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By modeling the interaction of an open quantum system with its environment through a natural generaliza-
tion of the classical concept of continuous time random walk, we derive and characterize a class of non-
Markovian master equations whose solution is a completely positive map. The structure of these master
equations is associated with a random renewal process where each event consist in the application of a
superoperator over a density matrix. Strong nonexponential decay arise by choosing different statistics of the
renewal process. As examples we analyze the stochastic and averaged dynamics of simple systems that admit
an analytical solution. The problem of positivity in quantum master equations induced by memory effects[S.
M. Barnett and S. Stenholm, Phys. Rev. A64, 033808(2001)] is clarified in this context.
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I. INTRODUCTION

From the beginning of quantum mechanics there existed
alternative formalisms to describe the dynamics of open
quantum systems. Besides the microscopic derivation of
quantum master equations, the theory of quantum dynamical
semigroups[1] introduced a strong constraint for the pos-
sible structure of a given Markovian master equation. As is
well known, the more general structure is given by the so-
called Kossakowski-Lindblad generator

drstd
dt

= − ifH,rstdg +
1

t0
L0frstdg. s1d

Here, rstd is the system density matrix,H is the system
Hamiltonian,t0 is the characteristic time scale of the irre-
versible dynamics and

L0f·g = o
b

sfVb, ·Vb
†g + fVb · ,Vb

†gd, s2d

where hVbj is a set of arbitrary operators. This structure
arises after demanding the Markovian property and the com-
pletely positive conditionsCPCd. This last requisite is stron-
ger than positivity. It guarantees the right behavior of the
solution maprs0d→rstd after extending, with an identity,
the original evolution to an ancillary and arbitrary Hilbert
spacef1,2g.

As a consequence of the Markovian or semigroup condi-
tion, the evolution Eq.(1) is local in time. This fact, in gen-
eral, implies that the dynamics of the density matrix ele-
ments is characterized through an exponential decay
behavior. Nevertheless, there exist many physical situations
that must be described in a quantum regime and whose char-
acteristic decay behaviors are different from an exponential
decay.

Some relevant examples arise in atomic and molecular
systems subject to the influence of environments with a
highly structured spectral density, where the theoretical mod-
eling can be given in terms of a few-modes spin-boson
model[3] and in terms of random-matrix theory[4]. In these
situations, the characteristic decay of the system dynamics

present stretched exponential and power law behaviors.
Other examples are one dimensional quasiperiodic systems
[5] that develop a non-Gaussian diffusion front, anomalous
photon counting statistics for blinking quantum dots[6],
many-spin systems[7], fractional derivative master equa-
tions [8], and structured reservoirs[9].

In all these physical situations the validity of the approxi-
mations that allow a Markovian description break down.
Therefore, its dynamical description is outside of a Markov-
ian Lindblad evolution. Thus there seems to be a gap be-
tween completely positive evolutions and those with an
anomalous decay behavior.

The main purpose of this paper is to establish the possi-
bility of constructing a class of evolution equations for the
density matrix that satisfies the CPC and that also leads to
strong nonexponential decay. Our basic idea for the deriva-
tion of these equations consists in modeling the interaction of
an open quantum system with its environment as a series of
random scattering events represented through the action of a
superoperator over the system density matrix, where the
elapsed time between the successive events corresponds to
an arbitrary random renewal process[10]. This stochastic
dynamics can be seen as a natural generalization of the clas-
sical method of continuous time random walk[11,12], where
a particle at random times jumps instantaneously between
the sites of a regular lattice. In consequence we will name
our starting stochastic dynamics a continuous time quantum
random walk(CTQRW).

We remark that the concept of quantum random walks is
nowadays used in the context of quantum information and
quantum computation[13]. Our paper deals with a different
problem since here we are concerned with a phenomenologi-
cal description of anomalous irreversible processes in the
context of completely positive evolutions.

The dynamics that results from a CTQRW is non-
Markovian and can be written as a memory integral over a
Lindblad superoperator[see Eq.(14)]. This kind of evolution
was previously analyzed in Ref.[14] by Barnett and Sten-
holm, where the possibility of obtaining nonphysical solu-
tions from this non-Markovian evolution was raised up. Con-
trary to their final conclusion, here we will show that, as in a
classical context[15,16], it is possible to use this kind of
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equation as a phenomenological tool in the description of
open systems. Even more, we will see that the correct behav-
ior of this equation is related with the possibility of associ-
ating to it a CTQRW.

The paper is organized as follows. In Sec. II we introduce
the stochastic dynamics and the corresponding evolution for
the averaged density matrix. The CPC and the relaxation to a
stationary state are characterized. In Sec. III we study some
nontrivial kernels that lead to a telegraphic and a fractional
equation. The dynamics induced by these evolutions are ana-
lyzed through simples systems, as a two level system and a
quantum harmonic oscillator. The relation with the formal-
ism of intrinsic decoherence is also established. In Sec. IV
we give the conclusions.

II. CONTINUOUS TIME QUANTUM RANDOM WALK

The stochastic dynamics that define a CTQRW involve
two central ingredients. First, a completely positive superop-
eratorEf·g which represents an instantaneous disruptive in-
tervention of the environment over the system of interest. We
will assume that it can be written in a sum representation[2]
as

Efrg = o
i

CirCi
†, s3d

where the operatorsCi satisfy the closure condition

o
i

Ci
†Ci = I . s4d

The second ingredient is a set of random timet1, t2¯ , tn
that defines when the disruptive action occurs. We will as-
sume that this set is stationary and defined as a random re-
newal process, i.e., it can be characterized through a waiting
time distributionwstd which gives the probability density for
the elapsed time intervalti = ti − ti−1 between two consecutive
disruptive events.

