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While it has been possible to build fields in high-Q cavities with a high degree of squeezing for some years,
the engineering of arbitrary squeezed states in these cavities has only recently been addressed[Phys. Rev. A
68, 061801(R) (2003)]. The present work examines the question of how to squeeze any given cavity-field state
and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum
superposition in a a high-Q cavity.
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Statistical properties of squeezed states of light have been
widely investigated and the possibility of applying squeezing
properties to the understanding of fundamental physical phe-
nomena, as well as to solving technological problems, has
been recognized[1]. As far as fundamental phenomena are
concerned, the antibunching or sub-Poissonian photon statis-
tic related to squeezed states has revealed unequivocal fea-
tures of the quantum nature of light[2]. In addition,
squeezed-state entanglements were recently employed for
experimental demonstration of quantum teleportation of op-
tical coherent states[3]. In technology, an improvement of
the signal-to-noise ratio in optical communication has been
proposed by reducing the quantum fluctuations in one
quadrature component of the field at the expense of the am-
plified fluctuations in another component[4]. Moreover, the
possibility of using the quadrature component with reduced
quantum noise of a squeezed state as a pointer for the mea-
surement of weak signals has been suggested for the detec-
tion of gravitational waves as well as for sensitive interfero-
metric and spectroscopic measurements[5].

Although squeezed light is mainly supplied by nonlinear
optical media as running waves, through backward[6] or
forward [7] four-wave mixing and parametric down-
conversion[8], the dynamics of the Jaynes-Cummings model
(JCM) of atom-field interaction leads to standing squeezed
states of the electromagnetic field in cavity quantum electro-
dynamics(QED) or the motional degree of freedom in ion
traps[9]. Whereas cavity-field squeezing in the JCM is rather
modest, about 20% for low average photon number, squeez-
ing of up to 75% can be obtained with selective atomic mea-
surements[10]. However, such squeezed states(and those
obtained in the schemes employing atom-field interactions
[11]) have not resulted from the unitary evolutionSsjduCl; in
other words, the experimenter is not able to squeeze any
desired stateuCl previously prepared in the cavity[Ssjd
stands for the squeeze operator andj for a set of group
parameters]. In the present proposal we consider exactly the
question of how to squeeze any given cavity-field stateuCl
and, in particular, how to generate(i) a squeezed displaced
number state(SDNS) and (ii ) a squeezed Schrödinger-cat-
like state(SSCS) in a high-Q cavity.

The SDNSuj ;a ;nl is obtained by the action of the dis-
placement operatorDsad=expf 1

2sa*a−aa†dg, followed by
the squeeze operatorSsjd=expf 1

2sj*a2−ja†2dg, on the num-
ber stateuj ;a ;nl;SsjdDsadunl. It is readily seen that the
SDNS contains various special cases such as the number
state sj=a=0d, coherent statesj=n=0d, squeezed number
statesa=0d, displaced number statesj=0d, and so on. There-
fore, the SDNS allows a unified approach incorporating all
these states, and their properties. Although the statistical
properties of the SDNS are well known[12], the generation
of SDNS in a cavity has not been reported yet. Recently, we
showed how to achieve an effective quadratic Hamiltonian
leading to the parametric frequency conversion process in
cavity QED [13], opening the way for generation of cavity
SDNS.

To avoid experimental complications stemming from in-
troducing a nonlinear crystal inside a cavity, the squeeze op-
erator is built from the dispersive interaction of the cavity
mode with a driven three-level atom[13]. As sketched in
Fig. 1, the atomic system is in the ladder configuration,
where an intermediate atomic levelsuild lies between the
ground sugld and excitedsueld states. The quantized cavity
mode of frequencyv couples dispersively both transitions
ugl↔ uil and uel↔ uil, with coupling constantslg andle, re-
spectively, and detuningd= uv−v,ius,=g,ed. A classical
field of frequencyv0=2v+D drives the atomic transition
ugl↔ uel dispersively, with coupling constantV. The transi-
tion ugl↔ uel may be induced by applying a sufficiently
strong electric field. While the quantum field promotes a
two-photon interchange process, the classical driving field
constitutes the source of the parametric amplification.

