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We study the dynamics of a HeisenbergXY spin chain with an unknown state coded into one qubit or a pair
of entangled qubits, with the rest of the spins being in a polarized state. The time evolution involves magnon
excitations, and through them the entanglement is transported across the channel. For a large number of qubits,
explicit formulas for the concurrences, measures for two-qubit entanglements, and the fidelity for recovering
the state some distance away are calculated as functions of time. Initial states with an entangled pair of qubits
show better fidelity, which takes its first maximum value at earlier times, compared to initial states with no
entangled pair. In particular initial states with a pair of qubits in an unknown statea↑ ↑ +b↓↓ are best suited
for quantum-state transport.
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Quantum entanglement has been recognized as an impor-
tant resource for quantum information and computation[1],
for transmission of quantum states through a channel[2].
There have been many proposals of physical systems to
serve as channels for quantum communication[3], and in
particular the spin chains[4]. The essential idea is to encode
one particular qubit(spin-1/2 degree of freedom), and let it
be transported across the chain to recover the code from
another qubit some distance away. The quantum spin chains
are well suited for state transport, as one could use the
Schrödinger dynamics to propagate entanglement, and thus
achieve the desired quantum communication.

The dynamics of entanglement of spin systems, viz., the
study of time evolution of an initial state, can be classified
into three categories: The dynamics of anSz definite state or
an Sz nondefinite state underSz conserving time evolution
(for example, the HeisenbergXY model), and the time evo-
lution of an initial state under anSz nonconserving dynamics
(for example, the transverse Ising model). The structure of
entanglement sharing and the time scales for entanglement
transport are very different between these categories. In this
paper, we will study the HeisenbergXY model, whereSz is
conserved through the time evolution. The main features of
the dynamics of entanglement that will be addressed are the
appearance of pairwise entanglements between distant spins,
viz., concurrences, starting from an initial state with no en-
tangled pairs or exactly one entangled pair of spins, and the
time scales for the transport of entanglement. The maximally
entangled initial states↑↓ ± ↓↑ (the Bell stateB1) and
↑↑ ± ↓↓ (the Bell stateB2) evolve quite differently[5]. The
dynamics of entanglement in these states involve one-
magnon and two-magnon excitations. The entanglement
sharing in one-magnon and two-magnon eigenstates of the
HeisenbergXY model has been studied[6,7]. The time evo-
lution of B1 states involves the one-magnon excitations,
which are not affected bysz-sz interactions, whereas for the

B2 states two-magnon excitations are involved, which intro-
duce many complications. Here, not only two-magnon scat-
tering states(equivalent to two one-magnon excitations) that
have a weak signature of the interactions, but two-magnon
bound states with a strong interaction effects[7] have a sig-
nificant contribution for entanglement dynamics.

Let us consider an anisotropic HeisenbergXY model for a
linear chain of spinsss=1/2d, with a Hamiltonian

H = Kzo si
zsi+1

z −
K

2 o si
+si+1

− + H.c. −Bo si
z − E0, s1d

where Kz,K are the interaction strengths for thez compo-
nents and thexy components, respectively, andB is the
strength of the magnetic field along thez direction. The con-
stantE0=−NKz/4−NB/2 is the energy of the ferromagnetic
state, with all the spins polarized along thez direction. The
above Hamiltonian generates unitary evolution from the
Schrödinger equation which conserves the totalSz in the
state. The energy eigenstates and eigenvalues are known ex-
actly through the Bethe ansatzf9g. The ferromagnetic state
uFl= u↑¯↑l has no dynamics, being an eigenstate with zero
eigenvalue, and has no entanglement between any pair of
spins. Let us first consider an unentangled state with one
spin, at the sitel, in an unknown state, at timet=0 given by

ucus0dl = u↑ ¯ ↑lua ↑ + b↓ll ; sa + bsl
−duFl. s2d

This state has no entanglement, being a direct product state
of different site states. Let us denoteunl=sn

−uFl, a state with
one down spin at siten. At a later timet, the state can be
written as

ucustdl = auFl + b o fnstdunl, s3d

where fn=s1/Ndoqexp ifqsn− ld−Eqt /"g, and the one-
magnon energyEq=−K cosq+B. In the limit of large
number of spins,N→`, the wave function can be ex-
pressed in terms of the Bessel functionJn−l as
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fnstd = e−isBt/"deisp/2dsn−ldJn−lsKt/"d. s4d

