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Engineering squeezed states in higlp cavities
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While it has been possible to build fields in higheavities with a high degree of squeezing for some years,
the engineering of arbitrary squeezed states in these cavities has only recently been afldgssedriev. A
68, 061801R) (2003]. The present work examines the question of how to squeeze any given cavity-field state
and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum
superpositionn a a highQ cavity.
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Statistical properties of squeezed states of light have been The SDNS|¢;a;n) is obtained by the action of the dis-
widely investigated and the possibility of applying squeezingplacement operatoD(a)=exf (a"a-aa')], followed by
properties to the understanding of fundamental physical phahe squeeze operatﬁrg):exdg(g*az—ga”)], on the num-
nomena, as well as to solving technological problems, hager state|¢; a;n)y=S£)D(a)|n). It is readily seen that the
been recognizefll]. As far as fundamental phenomena aréspNs contains various special cases such as the number

concerned, the antibunching or sub-Poissonian photon Stati§tate(§=a=0), coherent staté&é=n=0), squeezed number
tic related to squeezed states has revealed unequivocal feﬁate(a:O) displaced number staté=0), and so on. There-

tures of the quantum nature of ligh2]. In addition, fore, the SDNS allows a unified approach incorporating all
squeezed-state entanglements were recently employed fgy

. wal d trati f um tel i ¢ ese states, and their properties. Although the statistical
experimental demonstration ot quantum teleportation of 0pygherties of the SDNS are well knovjh2], the generation
tical coherent statef3]. In technology, an improvement of

. . o . - of SDNS in a cavity has not been reported yet. Recently, we
the signal-to-noise ratio in optical communication has beery, . veq how to achieve an effective guadratic Hamiltonian
proposed by reducing the quantum fluctuations in on

8eading to the parametric frequency conversion process in
quadrature component of the field at the expense of the a g P d y P

Meavity QED[13], opening the way for generation of cavit
plified fluctuations in another componegf. Moreover, the DNé.Q [13], op g y 9 y

possibility of using the quadrature component with reduced 1 56q experimental complications stemming from in-
guantum noise of a squeezed state as a pointer for the meg,

; K sianals has b d for the d oducing a nonlinear crystal inside a cavity, the squeeze op-
surement of weak signals has been suggested for the detegq., is pyilt from the dispersive interaction of the cavity

tion of gravitational waves as well as for sensitive interfero-, J4o \vith a driven three-level atofid3]. As sketched in

metric and spectroscop_ic mt_easureme{ﬁ]s . . Fig. 1, the atomic system is in the ladder configuration,
Although squeezed light is mainly supplied by nonlinear, yere an intermediate atomic levél)) lies between the
optical media as running waves, through backwggjl or round (|g)) and excited(|e)) states. The quantized cavit
g g q y

forward [7] four-wave mixing and parametric down- . . .
conversior{8], the dynamics of the Jaynes-Cummings modelmode of frequencyw couples dispersively both transitions

(JCM) of atom-field interaction leads to standing squeeze&g> Ht|.i> ?nd|e>‘d_’ |Cil>’tWi'Fh cgupli_ng cogn_stantisg:ndl)\e, y e-l
states of the electromagnetic field in cavity quantum electroSPECUVEly, an etuning’=|w _“"’i|( =0.6). \ classica
dynamics(QED) or the motional degree of freedom in ion field Of frequencyw,=2w+A drives the atomic transition
traps[9]. Whereas cavity-field squeezing in the JCM is ratherl < |€ dispersively, with coupling constasil. The transi-
modest, about 20% for low average photon number, squeelOn |9) <€) may be induced by applying a sufficiently
ing of up to 75% can be obtained with selective atomic meaStrong electric field. While the quantum field promotes a
surementg10]. However, such squeezed statesd those two-photon interchange process, the classical driving field
obtained in the schemes employing atom-field interaction§onstitutes the source of the parametric ampllflcat_lon.

