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The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approxima-
tion are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence
process in the early-time evolution is numerically obtained and it is shown that the characteristic time de-
creases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over
time, is employed to describe the influences of both quantum phase transition and corresponding classical
chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum
uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that
the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular
initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with
small amplitude in strong coupling and for chaotic initial conditions.
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[. INTRODUCTION ment behavior near and at the QPT depends on the measure
In recent years, entanglement has been extensively stu@f entanglement and the studied model. Therefore, it will be
ied since it has been recognized as a quantum resource f4&"Y interesting to further understand these properties of en-
quantum computatiofil], quantum dense coding], quan- tanglement for other systems. In the present paper, we study
tum teleportatior{3], and quantum secret protocdij. Al-  the Dicke mode(DM) without rotating-wave approximation
though the definition of entanglement itself is not of dynami-(RWA), investigating how the quantum entanglement de-
cal nature, entangled states are often generated dynamicalR€nds on the coupling parameter that describes the interac-
that is, even if subsystems are not entangled initially, thd!On Petween atoms and radiation field. Thereby the decoher-
interaction between them produces entanglement in the syg—ncs(?hégetﬁéa;?é%a;ei?%omoarﬂdoghgigkgl]ag?] dc,!?xcjzsésr:g\./e
deconerence. Congequenty & 1ot of work has been devorgoTIaNeous emission, much attention has been paid (0 the
. ’ . §fiteraction of the radiation field with a collection of two-
to understanding decoherence, dynamics of quantum_ ®fevel atoms located within a distance much smaller than the
tanglement, quantum chaos, and quantum phase transitiong,\ejength of the radiation. Such a system is commonly
For example, an approximate but very simple classicaleferred to as Dicke model, which is usually considered in
theory of linear entropy production of intrinsic decoherencetne RWA when the atom-field coupling strength is weak. This
dynamics associated with localized initial states was deriveghakes the DM integrable, simplifying the analysis of some
for smooth Hamiltonian systeni$], indicating that the rate  jmportant phenomena such as super-radiance, collapses, and
of entropy production is closely related to the stability prop-revivals of Rabi oscillations, squeezing, and phase transition
erties of classical trajectories, and that the small-amplitud¢12]. Recently, the DM has been extensively studied without
oscillations of entropy may be regarded as fingerprints of thé&RWA, with its quantum-chaotic properties being discussed
underlying classical chaos. For an open quantum system they several author$l3] without being connected with the
entropy production rate could be used as a diagnostic foQPT. This case has been very recently investigated by Emary
quantum chao$6]. In general, chaotic systems tend to pro- and Brandeg14] by numerically analyzing the level statis-
duce larger entanglement than the regular systems. Howeveics. They have demonstrated that the DM undergoes a tran-
exceptions for classically regular systems are found in Refsition from quasi-integrability to quantum chaotic and that
[7]. Furthermore, since quantum entanglement is responsibliis transition is caused by the precursors of QPT. However,
for the appearance of long-range correlations, it is expectethe dynamical entanglement near and at QPT has not yet
to play a crucial role in the study of quantum phase transibeen studied. Although Furuyet al. [15] studied entangle-
tions (QPT). It is demonstrated that the entanglement isment process in a varied version of DM and concluded that
maximum for the parameter values corresponding roughly tdor short times there is a faster increase in decoherence for
a bifurcation of a fixed point in the corresponding semiclasthe chaotic initial conditions as compared to regular ones,
sical dynamics in a driven dissipative quantum sysfBmA  which have oscillatory increase, the impact of QPT on en-
similar property also exists in th&Y spin chain[9], where  tanglement and how the decoherence depends on the cou-
one- and two-spin entanglement measures are employegling parameter were not discussed. In this work, we study
while the entanglement between a bldckontiguity and the the dynamical entanglement that is quantitatively expressed
rest of the chain at the critical point displays a logarithmicin terms of the reduced-density linear entropy, with the var-
divergence for large. [10]. These mean that the entangle- ied couplings in DM. When the initial state is taken to be the
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ground state without the interaction between the atoms and Once the quantum Hamiltonidf) is at hand, we are able
the field, we are able to investigate the characteristic time ofo study its entanglement dynamics. Before doing that, one
the decoherence and the entanglement properties with diffemust choose initial quantum states. Most works have taken
ent numbers of atoms with the coupling parameter that covthe initial states to be the ground states under considered
ers the QPT point. guantum systems, and then ground-state entanglement is
We also study the behavior of entanglement dynamicanalyzed8-10,21,22 In our case, we take the initial states
with different initial states, assuming the coupling parameteto be coherent states, namely, minimum uncertainty wave
fixed. For a given energy, initial states are prepared as minipackets centered in the corresponding classical phase space.
mum uncertainty wave packets placed at regular and chaotithat allows us to explore the relation between the entangle-
regions of the classical phase space. Therefore, the influenoeent and classical chaos. The initial quantum states chosen

