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Stochastic representation of a class of non-Markovian completely positive evolutions
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By modeling the interaction of an open quantum system with its environment through a natural generaliza-
tion of the classical concept of continuous time random walk, we derive and characterize a class of non-
Markovian master equations whose solution is a completely positive map. The structure of these master
equations is associated with a random renewal process where each event consist in the application of a
superoperator over a density matrix. Strong nonexponential decay arise by choosing different statistics of the
renewal process. As examples we analyze the stochastic and averaged dynamics of simple systems that admit
an analytical solution. The problem of positivity in quantum master equations induced by memory [&fects
M. Barnett and S. Stenholm, Phys. Rev.64, 033808(2001)] is clarified in this context.
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[. INTRODUCTION present stretched exponential and power law behaviors.
ther examples are one dimensional quasiperiodic systems

From the beginning of quantum mechanics there existegs] that develop a non-Gaussian diffusion front, anomalous

alternative formalisms tp describe.the dyn.amics. of_ope hoton counting statistics for blinking quantum dd8j,
quantum systems. Besides the microscopic derivation Ofany-spin systemg7], fractional derivative master equa-
guantum master equations, the theory of quantum dynamicglyns [8], and structured reservoifs].
semigroups[1] introduced a strong constraint for the pos-  |n all these physical situations the validity of the approxi-
sible structure of a given Markovian master equation. As ismations that allow a Markovian description break down.
well known, the more general structure is given by the so-Therefore, its dynamical description is outside of a Markov-
called Kossakowski-Lindblad generator ian Lindblad evolution. Thus there seems to be a gap be-
do(t) . tween completely positive evolutions and those with an
p(t) . anomalous decay behavior.
dt i[H.p(®]+ ?OEO[p(t)]' (1) The main purpose of this paper is to establish the possi-
bility of constructing a class of evolution equations for the
Here, p(t) is the system density matrit] is the system density matrix that satisfies the CPC and that also leads to
Hamiltonian, 7, is the characteristic time scale of the irre- strong nonexponential decay. Our basic idea for the deriva-

versible dynamics and tion of these equations consists in modeling the interaction of
an open quantum system with its environment as a series of
Lol-1=> (V. -V;] +[Vg- ’V;])' 2) random scattering events represented through the action of a

8 superoperator over the system density matrix, where the

elapsed time between the successive events corresponds to
where {Vg} is a set of arbitrary operators. This structure an arbitrary random renewal procegl)]. This stochastic
arises after demanding the Markovian property and the comdynamics can be seen as a natural generalization of the clas-
pletely positive conditiofCPQ. This last requisite is stron- sical method of continuous time random w#lk,12, where
ger than positivity. It guarantees the right behavior of thea particle at random times jumps instantaneously between
solution mapp(0)— p(t) after extending, with an identity, the sites of a regular lattice. In consequence we will name
the original evolution to an ancillary and arbitrary Hilbert our starting stochastic dynamics a continuous time quantum
spaceg1,2]. random walk(CTQRW).

As a consequence of the Markovian or semigroup condi- We remark that the concept of quantum random walks is
tion, the evolution Eq(1) is local in time. This fact, in gen- nowadays used in the context of quantum information and
eral, implies that the dynamics of the density matrix ele-quantum computatiofil3]. Our paper deals with a different
ments is characterized through an exponential decaproblem since here we are concerned with a phenomenologi-
behavior. Nevertheless, there exist many physical situationsal description of anomalous irreversible processes in the
that must be described in a quantum regime and whose chazentext of completely positive evolutions.
acteristic decay behaviors are different from an exponential The dynamics that results from a CTQRW is non-
decay. Markovian and can be written as a memory integral over a

Some relevant examples arise in atomic and moleculakindblad superoperatgsee Eq(14)]. This kind of evolution
systems subject to the influence of environments with avas previously analyzed in Refl4] by Barnett and Sten-
highly structured spectral density, where the theoretical modholm, where the possibility of obtaining nonphysical solu-
eling can be given in terms of a few-modes spin-bosortions from this non-Markovian evolution was raised up. Con-
model[3] and in terms of random-matrix theof¥]. In these trary to their final conclusion, here we will show that, as in a
situations, the characteristic decay of the system dynamicslassical contex{15,16, it is possible to use this kind of
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equation as a phenomenological tool in the description of t

open systems. Even more, we will see that the correct behav- Pn(t) =f drw(t = 7)Py1(7). (8)
ior of this equation is related with the possibility of associ- 0

ating to it a CTQRW. Note thatPy(t) defines the survival probability, i.e., the prob-

The paper is organized as follows. In Sec. Il we introducegpility of not having any superoperator action up to time

the stochastic dynamics and the corresponding evolution faysing recursively Eq(8), from Eq. (5) it is possible to ex-
the averaged density matrix. The CPC and the relaxation to gress the average density matrix as

stationary state are characterized. In Sec. Ill we study some
nontrivial kernels that lead to a telegraphic and a fractional

equation. The dynamics induced by these evolutions are ana-
lyzed through simples systems, as a two level system and a
quantum harmonic oscillator. The relation with the formal-In order to obtain a differential equation for the evolution of
ism of intrinsic decoherence is also established. In Sec. I\w(t) we follow the calculation in the Laplace domain. Denot-

t

p(t) = Po(t)p(0) + J . dr w(t = 1) p(7)]. 9

we give the conclusions. ing T(u)=J7dt exd-ut]f(t), from Eq.(9), we get
~ 1-W(u) 1
IIl. CONTINUOUS TIME QUANTUM RANDOM WALK (u) = — p(0), (10)
u I —W(uél-]

