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The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice
is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and
band fillings. For a two-component gas, Landau criterion is used for specifying the regime where robust Bloch
oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along
the crossover from BCS to Bose-Einstein condensation.
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The experimental realization of optical lattices for
bosonic atoms has led to several landmark experiments
[1–4]. Very recently similar potentials have become available
for trapping thefermionicisotopes as well[5,6]. An increase
in the superfluid transition temperature when using potentials
created by standing light waves has been predicted[7]. For
trapped cold atoms, the famous BCS-BEC(Bose-Einstein
Condensation) crossover problem[8–10] could be studied by
tuning the interaction strength between the atoms using
Feshbach resonances[6,11,12]. In optical lattices the whole
BCS-BEC crossover could be scanned experimentally also in
an even simpler way by modulating the light intensity. We
consider Bloch oscillations in these systems and show that
they can be used as a tool for studying the crossover.

Bloch oscillations are a pure quantum phenomenon occur-
ring in a periodic potential. They have never been observed
in a natural lattice for electrons as predicted in Ref.[13]
because the scattering time of the electrons by lattice defects
or impurities is much shorter than the Bloch period. How-
ever, Bloch oscillations have recently been observed in semi-
conductor superlattices[14] for quasiparticles penetrating the
cores of a vortex lattice in a cuprate superconductor[15] and
for periodic optical systems such as waveguide arrays[16].
Also cold bosonic atoms and superfluids in optical lattices
have been shown to be clean and controllable systems well
suited for the observation of Bloch oscillations[2–4].

Several novel aspects of the physics of Bloch oscillations
arise for fermionic atoms in optical lattices.

(i) Impurity scattering can be made negligible, and the
particle number controlled at will to produce any band fill-
ing. Even when Bloch oscillations were originally proposed
for fermions, the effect of the Fermi sea had not played a
major role. Due to impurity and defect scattering, the studies
of transport in presence of a constant force have focused on
drift velocities rather than oscillations. In this paper we gen-
eralize the semiclassical single-particle description of Bloch
oscillations to arbitrary band fillings.

(ii ) The possibility of an oscillating fermionic superfluid
becomes relevant. We use the Landau criterion for the optical
lattice imposing the Cooper pair size to be of the order of or
smaller than the lattice spacing. For solid-state systems, the
Cooper pair radius is usually much larger than the lattice
spacing and periodicity irrelevant for the superfluid, there-
fore the system is treated as homogeneous when calculating

supercurrents. Here we calculate the superfluid velocity in
the periodic potential.

Two complementary approaches for quantum transport in
periodic potentials have been experimentally realized for
bosonic atoms: spectroscopy of Wannier-Stark ladder reso-
nances[3] and direct observation of Bloch oscillations in
momentum space[2,4]. The constant force inducing the
transport is realized by chirping the frequency difference be-
tween the optical lattice beams. After applying the force for a
given time, the lattice beams are switched off[2,4] and the
lattice quasimomenta are directly mapped to the momenta of
the free particles. In this way, the atomic cloud velocity at
different times can be measured. The velocity shows Bloch
oscillations whose amplitude depends on the bandwidth.
Here we consider the case of fermionic atoms instead of
bosons, and calculate how the amplitude of the oscillations is
affected by the temperature and the Fermi sea using the tight-
binding approximation. We also consider interacting fermi-
ons and show that pairing, leading to smoothening of the
Fermi edge, suppresses the Bloch oscillation amplitude.

Using six counterpropagating laser beams of wavelength
l, an isotropic three-dimensional(3D) simple cubic lattice
potential can be created which is of the form

Vsr d = V0Fcos2Spx

a
D + cos2Spy

a
D + cos2Spz

a
DG , s1d

whereV0 is proportional to the laser intensity anda=l /2.
With the Bloch ansatz the Schrödinger equation leads to a
band structure in the energy spectrum«nskd. One-component
degenerate Fermi gas at low temperatures can be considered
as noninteractingsince p-wave scattering is negligible and
s-wave scattering is suppressed by Fermi statistics. We are
interested in high enough values ofV0 such that tunneling is
small and tight-binding approximation can be applied. The
dispersion relation for the lowest band becomes«skd=Jf3
−cosskxad−cosskyad−cosskzadg, where the bandwidthJ
=s2/ÎpdERsV0/ERd3/4exps−2ÎV0/ERd is obtained using the
WKB approximation andER=h2/ s8ma2d is the recoil en-
ergy of the latticef7g.

