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We present the coherent control of the temporal shape of laser pulses obtained by exploiting the propagation
dynamics of electromagnetically induced transparency. Temporal compression, as a special case of pulse
tailoring, is discussed. We envisage applications in nonlinear optics processes and control of pulse shapes in the
vacuum ultraviolet spectral region.
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Electromagnetically induced transparency(EIT) is a co-
herent interaction process in which a coupling laser field is
used to modify the optical properties of an atomic medium at
the frequency of a probe laser field[1]. Since its discovery
the process has received a lot of attention and the reader is
referred to the most recent review article[2] for an exhaus-
tive list of papers related to EIT. In the last few years re-
search has been focused on the propagation of light pulses in
EIT modified media[3]. Most notably, from the point of
view of the work discussed here, particular attention has
been devoted to ultraslow light propagation[4,5] and light
storage techniques[6–8]. In this regard, EIT can be viewed
as a way of coherently controlling the propagation velocity
of the probe laser pulse as described by the dark-state polari-
tons approach[6]. Experimental evidence of the possibility
to control also the temporal shape of the probe pulse has
been recently reported by Chien Liuet al. [8].

In this paper we present a theoretical study which dis-
cusses and explains how to exploit the peculiarities of EIT
propagation dynamics to coherently control the temporal
shape of the probe laser pulse. We will show how the control
is indeed possible by a proper choice of the temporal shape
of the coupling laser pulse. Besides its fundamental interest,
this pulse shaping technique, when applied to the vacuum
ultraviolet (VUV ) spectral region, can have also important
applications.

Figure 1 shows a schematic diagram of the physical sys-
tem at the basis of EIT: a three-level atom in interaction with
two laser pulses, of electric-field envelopesEp (probe) and
Ec (coupling), and frequenciesvp andvc, resonant with the
atomic transitions 1-3 and2-3, respectively. While keeping
the formulation general, we have in mind the case of a rare-
gas atom, wherevp is in the VUV andvc is in the visible or
infrared spectral region.

Figure 2 shows in a heuristic way the idea at the basis of
this paper. The laser pulses, propagating along thez axis,
enter the cell of lengthL containing the medium of three-
level atoms with the temporal overlapping shown in(a). The
probe pulse experiences EIT and its propagation velocityvp
slows down to a valuevp=s1/c+k/Ec

2d−1 [1,2]. As a result,
after some propagation in the cell, the coupling pulse over-
laps the probe pulse as shown in(b). In this condition, dif-

ferent “points” of the probe pulse experience different values
of Ec and “travel” with different “propagation velocity,” giv-
ing rise to a temporal reshaping of the probe pulse. A proper
choice of the temporal shape of the coupling pulse is ex-
pected to result in a control of the temporal shape of the
probe pulse.

In a rigorous approach, the propagation equations of the
electric-field envelopesEp andEc are written as
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whereN is the density of the atomic sample anddn3 is the
electric-dipole moment of then-3 transition. For a weak
probe fieldsr11<1d, the coherencesrnm that appear in Eq.
(1) satisfy the following equations:

ṙ21 = − jVcr31 − g21r21,

ṙ31 = − jVp − jVcr21 − g31r31, s2d

ṙ32 = 0,

where Vp=d13Ep/2" and Vc=d23Ec/2" are the Rabi fre-
quencies of the atomic transitions, andgnm represents all
kinds of dephasing rates. When

FIG. 1. Schematic diagram of the three-level atomic system at
the basis of EIT.
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Vc @ g31,V̇c/Vc,V̇p/Vp s3ad

and

V̇p/Vp @ g21, s3bd

the solution of Eq.s2d is given by

r21 = −
Vp

Vc
,

r31 = jF V̇c

Vc
3Vp −

V̇p

Vc
2G , s4d

r32 = 0.

Then, the introduction of Eq.(4) in Eq. (1) provides the
following propagation equations[6]:
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whose solution can be written as

Epsz,td =
Ep0

Ec0
Ecst − z/cdf„jsz,td…,

s6d
Ecsz,td = Ecst − z/cd,

with
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Ep0 andEc0 are constants, andfsjd is a function which guar-
antees the boundary conditions forEp at z=0 f9g.

A condition which provides a straightforward analytical
solution is provided by a probe fieldEp that, atz=0, is over-
lapped by a flat region ofEc as, for instance, it is shown in
Fig. 2(a). Then Eq.(6) provides the analytical expression of
fsjd and the following equation:

Epsz,td =
Ecst − z/cd

Ec0
EpS0,−

k

Ec0
2 jsz,tdD . s7d

The analysis of Eq.s7d shows that the evolution ofEp is
governed by the temporal profile ofEc and by the dimen-
sionless parameter
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whereTp is a characteristic time of the probe pulse. Equation
s7d suggests how it is possible to control the temporal shape
of the probe pulse. In fact, given the expression ofEps0,td
and a target pulseETstd, then Eq.s7d represents an implicit
equation that can be solved by numerical procedures to pro-
vide the expression ofEcst−z/cd which gives at the cell out-
put EpsL ,td=ETstd. The validity of the solutions7d, when
conditionss3ad and s3bd are satisfied, has been checked by

FIG. 2. The idea at the basis of the temporal shape control. In
the framework moving at velocityc, the probe pulse(continuous
line) is slipping under the coupling pulse(dashed line) inside a cell
containing the EIT modified medium. Different “points” of the
probe pulse “travel” at different “propagation velocity” resulting in
a reshaping of the probe pulse temporal profile.
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direct numerical integration of the Maxwell-Bloch equations
s1d ands2d. The limit of validity of Eq.s7d, when conditions
s3ad and s3bd are not strictly satisfied, as well as the possi-
bility of arbitrary temporal tailoring of the probe pulse are at
present time under investigation.

