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Bloch oscillations in Fermi gases
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The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice
is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and
band fillings. For a two-component gas, Landau criterion is used for specifying the regime where robust Bloch
oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along
the crossover from BCS to Bose-Einstein condensation.
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The experimental realization of optical lattices for supercurrents. Here we calculate the superfluid velocity in
bosonic atoms has led to several landmark experimentshe periodic potential.
[1-4]. Very recently similar potentials have become available Two complementary approaches for quantum transport in
for trapping thefermionicisotopes as well5,6]. An increase  periodic potentials have been experimentally realized for
in the superfluid transition temperature when using potentialgosonic atoms: spectroscopy of Wannier-Stark ladder reso-
created by standing light waves has been prediff@dFor  nances[3] and direct observation of Bloch oscillations in
trapped cold atoms, the famous BCS-BEBose-Einstein  momentum spacé2,4). The constant force inducing the
Condensationcrossover problerf8—1Q could be studied by  {ransport is realized by chirping the frequency difference be-
tuning the interaction strength between the atoms usingeen the optical lattice beams. After applying the force for a
Feshbach resonancgs,11,13. In optical Iattlces the whole given time, the lattice beams are switched [@f4] and the
Sr?i&BeECsi%glsesf\\:\?e[ycgzl?n% %jf;mge?hzxﬁge{&r?ﬁpetggi{yal\S/\?e' ttice quasimomenta are directly mappe'd to the momgnta of

' the free particles. In this way, the atomic cloud velocity at

consider Bloch oscillations in these systems and show that. ! .
they can be used as a tool for studying the crossover. 'ﬁ‘?fe’?t times can be m(_aasured. The velocity shows B!OCh
Bloch oscillations are a pure quantum phenomenon occuPSC'"at'onS whpse amplitude depequ_ on the pandmdth.
glere we consider the case of fermionic atoms instead of

ring in a periodic potential. They have never been observe : L X
in a natural lattice for electrons as predicted in R3] osons, and calculate how the amplitude of the oscillations is

because the scattering time of the electrons by lattice defec@ffected by the temperature and the Fermi sea using the tight-

or impurities is much shorter than the Bloch period. How-binding approximation. We also consider interacting fermi-

ever, Bloch oscillations have recently been observed in semPns and show that pairing, leading to smoothening of the

conductor superlatticgd4] for quasiparticles penetrating the Fermi edge, suppresses the Bloch oscillation amplitude.

cores of a vortex lattice in a cuprate supercondugtét and Using six counterpropagating laser beams of wavelength

for periodic optical systems such as waveguide arfags. \, an isotropic three-dimension&8D) simple cubic lattice

Also cold bosonic atoms and superfluids in optical latticespotential can be created which is of the form

have been shown to be clean and controllable systems well

suited for the observation of Bloch oscillatiof®-4. V() :Vo[cos’-(lx> + C052<7T_y> + COg(E)]' 1)
Several novel aspects of the physics of Bloch oscillations a a a

arise for fermionic atoms in optical lattices. ) , . .
(i) Impurity scattering can be made negligible, and thewhereV, is proportional to the laser intensity arg-\/2.

particle number controlled at will to produce any band fill- With the Bloch ansatz the Schrodinger equation leads to a

ing. Even when Bloch oscillations were originally proposedP@nd structure in the energy spectraptk). One-component

for fermions, the effect of the Fermi sea had not played #l€generate Fermi gas at low temperatures can be considered
major role. Due to impurity and defect scattering, the studie®S noninteractingsince p-wave scattering is negligible and

of transport in presence of a constant force have focused ghWwave scattering is suppressed by Fermi statistics. We are

drift velocities rather than oscillations. In this paper we gen-interested in high enough values ¢ such that tunneling is

eralize the semiclassical single-particle description of BlocisMall and tight-binding approximation can be applied. The
oscillations to arbitrary band fillings. dispersion relation for the lowest band becona¢k)=J[3

(i) The possibility of an oscillating fermionic superfluid ~Cco<ks)—cogkja)-cogk.a)], where the bandwidthJ
becomes relevant. We use the Landau criterion for the opticat (2/\m)Er(Vo/ ER)¥%exp(=2\V,/Eg) is obtained using the
lattice imposing the Cooper pair size to be of the order of oWKB approximation andEg=h?/(8m&) is the recoil en-
smaller than the lattice spacing. For solid-state systems, thergy of the latticd 7].