The stochastic dynamics that define a CTQRW involve _
two central ingredients. First, a completely positive superopwhere we have useBy(u)=[1-W(u)]/u. Equation(10) al-
erator £[-] which represents an instantaneous disruptive infows us to expresp(0) in terms ofp(u). Thus it is straight-
tervention of the environment over the system of interest. Weorward to get
will assume that it can be written in a sum representgtin

as Up(u) - p(0) = K(u) L[BW], (11)
Epl=>C pci’f, (3)  where we have defined
I ~ uw(u)
where the operator§; satisfy the closure condition K(u) = 1——Vv(u) (12)
E clci=1. (4 and the superoperator
I

The second ingredient is a set of random tipet,: - <t, Ll1=e]-1 (13)

that defines when the disruptive action occurs. We will as-Then, the time evolution of the average density matrix reads
sume that this set is stationary and defined as a random re-

newal process, i.e., it can be characterized through a waiting dp(t) t

time distributionw(7) which gives the probability density for a  J, drK(t -7 Llp(D], (14)
the elapsed time interval=t;—t;_, between two consecutive

disruptive events. where the kerneK(t) is defined through its Laplace trans-

We will work in an interaction representation with respectform, Eq.(12). This evolution, in general, is non-Markovian,
to the system Hamiltonian and also assume that the unitargnd by construction it is a completely positive one. On the
evolution commutates with the superoperafpt]. Thus the other hand, using the sum representation E).and the
average evolution of the density matrix over the realizationsiormalization condition Eq(4) it is possible to write the
of the random times can be written in the following way:  superoperator Eq13) in a Lindblad form

- 1
p(H) =D PL(OET(0)]. (5) £0]= 524G, -G1+[Ci- T (15)
n=0 I
Here, P,(t) defines the probability that applications of the ~ Random superoperatar§he previous results can be eas-
superoperato€[p] have occurred up to time This set of ily extended to the case in which the scattering superopera-
probabilities is normalized as tor, in each event, is chosen over a &&f -]} with probabil-
ity P(a)da. Assuming that this random selection is
- statistically independent of the set of random times, the evo-
Eo Pn(t) =1, () |ution is the same as in E¢L4) with
n=|
and is defined through the expressions 2] :f daP@&-]-1. (16)
t —00
Po()=1- JO drw(r) (7) Infinitesimal transformationdAt this point, it is important
to remark that in general an arbitrary Lindblad structure, Eq.
and (2), cannot be associated with a completely positive super-

042107-2



STOCHASTIC REPRESENTATION OF A CLASS OF PHYSICAL REVIEW A 69, 042107(2004)

operatoré[-] as in Eq.(13). This fact does not imply any

limitation in our approach. In fact, an arbitrary Lindblad term plu) = ~ p(0). (20
Lo[-] can always be associated to a completely positive su- u-KWLL]
peroperator of the form Using the expression
Elpl={1 +[e%“0=1T}p, (17) _ 1 - fm dr e—{u—R(u)ﬁ[-]}r” (21
u-KWL[] -o

where k must be intended as a control parameter. Then, an
arbitrary Lindblad term can be introduced in E&4) in the

limit in which simultaneouslyx—0 and the number of and after the change of variabte=K(u)«’, it is possible to

events by unit of time go to infinite, the last limit being write
controlled by the waiting time distributiow(t). We will ex- 1 © -
emplify this procedure along the next section. —u RO = fo drP(u, e, (22
A. Completely positive condition where the functiorP(u, ) is defined by
As was mentioned previously, by construction the non- 1 u
Markov evolution Eg.(14) is a completely positive one. P(un==—— exp| - . (23
Nevertheless, from a phenomenological point of Vigl] K(u) K(U)

one is also interested in knowing which kind of arbitrary
kernelK4(t) guarantees this condition. ] ._ . 2
The CPC is clearly satisfied if it is possible to associate 4N€ Second variable—s, it is possible to obtairP(u,s)
well defined waiting distribution to the kern&ly(t). Given  =1/[u+sK(u)], which implies the equivalent definition
an arbitrary kernel, from the definition E¢L2), the associ-

Note that from this expression, after a Laplace transform in

ated waiting time distribution is J P(t T) f dt'K(t—t’ )‘9 P(t, )_ (24)
Wy(u) = Kaw _ 1 _ (18)  Inserting Eq.(22) in Eq. (20), the integral solution for the
u+Kgu) wky(u)+1 density matrix reads
This eque}tign defines a positive waiting time distribu_tion if p(t) = fw drP(t, 7p™(7), (25)
and only if Wy(u) is a completely monotonéCM) function 0

[10], i.e.,Wy(0)>0 and(—l)“va”)(u)zo, whereiy ™ (u) de-
note then-derivative. Noting that 1(u+1) is a CM function
and that a function of the typHg(u)) is CM, if f(s) is CM
and if the functiong(u) is positive and possesses a CM de- dp™(7)

where the density operatpf™(7) is the solution of the Mar-
kovian evolution

rivative [10], the Laplace transform of the kerri€}(u) must dr LIp™()], (26)
satisfy . _— L .
subject to the initial condition p(0), i.e., p™(7
d[u/Kd(u)] =exd L7][p(0)]. - _ o
= and—————a CM function. (19 When the set of conditions E¢L9) is satisfied, from Eq.
Kd(U) du (23) it is simple to demonstrate that the functi®t, ) de-

fines a probability distribution for the variable[17], i.e.,
As in the classical case, these conditions allow us to classify P y (17,

the kernels in safe and dangerous ¢hBk The secure ones,

independently of the particular structure of the superoperator P(t,7) =0 andfo drP(t,7) =1, (27)

&[], always admit a stochastic interpretation in terms of a

CTQRW. Therefore, they induce a completely positive dy-where the normalization of P(t,7) follows from
namics. The dangerous ones do not admit a stochastic intefgd7P(u, 7)=1/u. This result, joint with Eq(25), allows us
pretation and in consequence the CPC is not guaranteed. As interpret the stochastic evolution as a subordination pro-
we will see in the following examples, in this last case thecess[10,15, where the translation between the “internal
CPC depends on the particular structure of the superoperattime” r and the physical time is given by the function

&l P(t,7). On the other hand, note that the positivity of this
probability function is equivalent to the CPC of the solution
B. Integral solution-subordination processes map.