In a two-component Fermi gas, atoms in two different
hyperfine statess↓ ,↑d may interact with each other. The in-
teraction can be assumed pointlike, characterized by a scat-
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tering lengthaS. The system HamiltonianĤ=oaed3r ĉa
†sr d

3sT+Vdĉasr d− ugu ed3r ĉ↑
†ĉ↓

†ĉ↓ĉ↑, whereg=4p"2aS/m, can

then be mapped to the attractive Hubbard modelĤ
=Joki,jlsĉis

† ĉjs−Uo jĉj↑
† ĉj↓

† ĉj↓ĉj↑, where U=ER
Î8puasu /

asV0/ERd3/4. The ground-state solution of this Hubbard
Hamiltonian corresponds to a superfluid which is of BCS or
BEC type depending on the parametersJ andU. For optical
lattices, the BCSsJ@Ud to BEC sU@Jd crossover can be
controlled byV0 alone. One-band description is used in the
Hubbard model also in the case of strong interactions[17].
We define the limits of the one-band approximation for the
physical potential, Eq.(1), by demanding the lowest band
gap to be bigger than the effective interactionU (note that
U. ugu for the parameters of interest). The band gap can be
estimated by approximating the cosine potential well by a
quadratic one. Demanding the corresponding harmonic-
oscillator energy to be greater thanU gives the condition
V0/ER,1/s4p2dsa/ uasud4. Sincea. uaSu (lattice period big-
ger than the scattering length) is imposed by considering
on-site interactions only, the condition is easily valid in gen-
eral, and for the parameters of Fig. 1 in particular. Estimates
made using exact numerical band gaps in 1D support this
argument.

Bloch oscillations for a single atom can be characterized
considering the mean velocity of a particle in a Bloch state
vsn,kd=kn,k uṙ un,kl given by

vsn,kd =
1

"
¹k«nskd. s2d

When a particle in the Bloch stateun,k0l is adiabatically
affected by a constant external forceF=Fxx̂ weak enough
not to induce interband transitions, it evolves up to a phase
factor into the stateun,kstdl according tokstd=k0+Ft /".
The time evolution has a periodtB=h/ suFxuad, corresponding
to the time required for the quasimomentum to scan the
whole Brillouin zone. If the force is applied adiabatically, it
provides momentum to the system but not energy because
the effective massfgiven byms«d−1=s1/"2ds]2« /]k2dg is not
always positive. For optical lattices the forcesor tilt V
=−F ·r term in the Hamiltoniand can be realized by acceler-
ating the latticef2–4g. Using the tight-binding dispersion re-
lation the velocity of an atom oscillates like

vxstd =
Ja

"
sinSk0xa +

Fxta

"
D . s3d

For cold bosonic atoms and condensates[2,4] nearly all of
the population is in the lowest mode of the optical potential,
Eq. (3) therefore describes the oscillation of the whole gas.
We generalize the result for the case when many momentum
states of the band(at T=0, the states with wave vectoruk u
økF) are occupied. We calculate the velocity of the whole
gas as the average over the normalized temperature-
dependent distribution function(the Fermi distributionf) of
the particles:

kvxstdl =
1

"
o
k0

fsk0d¹k0x
«Sk0 +

Ft

"
D . s4d

Using the tight-binding dispersion relation for the Bloch en-
ergies, Eq.s4d reduces atT=0 to

kvxstdl =
Ja

"

sinskxFad
kxFa

sinSFxta

"
D . s5d

This shows that a macroscopic coherent oscillation, such as
in Eq. s3d, can still be observed if the band is not full, but the
amplitude is suppressed by the band fillingkxFa, i.e., the
effect of the Fermi sea can decrease the amplitude consider-
ably compared to the bosonic casef2,4g. Also temperature
can affect the amplitude of the oscillations. Using Eq.s4d we
obtain that, compared to theT=0 case, the oscillation ampli-
tude is nearly unchanged forkBTø0.1J, reduced by half for
kBT=J, and by one order of magnitude forkBT,3J.

The above results are valid for a one-component degener-
ate Fermi gas at low temperatures. In a two-component
Fermi gas, atoms in the different hyperfine states interact
with each other, which may lead to a superfluid state. Above
Tc, weak interactions can be described by a mean-field shift
in the chemical potential, leading to no qualitative changes in
Bloch oscillations. Inelastic scattering and consequent damp-
ing of Bloch oscillations can be described, e.g., by balance
equations[18]. In the following we consider the superfluid
case where qualitative changes are expected.