of chaos on the entanglement will be explored. in the present study are as follows:
The paper is organized as follows. Section Il introduces
the Dicke model, and its classical version and classical bifur- ly(0))=[n @ |B)=|7B), (3

cation are derived in terms of coherent state theory. In Sec. o ,

lll, the characteristic time of decoherent process in the earlyWhere|n(8)) are the atomicfield-) coherent states given by
time evolution is numerically obtained with the coupling pa- 23
rameter. The mean entanglement, which is defined to be av-
eraged over time, is used to study the relations between the
entanglement and the quantum phase transition, and between
the entanglement and the classical chaos. Conclusion is 1B) = e—BB*/ZeBawo), (4)
given in Sec. IV.

|H=(1+ TT*)_jeTJ’f“,— i,

where
Il. THE DICKE MODEL
We consider the Dicke model that describes a collection r= &'
of N two-level atoms interacting with a single-mode radia- V4j - (q§+ pf)

tion field via a dipole interaction with an atom-field coupling

parametein. The Dicke Hamiltonian without rotating-wave 1

approximation is written a¢»=1 hereafter B= TE(q2+ ip,), (5)
\‘J

|0y is the bosonic field ground state, angl,p;,q,,p, de-
scribe the phase space of the system under consideration
where wy and w are the splitting ofN two-level atoms and with indices 1 and 2 for the atomic and field subsystem,
the frequency of a single bosonic mode, respectivé)yis respectively. Thus the classical Hamiltonian corresponding
the operator of atomic inversiom, anda' are the annihila- to Eq.(1) can be obtained by a standard procedur§2as

tion and creation operators of the field moglés the length

of the collective spin operators, adg andJ_ are the collec- He = (7B|H|78)

tive atomic raising and lowing operators. They satisfy the

su2) Lie algebra:

[3,,0.1=23, [Jpda]= +J.. )

The Hilbert space of this algebra is spanned by the Dicke 4j-qi-p?
states|j,m) (m=—-j,-j+1,...,j—1,j), which are the eigen- + 2\ 4—1-‘11‘12’ (6)
states ofJ? and J, with the eigenvalue$(j+1) andm. The
raising and lowering operators act on these states aken the corresponding Hamilton’s equations of motion are
Jilj,m=4j(j+1)-m(mx1)|j,m+1). Note that, in general, given by
the set of atomic configurations fdl>2 is nontrivial
[16], and the states are nonseparable and have entangle- . N P19192
ment[17] in terms of the individual atom configurations. 1= @oPy V4j(4j - - p?)
In this work, we also takg to be its maximal valug v
=N/2 as done in Refd.14,15]. .
The Hamiltonian (1) has a conserved parityll 02 = WPy,
=exdim(a'a+J,+j)] with the eigenvalues +1. An interesting

physical realization of the Hamiltoniafi) is given by the _ 4j - Cﬁ‘ pi Q§Q2
coupling of the internal levels of atoms or ions to a mode of p; =— wyd; — 2\0; ; N T————,
their quantized oscillatory motion in a harmonic trgi8]. 4 V4j(4j — a1 - py)
Recently, reversible entanglement of ions has been proposed

[19], and the experimental realizations have been reported in 4 - f-p?
the cases of several iofig0]. Py =— gy — 2\0y # 7
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We now determine the fixed points in the classical phas@he quantity S(t) describes the degree of purity of the
space(d;,p1,0.,Po) by settingg;=0,=p;=p,=0. The sim-  subsystem in a scale from @ure statg to 1 (statistical
plest fixed point is given by;=g,=p;=p,=0, the coordi- mixture). It also describes the degree of decoherefifde
nate origin. By calculating the Hessian stability matrix from Thus in this section we discugp the characteristic time
the second derivatives d¢f, we see that this fixed point is of decoherence(ii) the influence of the quantum phase
only stable when transition on the entanglement, afid) the relation be-
tween the entanglement and classical chaos.

