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Four problematic circumstances are considered, involving models which describe dynamical wave-function
collapse toward energy eigenstates, for which it is shown that wave-function collapse of macroscopic objects
does not work properly. In one case, a common particle position measuring situation, the apparatus evolves to
a superposition of macroscopically distinguishable states(does not collapse to one of them as it should)
because each such particle/apparatus/environment state has precisely the same energy spectrum. Second, as-
suming an experiment takes place involving collapse to one of two possible outcomes which is permanently
recorded, it is shown in general that this can only happen in the unlikely case that the two apparatus states
corresponding to the two outcomes have disjoint energy spectra. Next, the progressive narrowing of the energy
spectrum due to the collapse mechanism is considered. This has the effect of broadening the time evolution of
objects as the universe evolves. Two examples, one involving a precessing spin, the other involving creation of
an excited state followed by its decay, are presented in the form of paradoxes. In both examples, the micro-
scopic behavior predicted by standard quantum theory is significantly altered under energy-driven collapse, but
this alteration is not observed by an apparatus when it is included in the quantum description. The resolution
involves recognition that the state vector describing the apparatus does not collapse, but evolves to a super-
position of macroscopically different states.
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I. INTRODUCTION

Wave-function collapse models alter Schrödinger’s equa-
tion by adding a term which depends upon a stochastically
fluctuating quantity. The equation then drives a superposition
of quantum states toward one or another state in the super-
position(which state is realized depends upon the realization
of the fluctuating quantity). Moreover, when all possible
fluctuations and their probabilities are considered, the real-
ized state appears as an outcome with the Born probability
[1,2].

Following seminal ideas involving collapse of particles to
localized positions in the model of Ghirardi, Rimini, and
Weber[3], it became possible to incorporate these with the
earlier ideas to construct a model, the continuous spontane-
ous localization(CSL) model[4,5], which describes collapse
based upon a local density, e.g., particle number density,
mass density[6–8], (relativistic) energy density. This model
entails rapid collapse of a superposition of macroscopically
distinguishable spatially localized states(such as occurs in a
measurement situation) to one of them. It does this because
each state differs from the others in the superposition in its
spatial distribution of the density. The CSL model, different
as it is from standard quantum theory, has experimentally
testable consequences[7,9,10]; so far it is consistent with
experiment.

A long time ago, Bedford and Wang[11] proposed that
collapse based upon differences in energy(not differences in
energy density as described above) could be viable. More
recently, Percival[12] has constructed a stochastic energy-
driven collapse model for microscopic systems but has not

extended it to macroscopic systems so one cannot say how,
e.g., the behavior of an apparatus is described in his model.
Most recently, Hughston[13] has given an elegant argument
propounding an energy-driven collapse model, which has
been followed by a number of papers[14–17] exploring
mathematical and physical consequences of this proposal.

Since the purpose of collapse models is to allow(the state
vector of the modified) quantum theory to describe the local-
ized world we see around us, it is necessary to have a mecha-
nism whereby energy-driven collapse results in localized
states of, e.g., a macroscopic apparatus. Hughston[13] has
suggested that exchange of environment particles(air) with
the apparatus by accretion or evaporation might achieve this
result, and this has been explored by Adler[17].

However, after presenting the necessary energy-driven
collapse formalism in Sec. II, we argue that it cannot(by this
or any other mechanism) lead to spatially localized states in
commonly occurring cases. Section III shows that this is so
in a familiar measurement situation, the position measure-
ment of a superposition of two mutually translated particle
states, when the particle, apparatus, and environment are col-
lectively described by the state vector. The reason is that the
evolving superposed macroscopically distinguishable states
have precisely the same energy spectra so one state is not
singled out by energy-driven collapse, which is only sensi-
tive to energy spectra differences. It is not sensitive to what
does distinguish the different macroscopic states: their(gen-
erally degenerate) energy states have different phase factors,
whose cancellation or augmentation, when projected into the
position representation, gives rise to the spatial distinctive-
ness.

In Sec. IV, after laying out the time-translation invariant
properties of the formalism not immediately evident in Sec.
II, the results are used to prove that, for an experiment which
produces a permanent record, the associated apparatus states*Electronic address: ppearle@hamilton.edu
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must have nonoverlapping energy spectra(which is most un-
likely).

An aspect of energy-driven collapse is that it does not
allow objects to change too rapidly. The reason is that each
object has a smallest timet which characterizes the time
evolution of its fastest elements. Unless the state vector de-
scribing it contains a superposition of energy eigenstates
with spreadDEù" /t, it cannot evolve overt. However, in
the energy-driven collapse model,everystate vector has its
energy bandwidth progressively narrowed as time wears on,
to DE<sltd−1/2. Here,l is a parameter in the model of di-
mension senergyd−2 stimed−1, which characterizes the col-
lapse rate andt is the time that has elapsed since the energy-
driven collapse began, presumably the beginning of the
universe. Section V shows that any expectation value in stan-
dard quantum theory witht,T;"sltd1/2 has its time behav-
ior “smeared” so that, under energy-driven collapse, it
evolves over the time intervalT. We show that this is not
only true for the ensemble of universes, but also true for a
temporarily noninteracting subsystem of a single universe.

In Sec. VI we show the effect this has on a precessing
spin and on an excitation/decay of a bound state. The time
parameters of the models, described by standard quantum
theory, are chosen!T. The result is that, under energy-
driven collapse, the spin does not precess and nonexponen-
tial excitation/decay takes place overT. However, when the
apparatus is included in the state vector, the altered behavior
is not recorded by it. We couch this as a “paradox,” a con-
tradiction between the description of the microscopic system
alone, and the description of its measurement. The resolution
involves realizing that the measurement description does not
produce collapse as it should.

II. ENERGY COLLAPSE DESCRIPTION

The most transparent formulation of the energy-driven
collapse model is as follows[18]. The state vectoruc ,tl at
time t is assumed to obey the nonunitary evolution

uc,tlB = e−iHte−s1/4ltdfBstd − 2ltHg2uc,0l. s2.1d

In Eq. s2.1d, H is the energy operator andl is the aforemen-
tioned constant parameter which characterizes the rate of en-
ergy collapse.Bstd is the stochastic variable whose time de-
pendence is that of Brownian motionsi.e., it is continuous
but not differentiabled. At any time t, it takes on the value
sB,B+dBd with probability

PsBddB=
dB

Î2plt
Bkc,tuc,tlB, s2.2d

i.e., state vectors of largest norm occur with greatest prob-
ability. Since the state vectors2.1d is not normed to 1, the
expectation value of an operatorA in this state is

kAlBstd ; Bkc,tuAuc,tlB/Bkc,tuc,tlB, s2.3d

and the ensemble expectation value of an operatorA follows
from Eqs.s2.2d and s2.3d:

kAlstd =E dBPsBdkAlBstd =E dB
Î2plt

Bkc,tuAuc,tlB.

s2.4d

All the conclusions about energy-driven collapse in this pa-
per follow from these equations.

For example, from Eq.(2.1) expressed in the energy basis,
we may write

kE; j uc,tlB = e−iEte−ltfE − hBstd/2ltjg2kE; j uc,0l s2.5d

sj is the energy degeneracy indexd. As t→`, in Eq.s2.5d, the
Gaussian →sp /ltd1/2dfE−(Bstd /2lt)g, showing that the
state vector collapses to an energy eigenstatefthe value of
the eigenstate determined by the asymptotic value of
Bstd /2ltg.

III. POSITION MEASUREMENT

In most of this section we establish the structure of an
initial state describing a particle in a superposition of two
locations, accompanied by a position measuring apparatus
immersed in a gaseous environment. The evolution of this
state in standard quantum theory is given by Eq.(3.9) and, in
the energy-driven collapse model, by Eq.(3.10). Equation
(3.11) shows that proper collapse does not take place.

Consider first an isolated particle which, att=0, is in a
localized state(for example, a Gaussian wave packet with
some mean position, mean momentum, and width). The state
vector of that particle, translated by the distance vectora but
identical in every other respect, differs only in that the mo-
mentum eigenstates(and therefore energy eigenstates) of
which it is composed are multiplied by the phase factor
exps−ik ·ad. Label these two localized particle statesuf1,0l,
uf2,0l. Their expansion in energy eigenstates of the Hamil-
ton Hpart may be written as

ufa,0l = o
kj

akje
iukj

a
uek; jl, s3.1d

whereakj swhich doesnot depend uponad andukj
a sukj

1 −ukj
2

=k ·ad are real. For simplicity of notation we have written
Eq. s3.1d as a sum, although the possible energy valuesek
s=k2/2md and the degeneracy indexj swhich is the direction
k /kd are really continuous.

We assume that an appropriate beam splitter can put the
particle in an initial state which is an arbitrary superposition
uc ,0l=oa=1

2 baufa ,0l with oa=1
2 ubau2=1.