The time scale for the structure in the wave function ist
=" /K, and from now on we will write the time as a multiple
of t, as T= t /t. We can estimate the time scale, usingK
,0.01 eV, ast,10−13 sec. The magnetic field adds on a
constant phase to the wave function, and thus can be
dropped. At timet the mixed state of a given sitei can be
denoted by the reduced density matrixri =tr1,. . .,N,8 uculkcuu,
where the prime indicates a partial trace over all states
except at sitei. It is straightforward to write down the
reduced density matrix as

ri = f1 − ubu2ufistdu2gu ↑ lk↑ u + ubu2ufistdu2u ↓ lk↓ u. s5d

Now the initial unknown state encoded in thelth qubit can be
extracted from theith qubit with a fidelityFi =Trruri where
ru= ua↑ +b↓lka↑ +b↓u, which works out to beswith i = l
+r, a distancer away from the initial sited FrsTd= uau2
+ ubu2subu2− uau2dJr

2sTd. By averaging over all possible ini-
tial states, i.e., the Bloch sphere, the average fidelity is

FrsTd = 1
2 + 1

6Jr
2. s6d

A similar formula has been derived in Ref.f4g, except that
our calculation is simplified due to the limit of largeN. Now,
we are interested in propagating the initial code to a distance
r, and recover it. The fidelityFr has a maximum value for
T< r, which means the quantum state is transported at a rate
vt=1/t. After waiting for a time t=vtr we have the best
recovery of the quantum state at site, a distancer away from
the initial site l. In Fig. 1, the fidelity has been plotted as a
function of time for r =100; thefirst maximum is forTc
< r, along with the result for entangled initial states we
shall discuss below.

Though the initial state has no pairwise entanglement, for
TÞ0, the state develops entanglement. We use the concur-
rence measure[8] for the pairwise entanglement, which can
be calculated from the two-site reduced density matrixri j
(which is obtained by tracing over all spins except those at
sitesi and j). The time-reversed density matrix is denoted by
r̃i j , and the eigenvalues ofri j r̃i j by l1, . . . ,l4 in the descend-

ing order. Then the concurrence between the two sites is[8]
Cij =maxsl1

1/2−l2
1/2−l3

1/2−l4
1/2,0d. Here, the two-site density

matrix has the form

ri j =1
1 − ubu2sufiu2 + uf ju2d

ubu2uf ju2 ubu2fif j
*

ubu2fi
*f j ubu2ufiu2

0
2 .

Now the concurrence is given by f6g Cij
=2ubu2uJi−lsTdJj−lsTdu. A plot of concurrences vsT is shown
in Fig. 2 for i = l +1,j = l and i = l +2,j = l. For smallT, the
concurrences grow asCij < =s2ubu2/ r!dsT/2dr. For largeT,
we haveCij <2ubu2/pT with oscillations.

Now we will turn to initial states with entangled pairs of
spins. Entangled states are expected to be better than the
unentangled states considered above. The dynamics will
transport and further generate entanglement, as we shall see
below. Let us first consider an initial state with a pair of
qubits at sitesl and m in an entangled state(B1 state)
au↑↓l+bu↓↑l, all other spins polarized, which is represented
as

uc1sT = 0dl = sasl
− + bsm

− duFl = o fns0dunl. s7d

For T=0 all concurrences are zero exceptClm=1. ForTÞ0,
this entanglement spreads, and is transported to other pairs.
Again using the one-magnon excited states, we can write
down the wave function as a function ofT,

fnsTd = beisp/2dsn−ldJi−lsTd + aeisp/2dsn−mdJi−msTd. s8d

Since the above state is a one-magnon statesthough it may
not be an eigenstated the concurrence is given byf6g Cij
=2ufi

*f ju. In particular, the concurrence between the sitesl
and m for later times, for the maximally entangled initial
statesa=b=1/Î2d, for l −m even or odd, respectively, is
given as

FIG. 1. The average fidelityFr as a function ofT, for r =100, for
the three types of states discussed. For the entangled states,s= l
−m=25 has been used. The first maximum for the unentangled is at
T=r =100, and for theB1 andB2 states, atT=r −s.