wg + w2 - \"/(wg - w?)?+ 16)\2w0w >0, (8)
i.e., when A<\Vwow/2=\;. There are two other fixed A. The characteristic time of decoherence
points, both of which have;=p,=0, with q; andg, given ) . )
by The physics of decoherence has been extensively studied
during the last few years both from the theoretical and also
) A2 from the experimental point of view. As part of these studies
a=*4/2)|1- 2/’ it has been recognized that the docoherence process has

rather unique properties for systems whose classical analogs
are chaotic. Referendé@] suggested that entropy production
2 Ao during decoh Id be used as a diagnostic f
b= 7 Afil1-22. (9) rate during decoherence could be used as a diagnostic for
1) N guantum chaos in open quantum system. The gquantum-
These two guantities onlv remain real and stable provide lassical correspondence between classical and quantum de-
q y P criptions of dynamics of decoherence was studied for

that A > \.. So, below the coupling., only one fixed point g o
exists, which lies at the coordinate’s origin and is stable.SmOOth Hamiltonian system], where the classicality of

Above )\, this fixed point becomes unstable and two neWearIy—Ume decoherence dynamics was described using

) . ; second-order perturbative treatment. It is now understood
stable fixed points appear at the coordingtes,, +q,) and that the decoherence is closely related to the nonlinear pa-

(+01,-0) given by Eq.(9) with p;=p,=0. _ rameter describing interactiofi80]. Thus it is important to
The above obtained classical bifurcation poinhaicor- o4y for the characteristic time of decoherence upon variance
responds to the quantum phase transifipd] by the exact ot the coupling parameter. In particular, it becomes very in-

Holstein-Primakoff transformation of the Hamiltoni&h) in o resting if the quantum systems have a quantum phase tran-
the thermodynamics limiN— <. It is demonstrated that the gjtion.

quantum phase transition is the second-order one and quan- \1ost works on decoherence have focused on using
tum chaos is triggered by precursors of this transition byga.qnd-order perturbative treatméht30,31 and the inter-
in-detail investigations of the ground-state energy and wave .inn of the quantum system with its environment that has
function, and the nearest-neighbor level-spacing distributiorpmjlny degrees of freedof80,32,33. A latest important work
[14]. In the following section, the behavior of entanglementy, a5 shown that decoherence of the center-of-mass motion of
dynamics is studied with the several different valuefNof a composed system can occur through the entanglement of
its own subsystems with even a few degrees of freedom due
IIl. THE ENTANGLEMENT DYNAMICS to the chaotic nature of internal dynami@&]. However, to
our best knowledge, how the characteristic time of decoher-
Several measures of quantum entanglement have beece depends on the model parameter has not yet been dis-
proposed. These include entanglement of formaft##), en-  cussed. We have determined the characteristic tjrfer the
tanglement of distillatiorf25], relative entropy of entangle- DM, which is defined as the instant when the slope of the
ment[26], linear entropy of entanglemef®7], concurrence  curve of the entropys(t) decreases appreciably in the early-
[28], negativity[29], and so on. In our case the entanglementjme evolution [33], that is, ty is determined by setting
can be described by the linear entropy or the von Neumanggt)/dt|,.,4=0.

entropy. We calculate the linear entropy and the von Neu- The characteristic time, of the decoherence process is
mann entropy, and the similar behavior of the two measuregg|cylated in the resonant case=wy=1, with the initial

is found. Thus we only present the results of the linear engiate, for simplicity, being taken to be the ground state with-
tropy. Furthermore, the linear entropy is extensively used iyt the coupling between the atoms and the field. Figure 1

the study of decohereng®,6,8,9,30-3# It is important that - shows the characteristic tinig of decoherence vs the model
the characteristic time of decoherer{@3] can be obtained parameter A with several numbers of atomsN

in the calculation of the linear entropy. =1,2,3,9,25where\ is changed from 0.001 to 1. A num-
The linear entropy of entanglement is defined 2 ber of observations are in order. First, the characteristic time
S(t) = 1 - Tryp,(H?, (10) ty decreases as the coupling parametarcreases. Second, if

