with varied coupling parameter, number of atoms, and initial
conditions. Therefore, the influence of quantum phase tran-
sition and the classical chaos on the entanglement has been
explored. It is shown that the larger the number of atoms in
the model, the more distinct is the change the mean entangle-
ment at the critical coupling. It is also shown that the mean
entanglement increases with the coupling parameter and the
number of atoms in the model, but it fluctuates around its
saturation value when the coupling parameter or the initial
state is in classical chaotic regime. This saturation value de-
pends on the number of atoms, coupling parameter, initial
conditions, total time of evolution, and so on. It is difficult to
get its analyzed expression in general. Nevertheless, the satu-
ration value remains between 0 and 1. When the coherent
state placed at the corresponding classical phase

FIG. 3. Poincaré sections for the classical Dicke model for three
increasing couplings,l=0.1, 0.5, 0.9(from left to right), with N
=9 andE=1. The Hamiltonian is on scaled resonancev=v0=1.

FIG. 4. The dependence of the mean entanglementSm on the
initial coherent states characterized by one of the classical variables
p1, corresponding to the straight line atq1=0 in Poincaré sections in
Fig. 3. The curves from bottom to top are forl=0.1, 0.5, 0.9
respectively.
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space is taken as an initial state, it is found that the mean
entanglement for a regular orbit is smaller than that for an
irregular one in the case of weak coupling.

It is desirable to investigate the dynamical properties with
other measures of entanglement for comparison. It is pos-
sible to study a similar entanglement behavior in other mod-
els and results will be discussed elsewhere.
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