[11]) have not resulted from the unitary evoluti&(é)|¥); in The_Hamlltoman_ of Ok;” r_nadel\,/unﬂer the rotating wave
other words, the experimenter is not able to squeeze an@pproxmaﬂon, Is given byi=Ho+V, where

desired statgV¥) previously prepared in the cavity(¢) Ho = hwa'a - ho|g)g| + A dliXi| +holeXe, (18
stands for the squeeze operator ahdor a set of group

parameterf In the present proposal we consider exactly the ) ) ot
question of how to squeeze any given cavity-field stitp V= i(Agali){(g| + H.c) +i(Aeale)i| + H.c) + i(Qe)(gle™

and, in particular, how to generatp a squeezed displaced +H.c), (1b)
number stat SDNS and (ii) a squeezed Schrodinger-cat-
like state(SSCS in a highQ cavity. with a'(a) standing for the creatiogannihilation operator of
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AI Ala,t)=(a,€|¥(t)) represents the set of expansion coeffi-
|€> cients for|®,(t)) in the basis of coherent statfa)}. Using
the orthogonality of the atomic states and E@.and (3),
we obtain the uncoupled time-depend€fD) Schrodinger
equation for the atomic subspagk(in the Schrodinger pic-
ture):

2/6
\ i)

/\ 31,0 = 4, 0), @
lg

H, = hwa'a+h(ceal + £ evta?) (5)

w
/ | g> Wherem:w+X[X:2(|)_\g|2+|)\e|2)/5] stands for the effective
frequency of the cavity mode, whilg=20QX ./ 5°=|ée™
andv=2w+A are the effective amplitude and frequency of
the parametric amplification field. For substanflg),|e)}
there is a TD Schrédinger equation which couples the fun-
damental and excited atomic states. Therefore, when we ini-
FIG. 1 tially prepare the atom in the intermediate leli¢) the dy-
, namics of the atom-field dispersive interactions, governed by
FIG. 1. Energy-level diagram of the three-level atom for the o effective Hamiltoniar(5), results in a cavity mode with
parametric amplification scheme. shifted frequency submitted to a parametric amplification
process.
the quantized cavity mode. Writing in the interaction pic- For the present purpose we consider the resonant regime,
ture [through the unitary transformatiddo=exp(—iHot/%)]  where the classical driving field has the same frequenas
and then applying the transformatiod=exg-ist(|g){g|  the effective cavity mode, so that=2w (i.e., A=2y). (A
+|eXe)], we obtain the Hamiltoniaﬂ-{:UEr,UTHUUO—Ho treatment of the off-resonant interaction between the effec-
-78(|g)(g|+|e)e]). If the dispersive transitions are suffi- tive cavity mode and the driving field was investigated in
ciently detuned, i.e.ﬁ>|)\g ,\d,|Q|, we obtain the adia- Ref. [_13].) The ev_olution of the cavity-field state, in the in-
batic solutions for the transition operatosg, and oic(oy teraction picture, is governed by a squeeze operator such as
=kI[,k,1=g,i,e) by settingday/dt=do/dt=0; solving [ Pi()=S(& [Pi(to), where
the resulting system, and inserting these adiabatic solutions
for aiq and oy into H (for more details, sefl3]), the Hamil- X
tonian becomes Sé ) =exd-i(£a?+ £adt]. (6)

. h
—_ _ —iAt _ = T
H==hdlogg+ oed + (1€ M aeg+ H.C) 5{(2‘3 at+l) The degree of squeezing in the resonant regime is deter-

mined by the factor(t)=2|&|t, while the squeeze angle is
% |>\g|2<ng— (|)\g|2+ N2y + Mol 20ee given by o=7/2-0. For a specific ca\_/|ty mogie and atomic

system, the parameteit) can be adjusted in accordance
with the coupling strengtl) and the interaction time