We will work in an interaction representation with respect
to the system Hamiltonian and also assume that the unitary
evolution commutates with the superoperatorEf·g. Thus the
average evolution of the density matrix over the realizations
of the random times can be written in the following way:

rstd = o
n=0

`

PnstdEnfrs0dg. s5d

Here,Pnstd defines the probability thatn applications of the
superoperatorEfrg have occurred up to timet. This set of
probabilities is normalized as

o
n=0

`

Pnstd = 1, s6d

and is defined through the expressions

P0std = 1 −E
0

t

dtwstd s7d

and

Pnstd =E
0

t

dtwst − tdPn−1std. s8d

Note thatP0std defines the survival probability, i.e., the prob-
ability of not having any superoperator action up to timet.
Using recursively Eq.s8d, from Eq. s5d it is possible to ex-
press the average density matrix as

rstd = P0stdrs0d +E
0

t

dt wst − tdEfrstdg. s9d

In order to obtain a differential equation for the evolution of
rstd we follow the calculation in the Laplace domain. Denot-

ing f̃sud=e0
`dt expf−utgfstd, from Eq. s9d, we get

r̃sud =
1 − w̃sud

u H 1

I − w̃sudEf·gJrs0d, s10d

where we have usedP̃0sud=f1−w̃sudg /u. Equations10d al-
lows us to expressrs0d in terms ofr̃sud. Thus it is straight-
forward to get

ur̃sud − rs0d = K̃sudLfr̃sudg, s11d

where we have defined

K̃sud =
uw̃sud

1 − w̃sud
, s12d

and the superoperator

Lf·g = Ef·g − I . s13d

Then, the time evolution of the average density matrix reads

drstd
dt

=E
0

t

dtKst − tdLfrstdg, s14d

where the kernelKstd is defined through its Laplace trans-
form, Eq.s12d. This evolution, in general, is non-Markovian,
and by construction it is a completely positive one. On the
other hand, using the sum representation Eq.s3d and the
normalization condition Eq.s4d it is possible to write the
superoperator Eq.s13d in a Lindblad form

Lf·g =
1

2o
i

hfCi, ·Ci
†g + fCi · ,Ci

†gj. s15d

Random superoperators. The previous results can be eas-
ily extended to the case in which the scattering superopera-
tor, in each event, is chosen over a sethEaf·gj with probabil-
ity Psadda. Assuming that this random selection is
statistically independent of the set of random times, the evo-
lution is the same as in Eq.(14) with

Lf·g =E
−`

+`

daPsadEaf·g − I . s16d

Infinitesimal transformations. At this point, it is important
to remark that in general an arbitrary Lindblad structure, Eq.
(2), cannot be associated with a completely positive super-
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operatorEf·g as in Eq.(13). This fact does not imply any
limitation in our approach. In fact, an arbitrary Lindblad term
L0f·g can always be associated to a completely positive su-
peroperator of the form

E0frg = hI + fekL0 − Igjr, s17d

wherek must be intended as a control parameter. Then, an
arbitrary Lindblad term can be introduced in Eq.s14d in the
limit in which simultaneouslyk→0 and the number of
events by unit of time go to infinite, the last limit being
controlled by the waiting time distributionwstd. We will ex-
emplify this procedure along the next section.

A. Completely positive condition

As was mentioned previously, by construction the non-
Markov evolution Eq.(14) is a completely positive one.
Nevertheless, from a phenomenological point of view[14]
one is also interested in knowing which kind of arbitrary
kernelKdstd guarantees this condition.

The CPC is clearly satisfied if it is possible to associate a
well defined waiting distribution to the kernelKdstd. Given
an arbitrary kernel, from the definition Eq.(12), the associ-
ated waiting time distribution is

w̃dsud =
K̃dsud

u + K̃dsud
=

1

u/K̃dsud + 1
. s18d

This equation defines a positive waiting time distribution if
and only if w̃dsud is a completely monotonesCMd function
f10g, i.e., w̃ds0d.0 ands−1dnw̃d

sndsudù0, wherew̃d
sndsud de-

note then-derivative. Noting that 1/su+1d is a CM function
and that a function of the typef(gsud) is CM, if fssd is CM
and if the functiongsud is positive and possesses a CM de-
rivative f10g, the Laplace transform of the kernelKdsud must
satisfy

u

K̃dsud
ù 0 and

dfu/K̃dsudg
du

a CM function. s19d

As in the classical case, these conditions allow us to classify
the kernels in safe and dangerous onesf15g. The secure ones,
independently of the particular structure of the superoperator
Ef·g, always admit a stochastic interpretation in terms of a
CTQRW. Therefore, they induce a completely positive dy-
namics. The dangerous ones do not admit a stochastic inter-
pretation and in consequence the CPC is not guaranteed. As
we will see in the following examples, in this last case the
CPC depends on the particular structure of the superoperator
Ef·g.

B. Integral solution-subordination processes

The solution of the evolution Eq.(14) can be written in an
integral form over the solution of a corresponding Markov-
ian problem. In order to demonstrate this affirmation, first we
write Eq. (11) as

r̃sud =
1

u − K̃sudLf·g
rs0d. s20d

Using the expression

1

u − K̃sudLf·g
=E

0

`

dt8e−hu−K̃sudLf·gjt8, s21d

and after the change of variablet=K̃sudt8, it is possible to
write

1

u − K̃sudLf·g
=E

0

`

dtP̃su,tdeLf·gt, s22d

where the functionP̃su,td is defined by

P̃su,td =
1

K̃sud
expF− t

u

K̃sud
G . s23d

Note that from this expression, after a Laplace transform in

the second variablet→s, it is possible to obtainP̃su,sd
=1/fu+sK̃sudg, which implies the equivalent definition

] Pst,td
] t

= −E
0

t

dt8Kst − t8d
] Pst8,td

] t
. s24d

Inserting Eq.s22d in Eq. s20d, the integral solution for the
density matrix reads

rstd =E
0

`

dtPst,tdrsMdstd, s25d

where the density operatorrsMdstd is the solution of the Mar-
kovian evolution

drsMdstd
dt

= LfrsMdstdg, s26d

subject to the initial condition rs0d, i.e., rsMdstd
=expfLtgfrs0dg.