The solution of the evolution E@14) can be written in an
integral form over the solution of a corresponding Markov-
ian problem. In order to demonstrate this affirmation, first we Here we will analyze the relaxation of the density matrix
write Eq.(11) as to a stationary state. With the aid of the integral solution Eq.

C. Relaxation to the stationary state
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(25), the characterization of this process is similar to that of K(t) = A 8(t). (39

classical Fokker-Planck equatiof6]. First, we note that ) )
the Markovian evolution 0p™)(7) can always be solved in a Thus the evolution Eq(14) reduces to a Markovian one. In
damping basi$18] as this case, it is also possible to obtain all the hierarchy of

probabilitiesP,(t), which read

(M) - X AT
p™(7) %cxe Py, (28) (A" ae

Pn(t) = (35

n!

where P, are the eigenoperators of the Lindblad term, . ] ) )
L[P,]=\P,, and the expansion coefficients are defined byThese results imply that a Markovian Lindblad evolution can
& =Ti[P,y™(0)]. The dual operator®, satisfy the clo- be associated with a Poissonian statistics of the environment
AT AP ' P A y action. This stochastic interpretation is also valid for arbi-

sure condition TiP,\P\]=\é,\ and are defined through trary Lindblad terms, Eq(2). In this case, the associated
L[P,]=\P,, where [-] is the dual superoperator a[-] superoperator is given by E€L7) and it is necessary to take

. v . the limit k— 0, A; — % with kA;=A;. Note that this limit is
defined by T{AL =Tr{pL[A]} [1]. The expansion Eq. v 1=
(28) aIIow); u{s t(Ep\]/\}/rite {516[ S:EhEti]OH of thepnon-Mark?)v well defined in the sense that the waiting time distribution

evolution Eq.(14) in the form remains positive and normalized, i.¢gdrw(7)=1.

p(t) = >, & hy (HPy, (29 B. Exponential kernel
. Now we will analyze the case of an exponential kernel
where the function$, (t) are defined by K(t) = A, ext- ], (36)
hy () = fw drP(t, e, (30) vyhere the uni'ts'oﬂé are se®. By demandi'ng the cqndi—
0 tions Eq.(19) it is possible to show that this kernel is not

o o ) a secure one, i.e., in general it is not possible to associate
In the Laplace domain this definition is equivalent to a stochastic dynamics, and in consequence the CPC of the
solution map is not guaranteed. Nevertheless, note that in

'ﬁk(u) = % (31) the double limit,y—=, A,.—, with A/ y=Ay, this kernel
u+ AK(u) reduces to the previous case, indicating a possible region
_ o of parameter values where the kernel can be a secure one.
which also implies In order to see this fact, from E(L8), after Laplace trans-
form, we get
dhy(t ! ’
% = —)\f dK(t - nh,(7). (32 1 -
t 0 sinh[ —t\y2 - 4AE}
From these expressions it is simple to realize that if the Mar- w(t) = 2A 72 V2= 4A (37)
kovian solution Eq(28) involves a null eigenvalue, the cor- VY T

responding stationary state maintains this status in the norfhijs function, fory2>4A,, is a well defined waiting time
Markovian evolution. Furthermore, the typical exponentialdistribution which delimits the region of parameter values
decay of a Lindblad evolution is translated to that of thewhere the evolution is a secure one.

characteristic functiongy(t). On the other hand, due to the  After differentiation of Eq(14), the evolution of the den-
structure of the solution Eq29), it is clear that any set of sity matrix can be written as

relations between the relaxation rates of the Markovian prob- 5

lem [1,19] will also be present in the non-Markov solution dp(t)  dp(t) ALLp(®] 39)

[see, for example, Eq$76) and (77)]. a2 "V dt

which is a kind of a telegraphic equatig®0]. This equation
1. EXAMPLES must be solved with the initial valuep(t)|.-o=po and
dp(t)/dt|-o=0. Then, under the condition?>4A_, this
equation provides an evolution whose solution is a com-
pletely positive map. In this case, the characteristic decay
functionsh, (t), Eq. (30), result in

_ t vy .|t
") L ~®
A. Markovian dynamics h(t,®,) =e™* COS’{ q’x] + Smh[ x] , (39
2 @, 2

By assuming an exponential waiting time distribution where®, =\ 72— 4\A..

In this section we will analyze different possible dynam-
ics that arise after choosing different memory kernels. Fur
thermore, we will work out some exact solutions in simple
systems.

w(t) = Aje™At, (33) We rem_ark that the int_r_oduction_of an arbitrar_y Lindbla_ld
term Ly -] in Eq. (38) modifies drastically the previous posi-
from Eq.(12) we immediately obtain tivity conditions. In fact, this change requires the use of the
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superoperator Eq.17) and the double limitk— 0, A,—o°, From Egs.(31) and (40), the characteristic decay func-
with kA.=A_. Nevertheless, from Eq37), we note that the tionsh,(t) read
limit A,— « leads to a waiting time distribution that always
takes negative values. The positivity oft) can only be hy () = B[~ MAGLY]. (49
recuperated in the limity—c. Nevertheless, as we have Here we have introduced the Mittag-Leffler functidmt)
commented previously, this extra requirement implies thafyhich is defined through the serig$2]
the final dynamics results Markovian. Therefore, for infini-
tesimal superoperators there is no region of parameter values ” (= At
where the exponential kernel admits a stochastic interpreta- E-AdtT=2 Tax+ 1)’ (46)
. . . k=1 K )
tion. In consequence, the CPC of the solution map is unpre-
dictable and must be checked for each particular case. Thighe short time regime of this function is governed by an
result characterizes and generalizes the results obtained #retched exponential decay
Ref. [14].
lim E,[- A tY] =~ e A", (47)
C. Fractional evolution o

while the long time regime converges to a power law deca
Now we analyze a case of a sure kerfi]. We assume g g g P y