Cooper pair radius is usually much larger than the lattice In a two-component Fermi gas, atoms in two different
spacing and periodicity irrelevant for the superfluid, there-hyperfine state¢|,1) may interact with each other. The in-
fore the system is treated as homogeneous when calculatingraction can be assumed pointlike, characterized by a scat-
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tering lengthag. The system Hamiltonialﬁ-I:Eafds’r fﬂ:‘y(r)
X (T+V) i (r)=a| f o gl iy, whereg=4mhZag/m, can
then be mapped to the attractive Hubbard modtel
:‘]E(i,j>(réi-rgejrr_ UElé}}élé”é”, where U= ER\’87T|aS|/
a(Vo/Er)®%. The ground-state solution of this Hubbard  oos!
Hamiltonian corresponds to a superfluid which is of BCS or &
BEC type depending on the parametémandU. For optical n:;
lattices, the BCYJ>U) to BEC (U>J) crossover can be =~ °0'f
controlled byV, alone. One-band description is used in the
Hubbard model also in the case of strong interactidg.
We define the limits of the one-band approximation for the
physical potential, Eq(1), by demanding the lowest band
gap to be bigger than the effective interaction(note that 0
U>|g| for the parameters of intergsfThe band gap can be
estimated by approximating the cosine potential well by a
guadratic one. Demanding the corresponding harmonic- FIG. 1. The solid line shows the transition temperatuits on
oscillator energy to be greater tha&h gives the condition the left axig as a function of the lattice dep¥,. The points rep-
Vo/Eg<1/(47?)(allad)*. Sincea>|ad (lattice period big- resent the amplitude of the velocity Bloch oscillatiqnsits on the
ger than the scattering lengtliis imposed by considering rght axis in recc2>il velocity units(vg). The normal-stateoscillation
on-site interactions only, the condition is easily valid in gen-amplitude atT=3T¢"*is denoted by *. Thesuperfluidoscillation
eral, and for the parameters of Fig. 1 in particular. Estimate@mPplitude atT=0 is denoted by®. Note the difference in the
made using exact numerical band gaps in 1D support thi@agr_utude of the normal stat®) and the superflumjl<_>) osm_llatl_on _
argument. amphtude_s. T_h_e amplltud_e of the superfluid ve_Ioc_lty oscillations in
Bloch oscillations for a single atom can be characterized"® Posonic limit, Eq(13), is marked byx for pair sizel =a/3 and

S . . . y + for I=a/4. All magnitudes are given in recoil energy units
ConS'dE”ng the meap velocity of a particle in a Bloch StateER:hZ/(Smaz). The results are foPLi atoms in hyperfine states
v(n,k)=(n,k|r|n,k) given by

with scattering lengttag=—2.5X 10%a, in a half filled (kg=1/2k )
3D CO, laser lattice(a=10Pay).

0.02F

0.0051

1
v(n,k) = _Vkan(k)- (2) 1 Ft
d @0 =32 f(kowk(,xe(ko+ g). @

When a particle in the Bloch state, ko) is adiabatically
affected by a constant external forée=F,X weak enough Using the tight-binding dispersion relation for the Bloch en-
not to induce interband transitions, it evolves up to a phasérgies, Eq(4) reduces af=0 to

factor into the statgn,k(t)) according tok(t)=kq+Ft/%.

The time evolution has a periag=h/(|F,|a), corresponding Jasin(k,ga) . (Fta
to the time required for the quasimomentum to scan the <Ux(t)>:gk—a )
whole Brillouin zone. If the force is applied adiabatically, it F
provides momentum to the system but not energy becau
the effective masfgiven bym(e)™1=(1/42)(Pe/ k?)] is not
always positive. For optical lattices the forder tilt V
=-F.r term in the Hamiltoniancan be realized by acceler-
ating the latticd 2—4]. Using the tight-binding dispersion re-
lation the velocity of an atom oscillates like

(5

SFhis shows that a macroscopic coherent oscillation, such as
in Eqg. (3), can still be observed if the band is not full, but the
amplitude is suppressed by the band fillikg-a, i.e., the
effect of the Fermi sea can decrease the amplitude consider-
ably compared to the bosonic casg4]. Also temperature
can affect the amplitude of the oscillations. Using Ej.we
obtain that, compared to thie=0 case, the oscillation ampli-
F.ta tude is nearly unchanged fegT<0.1], reduced by half for
% ) () kgT=J, and by one order of magnitude fegT ~ 3J.
The above results are valid for a one-component degener-