The Hamiltonian of our model, under the rotating wave
approximation, is given byH=H0+V, where

H0 = "va†a − "vuglkgu + "duilki u + "vuelkeu, s1ad

V = "slgauilkgu + H.c.d + "sleauelki u + H.c.d + "sVuelkgue−iv0t

+ H.c.d, s1bd

with a†sad standing for the creation(annihilation) operator of
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the quantized cavity mode. WritingH in the interaction pic-
ture [through the unitary transformationU0=exps−iH0t /"d]
and then applying the transformationU=expf−idtsuglkgu
+ uelkeudg, we obtain the HamiltonianH=U0

†U†HUU0−H0

−"dsuglkgu+ uelkeud. If the dispersive transitions are suffi-
ciently detuned, i.e.,d@ ulgu , uleu , uVu, we obtain the adia-
batic solutions for the transition operatorssig and siesskl

;uklkl u ,k, l =g, i ,ed by settingdsig /dt=dsei/dt=0; solving
the resulting system, and inserting these adiabatic solutions
for sig andsei into H (for more details, see[13]), the Hamil-
tonian becomes

H < − "dssgg + seed + "sVe−iDtseg+ H.c.d −
"

d
Hs2a†a + 1d

3 Fulgu2sgg − sulgu2 + uleu2dsii + uleu2see

+
ulgu2 + uleu2

2d
sVe−iDtseg+ H.c.dGJ−

"

d
H2slglea

2seg

+ H.c.d +
1

d
slgleV

*eiDta2 + H.c.dssgg + see− 2siidJ .

s2d

The state vector associated with the Hamiltonians2d can be
written using

uCstdl = ugluFgstdl + uiluFistdl + ueluFestdl, s3d

where uF,stdl=esd2a /pdA,sa .tdual for ,=g, i ,e, the com-
plex quantity a standing for the eigenvalues ofa, and

A,sa ,td=ka ,, uCstdl represents the set of expansion coeffi-
cients foruF,stdl in the basis of coherent stateshualj. Using
the orthogonality of the atomic states and Eqs.s2d and s3d,
we obtain the uncoupled time-dependentsTDd Schrödinger
equation for the atomic subspaceuil sin the Schrödinger pic-
tured:

i"
d

dt
uFistdl = HiuFistdl, s4d

Hi = "Ãa†a + "sje−ivta†2
+ j*eivta2d s5d

whereÃ=v+xfx=2sulgu2+ uleu2d /dg stands for the effective
frequency of the cavity mode, whilej=2Vlg

*le
* /d2= ujue−Q

and v=2v+D are the effective amplitude and frequency of
the parametric amplification field. For substancehugl , uelj
there is a TD Schrödinger equation which couples the fun-
damental and excited atomic states. Therefore, when we ini-
tially prepare the atom in the intermediate leveluil, the dy-
namics of the atom-field dispersive interactions, governed by
the effective Hamiltonians5d, results in a cavity mode with
shifted frequency submitted to a parametric amplification
process.

For the present purpose we consider the resonant regime,
where the classical driving field has the same frequencyÃ as
the effective cavity mode, so thatv=2Ã (i.e., D=2x). (A
treatment of the off-resonant interaction between the effec-
tive cavity mode and the driving field was investigated in
Ref. [13].) The evolution of the cavity-field state, in the in-
teraction picture, is governed by a squeeze operator such as
uFistdl=Ssj ,tduFist0dl, where

Ssj,td = expf− isja†2 + j*a2dtg. s6d

The degree of squeezing in the resonant regime is deter-
mined by the factorrstd=2ujut, while the squeeze angle is
given byw=p /2−Q. For a specific cavity mode and atomic
system, the parameterrstd can be adjusted in accordance
with the coupling strengthV and the interaction timet.