FIG. 1. The solid line shows the transition temperature(units on
the left axis) as a function of the lattice depthV0. The points rep-
resent the amplitude of the velocity Bloch oscillations(units on the
right axis) in recoil velocity unitssvRd. Thenormal-stateoscillation
amplitude atT= 2

3Tc
max is denoted by *. Thesuperfluidoscillation

amplitude atT=0 is denoted byL. Note the difference in the
magnitude of the normal states* d and the superfluidsLd oscillation
amplitudes. The amplitude of the superfluid velocity oscillations in
the bosonic limit, Eq.(13), is marked by3 for pair sizel =a/3 and
by + for l =a/4. All magnitudes are given in recoil energy units
ER=h2/ s8ma2d. The results are for6Li atoms in hyperfine states
with scattering lengthas=−2.53103a0 in a half filled skF= 1 / 2kL d
3D CO2 laser latticesa=105a0d.
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In order to observe robust Bloch oscillations of a super-
fluid Fermi gas in the presence of momentum changing col-
lisions, the critical velocity of the superfluid should not be
reached before the edge of the Brillouin zone. A BCS super-
conductor can carry a persistent currentq until a critical
velocity vc=D /pF. For higher current values, even atT=0, it
is energetically favorable to break Cooper pairs and create a
pair of quasiparticles[19]. This costs 2D in binding energy
and decreases the Bloch energy(j=«−m, where m is the
chemical potential) by ujkF+q−jkF−qu;2uEDu. Therefore, for
the current to be stableuEDu,D. This is the Landau criterion
of superfluidity. For the tight-binding dispersion relation, we
rewrite the condition asJ sinsqadsin kFa,D. To complete a
Bloch oscillation, sinsqad should achieve its maximum value
1, i.e.,

sin kFa , D/J. s6d

For weak coupling,D /J is given by the BCS theory, and in
the attractive Hubbard model in the strong-coupling limit the
gap atT=0 is given byD= 1

2U for half filling f17g. Using
these estimates, the relations6d reduces for the parameters of
Fig. 1 toV0/ER.3.2. That is, forV0/ER.3.2 Bloch oscil-
lations of the superfluid could be observed. For
V0/ER,3.2, thesuperfluid may break, and one has to ap-
ply the normal-state description. For this reason, we plot
in Fig. 1 the superfluid oscillation amplitude forV0/ER.4
and the normal-state one forV0/ER,4.

To relate the Landau criterion to the Cooper pair size, we
rewrite Eq. (6) in terms of the BCS coherence lengthj0
="vF / spDd and insert J sinskFad="vF /a which yields
j0,a/p. The observation of robust Bloch oscillations is
thus restricted to superfluids with BCS coherence length
smaller than the lattice periodicity. This is the intermediate
strong-coupling regime.

For calculating the superfluid velocity a space-dependent
description of the superfluid has to be used. We combine the
BCS ansatz with the Bloch ansatz for the lattice potential
using the Bogoliubov–de Gennes(BdG) equations[20]. As
given by the Landau criterion above, the interesting regime
is the intermediate strong-coupling one. Note that even in the
strong-coupling limit, the algebra of the BCS theory can be
applied to all coupling strengths[9,21] together with an extra
definition for the chemical potential which in the weak-
coupling limit is given just by the Fermi energy of the non-
interacting gas. The BdG equations are

SHsr d − m Dsr d
Dsr d* − fHsr d − mg

DSusr d
vsr d

D = ESusr d
vsr d

D . s7d

When the external potential is periodic, one can use the
Bloch ansatz foru and v because, by self-consistency, the
Hartree and pairing fields are also periodic. We obtain

uksr d = eik·r ũkfksr d, vksr d = eik·r ṽkfksr d s8d

Dsr d = o
k

uguf1 − 2fsEkdguksr dvk
* sr d, s9d

wherefk are the fully periodic part of the Bloch functions,
such thatfHsr d−mgfkeik·r =jkfkeik·r .

To describe Bloch oscillations we impose the adiabatic
condition, that is, momenta evolve according tok →k
+Ft /";k +q, i.e., we consider BCS state with a drift(again
only in x direction). The solutions of the BdG equations take
the form

uk
qsr d = eik·reiq·r ũk

qfk+qsr d; vk
qsr d = eik·re−iq·r ṽk

qfk−qsr d,

s10d
Dqsr d = o

k
uguf1 − 2fsEk

+qdguk
qsr dvk

q*sr d,

Ek
q = sjk+q − jq−kd/2 ± Îsjk+q + jq−kd2/4 + uDqu2

; ED ± ÎEA
2 + uDqu2,

where 2ED is the energy difference andEA the average en-
ergy. The ± holds for the particle and hole branch, respec-
tively, and the particle branch eigenfunctions areuũk

qu2, uṽk
qu2

=s1±EA/ÎEA
2 + uDqu2d /2. The Hamiltonian transformed un-

der the Bogoliubov transformation leading to Eq.s7d has
to be positive definite. This means that one should use the
solutions for which Ek

+q.0, i.e.,
minsÎEA

2 + uDqu2d= uDqu. uEDsk8du, where k8 minimizes EA
2.