\ is less than 0.08, is almost the same for different number
where Ty denotes a trace over the first subsystem, anaf atoms. The curve,; for N=9 and 25 have a little differ-
pi(t) is the reduced-density matriy(t)=Tr|y(t)){y(t)|,  ence compared with those for small number of atoids,
where indices 1 and 2 stand for the atomic and field sub=1,2,3.Finally, and most importantly, all the curvésdo
system, and¢ (1)) is the quantum state of the full system, not have any distinct change near and at the critical point
which evolves in time under the action of Hamiltoniél). \:=0.5. It is straightforward to get the similar curves for
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FIG. 1. The dependence of the characteristic tijpén scaled
unit) of decoherence process in the early-time evolution on the cou- FIG. 2. The dependence of the mean entangler§gnon the
pling parametei. The solid curves from bottom to top are fr ~ coupling parametex. The curves from bottom to top are fi=1,
=1, 2, 3, and dashed and dotted curvesNor9 and 25, respec- 2, 3, 9, 25, respectively. A distinct change at the critical paint
tively, whereN is the number of atoms in the Dicke model. Here =0.5 is nicely observed faN=9, 25 withw=wy=1.
there is no obvious change at the critical couplipg-0.5 with »

=wp=1. larger than that below the critical point. The mean entangle-
ment also increases with coupling strengttbut it saturates
large coupling parameter and the large number of atoms iafter a certain magnitude of coupling strength that will be
the model. seen to roughly correspond to the emergence of complete
classical chaos in the following section. This observation
agrees with that for coupled standard mdp3]. Further-
more, the mean entanglement above the critical point fluctu-
ates in small amplitude with the coupling parameier
Investigations of the behaviors of entanglement near anghose frequency increases with the number of atoms. This
at the quantum phase transition have been so far restricted taay also be regarded as a fingerprint of the underlying quan-
interacting-1/2 systems on a one-dimensional latticeum chaog5] that was demonstrated in R¢t4]. Finally, the
[9,10,33 or on a simpleX36], which requires the more or mean entanglemer®, has more distinct change at the quan-
less artificial splitting into two-spin subsystems. It is showntum critical point(\,=0.5) for the larger number of atoms.
that the entanglement measured by the von Neumann errhjs relation between the entanglement and the number of
tropy or the pairwise concurrence is largest near quanturatoms agrees with that obtained in R§22], where the
critical points. This is also demonstrated by the latest StUdieground_state static entang|ement measured by concurrence is
of the entanglement between a qubit and the environment ifhaximum exactly at the critical point when the number of
the spin-boson mode21] and the entanglement between atoms is infinity. The different measures of entanglement for
atoms and field in the Dicke modg22]. Those works, how- mixed guantum states are referred to R88].
ever, focused solely on static properties of the entanglement.
In this section, we explore the behavior of entanglement dy- ¢ The relation between entanglement and classical chaos
namics near and at the quantum phase transition. To this end,

we introduce the mean entanglem&gt which is defined by The relation between entanglement and classical chaos
has been previously studied with the example of a varied

1 T Dicke model[15]. It was found that the entanglement rate is
S = T 0 St (1) considerably enhanced if the initial wave packet is placed in
a chaotic region. Such rates have been related to classical
whereT is the total time of evolution, which is taken to be 20 Lyapunov exponents with the help of a coupled kicked top
in scaled unit in the resonant caGe=w,=1) hereafter. model[39]. It is shown that the increment in the strength of
Figure 2 shows that the mean entanglen®waries with  chaos does not enhance the production rate of entanglement
the coupling parametex, where the number of atom$ is  when the coupling is weak enough and the kicked tops are
taken to be 1, 2, 3, 9, and 25, for example, and the initiaktrongly chaotid40]. Another work of similar kind has been
state is also taken to be the ground state without the couplindgone for coupled standard maf&7]. In this section we ex-
between the atoms and the field for simplicity. Some importend such a study to the Dicke model.
tant properties are observed in Fig. 2. First, the mean en- We numerically integrate Hamilton’s equations of motion
tanglementS,, increases as the number of atoms increaseg7) for a variety of parameters and initial conditions. In order
The increasing quantity above the critical po{nt=0.5 is  to analyze classical chaos resulting from these integrations,