_ . o
K =AU 0<a=1, (40) lim B[=All~ (48)
where the units ofA, are 1/set. As is well known, this  |n this way, the fractional kernel allows us to introduce these
kind of kernel can be related to a fractional derivative anomalous behaviors that clearly differ from the typical ex-
operator{12]. Thus the density matrix evolution reads  ponential decay of a standard Lindblad equation. Further-
dp(t more, this dynamics can always be associated with a
AL Aathl‘“E[p(t)]. (41) CTQRW characterized through the waiting time distribution
dt Eq. (44).
The Riemann-Liouville fractional operator is defined by
D. Short time regime
t '
ODtl—af(t) - 14 rf(;,)l_a, (42) An .important aspeqt in_ the theory of open quantum_ Sys-
Fla)dt)y (-t tems is the characterization of the irreversible dynamics at
) ) ) short times[21,23. Here we will analyze this regime
whereI'(x) is the gamma function. By using E¢L8), the  tnrough the linear entropy(t)=1-THpA(t)]. For simplicity,
Laplace transform of the waiting time distribution reads e wjll assume that at the initial time the system is in a pure
state,p(0)=|P)(¥|. Defining the average

«&n=2(cjcy-(chiey, (49)

W(u) = (43)

A,+u®’

Note that fora=1 this expression reduces to the Laplace
transform of an exponential function. Furthermore, the conwhere(C)=(¥|C|¥), from Eq.(25), for the fractional case
dition 0< a=<1 corresponds to the values @fwherew(u) is  we get
a CM function, guaranteeing a well defined waiting time

distribution. In the time domain it reads St) = 2Aqt {EY, (50)
I'l+a)
w(t) = Aa (= Aut)" (44) while for the exponential case we get

E .
%= I'a(n+ 1)) 3(t) = ALX(E)). (51)

Thus the case of fractional derivative provides a well defineqNe note that for the Markovian cage=1) the increase of

evolution, Eq.(41), whose solution is a completely positive L o . :

map that admits a stochastic interpretation in terms of theentropy is linear In time, \.Nh'le the exponential case presents

waiting time distribution Eq(44). We remark that, in this aslowgr qua@raﬂc behavior. Qn the other hand, the fractlonal

case, the average time between successive applications, case gives rise to _the faster increase, Whos? rate Is not de-
- . . ) . . fined, i.e., it is infinite. Nevertheless, as we will show in the

:IO M(T?dT' 1S not defined. As in the class[cgl d'omimz], following examples, in the long time regime the fractional

thls_fa_ct |mp_I|es the absence of a charact_erlst_lc time scale and, ¢ induces the slower dynamical behavior.

statistically it enables the presence of time intervals of any

magnitude. On the other hand, we note that an arbitrary

Lindblad superoperator can always be introduced in(Ed).

in a secure way. In fact, the waiting time distribution Eq. Here we will analyze the non-Markovian dynamics of a

(44) is well defined in the limitk—0, A,—~ with kA,  two level system driven by different superoperators and

=A.. memory kernels.

E. Two-level system
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1. Depolarizing reservoir

First we will analyze the case of a depolarizing environ-

PHYSICAL REVIEW A 69, 042107(2004

populations satisfieB.(t)=0. On the other hand, the deter-
minant d(t) of p(t), for any parameter values, satisfies the

ment[2]. Thus we define the operators that appear in the surfpequality

representation Eq3) as
| |
Ci=Vpyox, Co=vpyoy, (52

wherep,+p,=1, anda,, o, are thex—y Pauli matrixes. In
order to simplify the final equations, from now on we will
assumep,=p,=1/2. Inthis case, the Lindblad superoperator
L[] [Eq. (13)] reads

£11= 400 0,1+ oy 0] + a3, 03]+ [0y ).

(53)

This Lindblad generator corresponds to the interaction of a
two level system with a reservoir at infinite temperature.

This fact can be clearly seen by expressitig] in terms of
the lowering and raising spin operatotss (oy—ioy)/2, ot

=(ox+ioy)/2. We notice that assuming other values pf
andpy, extra terms appear in E(63) that do not modify the

infinite temperature property of the Lindblad superoperator.

Exponential kernelBy denoting the density matrix(t) in
the basis of the eigenvalues @f as

P.() C.(1)
C_(t)y P_(1)

from Eq. (38), the evolution of the upper and lower levels

reads

p(t) = ( (54)

dzztiz(t) . dF;it(t) AP0 FPM], (55
while the coherences evolve as
ey (56
The solutions of these equations are
P.(t) = PE7+[P.(0) - PIh(t, ), (57)
with P$9=1/2, and
C.(t) = C.(ON(t, Peon), (58)

where the functiorh(t,®) was defined in Eq(39) and

Dpop= V¥~ B8A, Peop=V¥-4A. (59

In the Markovian limity— o, A_.— o with A_./y=A; we get
the well known Markovian resulth(t, ®)=exd -®t], with
¢)p0p: 2A1 and q)coh:Al'

From our previous results, we know that under the condi-
tion y>4A, the dynamics must be a completely positive one

and that fory<<4A, this is not guaranteed. Here, we will

check these conclusions for this simple model. By using the

property|h(t,®)|< 1, from Eq.(57) it is possible to conclude
that for any value of the parametgrandA,, at all times the

dit) = {% (P02 (P 2 040

- C+(O)C_(0)h2(t,¢coh)} =0. (60)

In consequence, independently of the valuey ahdA,, the
density matrix is always positive. We remark that this result
does not imply that the solution mag0) — p(t) is a com-
pletely positive one. By writing the solution in the sum rep-
resentation

p0=00p0 + 3 GopO0;, (61
J=Xy,z
where
1 1 +h(t,®,,
0= 2 Z o] e
—h(t, Py,
0 =gyt = T 63
0= 2 Z I o], e

the CPC is equivalent to the conditioggt)=0, andg;(t)
=00j, for all times. Fory?=4A, these inequalities are sat-
isfied. On the other hand, fop?<4A_, while the functions
gy(t) andg,(t) are still positive, the functiong,(t) andg,(t)
take negative values, which imply that the map) — p(t) is
not a completely positive one. Note that in this situation, the
map Eq.(61) can be written as a difference of two com-
pletely positive maps. This fact agrees with the general re-
sults of Ref.[23], where it was demonstrated that any posi-
tive map can be written as a difference of two completely
positive ones.