Consider next a position measuring apparatus together
with environmental particles all around, but without the par-
ticle to be detected. The initial state here is

uA,0l = o
mn

cmnuem
A ;nl, s3.2d

where uem
A ;nl are energy eigenstates of the apparatus/

environment HamiltonianHa/e with energyem
A, n is the de-

generacy label, andcmn is generally a complex number.
Now, when the particle to be detected is brought together

with the apparatus/environment, the energy eigenstates of the
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complete Hamiltonian,H=Hpart+Ha/e+Hint;H0+Hint, must
be considered. Lest the environment knock the particle away
from the detector, takeHint not to include an environment-
particle interaction(alternatively, one could choose the initial
state so that the particle reaches the apparatus before it is hit
by an environment particle, but that complicates proofs).
Thus,Hint=oiapp VisX iapp−Xd, whereX is the particle’s po-
sition operator,Vi is the interaction potential between the
particle and each relevant apparatus particle(i.e., particles in
the detector part of the apparatus, such as the gas in a geiger
tube) whose position operators areX iapp. Thus, in particular,
if uxl is an eigenstate ofX, then

Hintuxl = 0 whenx lies appreciably outside

the particle detector. s3.3d

It is necessary to write the initial state of particle together
with the apparatus/environment in terms of the energy eigen-
states ofH. Given an energy eigenstate of the noninteracting
particle uek; jl (i.e., a plane-wave state) and an energy eigen-
state of the apparatus/environmentuem

A ;nl, there corresponds
a unique energy eigenstateuEkm; j ;nl of H satisfying the in-
coming Lippmann-Schwinger equation with energyEkm=ek
+em

A, which may be written as

uEkm; j ;nl = uek; jluem
A ;nl +

1

Ekm+ ie − H0
HintuEkm; j ;nl

s3.4ad

=uek; jluem
A ;nl +

1

Ekm+ ie − H
Hintuek; jluem

A ;nl

s3.4bd

;uek; jluem
A ;nl + ucint;k;m; j ;nl. s3.4cd

In Eq. (3.4c), ucint ;k;m; j ;nl describes the various outcomes
of detecting the particle by the apparatus along with scatter-
ing, accretion, excitation, etc., involving the apparatus and
environment. One may think of this as a scattering situation,
with the apparatus a bound state of its constituent particles,
and even the environment particles can be imagined as con-
fined in a large box surrounding the apparatus so that they
too are part of the bound state. The analysis may then be
considered under the rubric of multichannel scattering[19]:
the in-statesuek; jluem

A ;nl are then a complete set in their
subspace of the Hilbert space.

The labelsk,m, j ,n of uEkm; j ;nl do not describe eigen-
values of operators which commute withH; they describe
eigenvalues of operators which commute withHpart andHa/e.
Nevertheless, it is well known from scattering theory that, as
a consequence of Eq.(3.4),

kEk8m8; j8;n8uEkm; j ;nl = kek8; j8ukem8
A ;n8uuek; jluem

A ;nl

= dk8kd j8 jdm8mdn8n. s3.5d

Equation s3.5d can be derived algebraically by taking the
scalar product of Eq.s3.4ad with sthe primed version ofd
itself and utilizing the Low equationf19g fwhich also follows

from Eq. s3.4adg to eliminate all terms involving
ucint ;k;m; j ;nl. It is most easily derived sutilizing
exp itfH0−Ekmguek; jluem

A ;nl= uek; jluem
A ;nld by writing Eq.

s3.4bd as

uEkm; j ;nl = F1 − iE
0

`

dte−itfH−Ekm−iegHinte
itfH0−EkmgG

3uek; jluem
A ;nl s3.6ad

=F1 − iE
0

1/e

dte−itHHinte
itH0Guek; jluem

A ;nl

= F1 +E
0

1/e

dse−itHeitH0dGuek; jluem
A ;nl s3.6bd

=lim
t→`

e−itHeitH0uek; jluem
A ;nl

; V+uek; jluem
A ;nl. s3.6cd

Here,V+ is the Møller matrix. It is well known to be isomet-
ric, V+†V+=1 on the space of in-states, the proof of which
we now sketch for completeness. As shown above, so it is
also readily shown from Eq.(3.4a) that

uek; jluem
A ;nl = lim

t→`
e−itH0eitHuEkm; j ;nl = V+†uEkm; j ;nl,

s3.7d

so V+†V+uek; jluem
A ;nl= uek; jluem

A ;nl follows from Eqs.s3.6d
ands3.7d. Equations3.5d is an immediate consequence of the
scalar product of Eq.s3.6cd with sthe primed version ofd
itself, and use ofV+†V+=1.

The ath initial state can be written as a sum over eigen-
states ofH as follows. From Eqs.(3.1) and (3.2) and again
using the form(3.6a), one sees that

o
kjmn

akje
iukj

a
cmnuEkm; j ;nl

= ufa,0luA,0l − iE
0

`

dte−itfH−iegHinto
kj

akje
iukj

a
eitekuek; jl

3o
mn

cmne
item

A
uem

A ;nl s3.8ad

=ufa,0luA,0l − iE
0

`

dte−itfH−iegHintufa,− tluA,− tl

s3.8bd

=ufa,0luA,0l. s3.8cd

The second term in Eq.(3.8b) vanishes becauseufa ,0l is a
wave packet outside the apparatus with mean momentum
heading toward the apparatus. Therefore,ufa ,−tl st.0d is
the wave packet even further away from the apparatus, so
Eq. (3.8c) follows from Eq.(3.3). (This result is well known
for potential scattering[21].) Equations(3.5) and (3.8c) are
what we need as we now consider the time evolution.
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In standard quantum theory, using Eq.(3.8c), the time
evolution of theath initial state is

ufa,0luA,0l → uCa,tl = o
kjmn

akje
ifukj

a −EkmtgcmnuEkm; j ;nl,

s3.9d

where uC1,tl, uC2,tl eventually describe the apparatus as
having detected the particle’s locationsand also describe the
battering by the environment particles of the apparatus and
each otherd and having indicated this by a macroscopically
distinguishable spatially localized feature.

According to the energy-driven collapse model, Eq.(2.1),
and once again employing Eq.(3.8c), we see that the initial
superposed stateuC ,0l=oa=1

2 baufa ,0luA,0l evolves into the
(unnormalized) state

uC,tlB

= o
a=1

2

ba o
kjmn

eifukj
a −Ekmtge−s1/4ltdfBstd − 2ltEkmg2akjcmnuEkm; j ;nl

s3.10ad

; o
a=1

2

bauCa,tlB s3.10bd

for someBstd. [For simplicity we have takent=0 as the time
the collapse process begins: replacement oft by t+T in the
Gaussian in Eq.(3.10a) does not affect the result(3.11).]
Assuming that the energy-driven collapse does not destroy
the functioning of the apparatus, the orthogonal states
uC1,tlB, uC2,tlB, like the comparable state vectors(3.9) of
standard quantum theory, each describe the apparatus as pos-
sessing a spatially localized macroscopically distinguishable
feature.

However, the squared amplitudes of the statesbauCa ,tlB
in the superposition(3.10) are(apart from an overall normal-
ization factor which does not affect their ratio)

ubauB
2kCa,tuCa,tlB = ubau2 o

kjmn

akj
2 ucmnu2e−s1/2ltdfBstd − 2ltEkmg2

s3.11d

on account of the orthonormalitys3.5d. But, the a depen-
dence is absent from the sum in Eq.s3.11d. Thus, as in stan-
dard quantum theory, there is no collapse to one of these two
apparatus states since these superposed states at timet are in
the same proportion,ub2u2/ ub1u2, as they were initially.

IV. ENERGY-DRIVEN COLLAPSE AND PERMANENT
RECORDS

According to Eq.(2.1), at time t, each value ofBstd cor-
responds to a different possible universe in the ensemble of
universes, all of which evolved from a single state vector
uc ,0l starting at timet=0. If collapse takes place as pur-
ported, eachBstd of non-negligible probability should char-
acterize a recognizable state of the universe, in the sense that
each macroscopic object in a universe is not in a superposed

state. That a single number −`,Bstd,` can characterize
the myriad possible recognizable universes which evolve
from an initial stateuc ,0l seems unlikely, and raises the sus-
picion that collapse cannot take place as purported.

In Sec. IV A, time-translation properties are displayed,
showing how the state vector and probability characterized
by Bstd can be expressed in terms ofBst0d at timet0, and not
just in terms ofBs0d=0 at time 0, as given in Eqs.(2.1) and
(2.2).

In Sec. IV B, any experiment is considered whose out-
come, one of two possible values, is macroscopically perma-
nently recorded at timet0 (i.e., the record is unaltered for
t. t0). It is shown that this can only be possible if, at timet0,
there is no overlap in the energy spectra corresponding to the
two different states describing the two different macroscopic
outcomes. Since there is no reason why a measurement
should lead to such a bifurcation of the energy spectrum, it
must be concluded that there cannot be collapse to a state
which describes a unique macroscopic permanent record.

A. Time-translation invariant description

Corresponding to Eq.(2.1), it is useful to define the(un-
normalized) state vector at timet,

uc,tlBstd,Bst0d

; e−iHst−t0de−f1/4lst−t0dgfBstd − Bst0d − 2lst − t0dHg2uc,t0lBst0d,

s4.1d

which evolves from the sunnormalizedd state vector
uc ,t0lBst0d at time t0 fwe take Bs0d=0 and uc ,t0lBst0d,Bs0d
= uc ,t0lBst0d,0;uc ,t0lBst0d is given by Eq.s2.1dg.

