PHYSICAL REVIEW A 69, 034304(2004)

Entanglement dynamics and quantum-state transport in spin chains
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We study the dynamics of a Heisenb&fy spin chain with an unknown state coded into one qubit or a pair
of entangled qubits, with the rest of the spins being in a polarized state. The time evolution involves magnon
excitations, and through them the entanglement is transported across the channel. For a large number of qubits,
explicit formulas for the concurrences, measures for two-qubit entanglements, and the fidelity for recovering
the state some distance away are calculated as functions of time. Initial states with an entangled pair of qubits
show better fidelity, which takes its first maximum value at earlier times, compared to initial states with no
entangled pair. In particular initial states with a pair of qubits in an unknown athte+ 8] | are best suited
for quantum-state transport.
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Quantum entanglement has been recognized as an impds2 states two-magnon excitations are involved, which intro-
tant resource for quantum information and computafitin ~ duce many complications. Here, not only two-magnon scat-
for transmission of quantum states through a chafigel tering stategequivalent to two one-magnon excitatiprisat
There have been many proposals of physical systems teave a weak signature of the interactions, but two-magnon
serve as channels for quantum communicafidjy and in  pound states with a strong interaction effegdtshave a sig-
particular the spin chaingl]. The essential idea is to encode nificant contribution for entanglement dynamics.
one particular qubitspin-1/2 degree of freedomand let it Let us consider an anisotropic HeisenbXgmodel for a
be transported across the chain to recover the code fromhear chain of spings=1/2), with a Hamiltonian
another qubit some distance away. The quantum spin chains
are well suited for state transport, as one could use the K
Schrédinger dynamics to propagate entanglement, and thus  H=K, >, 4, - — >, S's.,+H.c. -BY, &-E, (1)
achieve the desired quantum communication. 2

The dynamics of entanglement of spin systems, viz., the
study of time evolution of an initial state, can be classifiedwhere K,,K are the interaction strengths for tzecompo-
into three categories: The dynamics of &rdefinite state or nents and thexy components, respectively, ari is the
an & nondefinite state unde® conserving time evolution strength of the magnetic field along thelirection. The con-
(for example, the HeisenbedY mode), and the time evo- StantE,=—-NK,/4-NB/2 is the energy of the ferromagnetic
lution of an initial state under af nonconserving dynamics State, with all the spins polarized along thelirection. The
(for example, the transverse Ising modélhe structure of above Hamiltonian generates unitary evolution from the
entanglement sharing and the time scales for entanglemefchrddinger equation which conserves the tdalin the
transport are very different between these categories. In thigfate. The energy eigenstates and eigenvalues are known ex-
paper, we will study the HeisenbekjY model, wheres? is  actly through the Bethe ansaft?]. The ferromagnetic state
conserved through the time evolution. The main features ofF)=|1--1) has no dynamics, being an eigenstate with zero
the dynamics of entanglement that will be addressed are treigenvalue, and has no entanglement between any pair of
appearance of pairwise entanglements between distant spirgins. Let us first consider an unentangled state with one
viz., concurrences, starting from an initial state with no en-spin, at the sité, in an unknown state, at tinte=0 given by
tangled pairs or exactly one entangled pair of spins, and the
time scales'fc_)r_ the transport of entanglement. The maximally [0y =T DlaT +BL) = (a+ Bs)|F). (2)
entangled initial states |+ |71 (the Bell stateBl) and

112 ]| (the Bell stateB2) evolve quite differently{S]. The  This state has no entanglement, being a direct product state

dynamics of entanglement in these states involve oneas yitferent site states. Let us dendte=s;|F), a state with
magnon and two-magnon excitations. The entanglemenine jown spin at site. At a later timet, the state can be
sharing in one-magnon and two-magnon eigenstates of thgiiten as