Remarkably, this condition is closely related to the Lan-
dau criterionuDu.EDskFd.

In the BCS ansatz, a common momentumq can be added
to all particles, leading to correlations of the type
kck+q

† c−k+q
† l. The momentum per pair becomes 2q. One can

formally calculate this obvious result also by using the plane-
wave ansatzuk = uukueisk+qd·r , vk = uvkueisk+qd·r [20] [Eq. (10)
with f=1] and introducing an (unnormalized) order-
parameter wave functionDqsr d=ei2q·rC, whereC is given by
Eq. (10) to be a constant inr . Expectation values such as
momentum sp=−i ] /]r d can be calculated:kpl=kDqsr du
−i ] /]r uDqsr dl / kDqsr d uDqsr dl=2q. The order-parameter
wave function is defined in the spirit of(but not with a one-
to-one correspondence to) the Ginzburg-Landau theory with
a space-dependent wave function whose absolute value
equals the gap. In case of Fermionic atoms the Ginzburg-
Landau approach has been used to describe harmonic con-
finement[22] and vortices[23]. For the periodic potential we
introduce the order-parameter wave function in the form
Dqsr d=ok Dk

qsr d, where using Eq.(10),

Dk
qsr d = Fsk,qdfk+qeisk+qdrfk−q

† e−isk−qdr s11d

and Fsk ,qd= uguf1−2fsEk
+qdgũk

qṽk
q* . We calculate the super-

fluid velocity using kvSl=NkDqsr duṙ uDqsr dl, where N
=kDqsr d uDqsr dl−1. Using kṙ lfk−q

† e−isk−qd·r =−s1/"dsd/dkdjk−q

and the tight-binding energy dispersion relation the super-
fluid velocity becomes
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kvxSl = No
k

uFsk,qdu2
Ja

"
coskxa sin qa

=
Ja

"
sinsqadNo

k
U f1 − 2fsEk

qdgDq

ÎEA
2 + uDqu2

U2

coskxa.

s12d

This shows that also the superfluid oscillatesfthe term
sinsqad, q=Ft /"g with the same frequency as the normal-
state gas, but with a different amplitude. The superfluid
oscillation amplitude for selected parameters is shown in
Fig. 1. We have also calculated the thermal quasiparticle
contribution but it turns out to be negligible for half fill-
ing.

In the limit of large V0, the interacting fermions form
composite bosons, and one could describe the center-of-mass
movement of the composite particle by definingJ* =Jsm
→2md. In order to give a simple estimate for the effect
of the Fermi statistics, we interpretuFsk ,qdu2,uFskdu2
in Eq. (12) as reflecting the internal wave function of
the pair in the composite boson limit, cf. Refs.[8,9]. The
average velocity for the bosons becomeskvxBl
~ sJ*a/ " dsin qaokuFskdu2 coskxa. If the pairs were ex-
tremely strongly bound, the internal wave function in real
space is ad-function, corresponding to a constant ink-space.
This meanskvBl=0 since the cosine integration in Eq.(12)
would extend to the wholek-space with equal weight, i.e.,
there are no empty states in the Brillouin zone as required for
Bloch oscillations. For on-site pairs, we useuFsrdu2~exps
−r2/ l2d leading to uFskdu2~N exps−l2k2/4d, therefore the
suppression factor for the Bloch oscillations becomesS

,Nedk exps−l2k2/4dcoska, where l is the pair size. As a
rough estimate for the average velocity we thus obtain

kvxBl , S
J*a

"
sinSFxta

"
D . s13d

This is shown in Fig. 1 for pair sizesl =a/3 and l =a/4. It
gives an order-of-magnitude estimate, approaching the re-
sults given by the BCS algebra.