Fractional kernel Now we analyze the dynamics of the
two level system in the case of the fractional kernel &4).
For the evolution of the populations we get

dP.(t _
d-t( ) - AL oD T£P_(1) F P.(1)], (65)
and the evolution of the coherence is
dC.(t _
0 __ A oDi “CL (). (66)
dt
The solutions of these equations are
P.(t) = P9+ [P.(0) - PSIE [~ il (67)
and
C.(t) = CL(0)E,[- Dig], (68)

where
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1
g
X
S 05 _ o
= FIG. 1. Stochastic realizations
= for the CTQRW defined by the de-
0 : ¢ , : polarizing operators, E¢52), and
0 0.25 0.5 0.75 1 the fractional waiting time distri-

Dimensionless Time, /T bution, Eq.(44). The graphs cor-
respond to the quantum average of
the Pauli  matrixes, M;(t)
=Trlp(t)oj]l, j=x,y,z. The real-
ization for the normalized average
M My(t)/My(0) is equal to that of the
x direction. The parameters were
. : , " — chosen ap,=p,=0.5 anda=0.5,
50 75 1om 125 150 A,=1/\2 sec?’2 T:A;lla,

B
[3]

Mz(t)/Mz(0)
o

|
N

Dimensionless Time, t/T

CDE{?,FZA&, DL =A,. (69) and for the elapsed time between any successive events.
This fact is a consequence of the power law decay of the

These expressions provide a completely positive map thavaiting time distributionw(t), Eq. (44). The absence of
admit a stochastic interpretation in terms of its associate@ny time scale can be seen in the realization of
CTQRW. In Fig. 1 we have implemented a numerical simu-M,(t)/M,0) where the presence of time intervals of any
lation of this quantum stochastic process. We show a set ahagnitude is evident.
realizations for the quantum averages of the Pauli matrixes, In Fig. 2 we show the corresponding average ovet 10
M;(t)=Trlp(t);], j=x,y,z. After the first application of realizations together with the analytical result fdg(t). We
the depolarizing superoperator, E2), the normalized have takena=1/2, which allows us to use the equivalent
values of M,(t) and M,(t) go to zero, remaining in this expressiorE; [At"/?]=exd A’tlerfd A t?] [12]. In the in-
value at all subsequent times. On the other handset we compare the decay behavior induced by the different
M,(t)/M,(0) oscillates between *1 after each scatteringkernels. Here, the stretched exponential decay at short times
event. A notable property of these realizations is the aband the power law behavior at long times are evident. In
sence of a characteristic time scale both for the first evenbrder to be able to compare the different time decay scales

1 O T

0.75 |

FIG. 2. Theoretical resultfull
line) and average over $0ealiza-
tions (circles for M,(t). The inset
shows the short time regime to-
gether with the theoretical results
for the Markovian evolution
(dashed ling with A;=0.5 sec?,
and the exponential kerngfull
line) with y=2 sec?, A,=1 sec?.

Mx(t)/Mx(0)
o
(6)]

0.25

0 20 40 60 80 100
Dimensionless Time, t/T
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0.5 e

FIG. 3. Linear entropy for the
CTQRW defined by Eq(52) (py
=py=1/2). Long dashed line,
Markovian  kernel  with A;
=0.5 secl. Dashed line, fractional
kernel with  «=0.5, A,
=1/42 sec™2 Full line, exponen-
tial kernel with y=2 sec?, A,
=1 sec? Dotted line, exponential
kernel with y=0.5sec!, A,
=0.25 set?

0.25

Linear Entropy

5 7.5 10
Dimensionless Time, t/T

induced by each kernel, in all figures of the paper we takesity matrix positivity. This follows from the inequality
{A\=AY"=A_y}=T"1, which defines the dimensionless d(t)=P,(0)P_(0)—C,(0)C_(0)[h(t,®y)]?=0, which, added
time scalet/T. to the preservation of the probability occupations, guaran-

Linear entropy The linear entropys(t) can be used as a tees the positivity condition. On the other hand, by ex-
probe of the density matrix positivity. In fact, in a two di- pressing the density matrix in the sum representation,
mensional Hilbert space, the positivity conditiptt)=0 is  p(t)=0,(t)p(0)+g,(t)o,p(0)o, with g,(t)=[1+h(t,Py)]/2
equivalent to the inequality € 8(t) < 1. This means that if andg,(t)=[1-h(t,®4)]/2, we immediately prove that the
one of the two eigenvalues pft) is negative, the(t)<0.  dynamics is completely positive for any parameter values.
Furthermore, the dynamical behaviors induced by each kerFherefore, for this kind of dispersive superoperator, inde-
nel can be shown in a transparent way through this object.pendent of the possibility of associating a stochastic dy-

In Fig. 3 we show the linear entropy for the Markovian, hamics to it, the solution map is always completely posi-
exponential and fractional kernels. As an initial condition wetive.

have chosen a pure state, an eigenstate,ofn the case of In the case of the fractional kernel we get

the exponential kernel, consistently, we verify that indepen-

dently of the parameter values, the linear entropy is always P.() =P.(0), C.(t)=C.(0E[-2At"]. (73
positive.