Corresponding to Eq.(2.2), given Bst0d (and therefore
also the associated state vectoruc ,t0lBst0d), the conditional
probability that, at timet, B lies in the intervalfBstd ,Bstd
+dBstdg is

P„Bstd,tuBst0d,t0…dBstd

=
dBstd

Î2plst − t0d

Bstd,Bst0dkc,tuc,tlBstd,Bst0d

Bst0dkc,t0uc,t0lBst0d
. s4.2d

Equationss4.1d and s4.2d agree with Eqs.s2.1d and s2.2d
when t0=0. It is necessary to show that Eqs.s4.1d and s4.2d
are fully consistent with Eqs.s2.1d ands2.2d, in the sense that
the evolution and probability taken in two steps, from time 0
to t0 and then fromt0 to t, are equivalent to one step from 0
to t.

Consider first the normalized state vector, which we shall
denote by a prime. From Eq.(4.1),

uc,tlBstd,Bst0d8 ;
uc,tlBstd,Bst0d

Bstd,Bst0dkc,tuc,tlBstd,Bst0d
1/2

=
e−iHst−t0defhBstd−Bst0djH−lst−t0dH2guc,t0lBst0d

Bst0dkc,t0ue2fhBstd−Bst0djH−lst−t0dH2guc,t0lBst0d
1/2

.

s4.3d

sIn Eq. s4.3d, the term exp−f4lst− t0dg−1fBstd−Bst0dg2, aris-
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ing from the squared bracket of the exponent in Eq.s4.1d,
factors out of numerator and denominator and thus can-
cels, while the remaining terms from the squared bracket
have a common factor 4lst− t0d, which cancels with the
premultiplying inverse of this factord.

The exponent in the numerator of Eq.(4.3) has a purely
linear dependence uponBstd−Bst0d and uponst− t0d. Because
of this, writing out uc ,t0lBst0d in Eq. (4.3) in terms of uc ,0l
using Eq. (2.1), canceling the exponential factors exp
−f4lt0g−1fBst0dg2, which then appear in numerator and de-
nominator, and combining the remaining exponents,

h− iHst − t0d + fBstd − Bst0dgH − lst − t0dH2j

+ h− iHt0 + Bst0dH − lt0H
2j

= − iHt + BstdH − ltH2,

results in

uc,tlBstd,Bst0d8 =
e−iHteBstdH−ltH2

uc,0l

kc,0ue2fBstdH−ltH2guc,0l

=
e−iHte−s1/4ltdfBstd − 2ltHg2uc,0l

kc,0ue−s1/2ltdfBstd − 2ltHg2uc,0l
. s4.4d

We see in Eq.s4.4d that the dependence uponBst0d andt0 has
disappeared and that the normalized state vectors4.3d, con-
structed from Eq.s4.1d, is the same normalized state vector
that is constructed from Eq.s2.1d.

Consider next the probability thatB takes on the value
Bstd at time t, given thatB has the value 0 at time 0. From
Eqs. (4.2) and (4.1) and the usual rule for compounding
probabilities,

P„Bstd,tu0,0…dBstd

= dBstd E P„Bstd,tuBst0d,t0…dBst0dP„Bst0d,t0u0,0…

=
dBstd

Î2plst − t0d
E Bstd,Bst0dkc,tuc,tlBstd,Bst0d

Bst0dkc,t0uc,t0lBst0d

dBst0d
Î2plt0

Bst0dkc,t0uc,t0lBst0d

=
dBstd

Î2plst − t0d
E dBst0d

Î2plt0
Bst0dkc,t0ue−f1/2lst−t0dgfBstd − Bst0d − 2lst − t0dHg2uc,t0lBst0d

=
dBstd

Î2plst − t0d
E dBst0d

Î2plt0
kc,0ue−f1/2lst−t0dgfBstd − Bst0d − 2lst − t0dHg2e−f1/2lt0gfBst0d − 2lt0Hg2uc,0l

=
dBstd
Î2plt

kc,0ue−s1/2ltdfBstd − 2ltHg2uc,0l, s4.5d

which is the same as Eq.s2.2d.
This time-translation invariance, especially evident in the

stochastic differential Schrödinger equation(which we have
not bothered to reproduce) whose solution is Eq.(4.1), seems
to have misled workers into overlooking the important ef-
fects of the cumulative narrowing of the energy spectrum as
the universe evolves(see Secs. V and VI). Because of this,
one cannot take an initial state vectoruc ,t0lBst0d to be just any
state vector(as one is free to do in standard quantum theory
or CSL) if t0=T is, e.g., the age of the universe. The evolu-
tion of the state vector from time 0 when the universe began
to time T restricts the spectrum ofuc ,TlBsTd, which must be
respected if the theory is to be consistently applied. For ex-
ample, it may not be consistent to consider as an initial con-
dition that an electron is in an excited atomic state at timeT.
Although the electron is in an energy eigenstate(and there-
fore the energy spread is zero) of the atomic Hamiltonian, it
is not in an energy eigenstate of the complete Hamiltonian
(including the radiation field) and, for sufficiently large cou-

pling (sufficiently short lifetime), the actual energy spread of
this initial state may be larger than is allowed in the universe
at timeT.

B. Permanent records

Now, consider an experiment performed at a time earlier
than t0 which, for definiteness, has two equally likely out-
comes, say 1 and −1. Suppose further that the apparatus
records the result at timet0, which is permanent thereafter in
all universes. A word on terminology: we are using “uni-
verse” for what is described by the state vectoruc ,tlBstd cor-
responding to a particularBstd, and “universes” to character-
ize the set of these. As far as the argument here is concerned,
one may regard a universe as consisting of just the matter
required for the experiment, or it may be so large as to rep-
resent the real universe(in this case, in order that all uni-
verses have the experiment going on as described, one might
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imagine that, somehow, at the beginning of the universe an
isolated box containing the apparatus came into existence,
with a clock set to start the experiment at a prescribed time).

If collapse takes place as is supposed, one may partition
the values ofBstd for tù t0 into setsS1std [S1std consists of
the sethB1stdj for which uc ,tlB1std describes the experimental
outcome 1], S−1std (similarly defined), and S0std [covering
the remaining values ofBstd which do not lie inS1std or
S−1std and which therefore must have negligible probability
of occurring]. Then, for example, ifB1st0d characterizes a
universe(result 1 at timet0), it is (almost) certain to evolve
to a universe at timet characterized by someB1std and it has
<0 probability to evolve to a universe characterized by a
B−1std or B0std. Thus, from the expression(4.2) for the con-
ditional probability, we have

E
S1std

dBstd
Î2plst − t0d

Bstd,B1st0dkc,tuc,tlBstd,B1st0d

B1st0dkc,t0uc,t0lB1st0d
< 1,

E
S1std

dBstd
Î2plst − t0d

Bstd,B−1st0dkc,tuc,tlBstd,B−1st0d

B−1st0dkc,t0uc,t0lB−1st0d
< 0,

s4.6ad

E
S−1std

dBstd
Î2plst − t0d

Bstd,B−1st0dkc,tuc,tlBstd,B−1st0d

B−1st0dkc,t0uc,t0lB−1st0d
< 1,

E
S−1std

dBstd
Î2plst − t0d

Bstd,B1st0dkc,tuc,tlBstd,B1st0d

B1st0dkc,t0uc,t0lB1st0d
< 0,

s4.6bd

E
S0std

dBstd
Î2plst − t0d

Bstd,B1st0dkc,tuc,tlBstd,B1st0d

B1st0dkc,t0uc,t0lB1st0d
< 0,

E
S0std

dBstd
Î2plst − t0d

Bstd,B−1st0dkc,tuc,tlBstd,B−1st0d

B−1st0dkc,t0uc,t0lB−1st0d
< 0.

s4.6cd

The “<” is in these equations because a probability can dif-
fer from 0 or 1 by a negligible but nonzero amount(e.g.,
there is a tiny probability of a “flip” that an outcome 1 at
time t0 can evolve to −1 at a later timet) and the theory still
has acceptable behavior.

The state vectors in Eqs.(4.6) may be written in the form
of Eq. (4.1) and expressed in the energy basis:

Bstd,Bst0dkc,tuc,tlBstd,Bst0d

Bst0dkc,t0uc,t0lBst0d
=

o j E dEukE; j uc,t0lBst0du2e−f1/2lst−t0dgfBstd − Bst0d − 2lst − t0dEg2

o j E dEukE; j uc,t0lBst0du2
s4.7ad

;E dEe−f1/2lst−t0dgfBstd − Bst0d − 2lst − t0dEg2rBst0dsEd s4.7bd

(j is the degeneracy index for the energy eigenstates) where

rBst0dsEd ;
o

j

ukE; j uc,t0lBst0du2

o
j
E dEukE; j uc,t0lBst0du2

is the unity normalized energy spectrum of the universe at
time t0 characterized byBst0d.