Heisenberg<Y model has been studid@,7]. The time evo-
lution of B1 states involves the one-magnon excitations,
which are not affected by?-? interactions, whereas for the (D) = alF) + B 2 (D)), 3)

where ¢,=(1/N)Z4expi[q(n-1)-Egt/2], and the one-
*Permanent address: Department of Physics, Indian Institute dhagnon energyE,=-K cosg+B. In the limit of large
Technology, Kanpur 208016, India. Email address:number of spinsN—o, the wave function can be ex-
vmani@iitk.ac.in pressed in terms of the Bessel functigp, as
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FIG. 1. The average fidelitl, as a function off, for r=100, for FIG. 2. The concurrenc€; as a function ofT, using |87

the three types of states discussed. For the entangled siates, =1/2. It can beseen how concurrence builds up between the initial
—-m=25 has been used. The first maximum for the unentangled is aitesl, |+1, andl+r for the unentangled initial state, and how the
T=r=100, and for théB1 andB2 states, al =r-s. concurrence decreases between the initial $itssdm for B1 and

B2 Bell states.

$nlt) = € BN (Kulh). @)

ing order. Then the concurrence between the two sit¢8]is
The time scale for the structure in the wave functionris ~ C; =max(\"*~\3/?-\}>-\}?,0). Here, the two-site density
=#/K, and from now on we will write the time as a multiple matrix has the form
of , asT=t/7. We can estimate the time scale, usikg
~0.01 eV, ast~10 ¥ sec. The mgnetic field adds on a 11862+ ]2
constant phase to the wave function, and thus can be ' J 9,12 2, .k
dropped. At timet the mixed state of a given sifecan be Bl |¢j| 18] by
denoted by the reduced density matpiptr; [, \BPPo & 1814 M
where the prime indicates a partial trace over all states 0
except at sitei. It is straightforward to write down the
reduced density matrix as

pi =[1=1B2& PN 1 )X+ IBAGMPF LY. (5)

Pij =

Now the concurrence is given by [6] Cj
=2|B[*3-(T)J;=(T)|. A plot of concurrences v3 is shown
in Fig. 2 fori=I+1,j=I andi=I1+2,j=I. For smallT, the

Now the initial unknown state encoded in tile qubit can be ~ concurrences grow a§;; ~ :(2|,{3|2/f!)(T/2)r- For largeT,
extracted from théth qubit with a fidelity F;=Trp,p; where ~ we haveC;; = 2|8[?/ 7T with oscillations.
pu=laT+B|Xal+pBl|, which works out to bewith i=I Now we will turn to initial states with entangled pairs of

+r, a distancer away from the initial sitg F,(T)=|af? spins. Entangled states are expected to be better than the

+|B|2(|ﬁ|2_|a|2)Jr2(T) By averaging over all possible ini- Unentangled states considered above. The dynamics will

tial states, i.e., the Bloch sphere, the average fidelity is ransport and further generate entanglement, as we shall see
below. Let us first consider an initial state with a pair of

Fr(T):%+%Jr2_ (6)  Qubits at sitesl and m in an entangled statéBl statg

a|T1)+B]L1), all other spins polarized, which is represented

A similar formula has been derived in R¢#l], except that as

our calculation is simplified due to the limit of largé& Now,

we are interested in propagating the initial code to a distance — O — (e - _

r, and recover it. The fidelityF, has a maximum value for [2(T=0))= (a5 + B)IF) = 2 (0. ™

T=r, which means the quantum state is transported at arate _ _
v,=1/7. After waiting for a timet=v,r we have the best ~Or T=0 all concurrences are zero exc€py=1. ForT+0,

recovery of the quantum state at site, a distanaeay from this _entanglement spreads, and is _transported to other pqirs.

the initial sitel. In Fig. 1, the fidelity has been plotted as a Ag@n using the one-magnon excited states, we can write

function of time forr=100; thefirst maximum is forT, ~ down the wave function as a function of

~r, along with the result for entangled initial states we A ,

shall discuss below. Bo(T) = B ™D (T) + a ™My _(T).  (8)
Though the initial state has no pairwise entanglement, for

T+0, the state develops entanglement. We use the concu®ince the above state is a one-magnon dta@ugh it may

rence measur8] for the pairwise entanglement, which can not be an eigenstatehe concurrence is given bj6] C;

be calculated from the two-site reduced density majjx =2|¢; ¢;|. In particular, the concurrence between the sites