N+ N fi ) the ¢ :
+ (e Moegt He) | (- 5 2(\ghe@*0gg With this squeeze operator, in hand, we are able to show

26 how to engineer the two specific squeezed states already
1 . AL mentioned:(i) the SDNS|§:a:n>ES(§)D(a)|n> and(ii) the
+H.c)+ :5(7\91?\eQ e¥a”+ H.c)(ogg+ 0ee= 205) | - SSCSS(&)[M|a)+€?-a))] (N being the normalization fac-
tor).
(2 Starting with the SDNS, the first step is to prepare the

cavity field in the Fock statén), which can in principle be
done by any of the proposals in Rgfl4]. However, we
observe that multiple-of-2 number statefi=2m)(m
[W(1)) = |g)|dg(t)) +[i)|Di(1) + )| De(t)), (3 =1,2,..) can be generated as a by-product of the present
scheme with the driving field switched off. In fact, consider-
where [®,(t))= [ (d?a/ m) A/(a.t)|a) for €=g,i,e the com- ing Q=0 and disregarding stat®, the Hamiltonian(2) be-
plex quantity @ standing for the eigenvalues &f, and comes

The state vector associated with the Hamiltonj2ncan be
written using
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h
+ Zg(xg)\eazoef H.c). (7)
This Hamiltonian allows the transitiom, €) < [n+2,g). As-
suming that the atom is prepared in the siaje we obtain
the following evolution:

_’;lt/h ) e—itrr‘- e—it 7
—i - Y +
€ |n,e> | | |Y|2+(77+—A)2 |Y|2+(7]_—A)2 |n,6>
* (7]+_A)ze_it7,+ + (n—_A)Ze_it”_
Y2+ (7 = M) Y[+ (- = A)?
X|n+2,0), ®)
where
1 =0 A =24 A2
7= A+ Ex(A-E)+4Y?), (9a)
2 2
A:5+%+—2|):;| n, (9b)
A2 2Ng?
E:5+L§—+J§Lm+zx (9¢)
2Nhe ——————
Y:_g_fﬁyy(n+2)(n+1). (9d)

If the initial cavity state isn), the probability of detecting
the atomic levelg) is given byPy,(t)=[[(gle”""|n,e)| In
order to prepare the stata+2), the atom-field interaction
time must be adjusted to maximize,,, that is, t=m(7,
-7.)7%, and the success probability is given by

_ (7, — A)? )2< (p-—A)? )2
Pg'“"Y'2{<|Y|2+<m—A>2 NP (-2

(7= A2, - AY? }

CIYP+ (= AIY P+ (3, - A
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TABLE I. Interaction time(t,) and the probability(pg,) of de-
tecting the statég) to engineer the number stae=2m) whenm
atoms are passed through the cavity. The total probability of success
in building the statén=2m) is P=II;1,Py\.

m n t(107°9) Pgm
1 2 0.9254 0.6
2 4 0.4446 0.8
3 6 0.2879 0.9

time and the probability of successfully building the states
|2),|4), and|6) by passing one, two, and three atoms, respec-
tively, through the cavity.

After, preparing the initial number state, the displacement
operator is implemented by connecting a microwave source
to the cavity[15]. The prepared cavity fielth) is displaced
when the microwave source is turning on, the amount of
displacement being adjusted by varying the time interval of
injection of the classical microwave field. Finally, a driven
three-level atongin this step() # 0) prepared in the interme-
diate stateli) is sent through the cavity to accomplish the
squeezing operation. Particular cases of the SDNS, such as
the squeezed vacuut¥;0;0)=S(£)|0) or the squeezed co-
herent stat¢SCS |&; ; 0y = S(£)|a) are easily engineered by
sending just one driven three-level atom through a cavity
initially prepared in the vacuum or the coherent state, respec-
tively. The degree of squeezing will be discussed further.