We now show that Eqs.(4.6) can only be satisfied if
rB1st0dsEd, rB−1st0dsEd have disjoint support inE. We apply
Schwarz’s inequality

FE dxf2sxd E dxg2sxdG1/2

ùE dxfsxdgsxd

fwhereedxf2sxd<0, edxg2sxdø1, anddx=dBstddEg to the
product of the two equations in each of Eqs.s4.6ad, s4.6bd,
and s4.6cd expressed in the forms4.7bd, obtaining
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0 < E
Si

dBstd
Î2plst − t0d

E dEe−f1/lst−t0dgfBstd − B1st0d − 2lst − t0dEg2e−f1/4lst−t0dgfBstd − B−1st0d − 2lst − t0dEg2rB1st0d
1/2 sEdrB−1st0d

1/2 sEd, s4.8d

whereSi is any one ofS1, S−1, S0. Adding the three expres-
sionss4.8d together, the range ofBstd becomes the whole line
so the integral overBstd can then be performed, resulting in

0 < e−f1/8lst−t0dgfB1st0d − B−1st0dg2E dErB1st0d
1/2 sEdrB−1st0d

1/2 sEd.

s4.9d

No matter how large isfB1st0d−B−1st0dg2, for large enought
the exponential in Eq.s4.9d is <1. Thus the integral must
vanish and so, for eachE, one sor bothd of rB1st0dsEd,
rB−1st0dsEd must vanishsor be negligibly smalld.

However, there is no mechanism whereby a measurement
“splits” the energy spectrum of the universe(whether the
universe is just the apparatus or the real universe) into dis-
joint sets associated with each outcome. We conclude that
the premise of this argument that the energy-driven collapse
mechanism will produce macroscopic states, each corre-
sponding to a single recorded experimental outcome(and not
produce a superposition of such states), is false.

V. SECULAR DECREASE IN ENERGY BANDWIDTH
AND CONSEQUENCES

In what follows, for definiteness we shall consider that
universe refers to the actual universe, and universes describe
an ensemble of which only one(that we inhabit) is actually
realized.

If one expands the initial state vector of the universe
uc ,0l in energy eigenstates,uc ,0l=edECjsEduE; jl (j is the
degeneracy index), the state vector evolution(2.1) of a single
universe characterized byBstd may be written using Eq.(2.5)
as

uc,tlB = o
j
E dECjsEde−iEte−ltfE − hBstd/2ltjg2uE; jl.

s5.1d

Thus, for each state vector, the initial energy spectrum
o juCjsEdu2 is increasingly narrowed as time wears on by be-
ing multiplied by a Gaussian of energy spread,sltd−1/2 fand
mean valueBstd /2ltg.

Consequently, rapid time evolution of anything inany
universe is restricted. Suppose that the universe has evolved
for time T, and we consider physical phenomena over a rela-
tively short-time interval thereafter,s0,t−Td, where t−T
!T. Then the Gaussian in Eq.(5.1) is not much different at
time t than at timeT over this time interval[i.e., T;sltd1/2

<slTd1/2 and Bstd /2T2<BsTd /2T2], so Eq. (5.1) becomes
approximately

uc,tlB < e−iHst−Tduc,TlB. s5.2d

Since thesapproximated evolution s5.2d has the usual form
anduc ,TlB has energy spread no greater than<" /T, accord-
ing to the usual time-energy uncertainty relation we expect
that the characteristic evolution time of any physical system
in the so-restricted universe, e.g., any “pulse” behavior, can
be no shorter thanT.

In Sec. V A we consider the ensemble of universes. The
above argument for the restriction on pulse behavior is made
more precise, in the expression, Eq.(5.4c), for the ensemble
expectation value of any operatorV. Also, from this expres-
sion, it is shown that the ensemble energy spectrum at any
time t is unchanged from that at time 0. However, the energy
spread restrictionDEø" /T on each universe does manifest
itself, in the (approximate) vanishing of the density-matrix
off-diagonal energy basis elements when their difference ex-
ceeds<DE. It is also shown that were there a noninteracting
subsystem present in each of the ensemble of universes(one
may imagine that a physical system is present inuc ,0l which
somehow remains isolated for all time), then the ensemble of
just these subsystems also obeys Eq.(5.4c).

However, we only have access to one universe[oneBstd],
not the ensemble. In Sec. V B it is argued that, in asingle
universe, when the rest of the universe is traced over, Eq.
(5.4c) holds to a good approximation for a subsystem which
is recently isolated, i.e., one which may have interacted with
the rest of the universe in the past but is presently not inter-
acting with it. This allows us to discuss experiments in the
single universe which are “turned on” at timeT, two ex-
amples of which are treated in Sec. IV. Since it is a single
universe, if collapse takes place properly, the result of an
experiment should entail a unique outcome, but we shall see
that this is not the case.

A. Ensemble behavior

Here we show that the ensemble of universes has the
same energy spectrum asuc ,0l. [Even though the energy
spread of each universe is narrowed toø" /T, each uni-
verse’s energy spread has a different mean value,Bstd, and
these means are spread out over the whole real line.] How-
ever, the pulse constraint discussed above, since it holds for
all state vectors, holds for the ensemble.

To see this formally, we write Eq.(2.1) in still another
way, in terms of the state vectoruc ,tl, which evolves from
uc ,0l under ordinary Schrödinger dynamics:

uc,tlB = e−s1/4ltdfBstd − 2ltHg2uc,tl s5.3ad

=
1

Î4p
E

−`

`

dhe−h2/4e−iBh/Î4lteiÎlthHuc,tl s5.3bd
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=
1

Î4p
E

−`

`

dhe−h2/4e−iBh/Î4ltuc,t − Îlthl, s5.3cd

where the Fourier transform of the Gaussian has been em-
ployed in Eq.(5.3b) to obtain an exponent linear inH. Thus,
according to Eq.(5.3c), uc ,tlB may be viewed as a “time-
smearing” superposition ofuc ,tl’s over a range oft of order
T, with a Gaussian weight and aB-dependent phase.

The ensemble averagekVl, of any physical quantityV, is
found by putting Eq.(5.3c) into Eq. (2.4):

kVlstd =
1

Î2plt
E

−`

`

dBBkc,tuVuc,tlB s5.4ad

=
1

4p
E

−`

`

dhE
−`

`

dh8e−h2/4e−h82/4kc,t − Îlth8uVuc,t

− Îlthl

3
1

Î2plt
E

−`

`

dBe−iBsh−h8d/Î4lt s5.4bd

=
1

Î2p
E

−`

`

dhe−h2/2kc,t − ÎlthuVuc,t − Îlthl.

s5.4cd

Equation(5.4c) makes precise the discussion in the intro-
duction above. Any pulselike behavior ofkVlstd in standard
quantum theory is “smeared” over a time interval<T [with
T<slTd1/2 for ut−Tu!T].

If V=FsHd is an arbitrary function of the energy, it fol-
lows from Eq.(5.4c) that

kFsHdlstd =
1

Î2p
E

−`

`

dhe−h2/2

3kc,0ueiHst−ÎlthdFsHde−iHst−Îlthduc,0l

= kc,0uFsHduc,0l, s5.5d

i.e., the energy distribution of the ensemble of state vectors is
always equal to its initial energy distribution.

However, that is not all there is to say with regard to the
energy. The density matrix in the energy basis may be writ-
ten, considering Eq.(5.4c), as

kE8uruEl =
1

Î2p
E

−`

`

dhe−h2/2kE8uc,t − Îlthlkc,t − ÎlthuEl

s5.6ad

=
1

Î2p
E

−`

`

dhe−h2/2eisE8−EdÎlthkE8uc,tlkc,tuEl

s5.6bd

=e−ltsE8 − Ed2/2kE8uc,tlkc,tuEl. s5.6cd

In Eq. (5.6c), the pure density matrix of standard quantum
theory is multiplied by a Gaussian, so thatkE8uruEl<0 if

uE8−Eu." /T. Thus one may expect that behavior in stan-
dard quantum theory which depends upon a coherent super-
position of energy states with a spread." /T will be signifi-
cantly altered under energy-driven collapse.

Next, consider the behavior of a noninteracting sub-
system. Denote the subsystem by the subscript 1 and the rest
of the universe by the subscript 2. The initial state isuc ,0l
= uc1,0luc2,0l andH=H1+H2. For the ensemble expectation
value of a quantityV1, which depends only upon variables of
subsystem 1, Eq.(5.4c) yields

kV1lstd =
1

Î2p
E

−`

`

dhe−h2/2kc1,t − ÎlthuV1uc1,t − Îlthl

3kc2,t − Îlthuc2,t − Îlthl s5.7ad

=
1

Î2p
E

−`

`

dhe−h2/2kc1,t − ÎlthuV1uc1,t − Îlthl.

s5.7bd

In standard quantum theory, the state vector of two dis-
connected systems describes them as evolving separately.
This is not the case with energy-driven collapse: the dynam-
ics entangles the systems[through the quadratic dependence
on H in the Gaussian in Eq.(2.1)]. However, for the en-
semble, the density-matrix description has the two systems
evolving independently.(This interesting result is implicit in
the work of Refs.[14,17].) Since Eq.(5.7b) has the same
form as Eq.(5.4c), the consequences of Eq.(5.4c) (smeared
pulse behavior, unchanging energy spectrum, vanishing of
sufficiently separated off-diagonal elements of the density
matrix in the energy representation) hold for the subsystem
as well. In particular, for the ensemble, under the secular
energy narrowing toDE<sltd−1/2, the energy spread allowed
to the whole universe is the same energy spread allowed to a
noninteracting subsystem

B. Individual behavior

Now we wish to consider a single universe, characterized
by Bstd, and an experiment prepared to be performed at time
<T. For this to make sense, the state vectoruc ,t0lBst0d at
some timet0,T must be compatible with both its function
and history.

