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A propagating exterior complex scaling method, with iterative coupling, has been adapted for the electron
impact of charged hydrogenic targets. Using this fullyab initio method for solving the Schrödinger equation,
which has no uncontrolled approximations, we present highly accurate total, single-differential, double-
differential, and triple-differential cross-section calculations for the electron-impact ionization of hydrogenic
targets with nuclear chargeZø4 (H, He+, Li2+, Be3+). For a fixed scaled energy, the total and differential cross
sections begin to converge with respect to increasingZ when scaled byZ4 andZ6, respectively, and converge
more rapidly with increasing incident-electron energy. The angular distributions of the differential cross sec-
tions change systematically with increasing nuclear charge for energies above the peak total ionization cross
section, but for some lower-energy kinematics the triple-differential cross section for charged targets is sig-
nificantly different from that of atomic hydrogen.
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The electron-impact ionization of hydrogenic ions is of
fundamental importance to plasma modeling in astrophysics
and nuclear fusion. Due to the small cross sections of these
ions, absolute experimental measurements are difficult, espe-
cially for differential cross sections. Consequently, plasma
modeling is heavily dependent on accurate theoretical calcu-
lations. For large nuclear chargesZ, the total ionization and
scattering cross sections are predicted to scale inversely to
Z4, and the differential cross sections scale inversely toZ6

[1–3]. A question that remains however is what is the behav-
ior of the ionization cross sections for lowZ, where the scal-
ing law approximation does not rigorously apply, and at what
energies andZ does the scaling law become accurate?

To date, many of the published theoretical calculations for
total and differential ionization cross sections for low-Z hy-
drogenic targets have relied upon approximation methods,
including the distorted wave Born approximation[4,5] and
the “BBK” method [6,7]. These methods generally provide
acceptable approximations when electron correlation effects
are less dominant, for example, high-energy collisions or
when interparticle separations are large. State-of-the-art
methods that are known to provide accurate differential cross
sections for the ionization of atomic hydrogen over all ener-
gies and kinematics, such as exterior complex scaling(ECS)
[8], convergent close coupling(CCC) [9], and time-
dependent close coupling(TDCC) [10] are computationally
intensive and require significant supercomputing resources.
We note that their published calculations for the ionization of
hydrogenic targets beyond hydrogen is limited. CCC[11] has
only been extended to He+ total ionization cross sections
(TICS) and TDCC[12,13] has only been applied to He+ and
Li2+ TICS; ECS has yet to be applied to charged targets, and
none of these methods have reported differential ionization
cross sections.

So as to provide accurate total and differential ionization
cross sections for low-Z hydrogenic targets, we have adapted

our time-independent propagating exterior complex scaling
(PECS) method for charged hydrogenic targets. We have re-
cently demonstrated[14] that this method, enhanced by use
of an iterative coupling scheme, improves the efficiency of
our PECS algorithm by one to two orders of magnitude, and
provides highly accurate ionization cross sections for atomic
hydrogen. As there are no uncontrolled approximations in the
method, we expect that the present calculations are of similar
accuracy, and the gain in efficiency of our algorithm has
allowed us to undertake this wide-ranging set of calculations.
We have concentrated on low-Z calculations at low to mod-
erate energies, where approximate theoretical models are ex-
pected to be of limited accuracy, and investigate the con-
formance of the cross sections to theZ4 andZ6 scaling laws.

Using the PECS method with iterative coupling, we have
calculated the scattering wave functions for the electron im-
pact of hydrogenic targets with nuclear chargeZø4. A de-
tailed description of PECS, for two hydrogen model prob-
lems, was presented in Ref.[15]. An overview of this
method, with iterative coupling, was given for atomic hydro-
gen in Ref. [14]. To extend the equations given in these
papers for the general case of a ground-state hydrogenic tar-
get with nuclear chargeZ requires only minor modification
to the Hamiltonian operator and the initial-state hydrogen
wave function. Also, as the incoming incident electron is
moving in an electrostatic field, it must be represented by a
Coulomb wave of chargeZ−1 instead of the plane wave
used previously for neutral targets. Using a partial-wave ex-
pansion of the outgoing scattering wave function[14] the
coupled partial-wave equation for the scattering wave func-
tion becomes(in atomic units)
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f1ssZ; rd is the radial hydrogenic ground-state wave function
smultiplied by rd for central chargeZ, cLsZ−1;k,rd is a
regular Coulomb wave of chargeZ−1 and angular momen-
tum L, normalized such thatc0s0;k,rd=sinskrd, and sL is
the Coulomb wave phase shift.