For cold bosonic atoms and condensgf4] nearly all of ate Fermi gas at low temperatures. In a two-component
the population is in the lowest mode of the optical potential,Fermi gas, atoms in the different hyperfine states interact
Eq. (3) therefore describes the oscillation of the whole gaswith each other, which may lead to a superfluid state. Above
We generalize the result for the case when many momenturf,, weak interactions can be described by a mean-field shift
states of the ban¢at T=0, the states with wave vecttk| in the chemical potential, leading to no qualitative changes in
<kg) are occupied. We calculate the velocity of the wholeBloch oscillations. Inelastic scattering and consequent damp-
gas as the average over the normalized temperaturéag of Bloch oscillations can be described, e.g., by balance
dependent distribution functiofthe Fermi distributiorf) of ~ equationg[18]. In the following we consider the superfluid
the particles: case where qualitative changes are expected.

vy(t) = Jzasin( Kox@ +
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In order to observe robust Bloch oscillations of a super- A= IgI[1 - 2f(EQ) Ju (o (r) (9)
fluid Fermi gas in the presence of momentum changing col- K K

lisions, the critical velocity of the superfluid should not be

reached before the edge of the Brillouin zone. A BCS supefynere ¢, are the fully periodic part of the Bloch functions,
conductor can carry a persistent currenuntil a critical  g,cp thalH(r) - u] €5 = & 4.

velocity v.=A/pe. For higher current values, evengt 0, it To describe Bloch oscillations we impose the adiabatic
is energetically favorable to break Cooper pairs and create @,ngition. that is. momenta evolve according ko—k
pair of quasiparticle$19]. This costs A in binding energy +Ft/fi=k+q, i.e., we consider BCS state with a diiégain

and decreases the Bloch energFe—u, whereu is the o in x direction). The solutions of the BAG equations take
chemical potential by |§kF+q—§kF_q|EZ|ED|. Therefore, for  ha"form

the current to be stabl&p| <A. This is the Landau criterion
of superfluidity. For the tight-binding dispersion relation, we = ., iqr~q CApe — KT g
rewrite the condition ag sin(ga)sin kca<A. To complete a U(r) = X7 T aq(r); - i) = €X7€ 0y (1),
Bloch oscillation, sifiga) should achieve its maximum value . . (10)
1,ie., AY(r) = X |gl[1 = 2f(EeIu(r)od (1),

k

sinkga < A/J. (6)

EY = (Gerq — Eq-)/2 2\ (Eaq + Eqi) 214 +|AI2

. o . _ =2 2 Txai2
For weak couplingA/J is given by the BCS theory, and in = Ep+ VEL + (A9,
the attractive Hubbard model in the strong-coupling limit the
gap atT=0 is given byA:%U for half filling [17]. Using  where ZEp is the energy difference arid, the average en-
these estimates, the relati®®) reduces for the parameters of ergy. The * holds for the particle and hole branch, respec-
Fig. 1 toVo/Egr>3.2. That is, forV,/Eg>3.2 Bloch oscil- tively, and the particle branch eigenfunctions &ig?,[v7|2
lations of the superfluid could be observed. For=(1+E,/\E4+|A%?)/2. The Hamiltonian transformed un-
Vo/Er<3.2, thesuperfluid may break, and one has to ap-der the Bogoliubov transformation leading to E@) has
ply the normal-state description. For this reason, we ploto be positive definite. This means that one should use the
in Fig. 1 the superfluid oscillation amplitude fof/Eg>4 solutions for which E;q>0, ie.
and the normal-state one fof)/Er<4. o min(VEZ+|A%?)=|A% > |Ep(k")|, wherek’ minimizes Ea.

To relate the Landau criterion to the Cooper pair size, Weremarkably, this condition is closely related to the Lan-
rewrite Eq.(6) in terms of the BCS coherence lengf§  gau criterion|A| > Ep(kg).

=fwe/(mA) and insert J sinkea) =fivg/a which yields |5 the BCS ansatz, a common momentgroan be added

thus restricted to superfluids with BCS coherence Iengtr{cl+chk+q>_ The momentum per pair becomes. Dne can
smaller than_ the Iatltlce periodicity. This is the |ntermed|atef0rma||y calculate this obvious result also by using the plane-
Strong-coupllng regime. - . wave ansatZJk:|Uk|el(k+q)'r, vk:|vk|e|(k+q)-r [20] [Eq (10)