As in the previous environment model, here the coherence

2. Dephasing reservoir decay displays stretched exponential and power law behav-

iors.
Here, we assume that the superoperafol is defined
through the operator 3. Thermal reservoir
Ci=0,. (70) Now we will analyze a dynamics that leads to a thermal
The Lindblad superoperator resultsfti-]=£L[ -], where equilibrium state. First, we assume
= 1 . + . . 1 0 — 0 \”;
Ld1= 3o o)+ Loy ) (7 c.- \@(0 2 ) =) ).
As is well known, this kind of dispersive contribution de- v
stroys coherences without affecting the level occupations.
In the case of the exponential kernel, the matrix elements c f( \”T e O) . ’_( 0 0)
are given by 3=\VPy 0 1) 4=\P| V,; 0/
P.() =P.(0), C.(t) =C.(0h(t,Dy), (72

wherep;+p =1 and O<«k=<1. These operators correspond
where the functiorh(t, ®) was defined in Eq(39) and now  to a generalized amplitude damping superoperigtbrwith
®4=\y*—8A.. It is simple to prove that independently of these definitions, the Lindblad superoperator @@) can be
any parameter value, here the evolution preserves the demxitten as
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0.25
N T
’/I // \\ _________________________
0.125 i /] \\ 1
n'/ %\ FIG. 4. Linear entropy for the
’I AN CTQRW defined by Eq(74) with
z |/ \\\ p,=1, p;=0, and k=0.75. Long
% ' ~o_ dashed line, Markovian kernel
L 0 e e e, with A;=1 sec!. Dashed line,
g g fractional kernel witha=0.5, A,
£ =1 sec'2 Full line, exponential
kernel with y=4sec!, A,
=4 sec?. Dotted line, exponential
0125 | e | kernel with y=1sec!, A,
=1 sec?
-0.25 L ! |
0 5 10 15
Dimensionless Time, /T
L[]= kL[ -]+ &L, (74) The main difference with the previous solutions are the
. _ equilibrium populations which now reaB$%=p,, and P
where L [-] was defined in Eq(71), and =p,. As a consequence of this fact, it is simple to realize that
1 « for »<A,, the exponential kernel produces a mapping that
= —[1 ———y1- K] (75) is not completely positive and not even positive. This follows
2 2 by noting that forP$%+1/2, the population solutions Eg.
On the other hand, the Lindblad terfa[ ] corresponds to a (57) can take negative values. ,
thermal reservoir In Fig. 4, for each kernel, we show the linear entropy
behavior in the case of a zero temperature reservoir. As in the
previous figure, as an initial condition we use an eigenstate
Ll 1= %L([‘TT’ ‘ol+[o" o))+ %([‘T’ o'+ [ a"]). of the x-Pauli matrix. In the exponential case, when the sto-

chastic interpretation is not possible the linear entropy takes

The temperature is defined by,/p =exd-BAE], where negative values. Equivalently, this means thét) is not
AE is the difference of energy between the two levels. positive definite.

Before proceeding with the description of this case, we
want to remark that a pure thermal evolution can only be F. Dynamics in a Fock space
@ntroducgd through an infinitesimal transformation. In fact, it Here we will analyze the dynamics of a CTQRW in a
IS possmk_a to demonstrate thaF _the superoperaﬁq[r-] system provided with a Fock space structure, as for example
E?”‘H.H s nota completely positive one, 1€, It cannot bea guantum harmonic oscillator or a mode of an electromag-
written in a sum representation E@). After noting that the ¢ field. Witha! anda we denote the corresponding cre-
Lmdb;ad. superoperator Eq(74) satisfies L[-]=<Lul]  afion and anhilation operators. This situation will allow us to
+0(«?), it is possible to associate with the control param-  (acover the classical concept of continuous time random
eter qf Eq.(17). Thus, in the limitx — O the dispersive con- \yalks in the context of completely positive maps.
tribution drops out. _ S For the superoperator that defines the CTQRW, we as-

The dynamics induced by the Lindblad E@4) is similar  syme the following form
to those analyzed previously in this section. In fact, the so-
lution for the exponential case can be written as in E§%) Epl= D(B,B*)PDI;;,/;*)' (78
and(58) with

—— whereD g 4 is the displacement operator
— _ o s
Ppop= VP = 4kA., Peon= VY~ 2k +4K)A.. (76)

_ _ D s =exdpal - gal. (79
On the other hand, for the fractional kernel, the solutions _ o
read as in Eqs(67) and (68) with the definitions Furthermore, we assume that in each applicatio&[eff the

complex parameteB is chosen with a probability distribu-
tion Pz z+. The induced evolution can be easily analyzed by

Do, = kA, D= (5 + ZR)Aa. 7 : ; )
2 introducing the Wigner function

pop
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W, o', t) = 2 Tr[p(t)D(a,a*)e‘WaTaD(Ta’a*)], 80 Leel-1=(BA(@", -a]+[a"- al +[a, -a'T+[a- a']) +(B)

toaMafat. af *2 _ _
whose evolution from Eqg14) and (16) then reads (e, -al+lat-a)+(E0(a -al+la-a).

(86)
d ’ *1t t * * i i 2 I
dWa, o ,t) :J drK(t = 7) J dBdB P The LanbIaq terms proportional #0g|%) are equwalent_to a
dt 0 —o reservoir at infinite temperature and the terms proportional to

(B and (B8") introduce a squeezing effect. On the other
XW(a-B,a - B,7 —W(a,a*,r)}. hand, it is possible to demonstrate that maintaining only a
finite number of higher terms, the evolution for the density
(81) matrix cannot be written in a Lindblad form and in conse-
quence it is not completely positive. This fact agrees with the
By construction, the solution of this equation provides apredictions of the classical Pawula theorg2s] about Fok-
completely positive map. Furthermore, we note that thisker Planck equations.
equation can be interpreted as a “classical” continuous time Subdiffusive processeBy assuming the fractional kernel
random walk where the statistic of the “particle jumps” is Eq. (40), in the limit A,—, (|8>)— 0, with A(|B|*=A.,
given byP 4 5+ and the statistics of the elapsed time betweerthe previous second order approximation applies. In this situ-
the successive jumps is characterized through the waitingtion, the evolution of the Wigner function is characterized
time distribution associated to the kerr{t). Thus, it is by a subdiffusive process. In fact, the average excitation
evident that this evolution is a classical dig#], which im-  number reads
plies that any quantum property can only be introduced ,
through the initial conditions. n®) = n(0) + et 87)
When all the moments of the distributiéh 4+ are finite, I'(l+a)
ie., (BB =J7.dBdB P gB B S<0r,s, the evolution
Eqg. (81) can be written in terms of a Kramers-Moyal expan-
sion