It is required that the apparatus, an isolated subsystem of
the universe, properly performs the experiment under the
standard quantum theory evolution. Thus we hypothesize
that uc ,t0lBst0d= uc1,t0luc2,t0l, where uc1,t0l describes the
subsystem containing the apparatus anduc2,t0l describes the
rest of the universe. That a reasonable initial state of the
universe,uc ,0l, could have evolved to such a direct product
is most unlikely, unless energy-driven collapse does indeed
take place[so the huge superposition corresponding to all the
possible universes thatuc ,0l evolves to under standard quan-
tum theory is collapsed under evolution byBstd to one of
them], so this is entailed by the hypothesis.

Account must also be taken of the state vector’s evolution
since time 0(so its energy spectrum is appropriately narrow).
One could consider the evolution of the state vector from
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uc ,t0lBst0d to uc ,tlBstd using Eq.(4.1), but that would not make
explicit the limited spectrum ofuc ,t0lBst0d. Accordingly, we
may employ Eq.(4.4) to display the state vectoruc ,tlBstd in
terms of uc ,0l: actually, we shall utilize the form(5.3c)
which is equivalent to Eq.(4.4) (except for the normalization
factor).

Now, although the integral overh in Eq. (5.3c) ranges
over s−` ,`d so that the state vectoruc ,tlB is formally a
superposition of state vectorsuc ,t8l for all t8, because of the
weighting factor exps−h2/4d in practice the contribution of
uc ,t8l for t8! t−kT and t8@ t+kT is negligible [wherek is
chosen so that exps−k2/4d<0 to the accuracy one wishes].
With the above assumption of the unentangled nature of the
subsystem, the state vector of the universe in standard quan-
tum theory may be written asuc1,t8luc2,t8l over the interval
T−kTø t8øT+kT. It then follows from putting the state
vector expression, Eq.(5.3c), into Eq. (2.3) that

kV1lBstd =
1

4pBkc,tuc,tlB
E dhe−h2/4E dh8e−h82/4

3e−iBstdsh−h8d/Î4ltkc1,t − Îlth8uV1uc1,t − Îlthl

3kc2,t − Îlth8uc2,t − Îlthl. s5.8d

The universe is a very big place, with lots going on. Ac-
cordingly, we expect thatuc2,tl is orthogonal touc2,t8l for t8
just slightly different from t (we assume thatT is large
enough so that the time scale for the universe to change in
standard quantum theory is much shorter thanT). That is, it
is an excellent approximation to takekc2,t−Îlth8 uc2,t
−Îlthl<cstddsh−h8d. Then Eq.(5.8) becomes

kV1lBstd =
1

Î2p
E

−`

`

dhe−h2/2kc1,t − ÎlthuV1uc1,t − Îlthl,

s5.9d

usingk1lBstd=1 fwhich follows from Eq.s2.3dg to select the
overall normalization factor.

Although this is a single universe, we have arrived at the
density-matrix description of Eq.(5.9) because the evolution
has entangled the subsystem with the rest of the universe
which is traced over. When the apparatus is included in the
state vector description, if proper collapse occurs, just one of
the macroscopically distinguishable outcomes of the experi-
ment should be described by the state vector. However, be-
cause one does not know the state of the rest of the universe
(which may have a decisive influence on the experiment’s
outcome), one must use the density-matrix description. Then,
the density matrix should be diagonal in the basis describing
the different outcomes of the experiment, and the probabili-
ties associated with these diagonal states should be inter-
preted as giving the statistics of these actualized outcomes.
If, however, the diagonal states of the density matrix turn out
to be inappropriate for the theory(as occurs for the examples
in Sec. VI, where each state has more energy spread than is
allowed in the universe at timeT), one is forced to the alter-
native explanation. It is that proper collapse does not occur:
the diagonal density matrix form is there because the state

vector describes an apparatus in a superposition of different
measurement results entangled with the rest of the universe
(which, when the latter is traced over, has the result of can-
celing the off-diagonal density-matrix elements) as happens
in standard quantum theory.

Because of the importance of Eq.(5.9) to the argument in
Sec. VI, we shall obtain it another way. WritekV1lBstd in Eq.
(5.8) in the form

kV1lBstd , E dE2dE18dE1ukE2uc2,tlu2kc1,tuE18lkE18uV1uE1l

3kE1uc1,tle−s1/4ltdfBstd − 2ltsE2 + E18dg2

3e−s1/4ltdfBstd − 2ltsE2 + E1dg2, s5.10d

which is obtained by expressing the state vectors in Eq.s5.8d
in the energy basis, extracting theh dependence using
kEuc ,t−Îlthl=exp iEÎlthkEuc ,tl and performing the in-
tegrals overh, h8. Sinceuc2,tl describes the universesmi-
nus the small subsystem 1d, we may takeukE2uc2,tlu2 in
Eq. s5.10d to be approximately constant over the ranges of
E1, E18, E2 where the Gaussian exponents are small. Then
the integral overE2 results in

kV1lBstd , E dE18dE1kc1,tuE18lkE18uV1uE1l

3kE1uc1,tle−slt/2dsE18 − E1d2. s5.11d

Note thatBstd has disappeared from Eq.s5.11d. Putting

e−slt/2dsE18 − E1d2 =
1

Î2p
E dhe−h2/2e−iÎlthsE18−E1d

into Eq. s5.11d and choosing the normalization factor so that
k1lBstd=1 results in Eq.s5.9d.

Since Eq.(5.9) has the same form as Eq.(5.4c), the con-
sequences of Eq.(5.4c) (smeared pulse behavior, unchanging
energy spectrum, approximate vanishing of sufficiently sepa-
rated off-diagonal elements of the density matrix in the en-
ergy representation) hold in this case as well.

Lastly, we note that Eq.(5.9) also describes the situation
where the initial state vector can be written asuc ,0l
= uc1,0luc2,0l where subsystem 1, under standard quantum
theory, does not interact with the rest of the universe and
describes the apparatus set to turn on at timeT. It is reassur-
ing to see that, under energy-driven collapse, whether the
apparatus somehow miraculously appears at the start of the
universe or is constructed at a later time, it has the same
description(which, of course, is a property of standard quan-
tum theory).

VI. TWO EXPERIMENTS

We now analyze two different microscopic phenomena
under energy-driven collapse, the precession of a spin 1/2
particle in a magnetic field, and excitation of a bound state
followed by its decay. Each is considered to be an isolated
system in a single universe, so Eq.(5.9) applies. The energy
spectrum in standard quantum theory in the former case con-
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sists of two values, in the latter it is spread over a continuum.
In both cases the energy spread(characteristic time) is cho-
sen@" /T s!Td so that the behavior expected from standard
quantum theory is appreciably altered. Under energy-driven
collapse, the spin 1/2 particle does not precess, while the
excitation/decay products do not have an exponential time
distribution and have a characteristic timeT.

If an apparatus were to properly interact with the micro-
scopic system, it ought to record this altered behavior. How-
ever, when we apply Eq.(5.9) to the combined system
+apparatus, we find that the density matrix describes the ap-
paratus as recording precession in the first case and recording
exponential decay in the second case.

A. Spin precession

Since application of Eq.(5.9) to an experimental situation
has to respect the terms under which it was obtained, we
need to arrange that the experiment commences in the neigh-
borhood of timeT. Therefore, in our model, the state vector
uc1,tl describes a(one-dimensional) “photon” (spatial coor-
dinate Q, momentumP) which, at timeT, switches on a
“magnetic field,” i.e., gives a spin(described by the Pauli
matricess) the energyse /2ds3. (A similar experimental situ-
ation was discussed by Finkelstein[23] in the context of
criticizing an energy-collapsing density-matrix model pro-
posed by Milburn[22]. His criticism is similar to the one
given here.)

1. Standard quantum theory treatment

We first discuss this model in standard quantum theory
[once we have obtaineduc1,tl, we shall use it in Eq.(5.9)
and see what happens under energy-driven collapse].

The Hamiltonian is

H = P + QsQdse/2ds3. s6.1d

In Eq. s6.1d, for simplicity, we have set the energy of the
photon to beP rather thanuPu: then, from the Heisenberg
equation,dQ/dt=1, the photon packet can only move to the
right. We shall suppose that the part of the apparatusswhich
we do not modeld which produces the photon makes its ini-
tial state a narrowly localized packet. The step function
QsQd acts like a switch, giving the spin-up/-down states the
energy differencee schosen large enough so thate@" /Td
after the photon packet passes the origin at time<T.