These equations were solved on a finite grid with variable
grid spacing. We used exterior complex scaling[16], where
each radial coordinate is rotated into the complex plane atR0
causing the outgoing scattering wave function to diminish
exponentially.R0 is made large enough to obtain convergent
cross sections. The coupling of angular states(l1, l2) was
achieved using our iterative coupling method[14], and the
cross sections were extracted using the surface integral
method[8,14] where both asymptotic final-state continuum
waves are represented by Coulomb waves of chargeZ.

The iterative coupling method approximates the solution
of Eq. (1) for each partial wave by ignoring the coupling
between partial waves. The equations are then recalculated
using the previous estimate of the coupled wave functions.
This procedure is performed iteratively until the solutions
converge, requiring of the order of 5–20 iterations for the
calculations presented here. The majority of the computa-
tional effort of the PECS method is used to evaluate the

propagation matrices, which are only calculated during the
first iteration. Therefore, the iterative coupling of the wave
functions requires little more computational effort than solv-
ing the uncoupled equations. A detailed description of this
iterative coupling method is given in Ref.[14].

We present our calculations for the TICS, single-
differential cross section(SDCS), and representative double-
differential cross sections(DDCS), and triple-differential
cross sections(TDCS) for the selected targets at the total
system energies of 0.5, 1.0, 3.0, and 5.0 threshold units(t.u.).
One t.u. represents the ionization threshold energy of the
target and equalsZ2/2 atomic units(a.u.). In t.u., the impact
energy is related to the total system energy byE0=E+1.

Based upon our convergence studies, we estimate that our
TICS calculations have a standard error of the order of 1%.
To achieve this accuracy, partial waves up toL=10 were
included in the 0.5 t.u. calculations, increasing toL=30 for
the 5.0 t.u. calculations. The size of the grids used ranged
from 100 a.u. for H at 0.5 t.u.s20.4 eVd to 15 a.u. for Be3+ at
5.0 t.u.s1306 eVd. The convergence studies undertaken for
each controlled approximation in our calculations, and their
contribution to the estimated standard error of our TICS cal-
culations are: grid sizeR s0.5%d, grid spacings0.25%d, lim-
iting partial wavesL s0.2%d, limiting angular-momentum
statessl1, l2d for eachL s0.2%d, and iterative coupling error

TABLE I. Normalization constantsasEd used in Fig. 2. To re-
cover the original SDCS in atomic units, multiply byasEd /Z6. The
column energies are total system energies and are in t.u.

Normalization constantfasEdg
Z 0.5 t.u. 1.0 t.u. 3.0 t.u. 5.0 t.u.

1 H 8.205 5.611 1.268 0.4488

2 He+ 10.93 6.608 1.397 0.4841

3 Li2+ 12.11 7.141 1.441 0.4938

4 Be3+ 12.84 7.479 1.502 0.5022

FIG. 1. TICS calculations forZø4 targets at total system ener-
gies of 0.5, 1.0, 3.0, and 5.0 t.u. The energies of our PECS calcu-
lations are indicated by vertical dashed lines. Comparison is made
with ECS [8] and thelmax=4 CCC calculations of Ref.[17] for H;
CCC [11], TDCC [13], and experiment[18] for He+. All TICS have
been multiplied byZ4.

FIG. 2. SDCS calculations forZø4 targets at total system en-
ergies of 0.5, 1.0, 3.0, and 5.0 t.u. All curves have been normalized
to 1.0 at equal energy sharingsE1=E2d. The original SDCS can be
calculated by multiplying byasEd /Z6, where the normalizing con-
stantasEd is given in Table I.
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s0.01%d. It should be noted that these errors relate to the
TICS, and we expect that the errors in the differential cross
sections will be larger, though generally not discernible on
the plots presented here. We will give a detailed analysis of
our convergence studies in a later publication.