Note that in comparison with a Markovian Lindblad evolu-

tion, a=1, here the increase of the average excitations pre-

sents a slower growth. On the other hand, the evolution of

W, ' 1 ¢ ) the Wigner function can be written as

T = dTK(t - T)EW(C&’,CV 17')1 (82)
0

9 WX, t) 1en O

—=A D —WI(x,1). 88
at aoDi g WY (88)

where the operatof is defined by

Here,x is an arbitrary direction in the complex plane, and in
1 . 9 o\ order to simplify the expression, we have “traced out” the
L=, - dgpdg P(ﬂﬂ*)<,8— +8 —) . (83 Wigner function over the perpendicular direction. We re-
n=1 M J oo da = da mark that this kind of fractional subdiffusive dynamics is
. o allowed in the context of completely positive maps. This
These expressions follow after developing in E81) the  equation was extensively analyzed in the literat{ité],
Wigner functionW(a-B,a -f,7) aroundW(a,a ,7). In \here it was found that the solution presents a non-Gaussian
this situation, it is also possible to get a close expression fogiffusion front. We notice that the relations between the ex-
the average excitation numben(t)=Tr[p(t)a'a], which  ponents that characterize this behaVizs] were found to be
reads universal in the context of quasiperiodic and disordered sys-
tems[5].
Long jumpsWhen the moments of the distributiég 4
are not defined, the dynamics must be analyzed in the Fou-
rier domain, (a,a’)— (k,k"). Denoting with a hat symbol
Here, we have assumed that the average displacements in tte Fourier transform, from Eq81), we get
directions(8,8") are null, i.e., the first moments of the dis- R
tribution Pz 5+, vanish. dWKK',t) ~ . f‘ IR
Up to second order, the operat@rreduces to a Hamil- dt =~ kk) OdTK(t WK, 7),
tonian term plus a classical Fokker Planck operator. By trun-
cating the evolution up to this order, the CPC is not brokenwhere the rates of the Fourier modes are given by
This fact can be easily demonstrated by going back to the )
density matrix representation, where the Lindblad superop- Y(kK) =1 =Py (89)
erator Eq.(16) then read<C[-]= L[]+ Lgp[ -], With

t
n(t) =n(0) + <|,8|2>fO drK(t- 7). (84)

For example, by assuming a Levy distributiph?] P~
Lul-1=[(Bya’ - (B )a, ] (850  =exfd-o*k|#], with 0<u <2, the evolution can be writ-
ten as a series of infinite fractional derivatives with re-
and spect to the variablesa,a’). Nevertheless, with the
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present formalism, it is not possible to check the CPC of IV. SUMMARY AND CONCLUSIONS
any truncated evolution.

Quantum random walks-inally we note that the concept  In this paper we have demonstrated that non-Markovian
of quantum random walkgL3] used in the context of quan- master equations that consist in a memory integral over a
tum computation and quantum information can be recoveredindblad structure can be considered as a valid tool in the
as a particular case of our approach by using the generalizqﬂ;scription of open quantum system dynamics.
displacement operator Our approach for the understanding of these kind of equa-

Disg 0 = R(6, dexdopal - B a), tions consists in a natural generalization of the classical con-

cept of continuous time random walks to a quantum context.
and assuming thatPg g)= 55565~ and w(t)=8(t  We have defined a CTQRW in terms of a set of random
-To). Here,R(6, ¢) is an arbitrary rotation of an extra spin

renewal events, each one consisting in the action of a super-
variable, (,80,,8;) is an arbitrary direction in the complex operator over a density matrix. The selection of different
plane, andTly is the discreet time step.

statistics for the elapsed time between the successive appli-
cations of the superoperator allowed us to construct different
classes of completely positive evolutions that lead to strong
The intrinsic decoherence formalisf27,28 was intro- non-exponential decay of the density matrix elements. Re-
duced by Milburn as a phenomenological frame to the demarkable examples are the telegraphic master equation, Eqg.
scription of decoherence phenomema. Here, we will analyz€38), which interpolates between a Gaussian short time dy-
and generalize this formalism by interpreting it as a CTQRWnamics and an asymptotic exponential decay, and the frac-
First, we assume as a superoperator tional master equation, Eq41), which leads to stretched

£]=eHr. gnr exponential and power law behaviors. On the other hand,
in a Fock space the dynamics reduces to a classical one,

whereH is an arbitrary Hamiltonian in a given Hilbert space, which allowed us to demonstrate that fractional subdiffusive
andr is a random variable chosen with a density probabilityprocesses are consistent with a completely positive evolu-

(90)

G. Generalized intrinsic decoherence formalism

(91

P(7). From Egs.(14) and (16), the average density matrix tion.

evolves as

dp(t) [t - iH iH

%:JG dTK(t_T){J_x dr’ P(7)e ™ p(r)eht” —p(r)}.
(92)

In the basis of eigenstates of the Hamiltonigh H|n)
=g,|n), the evolution of the matrix elemengsg,,={n|p|m) is
given by

dpnm(t) t
Pnd_r’: == ')’nmf d7K(t = 7)ppm(7). (93
0
Here, the decaying rateg,,, read
Yom=1- Is(wnm)y (94

Whereﬁ(w)=f°_°wd7-P(7-)e“‘*”, is the Fourier transform of the

probability andw,,=¢,— ¢, are the Bohr frequencies.
The original Milburn proposal is obtained by choosing

w(t) = (Ury)exp—t/m), P(7)=d871-1,), (95)
which implies the density matrix evolution
PO _Liehnppein-pm).  (99)
dat 7w,

Concerning the possibility of obtaining nonphysical solu-
tions from the non-Markovian master equatidd), we have
found a set of mathematical conditions on the kernel that
guarantee the CPC of the solution map. As in classical
Fokker-Planck equations, the set of conditions, @§), al-
lows us to link each safe kernel with a corresponding waiting
time distribution, which in the present case allows us to as-
sociate a CTQRW to the master equation.