In Figs. 3 and 4 we present a few examples to show the

potentiality of the technique discussed. For the results pre-
sented we have checked that the numerical solution of the
Maxwell-Bloch equations(1) and (2) and the analytical ex-
pression(7) provide exactly the same results. Figure 3(a)
shows the temporal shape of the coupling pulse that, in the
conditiona=3, provides at the cell output the flat-top probe

FIG. 3. Temporal shape control: flat-top pulse.(a) Coupling
pulse,(b) probe pulse atz=0, (c) probe pulse atz=L. The dashed
line in (c) shows the output probe pulse when the coupling field is
taken constant[Ec=Ec0, dashed line in(a)].

FIG. 4. Temporal shape control: two-peaked pulse.(a) Coupling
pulse,(b) input probe pulses with various delays with respect to the
coupling pulse,(c) corresponding output probe pulses. In(b) and(c)
plots are vertically shifted for the sake of clarity.
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pulse shown in Fig. 3(c) when a Gaussian probe pulse of
temporal widthTp is taken at the cell input(b). For an easy
comparison, the Gaussian probe pulse obtained at the cell
output when the coupling field is taken constantsEc=Ec0d is
also shown by the dashed line.

Figure 4 shows how different temporal shapes of the
probe pulse at the cell output(c) are obtained with the same
temporal shape of the coupling pulse(a) by simply changing
the relative pulse delay at the cell input(b) sa=3d.

Pulse compression appears as a special case of temporal
shaping. In fact, if at the cell output a flat region ofEc
=nEc0 overlapsEp such as, for instance, it is shown in Fig.
2(c), then Eq.(7) provides

EpsL,td = nEp„0,n2st − tLd…, s8d

wheretL, defined implicitly through

L =E
L/c

tL−L/c Ec
2st8 − L/cd

k
dt8,

is the arrival time of the probe pulse peak atz=L. Equation
s8d shows how the probe pulse, while preserving its func-
tional shape, is temporally compressed by a factorn2 and its
amplitude amplified by a factorn. No need to say that when
n,1, then the probe pulse is temporally broadened and its
amplitude reduced. This result explains in a straightforward
way the experimental observations reported by Chien Liuet
al. [8]. It is worthwhile stressing that, provided that approxi-
mations(3a) and(3b) are fulfilled, and that flat regions of the
coupling pulseEc overlap the probe pulseEp at the cell input
and output, then the compression factorn2 is independent of
any characteristic time scale of the involved levels, and it is
independent of the detailed temporal structure of the cou-
pling pulse. The result obtained can have important applica-
tions for processes of nonlinear optics in the VUV. In fact,
the use of the output compressed pulse as a light source can

greatly increase the efficiency of a subsequent nonlinear pro-
cess.

For a constant coupling field, EIT shows a finite transpar-
ency spectral bandwidth, proportional to

Dv = FN
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,

which sets a limit to the temporal duration of the probe pulse
that can travel in the medium without absorption. The limit
of the compression factor that can be achieved for a given
value of the parametera is at present time under investiga-
tion. To provide here a realistic example, we have checked
by direct numerical integration of the Maxwell-Bloch
equationss1d ands2d that, taking standard atomic parameters
sd13=4.8310−30 Cm, d23=9.5310−30 Cm, 1/g21@1/g31
=30 ns, "vp=8.3310−19 J, "vc=4.0310−19 Jd f10g, and
using standard laboratory conditionssN=1015 atoms/
cm3,L=5 cmd, a probe laser pulse of temporal duration
sfull width at half maximumd Tp=10 ns is temporally com-
pressed by a factorn2=10 by a coupling field withEc0
=1.53105 V/m and Tc=30 ns ssee Fig. 1d, showing no
absorption. With these values, the transparency spectral
bandwidth of the mediumDv results to be an order of
magnitude larger than the spectral bandwidthdv of the
compressed probe pulse. This example indicates the fea-
sibility of the discussed scheme under considerably re-
laxed experimental conditions.

In conclusion, we have shown that temporal pulse shaping
and compression can be achieved using EIT schemes under
considerably relaxed experimental conditions. The process
presents both fundamental interest and applications to VUV
nonlinear processes and control of VUV pulse shapes. In fact
it offers the possibility of temporal tailoring of short wave-
length light pulses by a proper choice of a control field in the
visible or infrared spectral region, where pulse shaping is
feasible.
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