(which is obtained by tracing over all spins except those aand m for later times, for the maximally entangled initial

sitesi andj). The time-reversed density matrix is denoted bystate(a=8=1/y2), for I-m even or odd, respectively, is

pij» and the eigenvalues pfip; by \q, ... A4 in the descend- given as
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Cm=o*+ (- )"™23 )% or (F+Fy). (9 054
In Fig. 2, C,,, has been plotted as a function ©ffor |-m
=1, which drops from the initial value of unity as?2. 0.52
Now, the fidelity of recovering a quantum state
laT+B|) at a sitei can be calculated straightforwardly, Gr

analogous to the unentangled state we calculated before, as

(for i=m+r, a distanca away from the sitem) F,(T)=|a/|? 0

+(18/%—|a|®| ¢ +m(T)|%. For |a|=|g|, the fidelity is close to

1/4, as before for the unentangled case, which means the T S T T

channel is noisy for a good recovery. In this case the un- ’ 50 70 90 110

known state can be recovered from two sites, as we shall T

discuss below. The average fidelity, after averaging over the

Bloch sphere, is given by FIG. 3. The average fidelityG, as a function ofT for r

=50,100 usings=I-m=10. A constant 0.5 has been added on for

F.(T)= % + %(Jrz_“_m) - Jrz), (10) B1 state to show both on the same graph.

\[A|/5hIc?e)ﬁr;g?{ﬂebjngggﬁa{sgimit; ;T:tgog_mhglgr;’:?nggﬁ'ﬂgdthe scattering and the bound states. The wave function is
g- 9 ‘ extremely complicated due to the magnon interactions aris-

of the f!dell'_[y now depends Ol_if‘“‘m)’ which W'" oceur for ing for a nonzerd,, which can be vastly simplified by tak-
an earlier time, and the maximum value will be more thaning the limitK>K,, i.e., dropping the interactioK, terms in

for J.. The rate at which the state propagates is sf#1/7, e Hamiltonian. In theXY limit, the wave function as a

but we need to wait for a shorter time interi#vir—(I  fnction of time takes the forrfafter takingN— < limit)
—-m)] to recover the state a distancaway from themth site. -

The distance between the two initial sites can be chosen con- ¢y(T) = @AM (M= Ji-mdia], (13)
veniently for a given distance over which the transport is

desired. The fidelity for this case has been shown in Fig. 1WhICh Is antisymmetric in the two indices, reflecting the un-

for a few values of as a function of time. Due to the pres- ?oellrcl))\l/:/ri]r? fi:':)'gn;f tﬂztiig %f ;Zeb2f2)¥:angthdeO\;VVCO?spiltgs}eNdﬁ\(l:vé q
ence of the competing teriithe last term in the aboyethe 9 9 P '

fidelity could fall below the value for the unentangled state,denSIty matrix has the form
after the first maximum. la>+ Bl2u; aﬂ*d)i*j

The initial entangled state at sites and m, pg; 2 «
_ i BPwy; |87,
=|laT | +B|TXal | +B]T), can be extracted from sitds pi = 1ij i
andj at a later time with a fidelityG;; =Trpg;p;;, which can 1B%z;  |BPwy;
be ca;culayed after some manipulations S|mpIyG3$|a¢j Oé*,&ﬁij |B|2Uij
+ B¢ This has a maxima structure even faf=|g|, un- _ _
like the fidelity functionF; discussed earlier. Fd=I+r,j  In the above, the various matrix elements stand

=m+r, i.e., for a pair of sites translated byfrom the initial ~ for Uy =((1/2+)(1/2+s))),  v;=((1/2-§)(1/2-5))),
pair |,m, the fidelity takes the formusing s=l1-m) G,  wy;;=((1/2-5)(1/2+s)), Wy;=((1/2+5)(1/2-5))), 3

=[2a B3+ a’explimsl 2)J; ..o+ Brexp(—ims/2)J,_ > After av-  =(s's), where the expectation value is taken in the two-
eraging over the Bloch sphere, it has a simple form magnon stated(T)) only. Now following through the fur-
ther steps of Wootterg3], the eigenvalues of;ip;; for the
_ 172 2 242 > eigenvalues of; i,
Gr = 5(Jrs* Jre) + 337 (1) above density matrix are([o2+ulg?) SR+ |a B2,