The energy eigenstates are

kquE±l = eikqfQs− qde±ise/2dq + Qsqdgu ± l, s6.2d

with energy eigenvaluesE±=k±e /2, so the general solution
of Schrödinger’s equation is the superpositionswriting s; t
−Td,

kquc1,tl = o
n=±

E dkeifk+nse/2dgsq−sd

3fQs− qd + Qsqde−inse/2dgqfnskdunl. s6.3d

By choosing f+=as2p3/s2d−1/4exp−fk+se /2dg2s2 and f−

=bs2p3/s2d−1/4exp−fk−se /2dg2s2, wherea andb are com-

plex constants,uau2+ ubu2=1, we obtain a wave function
satisfying the correct initial conditions:

kquc1,tl =
1

s2ps2d1/4e−sq − sd2/4s2
fsau + l + bu− ldQs− qd

+ sae−ise/2dqu + l + beise/2dqu− ldQsqdg. s6.4d

According to Eq.(6.4) the spin does not precess fors,0,
while the photon packet travels toward the switch atq=0. If
the packet is sufficiently narrow,se!1 (which we assume),
although the,Qsqd terms in Eq.(6.4) are spatially, not tem-
porally, dependent, it nonetheless follows from Eq.(6.4) that
the spin precesses once the photon passes the switch, since
then

e−sq − sd2/4s2
e±ise/2dq = e−sq − sd2/4s2

e±ise/2dsq−sde±ise/2ds

< e−sq − sd2/4s2
e±ise/2ds.

Using Eq.s6.4d we calculate

kc1,tus1uc1,tl = sa*b + ab*dFS−
s

s
D + e−e2s2/2

3Fa*beiesFS s

s
+ iesD

+ ab*e−iesFS s

s
− iesDG s6.5ad

<2abFFS−
s

s
D + cossesdFS s

s
DG ,

s6.5bd

where, for simplicity, we have choosena andb to be real in
Eq. (6.5b), so that the spin is initially in thex-z plane, and we
have utilizedse!1). Fsxd;s2pd−1/2e−`

x dyexp−sy2/2d is
the so-called normal distribution function, sort of a gradual
step function, making its transition from 0 to 1 over the
range, say, ofuxuø2 [sinceFs−2d<0.02,Fs2d<0.98].

Equation(6.5) shows that the spin does not precess for
large negatives/s, that it does precess for large positives/s,
and indicates that the transition takes place over, say,
usu,2s. For usu.2s, the density matrix corresponding to the
result (6.5b), readily obtained from Eq.(6.4), is that of pure
precession:

Trqr < fae−ies/2u + l + beies/2u− lgfaeies/2k+ u + be−ies/2k− ug.

s6.6d

An apparatus which verifies the precession could consist
of a clock with time resolution better than" /e which triggers
a device to “instantaneously”(i.e., over a period better than
the clock’s resolution), nondestructively, and repeatedly mea-
sure the spin state at those times predicted by Eq.(6.6) when
it comes around to point in a particular direction(the device
axis). Then, each time it is measured, the spin will always be
seen parallel to the device axis. Moreover suppose that, if the
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device sees the spin parallel to its axis for a preset number of
spin revolutions, the apparatus automatically prints aÎ to
indicate that the spin precesses.

2. Energy-driven collapse treatment

We now put Eq.(6.5a) into Eq. (5.9), to see how the
precession fares under energy-driven collapse:

ks1lBstd = sa*b + ab*dFS−
s

Îs2 + T2D
+ e−e2ss2+T2d/2Fa*beiesFSs+ iesss + Td

Îs2 + T2 D
+ ab*e−iesFSs− iesss + Td

Îs2 + T2 DG s6.7ad

<2abFFS−
s

TD + e−e2T2/2cossesdFS s

T
DG .

s6.7bd

Again, as in Eq.(6.5b), in Eq. (6.7b) we have takena andb
to be real and we have utilizedse!1 as well ass!T.
Equation (6.7b), compared to Eq.(6.5b), shows that the
“switch over” takes a longer time, i.e.,usu,2T instead of
usu,2s. This is because the photon packet is widened: the
narrowed energy spectrum can no longer sustain a rapid tran-
sition.

For usu.2T, the density matrix corresponding to the result
(6.7b) may be written as

Trqr < s1 − e−e2T2/2dfa2u + lk+ u + b2u− lk− ug

+ e−e2T2/2fae−ies/2u + l + beies/2u− lg

3faeies/2k+ u + be−ies/2k− ug, s6.8d

a mixture of spin up, spin down, and spin precessing. How-
ever, the precession part of the mixture becomes negligibly
small if we take the energy separatione@" /T.

Therefore, in this case, if the apparatus we have discussed
should function as described when it encounters the spin
behavior given by Eq.(6.8), the repeated measurements
should produce the result that the spin is sometimes parallel
and sometimes antiparallel to the device axis, and the appa-
ratus will not print aÎ.

One might, however, surmise that one could not come up
with an apparatus governed by a clock whose resolution is
better than" /e in a universe which suffers energy-driven
collapse. But, if the clock’s resolution isT or worse, the
conclusion is the same.

Now, let us consider what happens according to energy-
driven collapse when the apparatus is included in the state
vector uc1,tl and Eq.(5.9) is applied. Equation(5.9) gives
the density matrix at timet as a superposition of pure states
uc1,t−hTlkc1,t−hTu, each of which describes the standard
quantum evolution at a certain instant of time, in a<T
neighborhood oft. Since, under the standard quantum evo-
lution, there is precession which is measured by the appara-
tus, for t−T sufficiently large, every apparatus in the super-

position has printed out aÎ. Thus the density matrix at a
large enough timet eventually describes that aÎ is printed
out with certainty.

So, we have a paradox. Analysis of the microscopic be-
havior indicates that there is no precession. Analysis of the
microscopic system in interaction with the apparatus indi-
cates that there is precession. In both cases, we have cor-
rectly applied Eq.(5.9) to the relevant situation.

To see what has gone wrong, consider the standard quan-
tum theory state vectoruc1,t−hTl, which contributes to the
density-matrix integral in Eq.(5.9) (for h of the order of a
small integer). This state vector is the direct product of the
apparatus state(which has recorded a certain number of spin
detections parallel to its axis) including the clock which
reads timet−hT, and the narrow photon packet(which had
earlier triggered the precession) at that time, and the spin
state at that time. Since the clock is so precise, and the pho-
ton packet is so narrow, these states are orthogonal for fairly
close values ofh, each state describing a different clock time
and a different photon packet location(as well as a different
spin orientation which, however, is not responsible for the
orthogonality). As a result, the integral in(5.9) gives a den-
sity matrix with the various distinguishableuc1,t−hTlkc1,t
−hTu along the diagonal(and negligible off-diagonal ele-
ments). Then, as discussed following Eq.(5.9), if collapse
occurs properly, a diagonal state should be interpreted as a
possible outcome of the experiment in the single universe.
However, such a state contains the localized photon packet
of energy spread@T−1 (also, for the clock, a similar state-
ment obtains), more energy spread than is allowed in the
whole universe. Therefore, the density-matrix’s diagonal
states cannot be interpreted in this way. Instead, as discussed,
they arise from a state vector which, as in standard quantum
theory, describes a superposition of macroscopically differ-
ent apparatus states entangled with the rest of the universe.
The apparatus state does not measure the microscopic behav-
ior and the state vector, which gives the standard quantum
theory result, does not collapse properly.

B. Excitation of a bound state and its decay

Next, we consider a(one-dimensional) photon which at
time <T excites a bound state(located atx0) which subse-
quently decays. The Hamiltonian is a modification of a well-
known model of a two-state atom[24]:

H = eb†b +E
−`

`

dkkak
†ak + gE

−`

`

dkfake
ikx0b† + ak

†e−ikx0bg.

s6.9d

Hereb† creates the excited state of energyesfb,b†g=1d and
ak

† creates a photon of momentumk (fak,ak8
† g=dsk−k8d). The

coupling constantg;sG /2pd1/2, whereG turns out to be the
bound-state lifetime. As in the preceding section, for sim-
plicity, we choose the photon energy to bek rather thanuku,
so that the photon only moves to the right but, also, the
consequent unbounded energy spectrum allows the decay to
be precisely exponentialf25g.
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1. Standard quantum theory treatment

First, the analysis in standard quantum theory. The state
vector has the form

uc,tl = bstdb†u0l +E
−`

`

dkakstdak
†u0l, s6.10d

where u0l is the no-photon state and the ground state of the
bound state. The Schrödinger equation implies

idak/dt = gbe−ikx0 + kak, idb/dt = eb + gE
−`

`

dkake
ikx0.

s6.11d

For insight, it is worth checking out the solution of Eq.
(6.11) for decay without excitation[even though its initial
conditionsbsTd=1, aksTd=0 are inappropriate for use in Eq.
(5.9) if G−1,T, since then the initial state will have more
energy spread than is allowed to the universe at timeT].
Settings; t−T, the result fors.0 is

akstd = ge−ikx0
− e−fsG/2d+iegs + e−iks

k − e + isG/2d
, s6.12ad

bstd = e−fsG/2d+iegs. s6.12bd

From Eqs.(6.12), the expectation value of the photon num-
ber density and the expectation value of the particle being in
the excited state are

kc,tuak
†akuc,tl =

2pG

sk − ed2 + sG/2d2

3f1 + e−Gs − 2e−sG/2dscossk − edsg,

s6.13ad

kc,tub†buc,tl = e−Gs. s6.13bd

According to Eq.(6.13b), the decay is exponential. Accord-
ing to Eq. (6.13a), the photon distribution is Lorentzian for
larges. From Eqs.(6.10) and(6.12a), the photon wave func-
tion in the position representationuxl=s2pd−1/2edkexp s
−ikxdak