With this squeeze operator, in hand, we are able to show
how to engineer the two specific squeezed states already
mentioned:(i) the SDNSuj :a :nl;SsjdDsadunl and (ii ) the
SSCSSsjdfNsual+eifu−aldg (N being the normalization fac-
tor).

Starting with the SDNS, the first step is to prepare the
cavity field in the Fock stateunl, which can in principle be
done by any of the proposals in Ref.[14]. However, we
observe that multiple-of-2 number statesun=2mlsm
=1,2, . . .d can be generated as a by-product of the present
scheme with the driving field switched off. In fact, consider-
ing V=0 and disregarding stateuil, the Hamiltonian(2) be-
comes

FIG. 1. Energy-level diagram of the three-level atom for the
parametric amplification scheme.
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H̃ = − "FSd +
ulgu2

d
D +

2ulgu2

d
a†aGsgg

− "FSd +
uleu2

d
D +

2uleu2

d
a†aGsee

+ 2
"

d
slglea

2seg+ H.c.d. s7d

This Hamiltonian allows the transitionun,el↔ un+2,gl. As-
suming that the atom is prepared in the stateuel, we obtain
the following evolution:

e−iH̃t/"un,el = uYu2F e−ith+

uYu2 + sh+ − Ld2 +
e−ith−

uYu2 + sh− − Ld2Gun,el

+ Y*F sh+ − Ld2e−ith+

uYu2 + sh+ − Ld2 +
sh− − Ld2e−ith−

uYu2 + sh− − Ld2G
3un + 2,gl, s8d

where

h± =
1

2
sL + J ± ÎsL − Jd2 + 4Y2d, s9ad

L = d +
uleu2

d
+

2uleu2

d
n, s9bd

J = d +
ulgu2

d
+

2ulgu2

d
sn + 2d, s9cd

Y =
2lgle

d
Îsn + 2dsn + 1d. s9dd

If the initial cavity state isunl, the probability of detecting

the atomic levelugl is given byPg,nstd=ikgue−iH̃t/"un,eli2. In
order to prepare the stateun+2l, the atom-field interaction
time must be adjusted to maximizePg,n, that is, t=psh+

−h−d−1, and the success probability is given by

Pg,n = uYu2HS sh+ − Ld2

uYu2 + sh+ − Ld2D2

+ S sh− − Ld2

uYu2 + sh− − Ld2D2

−
sh− − Ld2sh+ − Ld2

fuYu2 + sh− − Ld2gfuYu2 + sh+ − Ld2gJ .

Therefore, starting with an empty cavity and passing a
stream ofm three-level atoms through it with an adequately
adjusted interaction time for each atomtk=psh+−h−d−1

(where the subscriptk indicates thekth atom), we have a
probabilistic technique for building multiple-of-2 number
statesun=2ml. Each atom is supposed to be detected in the
stateugl before the subsequent atom enters the cavity.

To illustrate this technique, we will consider typical pa-
rameter values which follow from Rydberg states where the
intermediate stateuil [an sn−1dP3/2 level] is nearly halfway
betweenugl [an sn−1dS1/2 level ] and uel (an nS1/2 level),
namely,ulgu,uleu,73105 s−1 [18], and we will assume the
detuningudu,13107 s−1. We show in Table I the interaction

time and the probability of successfully building the states
u2l , u4l, andu6l by passing one, two, and three atoms, respec-
tively, through the cavity.

After, preparing the initial number state, the displacement
operator is implemented by connecting a microwave source
to the cavity[15]. The prepared cavity fieldunl is displaced
when the microwave source is turning on, the amount of
displacement being adjusted by varying the time interval of
injection of the classical microwave field. Finally, a driven
three-level atom(in this stepVÞ0) prepared in the interme-
diate stateuil is sent through the cavity to accomplish the
squeezing operation. Particular cases of the SDNS, such as
the squeezed vacuumuj ;0 ;0l;Ssjdu0l or the squeezed co-
herent state(SCS) uj ;a ;0l;Ssjdual are easily engineered by
sending just one driven three-level atom through a cavity
initially prepared in the vacuum or the coherent state, respec-
tively. The degree of squeezing will be discussed further.