In Fig. 3, we show the fidelityG, as a function off for r  |8l*(\Wiw,|z)2 This gives two regimes for the concur-
=50, 100. rence as

Let us now turn to the most difficult case of an initial state a2 — e
with a B2 state at site$ and m, and the rest of the spins Cij = 2|8z | = 21BN V|of* + | By

polarized, given aga+Bs's,)|F)=a|F)+B|®(T=0)). The o
state can be written as
=2

a' Bebij| = 2| B VWi W (14

[42(T=0) = alF) + B2 ¢;(0)ii), (12) _ o _

whichever term is positive, and otherwise zero. The off-
where |ij) stands for a two-magnon basis state with twodiagonal matrix element can be calculatedta&ingi>j)
down spins at sites and j. Initially for i=I,j=m the wave
function is unity, and zero for all other valuesicdndj. The _ * «
time evolution of the second term above can be worked out 2= 2 $inbin = 2% Pinbin = 7j ~ 2Ly (15
in terms of the two-magnon excitations, using the Bethe an- .
satz solution for two down spins. The concurrences in thevhere the sum iny; is over all values oh, which can be
two-magnon eigenstates have been worked[@liboth for  calculated using the addition rulg,(x+y)=2,J(X)J-(Y)

i-1
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and setting the siten at the middle of the chain for conve- The first maximum value is determined by the first term, as
nience, in the case oB1 states, which occurs fdaruv(r—1+m). A
i 1. . comparison of the fidelity as a function &ffor all the three
7 =€ (Fi-rJjt + Jicmdj-m) - (16) cases, from Fig. 1 for=100, shows that theB2 states
gj, which is just the finite sum, is quite complicated to cal- have better fidelity. Now, the fidelity of recovering
culate in general. The diagonal matrix elements aje |a1 1+ ) from sitesi andj, analogous to th81 states

:|¢>ij21Uij”1,W1ij:7/n—|¢ij|2,W2ij:77;j—|¢ij|2- This simpli-  we disc*ussed before, is_ given a@ij;|q|2+|/3|4|¢ij|_2
fies the expression for the concurrence between two sites+|@B|*(¢;+¢;j). This function also exhibits a maxima
andj as structure for|a|=|g|. The average fidelity is(for i=I

JE— +r,j:m+r)
Cj =|8max(0,|8llz - |¢|. 2(| ad| = [B\Wwp)).  (17)

G =5+5(0 =3 Jd (P = -Just€™). (19

For|-m odd, the off-diagonal matrix elemenj,=0, and the s e t er+3' _
expression for the maximally entangled initial state is simple,The fidelity as a function ofT is shown in Fig. 3, forr
Cim=J2+J2,,, which is what we got foB1 Bell states. For =50,100s=10, along with the result foB1 states. Th&2
|-m even, the expression is still complicated. Ferm=2,  states exhibit better fidelity here also, as is the case in
Ciy=max(0,|2/2-|$|/\2,|¢|-wy), where ¢p=(3-32), w,  Fig. 1.
=32+ 32— |2, z=230d,+32(Jp+J,)2. The concurrence be- In conclusion, we have investigated the quantum-state
tween the sites and m is plotted as a function of for ~ transportacross a channel of qubits, the spin chain, using the
I-m=1 in Fig. 2, along with the result for thB1 states HeisenbergXY dynamics. The presence of entanglement and
and the unentangled state. its dynamics is crucial for communication over the channel.

The fidelity of recovering the state:T +3|) at a sitei is ~ INitial states with a pair of qubits in a staaef 1+ | show
again straightforwardt; =|a]2+|8J2( 812~ |af?) 7;. The aver- better fidelity. Here, it will be interesting to investigate the

age fidelity, fori=m+r effect of a nonzerd<,; significant changes in the wave func-
' ' tions, the concurrences, and the fidelity are expected. Finally,
F,= % + %(Jf_(l_m) +J7). (18)  states with many entangled pairs in an optimized network

may demonstrate an almost-ideal quantum communication,
As compared to the expression for g states, in the above that is, a teleportation protocol with the sender and the re-
there is no competition betweeh andJ,—-). The fidelity  ceiver at a fixed distance and the code transported with neg-
here is greater than that of the unentangled state for all timetigible interference from the network channel.
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