†u0l is found:

kxuc,tl = iG1/2e−iefs−sx−x0dge−sG/2dfs−sx−x0dg

3fQsx − x0 − sd − Qsx − x0dg. s6.14d

Thus the photon packet emerging from the decay has
ukxuc ,tlu2 taking on the valueG at its leading edgex=x0+s,
exponentially falling to the valueGexp−Gs at its source,x
=x0, and vanishing elsewhere.sIn this, and all the rest of
the examples discussed, it can readily be checked that
probability is conserved.d

In the case of interest, excitation of the bound state fol-
lowed by decay, the initial conditions arebstd<0 for s,0,
and an initial photon wave packet which reachesx0 at s<0.
The solution of Eqs.(6.11) is then

kxuc,tl = ffs− sx − x0dg − iG1/2Qsx − x0db„s− sx − x0d…,
s6.15ad

bssd = − isGd1/2e−fsG/2d+iegsE
−`

s

ds8fss8defsG/2d+iegs8,

s6.15bd

where fszd describes the incident wave packet.
In what follows, we shall take the width of the incident

wave packets to be much less than any time in the model,
so se!1, sG!1, andsT−1!1 can all be neglected com-
pared to 1. In that case, we can also takefssd to be approxi-
mately the “square root of ad function,” fssd<s1/2dssd (e.g.,
the square root of a normalized narrow Gaussian is a narrow
unnormalized Gaussian). Then, the probabilities given by
Eqs.(6.15) may be written as

ukxuc,tlu2 = uffs− sx − x0dgu2 − GsQsx − x0dd„s− sx − x0d…

+ G2sQsx − x0dQ„s− sx − x0d…e−Gfs−sx−x0dg,

s6.16ad

ubssdu2 < GsQssde−Gs. s6.16bd

According to Eq.(6.16b), ubssdu2=0 for negatives, jumps
to Gs at s=0, and thereafter exponentially decays with life-
time G. According to Eq.(6.16a), the squared photon wave
function consists of the initial wave packet, an interference
term between it and the leading edge of the decaying packet
and the decay product whose square vanishes forx,x0,
jumps atx=x0 (when s.0) to G2sexp−Gs, exponentially
rises asx increases toG2s at x=x0+s and vanishes for
x.x0+s.

Suppose an accelerator produces a localized burst of
many such photons and they hit many such bound states,
spread out in a thin film of thicknesss so that, in the stan-
dard quantum theory description, the bound states are excited
essentially simultaneously. Suppose a detector, with an accu-
rate clock(of time resolution much better thanG−1) measures
the time distribution of arrival of the resulting outgoing par-
ticles. (For use at the end of the following section, we shall
assume the measurement is reasonably nondisturbing, so a
detected particle is allowed to proceed beyond the detector.)
Moreover, suppose the apparatus is designed to print out, at
its leisure, the time spread of the decay products and whether
the decay shape is exponentialsYESd or not sNOd. Then, a
properly operating detector encountering many photons, each
described by Eq.(6.16a), should print outG−1 andYES.

2. Energy-driven collapse treatment

Now lets see what happens under energy-driven collapse.
Using Eqs.(5.9) and (6.15), we calculate the expectation
value of the photon position probability distribution and the
expectation value of the occupation number of the excited
state:

kuxlkxulBstd = s2pd−1/2E
−`

`

dhe−h2/2ukxuc,T − Thlu2

=s2pT2d−1/2e−s1/2T2dfs − sx − x0dg2f1 − GsQsx − x0dg

+ G2sQsx − x0dFfhs− sx − x0d/Tj − GTg
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3e−Gfs−sx−x0dges1/2dsGTd2, s6.17ad

kb†blBstd = s2pd−1/2E
−`

`

dhe−h2/2ubst − Thdu2

= Gse−Gses1/2dsGTd2Ffss/Td − GTg. s6.17bd

First consider the smallT case, i.e.,TG!1. From Eq.
(6.17b), the bound-state excitation onset, governed by
<Ffs/Tg, takes place overT, because the incident photon
wave-packet width is broadened froms to T. The decay is
exponential with time constantG−1. From Eq. (6.17a), the
interference term[the term ,GsQsx−x0d] at the leading
edge of the outgoing packet has likewise been broadened to
a Gaussian of widthT. In other words, the outgoing packet’s
behavior is similar to that of the standard quantum theory
(6.16b), except that its onset takes place overT.

Of greatest interest is the largeT case,TG@1. Utilizing
the largex behavior Ff−xg→ s2pd−1/2x−1exp−sx2/2d, Eqs.
(6.17) becomes

kuxlkxulBstd < s2pT2d−1/2e−s1/2Td2fs − sx − x0dg2

3Hf1 − GsQsx − x0dg + GsQsx − x0d

3F1 +
s− sx − x0d

GT2 GJ , s6.18ad

kb†blBstd < ss2pT2d−1/2e−s1/2T2ds2
. s6.18bd

From Eq. (6.18b), the decay of the bound state is no
longer exponential. It is Gaussian with characteristic timeT.
This is because the incident wave packet is Gaussian, not
because the decay is Gaussian: Eqs.(6.18) behave just like
the standard quantum theory description, Eqs.(6.15), with a
broad Gaussian incident wave packet, of widthT, and a rela-
tively rapid decaysG−1!Td. Although the exponential decay
is faster thanT, it does not appear in any equation since the
decay is masked by theT behavior of the incident wave
packet. Thus there is no violation of the stricture against
“fast” pulse behavior.

From Eq.(6.18a), the interference term(second term in
the small square bracket) and most of the outgoing packet
(first term in the large square bracket) cancel, so that what
remains has the shape of the incident packet plus a little
“blip” (second term in the large square bracket), which is a
little larger at the leading edge and a little smaller at the
trailing edge.

While, in this model, the incident photon and the photon
decay product cannot be separated[andG completely disap-
pears from Eqs.(6.18)], if one wishes one can alter the
model by adding to the Hamiltonian(6.9) another coupling
term:

g8E
−`

`

dkfcke
ikx0b† + ck

†e−ikx0bg,

so that the excited state can decay to ac particle as well as an
a particle. The decay product can be separated from the in-

cident particle by making the decay go essentially only to the
c particle: chooseg,G1/2 small enoughsG−1@Td and g8
,G81/2 large enoughsG8−1!Td, so the state becomes excited
by the incidenta particle, but decays to thec particle. Then,
under energy-driven collapse, the large square bracket term
in Eq. s6.18ad will describe thec-particle decay product.

Now, consider the experiment already discussed: in this
case, a properly operating detector encountering many pho-
tons, each described by Eq.(6.18a), should print outT and
NO. Should the detector be incapable of responding with a
time resolution not much better thanT, as one might suspect
for a detector in a universe suffering energy-driven collapse,
the printout will be the same.

Next, suppose the detector is included in the state vector.
In the standard quantum description, the detector sees the
results described in Eqs.(6.16) and will, at its leisure, print
out G and YES. To see what happens under energy-driven
collapse, we apply Eq.(5.9). The density matrix is a super-
position of pure statesuc ,t−Thlkc ,t−Thu, each of which
satisfies the standard quantum description. Therefore, fort
large enough, the density matrix describes with certainty that
the apparatus prints outG andYES.

Thus, as in the preceding section we have a paradox.
There is a conflict between the result for the microscopic
system alone, and the result for the apparatus interacting
with the microscopic system, both correctly calculated using
Eq. (5.9).

To see what has gone wrong, consider the nature of the
density matrix at some timet during the measurement, cal-
culated according to Eq.(5.9). Standard quantum theory does
not produce collapse, so the state vector in standard quantum
theory at timet−Th is a superposition of states, each de-
scribing an apparatus which has recorded a particular photon
detection sequence in a direct product with the photons
which have been nondestructively detected. Although the
conclusion from each sequence is the same and leads to the
same summarizing printout, since all sequences are different
these are macroscopically distinguishable states. Under the
time-smearing construction of Eq.(5.9), these states appear
superposed in the resulting density matrix. If the density ma-
trix is not diagonal in these states then, obviously, the super-
position of such states which occurs in standard quantum
theory has carried over to the energy-driven collapse theory,
and collapse is not working. Suppose, then, that the density
matrix is diagonal in these states. These are states for which
the photons, resolved to better thanG−1, have more energy
spread than is allowed in the universe(also, for the clock, a
similar statement obtains). Thus again, as discussed follow-
ing Eq.(5.9) and in the last section, the density matrix could
not be the result of proper collapse.

C. Numerical values

We deliberately have not put numbers into these discus-
sions of experiments. The point we are making, that proper
collapse does not occur when the apparatus is included in the
state vector, is a point of principle, not a conflict with experi-
ment. However, it is worthwhile trying to find examples of
altered phenomena predicted by the energy-driven collapse
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model, when the apparatus is not included in the state vector,
which might be subject to an experimental test.