When the set of conditions Eq.(19) is satisfied, from Eq.
(23) it is simple to demonstrate that the functionPst ,td de-
fines a probability distribution for thet variable[17], i.e.,

Pst,td ù 0 andE
0

`

dtPst,td = 1, s27d

where the normalization of Pst ,td follows from
e0

`dtPsu,td=1/u. This result, joint with Eq.s25d, allows us
to interpret the stochastic evolution as a subordination pro-
cess f10,15g, where the translation between the “internal
time” t and the physical timet is given by the function
Pst ,td. On the other hand, note that the positivity of this
probability function is equivalent to the CPC of the solution
map.

C. Relaxation to the stationary state

Here we will analyze the relaxation of the density matrix
to a stationary state. With the aid of the integral solution Eq.
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(25), the characterization of this process is similar to that of
classical Fokker-Planck equations[16]. First, we note that
the Markovian evolution ofrsMdstd can always be solved in a
damping basis[18] as

rsMdstd = o
l

čle−ltPl, s28d

where Pl are the eigenoperators of the Lindblad term,
LfPlg=lPl, and the expansion coefficients are defined by

čl=TrfP̌lrsMds0dg. The dual operatorsP̌l satisfy the clo-

sure condition TrfP̌lPlg=ldll8 and are defined through

ĽfP̌lg=lP̌l, where Ľf·g is the dual superoperator ofLf·g
defined by TrhALfrgj=TrhrĽfAgj f1g. The expansion Eq.
s28d allows us to write the solution of the non-Markov
evolution Eq.s14d in the form

rstd = o
l

člhlstdPl, s29d

where the functionshlstd are defined by

hlstd =E
0

`

dtPst,tde−lt. s30d

In the Laplace domain this definition is equivalent to

h̃lsud =
1

u + lK̃sud
, s31d

which also implies

dhlstd
dt

= − lE
0

t

dtKst − tdhlstd. s32d

From these expressions it is simple to realize that if the Mar-
kovian solution Eq.s28d involves a null eigenvalue, the cor-
responding stationary state maintains this status in the non-
Markovian evolution. Furthermore, the typical exponential
decay of a Lindblad evolution is translated to that of the
characteristic functionshlstd. On the other hand, due to the
structure of the solution Eq.s29d, it is clear that any set of
relations between the relaxation rates of the Markovian prob-
lem f1,19g will also be present in the non-Markov solution
fsee, for example, Eqs.s76d and s77dg.

III. EXAMPLES

In this section we will analyze different possible dynam-
ics that arise after choosing different memory kernels. Fur-
thermore, we will work out some exact solutions in simple
systems.

A. Markovian dynamics

By assuming an exponential waiting time distribution

wstd = A1e
−A1t, s33d

from Eq. s12d we immediately obtain

Kstd = A1dstd. s34d

Thus the evolution Eq.s14d reduces to a Markovian one. In
this case, it is also possible to obtain all the hierarchy of
probabilitiesPnstd, which read

Pnstd =
sA1tdn

n!
e−A1t. s35d

These results imply that a Markovian Lindblad evolution can
be associated with a Poissonian statistics of the environment
action. This stochastic interpretation is also valid for arbi-
trary Lindblad terms, Eq.s2d. In this case, the associated
superoperator is given by Eq.s17d and it is necessary to take
the limit k→0, A1→` with kA1=A18. Note that this limit is
well defined in the sense that the waiting time distribution
remains positive and normalized, i.e.,e0

`dtwstd=1.

B. Exponential kernel

Now we will analyze the case of an exponential kernel

Kstd = Ae expf− gtg, s36d

where the units ofAe are sec−2. By demanding the condi-
tions Eq.s19d it is possible to show that this kernel is not
a secure one, i.e., in general it is not possible to associate
a stochastic dynamics, and in consequence the CPC of the
solution map is not guaranteed. Nevertheless, note that in
the double limit,g→`, Ae→`, with Ae /g=A1, this kernel
reduces to the previous case, indicating a possible region
of parameter values where the kernel can be a secure one.
In order to see this fact, from Eq.s18d, after Laplace trans-
form, we get

wstd = 2Aee
−gt/2

sinhF1

2
tÎg2 − 4AeG

Îg2 − 4Ae

. s37d

This function, forg2.4Ae, is a well defined waiting time
distribution which delimits the region of parameter values
where the evolution is a secure one.