B. The entanglement near and at the quantum phase
transition
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FIG. 3. Poincaré sections for the classical Dicke model for three 02
increasing couplingsh=0.1, 0.5, 0.9(from left to right), with N 0_1\/\J
=9 andE=1. The Hamiltonian is on scaled resonargewy=1.
0.0

P,

we employ Poincaré sections through the four-dimensional

. . ) . FIG. 4. The dependence of the mean entanglerSgnon the
phase space. As this system is Hamiltonian, the energy

initial coherent states characterized by one of the classical variables
TR, p1, corresponding to the straight line@t=0 in Poincaré sections in
_Wo, 0 o . O 5 5 ] =01~ P71 Fig. 3. The curves from bottom to top are far=0.1, 0.5, 0.9
=—(g+p°—-2j)+—=(g5+p5)+ —_—
E 2 G+ pi-2) 2(q2 P2+ 2\ \ 4j gl respectively.

(12

is conserved, and thus we define our surface of section b
g,=0 with p, being fixed by the energi. We only record
traversals fop,>0. Poincaré sections for illustrative param-
eter values are shown in Fig. 3. At low (A=0.2), the
Poincaré section consists of a series of regular, periodic
orbits and irregular orbits. Approaching to the critical
coupling(A=0.5, we see a change in the character of the
periodic orbits, and also the emergence of a number of We have studied the entanglement dynamics in the Dicke
chaotic trajectories. Increasing the coupling further resultsnodel without rotating-wave approximation with varied cou-
in the breakup of the remaining periodic orbits and thepling parameter and initial quantum states. The entanglement
whole phase space becomes chaotic for coupling a littlgs measured by the reduced-linear density entropy. The char-
over the critical value. The section Rt0.9 is given as an  acteristic time of decoherent process in the early-time evolu-
example. tion is numerically obtained from the linear entropy. It is
We now determine behaviors of the mean entanglemerfound that the characteristic time decreases as the coupling
with different initial states that are taken to be coherent statearameter increases when the initial state is taken to be the
placed at the corresponding classical phase space. For coground state without coupling between atoms and field. An
parison, we take the coherent states constructed from thsbvious variance of the characteristic time at the critical cou-
points in the straight line &, =0 at the three section&ig.  pling is not observed in our study.
3). Thus the initial states are only determined by the values The mean entanglement averaged over time has been used
of p;. Figure 4 shows that the mean entanglen@nvaries  for the description of behaviors of entanglement dynamics
with p, for the corresponding sections. Some observations ifvith varied coupling parameter, number of atoms, and initial
Fig. 4 are the following. For the weak couplitg=0.1), the  conditions. Therefore, the influence of quantum phase tran-
regular, periodic orbits produce smaller mean entanglemerition and the classical chaos on the entanglement has been
than the irregular orbits. For the critical couplifig=0.5),  explored. It is shown that the larger the number of atoms in
the mean entanglement fluctuates wgihin small amplitude, the model, the more distinct is the change the mean entangle-
and the smallest mean entanglement almost corresponds iteent at the critical coupling. It is also shown that the mean
the regular orbits agp,=3.0 in the island in the section since entanglement increases with the coupling parameter and the
the chaotic orbits occupy most of the classical phase spacaumber of atoms in the model, but it fluctuates around its
For the strong couplingr =0.9), the mean entanglement also saturation value when the coupling parameter or the initial
fluctuates withp; with the smaller amplitude, and the small- state is in classical chaotic regime. This saturation value de-
est mean entanglement remainpat 3.0, but here the orbits pends on the number of atoms, coupling parameter, initial
are chaotic. Hence, the conclusion that the chaotic regimeonditions, total time of evolution, and so on. It is difficult to
tends to produce larger entanglement than the regular reginget its analyzed expression in general. Nevertheless, the satu-
[15,37 is also applicable to the Dicke model only in the ration value remains between 0 and 1. When the coherent
weak coupling. Finally, we notice that the mean entanglestate placed at the corresponding classical phase

¥ent at the border of the sections also has a larger value than
that at the regular orbits. This therefore appears to be a bor-
der effect.

IV. CONCLUSION
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