Our TICS calculations, multiplied byZ4, are presented in
Fig. 1. For hydrogen, our results are within 1% of the inter-
polated ECS and CCC calculations. Our He+ calculations are
within 3% of the interpolated CCC results, but systemati-
cally lower. The measurements for He+ are consistent, within
experimental error, with PECS, CCC, and TDCC. It should
be noted that the TDCC calculations use a distorted wave
perturbation calculation beyondL=6 and the authors claim
an accuracy of the order of 5%, while the accuracy of the
CCC calculations is limited by an estimation of the singlet
SDCS due to oscillations inherent to the method. We should
also emphasize that neither smoothing nor extrapolation pro-
cedures are used in the PECS method. The general agree-
ment of our PECS calculations with the other theoretical
calculations for hydrogen and He+ gives us confidence that
our estimated error is justified.

It is clear from our calculations that byE=5.0 t.u. the
scaled TICS are converging quickly with increasingZ, and
that the rate of convergence decreases with decreasing en-
ergy. This gives support to theZ4 scaling law[2] for TICS,
for largeZ or high E.

Normalized SDCS at the selected energies are shown in
Fig. 2. They reveal a systematic increase in the contribution
to the SDCS at asymmetric energy sharing with increasing
scaled system energy. Like the TICS, the shape of the SDCS
converges quickly with increasingZ at high energies, but
more slowly with decreasing scaled system energy. In Table
I we have included the normalization constants used to scale
the plots in Fig. 2, from which our unscaled SDCS results
can be derived. These constants have been divided byZ6, and
show similar convergence behavior to the TICS. This sup-
ports theZ6 scaling law for differential cross sections of
hydrogenic targets, for largeZ or high E.

Our DDCS results are plotted in Fig. 3 for selected sec-
ondary electron energies and total system energies. The
shape of the DDCS begins to converge with increasingZ,
and this convergence is more rapid with increasing scaled

FIG. 4. Coplanar TDCS calculations forZø4 targets for total system energies of 0.5, 1.0, 3.0, and 5.0 t.u.The curves are as labeled in
Fig. 3.

FIG. 3. DDCS calculations forZø4 targets for total system energies of 0.5, 1.0, 3.0, and 5.0 t.u.
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system energy. Electrons ejected at low energy are more spa-
tially dispersed than high-energy electrons, and the domi-
nance of back scattering of low-energy electrons decreases
with increasingZ and increasing system energy. The high-
energy electrons are ejected in a narrow peak near zero de-
grees, which narrows with increasing energy.

In Fig. 4 our coplanar TDCS results are plotted for se-
lected scaled total system energies and selected secondary
electron energies and directions. The shape of the TDCS
plots also converges with increasingZ, consistent with aZ6

scaling law for differential cross sections, and converge more
rapidly with increasing scaled system energy. AtE
ø1.0 t.u., there is a marked difference in the spatial distri-
bution of the fast outgoing electron, when the slow electron
is forward scattered at 15°; for atomic hydrogen the minima
in the TDCS is in the forward direction, whereas the charged
targets have a maxima in this direction. The slight oscilla-
tions in the TDCS of the back-scattered fast electron forE
ù3 t.u., which are suppressed by 2–5 orders of magnitude
relative to the peak, are expected to diminish as partial waves
L.30 are included. These very high partial waves were not

included in these calculations as they have not converged
sufficiently at the grid size selected.

In conclusion, we have used our PECS method, with it-
erative coupling, to calculate highly accurate total and differ-
ential ionization cross sections for charged hydrogenic tar-
gets with low Z at low to moderate energies. The PECS
method with iterative coupling proved to be highly efficient,
providing an estimated 100-fold reduction in total computa-
tion time compared with the PECS method using direct cou-
pling. Our computations support aZ4 scaling law for TICS
and Z6 scaling of differential cross sections, for largeZ or
high E, over a wide range of kinematics. Our results are also
consistent with the analysis of available experimental results
for hydrogenic targets by Tinschertet al. [19] (as discussed
in Ref. [2]), who suggested that the scaling laws become
valid for E0. sZ/2d23500 eV.
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