After differentiation of Eq.(14), the evolution of the den-
sity matrix can be written as

d2rstd
dt2

+ g
drstd

dt
= AeLfrstdg, s38d

which is a kind of a telegraphic equationf20g. This equation
must be solved with the initial valuesrstdut=0=r0 and
drstd /dtut=0=0. Then, under the conditiong2.4Ae, this
equation provides an evolution whose solution is a com-
pletely positive map. In this case, the characteristic decay
functionshlstd, Eq. s30d, result in

hst,Fld = e−gt/2HcoshF t

2
FlG +

g

Fl

sinhF t

2
FlGJ , s39d

whereFl=Îg2−4lAe.
We remark that the introduction of an arbitrary Lindblad

termL0f·g in Eq. (38) modifies drastically the previous posi-
tivity conditions. In fact, this change requires the use of the
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superoperator Eq.(17) and the double limitk→0, Ae→`,
with kAe=Ae8. Nevertheless, from Eq.(37), we note that the
limit Ae→` leads to a waiting time distribution that always
takes negative values. The positivity ofwstd can only be
recuperated in the limitg→`. Nevertheless, as we have
commented previously, this extra requirement implies that
the final dynamics results Markovian. Therefore, for infini-
tesimal superoperators there is no region of parameter values
where the exponential kernel admits a stochastic interpreta-
tion. In consequence, the CPC of the solution map is unpre-
dictable and must be checked for each particular case. This
result characterizes and generalizes the results obtained in
Ref. [14].

C. Fractional evolution

Now we analyze a case of a sure kernel[15]. We assume

K̃sud = Aau1−a, 0 , a ø 1, s40d

where the units ofAa are 1/seca. As is well known, this
kind of kernel can be related to a fractional derivative
operatorf12g. Thus the density matrix evolution reads

drstd
dt

= Aa0Dt
1−aLfrstdg. s41d

The Riemann-Liouville fractional operator is defined by

0Dt
1−afstd =

1

Gsad
d

dt
E

0

t

dt8
fst8d

st − t8d1−a , s42d

whereGsxd is the gamma function. By using Eq.s18d, the
Laplace transform of the waiting time distribution reads

w̃sud =
Aa

Aa + ua . s43d

Note that fora=1 this expression reduces to the Laplace
transform of an exponential function. Furthermore, the con-
dition 0,aø1 corresponds to the values ofa wherew̃sud is
a CM function, guaranteeing a well defined waiting time
distribution. In the time domain it reads

wstd =
Aa

t1−a o
n=0

`
s− Aatadn

G„asn + 1d…
. s44d

Thus the case of fractional derivative provides a well defined
evolution, Eq.s41d, whose solution is a completely positive
map that admits a stochastic interpretation in terms of the
waiting time distribution Eq.s44d. We remark that, in this
case, the average time between successive applications,ktl
=e0

`twstddt, is not defined. As in the classical domainf12g,
this fact implies the absence of a characteristic time scale and
statistically it enables the presence of time intervals of any
magnitude. On the other hand, we note that an arbitrary
Lindblad superoperator can always be introduced in Eq.s41d
in a secure way. In fact, the waiting time distribution Eq.
s44d is well defined in the limitk→0, Aa→` with kAa

=Aa8.

From Eqs.(31) and (40), the characteristic decay func-
tions hlstd read

hlstd = Eaf− lAatag. s45d

Here we have introduced the Mittag-Leffler functionEastd
which is defined through the seriesf12g

Eaf− Aatag = o
k=1

`
s− Aatadk

Gsak + 1d
. s46d

The short time regime of this function is governed by an
stretched exponential decay

lim
t→0

Eaf− Aatag < e−Aata, s47d

while the long time regime converges to a power law decay

lim
t→`

Eaf− Aatag <
1

Aata . s48d

In this way, the fractional kernel allows us to introduce these
anomalous behaviors that clearly differ from the typical ex-
ponential decay of a standard Lindblad equation. Further-
more, this dynamics can always be associated with a
CTQRW characterized through the waiting time distribution
Eq. s44d.

D. Short time regime

An important aspect in the theory of open quantum sys-
tems is the characterization of the irreversible dynamics at
short times [21,22]. Here we will analyze this regime
through the linear entropydstd=1−Trfr2stdg. For simplicity,
we will assume that at the initial time the system is in a pure
state,rs0d= uClkCu. Defining the average

kkEll = o
i

kCi
†Cil − kCi

†lkCil, s49d

wherekCl=kCuCuCl, from Eq. s25d, for the fractional case
we get

dstd <
2Aata

Gs1 + ad
kkEll, s50d

while for the exponential case we get

dstd < Aet
2kkEll. s51d

We note that for the Markovian casesa=1d the increase of
entropy is linear in time, while the exponential case presents
a slower quadratic behavior. On the other hand, the fractional
case gives rise to the faster increase, whose rate is not de-
fined, i.e., it is infinite. Nevertheless, as we will show in the
following examples, in the long time regime the fractional
case induces the slower dynamical behavior.

E. Two-level system

Here we will analyze the non-Markovian dynamics of a
two level system driven by different superoperators and
memory kernels.
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1. Depolarizing reservoir

First we will analyze the case of a depolarizing environ-
ment[2]. Thus we define the operators that appear in the sum
representation Eq.(3) as

C1 = Îpxsx, C2 = Îpysy, s52d

wherepx+py=1, andsx, sy are thex−y Pauli matrixes. In
order to simplify the final equations, from now on we will
assumepx=py=1/2. In this case, the Lindblad superoperator
Lf·g fEq. s13dg reads

Lf·g =
1

4
sfsx, ·sxg + fsx · ,sxg + fsy, ·syg + fsy · ,sygd.

s53d

This Lindblad generator corresponds to the interaction of a
two level system with a reservoir at infinite temperature.
This fact can be clearly seen by expressingLf·g in terms of
the lowering and raising spin operators,s=ssx− isyd /2, s†

=ssx+ isyd /2. We notice that assuming other values ofpx

andpy, extra terms appear in Eq.s53d that do not modify the
infinite temperature property of the Lindblad superoperator.