By analyzing the exponential kernel, related to the tele-
graphic master equation, we have demonstrated that when
the kernel cannot be associated with a waiting time distribu-
tion, the resulting solution map can be nonphysical, only
positive, or even completely positive. This case demonstrates
that no general conclusions can be obtained outside the re-
gime where a stochastic interpretation is available. Further-
more, we have demonstrated that telegraphic master equa-
tions constructed with Lindblad superoperators that can be
introduced only through an infinitesimal transformation, Eq.
(17), only admit a stochastic interpretation in the Markovian
limit. In the case of the fractional kernel we have imple-
mented a numerical simulation that confirms the equivalence
between the non-Markovian fractional master equation and
the corresponding CTQRW.

Finally we want to remark that from the understanding
achieved in this work, some interesting open questions arise

Thus, our CTQRW provides a natural non-Markovian generin a natural way, as for example a possible microscopic deri-
alization of this formalism. On the other hand, by choosingvation of these non-Markovian master equations and the

the exponential waiting distribution of Eq95), P(7)
=(t/m,)'exp(-t/7), and using the identity [ +ix)
=[odd€e/s)(1-€%), the rate results y,,=In(1

finding of alternative stochastic representations based in a
continuous measurement theory. In fact, from the examples
worked out in this paper, we conclude that the stochastic

+w,mTp) ]/ 72 This expression coincides with that obtained dynamics of a CTQRW can be thought in a rough way as the

in the formalism of Ref[29].

continuous measuring action of an environment over an open

042107-11



ADRIAN A. BUDINI PHYSICAL REVIEW A 69, 042107(2004

quantum system, where the scattering superoperator must be ACKNOWLEDGMENTS

associated with the microscopic interaction between the sys-

tem and the environment, and the statistics of the random | am grateful to H. Schomerus and D. Spehner for enlight-
times with the spectral properties of the bath. ing discussions.

[1] R. Alicki and K. Lendi, inQuantum Dynamical Semigroups [17] |n Ref.[15] the extra condition&(u)=0 and thatd/du)K(u)
and ApplicationsLecture Notes in Physics Vol. 286pringer, must be a CM function are also demanded. By writing the
Berlin, 1987%.

[2] M. A. Nielsen and I. L. ChuangQuantum Computation and
Quantum Information(Cambridge University Press, Cam-

survival probability asi?’o(u)=1/k(u)[l+u/k(u)], it is simple
to realize that these conditions are equivalent to demanding the

bridge, England, 2000 inequality Py(t) =0, which implies that these extra conditions
[3] V. Wong and M. Gruebele, Chem. Phy284, 29 (2002. are automatically satisfied if the conditions Efj9) are satis-
[4] V. Wong and M. Gruebele, Phys. Rev. 83, 022502(2001). fied. This follows by noticing that a well defined waiting time
[5] J. Zhonget al, Phys. Rev. Lett.86, 2485(2000). distribution always guaranted¥(t) =0.
[6] Y. Jung, E. Barkai, and R. J. Silbey, Chem. Phg84, 181 [18] H. J. Briegel and B. G. Englert, Phys. Rev.4¥, 3311(1993.
(2002. [19] G. Kimura, Phys. Rev. A66, 062113(2002.
[7] V. V. Dobrovitski et al, Phys. Rev. Lett.90, 210401(2003. [20] P. M. Morse and H. Feshbachklethods of Theoretical Physics
[8] D. Kusnezov, A. Bulgac, and G. D. Dang, Phys. Rev. L88, (McGraw-Hill, New York, 1953.
1136(1999. [21] Lu-Ming Duan and Guang-Can Guo, Phys. Rev58, 4466
[9] B. J. Dalton and B. M. Garraway, Phys. Rev. @8, 033809 (1997
(2003. [22] A. A. Budini, Phys. Rev. A64, 052110(2001).
[10] W. Feller, An Introduction to Probability Theory and Its Ap- [23] S. Yu, Phys. Rev. A62, 024302(2000.
plications (Wiley, New York, 1973, Vols. 1 and 2. [24] W. Fischer, H. Leschke, and P. Miiller, Phys. Rev. L&t
[11] E. W. Montroll and G. H. Weiss, J. Math. Phy8, 167(1965); 1578(1994.
H. Scher and E. W. Montroll, Phys. Rev. B2, 2455(1975. [25] R. F. Pawula, Phys. Re62 186 (1967).
[12] R. Metzler and J. Klafter, Phys. Ref339, 1 (2000. [26] See Eq(45) in Ref.[12].
[13] J. Kempe, quant-ph/0303081. [27] G. J. Milburn, Phys. Rev. A44, 5401(1991).
[14] S. M. Barnett and S. Stenholm, Phys. Rev. 64, 033808 [28] H. Moya-Cessa, V. Buzek, M. S. Kim, and P. L. Knight, Phys.
(2001). Rev. A 48, 3900(1993.
[15] I. M. Sokolov, Phys. Rev. E66, 041101(2002. [29] R. Bonifacioet al, J. Mod. Opt.47, 2199(2000; R. Bonifa-
[16] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. L3P, 3563 cio, S. Olivares, P. Tombesi, and D. Vitali, Phys. Rev64,
(1999. 053802(2000.

042107-12