FIG. 2. The concurrenceCij as a function ofT, using ubu2
=1/2. It can beseen how concurrence builds up between the initial
sites l, l +1, andl +r for the unentangled initial state, and how the
concurrence decreases between the initial sitesl andm for B1 and
B2 Bell states.
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Clm = sJ0 + s− 1dsl−md/2Jl−md2 or sJ0
2 + Jl−m

2 d. s9d

In Fig. 2, Clm has been plotted as a function ofT for l −m
=1, which drops from the initial value of unity asT−2.

Now, the fidelity of recovering a quantum state
ua↑ +b↓l at a site i can be calculated straightforwardly,
analogous to the unentangled state we calculated before, as
(for i =m+r, a distancer away from the sitem) FrsTd= uau2
+subu2− uau2dufr+msTdu2. For uau<ubu, the fidelity is close to
1/4, as before for the unentangled case, which means the
channel is noisy for a good recovery. In this case the un-
known state can be recovered from two sites, as we shall
discuss below. The average fidelity, after averaging over the
Bloch sphere, is given by

FrsTd = 1
2 + 1

6sJr−sl−md
2 − Jr

2d, s10d

which should be compared with the formula we obtained
fEq. s6dg for the unentangled initial state. The first maximum
of the fidelity now depends onJr−sl−md, which will occur for
an earlier time, and the maximum value will be more than
for Jr. The rate at which the state propagates is stillvt=1/t,
but we need to wait for a shorter time intervalt=vtfr −sl
−mdg to recover the state a distancer away from themth site.
The distance between the two initial sites can be chosen con-
veniently for a given distance over which the transport is
desired. The fidelity for this case has been shown in Fig. 1
for a few values ofr as a function of time. Due to the pres-
ence of the competing termsthe last term in the aboved, the
fidelity could fall below the value for the unentangled state,
after the first maximum.

The initial entangled state at sitesl and m, rB1
= ua↑ ↓ +b↓↑lka↑ ↓ +b↓↑l, can be extracted from sitesi
and j at a later time with a fidelityGij =TrrB1ri j , which can
be calculated after some manipulations simply asGij = uaf j
+bfiu2. This has a maxima structure even foruau<ubu, un-
like the fidelity functionFi discussed earlier. Fori = l +r , j
=m+r, i.e., for a pair of sites translated byr from the initial
pair l ,m, the fidelity takes the form(using s= l −m) Gr
= u2abJr +a2expsips/2dJr+s+b2exps−ips/2dJr−su2. After av-
eraging over the Bloch sphere, it has a simple form

Gr = 1
3sJr−s

2 + Jr+s
2 d + 2

3Jr
2. s11d

In Fig. 3, we show the fidelityGr as a function ofT for r
=50,100.

Let us now turn to the most difficult case of an initial state
with a B2 state at sitesl and m, and the rest of the spins
polarized, given assa+bsl

−sm
− duFl;auFl+buFsT=0dl. The

state can be written as

uc2sT = 0dl = auFl + b o fi js0dui j l, s12d

where ui j l stands for a two-magnon basis state with two
down spins at sitesi and j . Initially for i = l , j =m the wave
function is unity, and zero for all other values ofi and j . The
time evolution of the second term above can be worked out
in terms of the two-magnon excitations, using the Bethe an-
satz solution for two down spins. The concurrences in the
two-magnon eigenstates have been worked outf7g both for

the scattering and the bound states. The wave function is
extremely complicated due to the magnon interactions aris-
ing for a nonzeroKz, which can be vastly simplified by tak-
ing the limit K@Kz, i.e., dropping the interactionKz terms in
the Hamiltonian. In theXY limit, the wave function as a
function of time takes the formsafter takingN→` limit d

fi jsTd = eisp/2dsi+j−l−mdfJi−lsTdJj−m − Ji−mJj−lg, s13d

which is antisymmetric in the two indices, reflecting the un-
derlying fermionic nature of the moving down spins. Now,
following through the steps as before, the two-site reduced
density matrix has the form

ri j =1
uau2 + ubu2uij ab*fi j

*

ubu2w1i j ubu2zij
*

ubu2zij ubu2w2i j

a*bfi j ubu2vi j

2 .