Exponential kernel. By denoting the density matrixrstd in
the basis of the eigenvalues ofsz as

rstd = SP+std C+std
C−std P−std

D , s54d

from Eq. s38d, the evolution of the upper and lower levels
reads

d2P±std
dt2

+ g
dP±std

dt
= Aef±P−std 7 P+stdg, s55d

while the coherences evolve as

d2C±std
dt2

+ g
dC±std

dt
= − AeC±std. s56d

The solutions of these equations are

P±std = P±
eq+ fP±s0d − P±

eqghst,Fpopd, s57d

with P±
eq=1/2, and

C±std = C±s0dhst,Fcohd, s58d

where the functionhst ,Fd was defined in Eq.s39d and

Fpop= Îg2 − 8Ae, Fcoh= Îg2 − 4Ae. s59d

In the Markovian limitg→`, Ae→` with Ae /g=A1 we get
the well known Markovian resultshst ,Fd=expf−Ftg, with
Fpop=2A1 and Fcoh=A1.

From our previous results, we know that under the condi-
tion g.4Ae the dynamics must be a completely positive one
and that forg,4Ae this is not guaranteed. Here, we will
check these conclusions for this simple model. By using the
propertyuhst ,Fduø1, from Eq.(57) it is possible to conclude
that for any value of the parameterg andAe, at all times the

populations satisfiesP±stdù0. On the other hand, the deter-
minant dstd of rstd, for any parameter values, satisfies the
inequality

dstd = H1

4
+ SP+s0d −

1

2
DSP−s0d −

1

2
Dh2st,Fpopd

− C+s0dC−s0dh2st,FcohdJ ù 0. s60d

In consequence, independently of the values ofg andAe, the
density matrix is always positive. We remark that this result
does not imply that the solution maprs0d→rstd is a com-
pletely positive one. By writing the solution in the sum rep-
resentation

rstd = gIstdrs0d + o
j=x,y,z

gjstds jrs0ds j , s61d

where

gIstd =
1

2
F1 + hst,Fpopd

2
+ hst,FcohdG , s62d

gxstd = gystd =
1 − hst,Fpopd

4
, s63d

gzstd =
1

2
F1 + hst,Fpopd

2
− hst,FcohdG , s64d

the CPC is equivalent to the conditionsgIstdù0, andgjstd
ù0∀ j , for all times. Forg2ù4Ae these inequalities are sat-
isfied. On the other hand, forg2ø4Ae, while the functions
gxstd andgystd are still positive, the functionsgIstd andgzstd
take negative values, which imply that the maprs0d→rstd is
not a completely positive one. Note that in this situation, the
map Eq.s61d can be written as a difference of two com-
pletely positive maps. This fact agrees with the general re-
sults of Ref.f23g, where it was demonstrated that any posi-
tive map can be written as a difference of two completely
positive ones.

Fractional kernel. Now we analyze the dynamics of the
two level system in the case of the fractional kernel Eq.(41).
For the evolution of the populations we get

dP±std
dt

= Aa0Dt
1−af±P−std 7 P+stdg, s65d

and the evolution of the coherence is

dC±std
dt

= − Aa0Dt
1−aC± std. s66d

The solutions of these equations are

P±std = P±
eq+ fP±s0d − P±

eqgEaf− Fpop
sad tag s67d

and

C±std = C±s0dEaf− Fcoh
sad tag, s68d

where
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Fpop
sad = 2Aa, Fcoh

sad = Aa. s69d

These expressions provide a completely positive map that
admit a stochastic interpretation in terms of its associated
CTQRW. In Fig. 1 we have implemented a numerical simu-
lation of this quantum stochastic process. We show a set of
realizations for the quantum averages of the Pauli matrixes,
Mjstd=Trfrstds jg, j =x,y,z. After the first application of
the depolarizing superoperator, Eq.s52d, the normalized
values of Mxstd and Mystd go to zero, remaining in this
value at all subsequent times. On the other hand,
Mzstd /Mzs0d oscillates between ±1 after each scattering
event. A notable property of these realizations is the ab-
sence of a characteristic time scale both for the first event

and for the elapsed time between any successive events.
This fact is a consequence of the power law decay of the
waiting time distributionwstd, Eq. s44d. The absence of
any time scale can be seen in the realization of
Mzstd /Mzs0d where the presence of time intervals of any
magnitude is evident.

In Fig. 2 we show the corresponding average over 104

realizations together with the analytical result forMxstd. We
have takena=1/2, which allows us to use the equivalent
expressionE1/2fAat1/2g=expfAa

2tgerfcfAat1/2g [12]. In the in-
set we compare the decay behavior induced by the different
kernels. Here, the stretched exponential decay at short times
and the power law behavior at long times are evident. In
order to be able to compare the different time decay scales

FIG. 1. Stochastic realizations
for the CTQRW defined by the de-
polarizing operators, Eq.(52), and
the fractional waiting time distri-
bution, Eq.(44). The graphs cor-
respond to the quantum average of
the Pauli matrixes, Mjstd
=Trfrstds jg, j =x,y,z. The real-
ization for the normalized average
Mystd /Mys0d is equal to that of the
x direction. The parameters were
chosen aspx=py=0.5 anda=0.5,
Aa=1/Î2 sec−1/2, T=Aa

−1/a.

FIG. 2. Theoretical result(full
line) and average over 104 realiza-
tions (circles) for Mxstd. The inset
shows the short time regime to-
gether with the theoretical results
for the Markovian evolution
(dashed line) with A1=0.5 sec−1,
and the exponential kernel(full
line) with g=2 sec−1, Ae=1 sec−2.
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induced by each kernel, in all figures of the paper we take
hA1=Aa

1/a=Ae /gj;T−1, which defines the dimensionless
time scalet /T.