In summary, we have considered Bloch oscillations of fer-
mionic atoms in optical lattices for the BCS-BEC crossover
regime. Oscillations in the velocity of the atoms could be
observed as in the experiments for bosons[2,4]. We show
that the amplitude of the oscillations decreases when the
crossover is scanned, in general, due to the shrinking of the
bandwidth. However, the change from the normal- to the
superfluid-state description leads to a drastic change in the
amplitude. This is due to smoothening of the Fermi edge by
pairing. Bloch oscillations could be used for exploring pair-
ing correlations since any localization in space(pair size)
leads to broadening in momentum which suppresses the am-
plitude in the same way as band filling in the noninteracting
gas. Even atT@Tc, the effect of collisions on Bloch oscilla-
tions can be studied producing information useful for appli-
cations of Bloch oscillations such as production of terahertz
radiation[24,18]. Observation of oscillating fermionic atoms
in optical lattices would contribute to the quest for a steadily
driven fermionic Bloch oscillator.

We thank T. Esslinger and M. Köhl for useful discussions,
and Academy of Finland(Project Nos. 53903, 48445), ESF
(BEC20001 programme), and European Commission Grant
No. IST-2001-38877(QUPRODIS) for support.

[1] F. S. Cataliottiet al., Science293, 843(2001); J. H. Denschlag
et al., J. Phys. B35, 3095(2002); W. M. Liu et al., Phys. Rev.
Lett. 88, 170408 (2002); M. Glück et al., ibid. 86, 3116
(2001); M. Greineret al., Nature(London) 415, 39 (2002); B.
P. Anderson and M. A. Kasevich, Science282, 1686 (1998);
and references therein.

[2] M. B. Dahanet al., Phys. Rev. Lett.76, 4508(1996).
[3] S. R. Wilkinsonet al., Phys. Rev. Lett.76, 4512(1996).
[4] O. Morschet al., Phys. Rev. Lett.87, 140402(2001).
[5] G. Modugnoet al., Phys. Rev. A68, 011601(R) (2003); H. Ott

et al., cond-mat/0311261; G. Roatiet al., cond-mat/0402328.
[6] S. Jochimet al., Phys. Rev. Lett.91, 240402(2003).
[7] W. Hofstetteret al., Phys. Rev. Lett.89, 220407(2002).
[8] A. J. Leggett,Modern Trends in the Theory of Condensed Mat-

ter (Springer-Verlag, Berlin, 1980), Vol. 13.
[9] P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys.59, 195

(1985).
[10] C. A. R. Sá de Meloet al., Phys. Rev. Lett.71, 3202(1993).
[11] M. Greineret al., Nature(London) 426, 537(2003); S. Jochim

et al., Science302, 2101(2003); M. W. Zwierlein et al., Phys.
Rev. Lett. 91, 250401(2003); C. A. Regal,et al., ibid. 92,
040403(2004).

[12] K. M. O’Hara, et al., Science298, 2179(2002); J. Cubizolles

et al., Phys. Rev. Lett.91, 240401 (2003); K. E. Strecker
et al., ibid. 91, 080406(2003).

[13] F. Bloch, Z. Phys.52, 555 (1929); C. Zener, Proc. R. Soc.
London, Ser. A145, 523 (1934).

[14] L. Esaki and R. Tsu, IBM J. Res. Dev.14, 61 (1970); M.
Helm, Semicond. Sci. Technol.10, 557 (1995).

[15] O. M. Stoll et al., Phys. Rev. B60, 12424(1999).
[16] T. Pertschet al., Phys. Rev. Lett.83, 4752(1999); R. Moran-

dotti et al., ibid. 83, 4756(1999).
[17] R. Micnaset al., Rev. Mod. Phys.62, 113 (1990).
[18] A. A. Ignatov et al., Phys. Rev. Lett.70, 1996(1993).
[19] J. Bardeen, Rev. Mod. Phys.34, 667(1962); K. T. Rogers, Ph.

D thesis, University of Illinois, 1960(unpublished).
[20] P. de Gennes,Superconductivity of Metals and Alloys

(Addison-Wesley, New York, 1966).
[21] M. Holland et al., Phys. Rev. Lett.87, 120406 (2001); Y.

Ohashi and A. Griffin,ibid. 89, 130402(2002); E. Timmer-
manset al., Phys. Lett. A 285, 228 (2001).

[22] M. A. Baranov and D. S. Petrov, Phys. Rev. A58, R801
(1998).

[23] M. Rodriguezet al., Phys. Rev. Lett.87, 100402(2001).
[24] Y. Shimadaet al., Phys. Rev. Lett.90, 046806(2003).

M. RODRÍGUEZ AND P. TÖRMÄ PHYSICAL REVIEW A69, 041602(R) (2004)

RAPID COMMUNICATIONS

041602-4