Hughston has made the interesting choicel
=sG/"3c5d1/2=(Planck time)/"2 for which, with T=13.7
3109 yr, one obtainsT;slTd1/2<1.5310−13 sec. Because
timers, counters, oscilloscopes, printers, etc., do not operate
at 10−13 sec, it is hard to come up with an experiment actu-
ally performed or even presently performable, for which the
slight smearing over 10−13 sec has a practical detectable ef-
fect.

For example, there has been much work with light pulses
of <1 to 100 fs s1 fs=10−15 secd which can be obtained
from a mode-locked Ti:sappphire laser. In one such experi-
ment, the cross correlation of the intensities of two such
pulses is measured[26]. A 27 fs pulse(centered at 800 nm)
is split into two pulses. One pulse is reshaped, the other
delayed, and the two are recombined in a frequency-doubling
crystal. The output intensity, filtered at twice the input fre-
quency, is proportional to the intensity cross correlation of
the two pulses at the delay time, and is measured by a pho-
tomultiplier tube. In one case, graphs of intensity cross cor-
relation versus delay time show,54 fs structure. Nonethe-
less, the description under energy-driven collapse which
causes a 150 fs “smearing” gives no different result than
standard quantum theory because both pulses are similarly
affected. The averaging ofuc1,t−Thlkc1,t−Thu in Eq. (5.9)
just means that the signal proportional to the cross correla-
tion coming out of the frequency-doubling crystal will be
spread over<150 fs instead of,54 fs. The photomultiplier
measures its input intensity independent of the input pulse
width, so the measurement result will be the same. Other
experiments, such as those involving time-domain terahertz
spectroscopy, are similarly configured, and thus similarly un-
affected.

A direct measurement of pulse width, showing that a
pulse less thanT in width can be observed,would certainly
be adequate to produce a discrepancy between the energy-
driven collapse prediction and experiment. The fastest com-
mercial oscilloscope of which I am aware, the Tektronix
TDS 6604, operates at 6 GHz, with a 20 gigasample/sec
rate, so ifT<10−10 sec, a discrepancy would be observed.

A similar situation prevails with regard to decay experi-
ments such as discussed in Sec. VI B. For example, thep0’s

lifetime of <0.1 fs, time dilated in the laboratory, to<5 fs
(the pions had energy 7.1 GeV), has been measured by what
may be thought of as a time-of-flight experiment[27].
18 GeV protons bombarded platinum foils of various thick-
nesses, uniformly creating pions in a foil. If a moving pion
has a short enough lifetime so that it decays to twog’s while
it is still in the foil, there is a certain probability(largest
when theg’s still have a lot of foil to travel through) that ag
will create an electron-positron pair by colliding with an
atom in the foil. The positrons are detected, and the number
of positrons produced in foils of various thicknesses can be
related to the pion lifetime. Under energy-driven collapse,
the observed results would be no different, since it is effec-
tively distances that are measured. All energy-driven collapse
requires is that thep0 and decay product wave functions rise
and fall over timeùT: there is no effect on the size of the
distancetraveled before decay or pair creation.

However, with regard to the spin precession discussion in
Sec. VI A, it is presently just possible to obtain a magnetic
field strong enough to observe an experimental discrepancy.
An electron spin in a magnetic field precesses at
2.8 MHz/G. The largest pulsed magnetic fields at present,
produced by machines in high magnetic-field laboratories
around the world, are<70 T, corresponding to a frequency
of <231012 Hz. But, a magnetic field of 850 T, correspond-
ing to a precession frequency of<231013 Hz has been pro-
duced in a one-shot “self-destructive” magnet. Suppose a
slug of matter were to be placed between the poles of such a
magnet during its few milliseconds of operation, and the far
infrared magnetic dipole radiation expected to be produced
by the precessing electron spins were to be observed. The
diminished radiation predicted by energy-driven collapse due
to the diminished precession, compared to standard quantum
theory’s prediction of the precession, could be tested.

ACKNOWLEDGMENTS

I would especially like to thank Steve Adler for his hos-
pitality at the Institute for Advanced Study at Princeton
where this work was conceived, and for his many helpful
comments on this paper. I would also like to thank Todd
Brun, Brian Collett, Jerry Finkelstein, Larry Horwitz, Lane
Hughston, Gordon Jones, Jim Ring, Ann Silversmith, and
Don Stewart for useful remarks.

[1] P. Pearle, Phys. Rev. D13, 857 (1976).
[2] P. Pearle, Int. J. Theor. Phys.48, 489(1979); Found. Phys.12,

249 (1982).
[3] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D34, 470

(1986); 34, 470 (1986); Found. Phys.18, 1 (1988).
[4] P. Pearle, Phys. Rev. A39, 2277(1989).
[5] G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A42, 78

(1990).
[6] P. Pearle and E. Squires, Phys. Rev. Lett.73, 1 (1994).
[7] B. Collett, P. Pearle, F. Avignone, and S. Nussinov, Found.

Phys. 25, 1399(1995); P. Pearle, James Ring, J. I. Collar, and

F. T. Avignone III, ibid. 29, 465 (1999).
[8] G. C. Ghirardi and T. Weber, inPotentialities, Entanglement

and Passion-at-a Distance, Quantum Mechanical Studies for
Abner Shimony, edited by R. S. Cohen, M. Horne, and J.
Stachel(Kluwer Academic, Dordrecht, 1997), p. 89.

[9] P. Pearle, Phys. Rev. D29, 235(1984); A. Zeilinger, inQuan-
tum Concepts in Space and Time, edited by R. Penrose and C.
J. Isham(Clarendon, Oxford, 1986), p. 16; A. Zeilinger, R.
Gaehler, C. G. Shull, W. Treimer, and W. Mampe, Rev. Mod.
Phys. 60, 1067 (1988); A. J. Leggett, Found. Phys.29, 445
(1999); J. R. Clauser, inExperimental Metaphysics, edited by

PHILIP PEARLE PHYSICAL REVIEW A69, 042106(2004)

042106-14



R. S. Cohen, M. Horne, and J. Stachel(Kluwer Academic,
Dordrecht, 1997), p. 1; R. Penrose, Gen. Relativ. Gravit.28,
581 (1996); W. Marshall, C. Simon, R. Penrose, and D. Bou-
wmeester, Phys. Rev. Lett.91, 1495(2003).

[10] B. Collett and P. Pearle, Found. Phys.33, 130401(2003).
[11] D. Bedford and D. Wang, Nuovo Cimento Soc. Ital. Fis., B

26B, 313 (1975); 37, 55 (1977).
[12] I. C. Percival, Proc. R. Soc. London, Ser. A451, 503 (1995);

Quantum State Diffusion(Cambridge University Press, Cam-
bridge, 1998).

[13] L. P. Hughston, Proc. R. Soc. London, Ser. A452, 953(1996).
[14] S. L. Adler and L. P. Horwitz, J. Math. Phys.41, 2485(2000).
[15] S. L. Adler, D. C. Brody, T. A. Brun, and L. P. Hughston, J.

Phys. A 34, 8795(2001).
[16] D. C. Brody and L. P. Hughston, J. Math. Phys.43, 5254

(2002); Proc. R. Soc. London, Ser. A459, 2297(2003).
[17] S. L. Adler, J. Phys. A35, 841 (2002); Phys. Rev. D 67,

25007(2003).
[18] For a recent review of collapse formalism, including that used

here, see P. Pearle, inOpen Systems and Measurement in Rela-
tivistic Quantum Theory, edited by H. P. Breuer and F. Petruc-
cione(Springer, Heidelberg, 1999), p. 195 see sec. 2.2. Hugh-
ston and Brody[16] have recently endorsed the utility of this
formalism for energy-driven collapse.

[19] R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill, New York, 1966); J. R. Taylor, Scattering
Theory(Wiley, New York, 1972).

[20] F. E. Low, Phys. Rev.97, 1392(1955).
[21] F. E. Low,Brandeis University 1959 Summer Institute in The-

oretical Physics Lecture Notes(Benjamin, New York, 1959), p.
3; G. Baym, Lectures on Quantum Mechanics(Benjamin/
Cummings, Reading, MA, 1969), Chap. 9.

[22] G. J. Milburn, Phys. Rev. A44, 5401(1991).
[23] J. Finkelstein, Phys. Rev. A47, 2412 (1993). I would like to

thank Dr. Finkelstein, after reading an earlier preprint of this
manuscript, for bringing these papers to my attention.

[24] L. Allen and J. H. Eberly,Optical Resonance and Two-Level
Atoms(Dover, New York, 1987), Chap. 7.

[25] E. Eisenberg and L. P. Horwitz,Advances in Chemical Phys-
ics, edited by I. Prigogine and S. A. Rice.(Wiley, New York,
1997), Vol. XCIX.

[26] D. Meshulach, D. Yelin, and Y. Silberberg. J. Opt. Soc. Am. B
15, 1615(1998).

[27] G. von Dardel, D. Dekkers, R. Mermod, J. D. van Putten, M.
Vivargent, G. Weber, and K. Winter, Phys. Lett.4, 51 (1963);
see also D. H. Perkins,Introduction to High Energy Physics,
2nd ed.(Benjamin, Reading, 1982), Chap. 2.

PROBLEMS AND ASPECTS OF ENERGY-DRIVEN WAVE-… PHYSICAL REVIEW A 69, 042106(2004)

042106-15