Linear entropy. The linear entropydstd can be used as a
probe of the density matrix positivity. In fact, in a two di-
mensional Hilbert space, the positivity conditionrstdù0 is
equivalent to the inequality 0ødstdø1. This means that if
one of the two eigenvalues ofrstd is negative, thendstd,0.
Furthermore, the dynamical behaviors induced by each ker-
nel can be shown in a transparent way through this object.

In Fig. 3 we show the linear entropy for the Markovian,
exponential and fractional kernels. As an initial condition we
have chosen a pure state, an eigenstate ofsx. In the case of
the exponential kernel, consistently, we verify that indepen-
dently of the parameter values, the linear entropy is always
positive.

2. Dephasing reservoir

Here, we assume that the superoperatorEf·g is defined
through the operator

C1 = sz. s70d

The Lindblad superoperator results inLf·g=Ldf·g, where

Ldf·g ; 1
2sfsz, ·szg + fsz · ,szgd. s71d

As is well known, this kind of dispersive contribution de-
stroys coherences without affecting the level occupations.

In the case of the exponential kernel, the matrix elements
are given by

P±std = P±s0d, C±std = C±s0dhst,Fdd, s72d

where the functionhst ,Fd was defined in Eq.s39d and now
Fd=Îg2−8Ae. It is simple to prove that independently of
any parameter value, here the evolution preserves the den-

sity matrix positivity. This follows from the inequality
dstd=P+s0dP−s0d−C+s0dC−s0dfhst ,Fddg2ù0, which, added
to the preservation of the probability occupations, guaran-
tees the positivity condition. On the other hand, by ex-
pressing the density matrix in the sum representation,
rstd=gIstdrs0d+gzstdszrs0dsz, with gIstd=f1+hst ,Fddg /2
and gzstd=f1−hst ,Fddg /2, we immediately prove that the
dynamics is completely positive for any parameter values.
Therefore, for this kind of dispersive superoperator, inde-
pendent of the possibility of associating a stochastic dy-
namics to it, the solution map is always completely posi-
tive.

In the case of the fractional kernel we get

P±std = P±s0d, C±std = C±s0dEaf− 2Aatag. s73d

As in the previous environment model, here the coherence
decay displays stretched exponential and power law behav-
iors.

3. Thermal reservoir

Now we will analyze a dynamics that leads to a thermal
equilibrium state. First, we assume

C1 = Îp↑S1 0

0 Î1 − k
D , C2 = Îp↑S0 Îk

0 0
D ,

C3 = Îp↓SÎ1 − k 0

0 1
D , C4 = Îp↓S 0 0

Îk 0
D ,

wherep↑+p↓=1 and 0,kø1. These operators correspond
to a generalized amplitude damping superoperatorf2g. With
these definitions, the Lindblad superoperator Eq.s13d can be
written as

FIG. 3. Linear entropy for the
CTQRW defined by Eq.(52) spx

=py=1/2d. Long dashed line,
Markovian kernel with A1

=0.5 sec−1. Dashed line, fractional
kernel with a=0.5, Aa

=1/Î2 sec−1/2. Full line, exponen-
tial kernel with g=2 sec−1, Ae

=1 sec−2. Dotted line, exponential
kernel with g=0.5 sec−1, Ae

=0.25 sec−2.
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Lf·g = kLthf·g + k̃Ldf·g, s74d

whereLdf·g was defined in Eq.s71d, and

k̃ =
1

2
F1 −

k

2
− Î1 − kG . s75d

On the other hand, the Lindblad termLthf·g corresponds to a
thermal reservoir

Lthf·g ;
p↑
2

sfs†, ·sg + fs† · ,sgd +
p↓
2

sfs, ·s†g + fs · ,s†gd.

The temperature is defined byp↑ /p↓=expf−bDEg, where
DE is the difference of energy between the two levels.

Before proceeding with the description of this case, we
want to remark that a pure thermal evolution can only be
introduced through an infinitesimal transformation. In fact, it
is possible to demonstrate that the superoperatorEthf·g
;Lthf·g+ I is not a completely positive one, i.e., it cannot be
written in a sum representation Eq.(3). After noting that the
Lindblad superoperator Eq.(74) satisfies Lf·g=kLthf·g
+Osk2d, it is possible to associatek with the control param-
eter of Eq.(17). Thus, in the limitk→0 the dispersive con-
tribution drops out.

The dynamics induced by the Lindblad Eq.(74) is similar
to those analyzed previously in this section. In fact, the so-
lution for the exponential case can be written as in Eqs.(57)
and (58) with

Fpop= Îg2 − 4kAe, Fcoh= Îg2 − 2sk + 4k̃dAe. s76d

On the other hand, for the fractional kernel, the solutions
read as in Eqs.s67d and s68d with the definitions

Fpop
sad = kAa, Fcoh

sad = Sk

2
+ 2k̃DAa. s77d

The main difference with the previous solutions are the
equilibrium populations which now readP+

eq=p↑, and P−
eq

=p↓. As a consequence of this fact, it is simple to realize that
for g2øAe, the exponential kernel produces a mapping that
is not completely positive and not even positive. This follows
by noting that forP±

eqÞ1/2, the population solutions Eq.
(57) can take negative values.

In Fig. 4, for each kernel, we show the linear entropy
behavior in the case of a zero temperature reservoir. As in the
previous figure, as an initial condition we use an eigenstate
of the x-Pauli matrix. In the exponential case, when the sto-
chastic interpretation is not possible the linear entropy takes
negative values. Equivalently, this means thatrstd is not
positive definite.