For calculating the superfluid velocity a space-dependen,;,, #=1] and introducing an(unnormalizegl order-

description of the superfluid has to be used. We combine th arameter wave functiodd(r)=e247C, whereC is given by
BCS ansatz with the Bloch ansatz for the lattice potentiaEq (10) to be a constant im Expec,tation values such as
using the Bogoliubov—-de GennéBdG) equations[20]. As mo.mentum (p=—idlar) can. be calculated{p)=(A9(r)|

given by the Landau criterion above, the interesting regime—ia/ar|Aq(r)>/<Aq(r)|Aq(r)>:2q The order-parameter
is the intermediate strong-coupling one. Note that even in the ’

strong-coupling limit, the algebra of the BCS theory can pevave function is defined in the spirit gbut not with a one-

applied to all coupling strength9,21] together with an extra to-one co(rjrespogdence)tme Sinzpurg-Lﬁndau ttr:eolry with |
definition for the chemical potential which in the weak- a space-dependent wave function whose absolute value

coupling limit is given just by the Fermi energy of the non- equals the gap. In case of Fermionic atoms the Ginz_burg—
interacting gas. The BdG equations are Landau approach has been used to describe harmonic con-

finement[22] and vortice§23]. For the periodic potential we
introduce the order-parameter wave function in the form

(H(r) -u A(r) )(u(r)) _ E(u(r)) a A9(r)==, Ad(r), where using Eq(10),

A" =[H() = u]/\o(r) v(r) _ .
AJ(r) = F(K, Q) g€ V" e k" (11)

When the external potential is periodic, one can use the _ “
Bloch ansatz fou andv because, by self-consistency, the and F(k,q)=|g|[1-2f(E*) [ty . We calculate the super-

Hartree and pairing fields are also periodic. We obtain fluid - velocity _1using. <V5>,: NCA(P)IF|AY(r)), where N
=(A9(r)|A%r)) L. Using <r>¢;_qe-a(k-q>.r:—(1/h)(d/dk)§k_q

‘ ‘ and the tight-binding energy dispersion relation the super-
U(r) = €% T (r),  vi(r) = €5 i (r) (8)  fluid velocity becomes
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(0@ =N |F(k.q)|2%acos k. sin ga
k

2

Ja . [1 - 2f(EY)]AY
=—sin(ga N>, | ————=—=—| cosk.a.
B % VER +]A9? "

(12)

This shows that also the superfluid oscillatghe term
sin(ga), g=Ft/%] with the same frequency as the normal-
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~ N[ dk exp(—-1°k?/ 4)coska, wherel is the pair size. As a
rough estimate for the average velocity we thus obtain

F.ta
<va>~873|n< ;L )

This is shown in Fig. 1 for pair sizds=a/3 andl=a/4. It
gives an order-of-magnitude estimate, approaching the re-
sults given by the BCS algebra.

In summary, we have considered Bloch oscillations of fer-

Ja .

(13

state gas, but with a different amplitude. The superfluidmionic atoms in optical lattices for the BCS-BEC crossover
oscillation amplitude for selected parameters is shown irffegime. Oscil!ations in the velocity of the atoms could be
Fig. 1. We have also calculated the thermal quasiparticl@bserved as in the experiments for bos¢agl]. We show

contribution but it turns out to be negligible for half fill-
ing.
In the limit of large V,, the interacting fermions form

that the amplitude of the oscillations decreases when the
crossover is scanned, in general, due to the shrinking of the
bandwidth. However, the change from the normal- to the

composite bosons, and one could describe the center-of-massperfluid-state description leads to a drastic change in the

movement of the composite particle by definidg=J(m
—2m). In order to give a simple estimate for the effect
of the Fermi statistics, we interpref(k,q)>~|F(k)?
in Eq. (12) as reflecting the internal wave function of
the pair in the composite boson limit, cf. Ref8,9]. The
average velocity for the bosons become&,g)

«(J'a/n)sin gas, |F(k)|? coska. If the pairs were ex-

tremely strongly bound, the internal wave function in real

space is a-function, corresponding to a constantikiispace.
This meansvg)=0 since the cosine integration in Ed.2)
would extend to the whol&-space with equal weight, i.e.,

amplitude. This is due to smoothening of the Fermi edge by
pairing. Bloch oscillations could be used for exploring pair-
ing correlations since any localization in spag&ir size
leads to broadening in momentum which suppresses the am-
plitude in the same way as band filling in the noninteracting
gas. Even af > T,, the effect of collisions on Bloch oscilla-
tions can be studied producing information useful for appli-
cations of Bloch oscillations such as production of terahertz
radiation[24,18. Observation of oscillating fermionic atoms
in optical lattices would contribute to the quest for a steadily
driven fermionic Bloch oscillator.

there are no empty states in the Brillouin zone as required for We thank T. Esslinger and M. Kohl for useful discussions,

Bloch oscillations. For on-site pairs, we ufer)[>«exp(
-r2/12) leading to |F(k)|?>><N exp(—12k?/4), therefore the
suppression factor for the Bloch oscillations becongs
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