As a second application, we consider the squeezed
Schrodinger-cat-like state. The Schrodinger-cat-like $téje
is easily generated by sending a two-level atom across a
cavity (initially in a prepared coherent std{g)) sandwiched
by two Ramsey zones, as reported 16]. Properly adjusting
the atom-field interaction in the Ramsey zones and in the
cavity, it is possible to obtain the staft&6]

[W*) = Na(Cgla) £ cel= a)), (10

where a=ig, N, is the normalization factor, and the(—
sign occurs if the atom is detected in stégg(|e)). Finally,
following the scheme proposed here, the SSCS is achieved
by sending a driven three-level atom through the cavity.

Let us discuss briefly the degree of squeezing achievable
with the present proposal, focusing our attention on the SCS
and on the squeezed number state. For an initial coherent
state prepared in the cavity, the variance of the squeezed

Therefore, starting with an empty cavity and passing aguadrature is given bAX=e"#/4 [17]. Assuming typical
stream ofm three-level atoms through it with an adequately parameter valuegited above and the coupling strengtf

adjusted interaction time for each atotg=(7,—7.)*
(where the subscripk indicates thekth atom), we have a

~7X10° s, we obtain/¢ ~ 6.8 10° s™%. For an atom-field
interaction time about~ 10™* s (which is one order of mag-

probabilistic technique for building multiple-of-2 number nitude smaller than the usual decay time of the open cavities
statesjn=2m). Each atom is supposed to be detected in thaised in experiment§l9]) we get the squeezing factoft)

state|g) before the subsequent atom enters the cavity.

~1.36, resulting in a variance in the squeezed quadrature of

To illustrate this technique, we will consider typical pa- AX~1.6x 1072 for the SCS. This represents a high degree
rameter values which follow from Rydberg states where theof squeezing, around 93 % with the passage of just one

intermediate staté) [an (n—1)P3, level] is nearly halfway
between|g) [an (n-1)S,/, level ] and |e) (an nS, level),

namely,[\g| ~ [\g| ~7X 10° s7* [18], and we will assume the
detuning| | ~1x 10" s1. We show in Table | the interaction

driven three-level atom. For the squeezed number state—
considering the above parameters and an initial number state
n=2, which can be generated with the passage of just one
atom through the cavity, as described above—we obtain a
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variance in the squeezed quadratu¥~8x 1072, repre- intermediate step is needed to prepare the number state, as
senting a degree of squeezing around 67 %. described previously, which clearly makes the SDNS less
We note that for weakly damped systems, such as fieldattractive for experimental implementation. The SSCS is ac-
trapped in realistic higl cavities, the lifetime of the complished be sending two atoms through the cavity, the first
squeezing is of the order of the relaxation time of the cavity(a two-level atom interacting dispersively with the cavity
a result which is valid even at absolute z§2@]. Therefore, mode to prepare the Schrodinger-cat state, as in [REd]
the dissipative mechanism of the cavity plays a much mildegng the secondas shown aboveto execute the squeezing
role in the lifetime of the squeezing than in decoherenceneration. Finally, we would like to underline that up to
phenomena[21]. Regarding atomic decay, note that for g3 o4 degree of squeezing of a field state, initially prepared in
Rydberg levels the damping effects can be safely neglectege conerent state, may be achieved by passing a single
on typic_al interaction time scales. A straightforward es_timatthee_|eve| atom through the cavity. This high degree of
of the fidelity of the prepared states under the damping efsqyeezing is crucial to the building of truly mesoscopic su-
fects can be made through the phenomenological operat@jarpositions with a large average photon number and also a
technique, as described [22]. large “distance” in phase space between the centers of the

In conclusion, we have shown how to engineer someyyasiprobability distribution of the individual states compos-
squeezed states of the radiation field in cavity QED, based Ofhg the prepared superpositi¢23)].

the interaction of the field with a driven three-level atom.
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squeezed coherent state, are easily engineered by sendiumder Contracts No. 99/11617-0, No. 00/15084-5, and No.
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