F. Dynamics in a Fock space

Here we will analyze the dynamics of a CTQRW in a
system provided with a Fock space structure, as for example
a quantum harmonic oscillator or a mode of an electromag-
netic field. Witha† anda we denote the corresponding cre-
ation and anhilation operators. This situation will allow us to
recover the classical concept of continuous time random
walks in the context of completely positive maps.

For the superoperator that defines the CTQRW, we as-
sume the following form

Efrg = Dsb,b* drDsb,b* d
† , s78d

whereDsb,b* d is the displacement operator

Dsb,b* d = expfba† − b*ag. s79d

Furthermore, we assume that in each application ofEf·g the
complex parameterb is chosen with a probability distribu-
tion Psb,b* d. The induced evolution can be easily analyzed by
introducing the Wigner function

FIG. 4. Linear entropy for the
CTQRW defined by Eq.(74) with
p↓=1, p↑=0, and k=0.75. Long
dashed line, Markovian kernel
with A1=1 sec−1. Dashed line,
fractional kernel witha=0.5, Aa

=1 sec−1/2. Full line, exponential
kernel with g=4 sec−1, Ae

=4 sec−2. Dotted line, exponential
kernel with g=1 sec−1, Ae

=1 sec−2.
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Wsa,a* ,td = 2 TrfrstdDsa,a* de
ipa†aDsa,a* d

† g, s80d

whose evolution from Eqs.s14d and s16d then reads

dWsa,a* ,td
dt

=E
0

t

dtKst − tdHE
−`

`

dbdb*Psb,b* d

3Wsa − b,a* − b* ,td − Wsa,a* ,tdJ .

s81d

By construction, the solution of this equation provides a
completely positive map. Furthermore, we note that this
equation can be interpreted as a “classical” continuous time
random walk where the statistic of the “particle jumps” is
given byPsb,b* d and the statistics of the elapsed time between
the successive jumps is characterized through the waiting
time distribution associated to the kernelKstd. Thus, it is
evident that this evolution is a classical onef24g, which im-
plies that any quantum property can only be introduced
through the initial conditions.

When all the moments of the distributionPsb,b* d are finite,
i.e., kbrb*sl;e−`

` dbdb*Psb,b* db
rb*s,`∀ r ,s, the evolution

Eq. (81) can be written in terms of a Kramers-Moyal expan-
sion

dWsa,a* ,td
dt

=E
0

t

dtKst − tdLWsa,a* ,td, s82d

where the operatorL is defined by

L = o
n=1

`
1

n!
E

−`

`

dbdb*Psb,b* dSb
]

] a
+ b* ]

] a* Dn

. s83d

These expressions follow after developing in Eq.s81d the
Wigner functionWsa−b ,a* −b* ,td aroundWsa ,a* ,td. In
this situation, it is also possible to get a close expression for
the average excitation numbernstd=Trfrstda†ag, which
reads

nstd = ns0d + kubu2lE
0

t

dtKst − tdt. s84d

Here, we have assumed that the average displacements in the
directionssb ,b*d are null, i.e., the first moments of the dis-
tribution Psb,b* d vanish.

Up to second order, the operatorL reduces to a Hamil-
tonian term plus a classical Fokker Planck operator. By trun-
cating the evolution up to this order, the CPC is not broken.
This fact can be easily demonstrated by going back to the
density matrix representation, where the Lindblad superop-
erator Eq.(16) then readsLf·g<LHf·g+LFPf·g, with

LHf·g = fkbla† − kb*la, ·g s85d

and

LFPf·g = kubu2lsfa†, ·ag + fa† · ,ag + fa, ·a†g + fa · ,a†gd + kb2l

3sfa†, ·a†g + fa† · ,a†gd + kb*2lsfa, ·ag + fa · ,agd.

s86d

The Lindblad terms proportional tokubu2l are equivalent to a
reservoir at infinite temperature and the terms proportional to
kb2l and kb*2l introduce a squeezing effect. On the other
hand, it is possible to demonstrate that maintaining only a
finite number of higher terms, the evolution for the density
matrix cannot be written in a Lindblad form and in conse-
quence it is not completely positive. This fact agrees with the
predictions of the classical Pawula theoremf25g about Fok-
ker Planck equations.

Subdiffusive processes. By assuming the fractional kernel
Eq. (40), in the limit Aa→`, kubu2l→0, with Aakubu2l=Aa8,
the previous second order approximation applies. In this situ-
ation, the evolution of the Wigner function is characterized
by a subdiffusive process. In fact, the average excitation
number reads

nstd = ns0d +
2Aa8

Gs1 + ad
ta. s87d

Note that in comparison with a Markovian Lindblad evolu-
tion, a=1, here the increase of the average excitations pre-
sents a slower growth. On the other hand, the evolution of
the Wigner function can be written as

] Wsx,td
] t

= Aa80Dt
1−a ]2

] x2Wsx,td. s88d

Here,x is an arbitrary direction in the complex plane, and in
order to simplify the expression, we have “traced out” the
Wigner function over the perpendicular direction. We re-
mark that this kind of fractional subdiffusive dynamics is
allowed in the context of completely positive maps. This
equation was extensively analyzed in the literaturef12g,
where it was found that the solution presents a non-Gaussian
diffusion front. We notice that the relations between the ex-
ponents that characterize this behaviorf26g were found to be
universal in the context of quasiperiodic and disordered sys-
temsf5g.