In the above, the various matrix elements stand
for uij =ks1/2+si

zds1/2+sj
zdl, vi j =ks1/2−si

zds1/2−sj
zdl,

w1i j =ks1/2−si
zds1/2+sj

zdl, w2i j =ks1/2+si
zds1/2−sj

zdl, zij

=ksj
+si

−l, where the expectation value is taken in the two-
magnon stateuFsTdl only. Now following through the fur-
ther steps of Woottersf8g, the eigenvalues ofri j r̃i j for the
above density matrix aresÎsuau2+uubu2udbu2v± ua*bfi j ud2,
ubu4sÎw1w2± uzud2. This gives two regimes for the concur-
rence as

Cij = 2ubu2uzij u − 2ubuÎvi j
Îuau2 + ubu2uij

or

=2ua*bfi j u − 2ubu2Îw1i jw2i j s14d

whichever term is positive, and otherwise zero. The off-
diagonal matrix element can be calculated asstaking i. jd

zij = o fin
* f jn − 2o

j+1

i−1

fin
* f jn ; hi j − 2zi j , s15d

where the sum inhi j is over all values ofn, which can be
calculated using the addition ruleJnsx+yd=okJksxdJn−ksyd

FIG. 3. The average fidelityGr as a function ofT for r
=50,100 usings= l −m=10. A constant 0.5 has been added on for
B1 state to show both on the same graph.
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and setting the sitem at the middle of the chain for conve-
nience,

hi j = eisp/2ds j−idsJi−lJj−l + Ji−mJj−md. s16d

zi j , which is just the finite sum, is quite complicated to cal-
culate in general. The diagonal matrix elements arevi j
= ufi j u2,uij <1,w1i j =hii − ufi j u2,w2i j =h j j − ufi j u2. This simpli-
fies the expression for the concurrence between two sitesi
and j as

Cij = ubumax„0,ubuuzu − ufu,2suafu − ubuÎw1w2d…. s17d

For l −m odd, the off-diagonal matrix elementzlm=0, and the
expression for the maximally entangled initial state is simple,
Clm=J0

2+Jl−m
2 , which is what we got forB1 Bell states. For

l −m even, the expression is still complicated. Forl −m=2,
Clm=maxs0,uzu /2−ufu /Î2,ufu−w1d, where f=sJ0

2−J2
2d, w1

=J0
2+J2

2− ufu2, z=2J0J2+J1
2sJ0+J2d2. The concurrence be-

tween the sitesl and m is plotted as a function ofT for
l −m=1 in Fig. 2, along with the result for theB1 states
and the unentangled state.

The fidelity of recovering the stateua↑ +b↓l at a sitei is
again straightforward,Fi = uau2+ ubu2subu2− uau2dhii . The aver-
age fidelity, fori =m+r,

Fr = 1
2 + 1

6sJr−sl−md
2 + Jr

2d. s18d

As compared to the expression for theB1 states, in the above
there is no competition betweenJr andJr−sl−md. The fidelity
here is greater than that of the unentangled state for all times.

The first maximum value is determined by the first term, as
in the case ofB1 states, which occurs fort=vtsr − l +md. A
comparison of the fidelity as a function ofT for all the three
cases, from Fig. 1 forr =100, shows that theB2 states
have better fidelity. Now, the fidelity of recovering
ua↑ ↑ +b↓↓l from sitesi and j , analogous to theB1 states
we discussed before, is given asGij = uau2+ ubu4ufi j u2
+ uabu2sfi j

* +fi jd. This function also exhibits a maxima
structure for uau<ubu. The average fidelity issfor i = l
+r , j =m+rd

Gr = 1
2 + 1

3sJr
2 − Jr−sJr+sdsJr

2 − Jr−sJr+s + eiprd. s19d

The fidelity as a function ofT is shown in Fig. 3, forr
=50,100,s=10, along with the result forB1 states. TheB2
states exhibit better fidelity here also, as is the case in
Fig. 1.

In conclusion, we have investigated the quantum-state
transport across a channel of qubits, the spin chain, using the
HeisenbergXY dynamics. The presence of entanglement and
its dynamics is crucial for communication over the channel.
Initial states with a pair of qubits in a statea↑ ↑ +b↓↓ show
better fidelity. Here, it will be interesting to investigate the
effect of a nonzeroKz; significant changes in the wave func-
tions, the concurrences, and the fidelity are expected. Finally,
states with many entangled pairs in an optimized network
may demonstrate an almost-ideal quantum communication,
that is, a teleportation protocol with the sender and the re-
ceiver at a fixed distance and the code transported with neg-
ligible interference from the network channel.
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