As a second application, we consider the squeezed
Schrödinger-cat-like state. The Schrödinger-cat-like stateuCl
is easily generated by sending a two-level atom across a
cavity (initially in a prepared coherent stateubl) sandwiched
by two Ramsey zones, as reported in[16]. Properly adjusting
the atom-field interaction in the Ramsey zones and in the
cavity, it is possible to obtain the state[16]

uC±l = N±scgual ± ceu− ald, s10d

where a= ib ,N± is the normalization factor, and the +s−d
sign occurs if the atom is detected in stateuglsueld. Finally,
following the scheme proposed here, the SSCS is achieved
by sending a driven three-level atom through the cavity.

Let us discuss briefly the degree of squeezing achievable
with the present proposal, focusing our attention on the SCS
and on the squeezed number state. For an initial coherent
state prepared in the cavity, the variance of the squeezed
quadrature is given byDX=e−2r /4 [17]. Assuming typical
parameter values(cited above) and the coupling strengthV
,73105 s−1, we obtainuju,6.83103 s−1. For an atom-field
interaction time aboutt,10−4 s (which is one order of mag-
nitude smaller than the usual decay time of the open cavities
used in experiments[19]) we get the squeezing factorrstd
,1.36, resulting in a variance in the squeezed quadrature of
DX,1.6310−2 for the SCS. This represents a high degree
of squeezing, around 93 % with the passage of just one
driven three-level atom. For the squeezed number state—
considering the above parameters and an initial number state
n=2, which can be generated with the passage of just one
atom through the cavity, as described above—we obtain a

TABLE I. Interaction timestkd and the probabilityspg,kd of de-
tecting the stateugl to engineer the number stateun=2ml when m
atoms are passed through the cavity. The total probability of success
in building the stateun=2ml is P=pk=1

m Pg,k.

m n tks10−5 sd Pg,m

1 2 0.9254 0.6

2 4 0.4446 0.8

3 6 0.2879 0.9

BRIEF REPORTS PHYSICAL REVIEW A69, 035802(2004)

035802-3



variance in the squeezed quadratureDX,8310−2, repre-
senting a degree of squeezing around 67 %.

We note that for weakly damped systems, such as fields
trapped in realistic high-Q cavities, the lifetime of the
squeezing is of the order of the relaxation time of the cavity,
a result which is valid even at absolute zero[20]. Therefore,
the dissipative mechanism of the cavity plays a much milder
role in the lifetime of the squeezing than in decoherence
phenomena[21]. Regarding atomic decay, note that for
Rydberg levels the damping effects can be safely neglected
on typical interaction time scales. A straightforward estimate
of the fidelity of the prepared states under the damping ef-
fects can be made through the phenomenological operator
technique, as described in[22].

In conclusion, we have shown how to engineer some
squeezed states of the radiation field in cavity QED, based on
the interaction of the field with a driven three-level atom.
Particular states, such as the squeezed vacuum and the
squeezed coherent state, are easily engineered by sending
just on atom through the cavity, making our proposal attrac-
tive for experimental implementation. To build the SDNS, an

intermediate step is needed to prepare the number state, as
described previously, which clearly makes the SDNS less
attractive for experimental implementation. The SSCS is ac-
complished be sending two atoms through the cavity, the first
(a two-level atom interacting dispersively with the cavity
mode) to prepare the Schrödinger-cat state, as in Ref.[16]
and the second(as shown above) to execute the squeezing
operation. Finally, we would like to underline that up to
93 % degree of squeezing of a field state, initially prepared in
the coherent state, may be achieved by passing a single
three-level atom through the cavity. This high degree of
squeezing is crucial to the building of truly mesoscopic su-
perpositions with a large average photon number and also a
large “distance” in phase space between the centers of the
quasiprobability distribution of the individual states compos-
ing the prepared superposition[23].
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