Long jumps. When the moments of the distributionPsb,b* d
are not defined, the dynamics must be analyzed in the Fou-
rier domain,sa ,a*d→ sk,k*d. Denoting with a hat symbol
the Fourier transform, from Eq.(81), we get

dŴsk,k* ,td
dt

= − gsk,k*dE
0

t

dtKst − tdŴsk,k* ,td,

where the rates of the Fourier modes are given by

gsk,k*d = 1 − P̂sk,k* d. s89d

For example, by assuming a Levy distributionf12g Psk,k* d
=expf−smukumg, with 0,mø2, the evolution can be writ-
ten as a series of infinite fractional derivatives with re-
spect to the variablessa ,a*d. Nevertheless, with the
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present formalism, it is not possible to check the CPC of
any truncated evolution.

Quantum random walks. Finally we note that the concept
of quantum random walks[13] used in the context of quan-
tum computation and quantum information can be recovered
as a particular case of our approach by using the generalized
displacement operator

Dsb,b* ,u,fd = Rsu,fdexpfszsba† − b*adg, s90d

and assuming thatPsb,b* d=dsb−b0ddsb*−b0
* d, and wstd=dst

−T0d. Here,Rsu ,fd is an arbitrary rotation of an extra spin
variable, sb0,b0

*d is an arbitrary direction in the complex
plane, andT0 is the discreet time step.

G. Generalized intrinsic decoherence formalism

The intrinsic decoherence formalism[27,28] was intro-
duced by Milburn as a phenomenological frame to the de-
scription of decoherence phenomema. Here, we will analyze
and generalize this formalism by interpreting it as a CTQRW.
First, we assume as a superoperator

Etf·g = e−iHt ·eiHt, s91d

whereH is an arbitrary Hamiltonian in a given Hilbert space,
andt is a random variable chosen with a density probability
Pstd. From Eqs.s14d and s16d, the average density matrix
evolves as

drstd
dt

=E
0

t

dtKst − tdHE
−`

+`

dt8Pst8de−iHt8rstdeiHt8 − rstdJ .

s92d

In the basis of eigenstates of the HamiltonianH, Hunl
=«nunl, the evolution of the matrix elementsrnm=knuruml is
given by

drnmstd
dt

= − gnmE
0

t

dtKst − tdrnmstd. s93d

Here, the decaying ratesgnm read

gnm= 1 − P̂svnmd, s94d

whereP̂svd=e−`
` dtPstde−ivt, is the Fourier transform of the

probability andvnm=«n−«m are the Bohr frequencies.
The original Milburn proposal is obtained by choosing

wstd = s1/tadexps− t/tad, Pstd = dst − tbd, s95d

which implies the density matrix evolution

drstd
dt

=
1

ta
he−iHtbrstdeiHtb − rstdj. s96d

Thus, our CTQRW provides a natural non-Markovian gener-
alization of this formalism. On the other hand, by choosing
the exponential waiting distribution of Eq.s95d, Pstd
=st /tbd−1exps−t /tbd, and using the identity lns1+ixd
=e0

`dsse−s/sds1−eisxd, the rate results gnm=lns1
+vnmtbdg /ta. This expression coincides with that obtained
in the formalism of Ref.f29g.

IV. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated that non-Markovian
master equations that consist in a memory integral over a
Lindblad structure can be considered as a valid tool in the
description of open quantum system dynamics.

Our approach for the understanding of these kind of equa-
tions consists in a natural generalization of the classical con-
cept of continuous time random walks to a quantum context.
We have defined a CTQRW in terms of a set of random
renewal events, each one consisting in the action of a super-
operator over a density matrix. The selection of different
statistics for the elapsed time between the successive appli-
cations of the superoperator allowed us to construct different
classes of completely positive evolutions that lead to strong
non-exponential decay of the density matrix elements. Re-
markable examples are the telegraphic master equation, Eq.
(38), which interpolates between a Gaussian short time dy-
namics and an asymptotic exponential decay, and the frac-
tional master equation, Eq.(41), which leads to stretched
exponential and power law behaviors. On the other hand,
in a Fock space the dynamics reduces to a classical one,
which allowed us to demonstrate that fractional subdiffusive
processes are consistent with a completely positive evolu-
tion.

Concerning the possibility of obtaining nonphysical solu-
tions from the non-Markovian master equation(14), we have
found a set of mathematical conditions on the kernel that
guarantee the CPC of the solution map. As in classical
Fokker-Planck equations, the set of conditions, Eq.(19), al-
lows us to link each safe kernel with a corresponding waiting
time distribution, which in the present case allows us to as-
sociate a CTQRW to the master equation.

By analyzing the exponential kernel, related to the tele-
graphic master equation, we have demonstrated that when
the kernel cannot be associated with a waiting time distribu-
tion, the resulting solution map can be nonphysical, only
positive, or even completely positive. This case demonstrates
that no general conclusions can be obtained outside the re-
gime where a stochastic interpretation is available. Further-
more, we have demonstrated that telegraphic master equa-
tions constructed with Lindblad superoperators that can be
introduced only through an infinitesimal transformation, Eq.
(17), only admit a stochastic interpretation in the Markovian
limit. In the case of the fractional kernel we have imple-
mented a numerical simulation that confirms the equivalence
between the non-Markovian fractional master equation and
the corresponding CTQRW.

Finally we want to remark that from the understanding
achieved in this work, some interesting open questions arise
in a natural way, as for example a possible microscopic deri-
vation of these non-Markovian master equations and the
finding of alternative stochastic representations based in a
continuous measurement theory. In fact, from the examples
worked out in this paper, we conclude that the stochastic
dynamics of a CTQRW can be thought in a rough way as the
continuous measuring action of an environment over an open
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quantum system, where the scattering superoperator must be
associated with the microscopic interaction between the sys-
tem and the environment, and the statistics of the random
times with the spectral properties of the bath.
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