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We present an experimental and theoretical study of the coherent Rayleigh-Brillouin scattering in gases in
the kinetic regime. Gas density perturbation waves were generated by two crossing pump laser beams through
optical dipole forces. A probe laser beam was then coherently scattered from the perturbation waves. The line
shape of the scattered light was modeled using kinetic theory. The model takes into account the internal energy
modes of the gas particles and is applicable to both molecular and atomic gases. We discuss the implication of
coherent Rayleigh-Brillouin scattering on kinetic theory and photon matter interaction.

DOI: 10.1103/PhysRevA.69.033814 PACS number(s): 42.65.Es, 33.20.Fb, 42.50.Vk, 51.10.1y

I. INTRODUCTION

Nonlinear light scattering processes at nonresonant fre-
quencies have been widely studied in liquids and gases. In
such a process, the medium is first perturbed by crossing
laser beams, and a probe beam is then scattered from the
perturbed medium. Two examples in liquids are Brillouin
enhanced four wave mixing[1] and the observation of the
complex Brillouin spectrum[2]. In gases, the problems can
be treated in two regimes: the hydrodynamics regime and the
kinetic regime. They are defined using they parameter,
which represents the ratio between the scattering wavelength
and the gas particles’ mean free path. Wheny is large, the
gas can be treated as a continuum and the scattering process
can be modeled using the Navier-Stokes equations coupled
with the Maxwell equations. The kinetic regime is defined
where the scattering wavelength is comparable or smaller
than the mean free path, with 0øy&5. In this regime, ki-
netic equations and the Maxwell equations are generally
used to study the scattering problem. Sheet al. [3,4] first
observed the stimulated Rayleigh-Brillouin scattering in ar-
gon and SF6. The differential detection technique they used
can only partially resolve the Rayleigh peak. It is interesting
that Sheet al. envisioned coherent Rayleigh-Brillouin scat-
tering (CRBS) as it is performed in this article. In the last
decade, the laser induced thermal acoustics(LITA ) and laser
induced electrostrictive gratings(LIEG) have been studied
[5–7]. These techniques have been widely used in optical
diagnostics. The theoretical framework of the above research
efforts are generally based on the Navier-Stokes and Max-
well equations. In the collisionless limit of the kinetic re-
gime, Grinstead and Barker[8] observed the line shape of
coherent Rayleigh scattering. A theoretical line shape was
obtained by solving a collisionless kinetic equation in the
space time domain. In a previous letter[9], we reported co-
herent Rayleigh-Brillouin scattering(CRBS) in gases in the
kinetic regime. Data in argon and krypton and a single pa-
rameter kinetic model were presented. CRBS contains coher-
ent Rayleigh scattering and can be connected to phenomena
in the hydrodynamic regime such as LIEG.

Previous works on spontaneous Rayleigh-Brillouin scat-
tering provide a substantial foundation for the current work.
In the kinetic regime, Yip and Nelkin[10] first developed a
kinetic model with the linearized Bhatnagar-Gross-Krook
collision term [11]. Boley et al. [12] and Tentiet al. [13]
started from the linearized Wang-Chang–Uhlenbeck[14]
equation and developed models for molecular gases. Their
six moment model, popularly called thes6 model, has been
considered the best model by several authors[15–17]. The
modeling of the spontaneous Rayleigh-Brillouin line shape
in the kinetic regime continues to attract interest. Recently,
Marques, Jr. and co-workers presented extended kinetic
models [18,19] and reported good agreement with experi-
mental data. Rangel-Huerta and Velasco[20] extended the
hydrodynamic equations into the kinetic regime to study the
Rayleigh-Brillouin line shape in atomic gases. Most of these
works can be extended to study nonlinear light scattering
processes at nonresonant frequencies by incorporating the
optical dipole force into the model.

In this article, we present experimental data in N2, O2, and
CO2. The details of the experiment are described. We also
present a theoretical model of the CRBS line shape that takes
into account the internal energy modes of the gas particles.
This model is based on Wang-Chang–Uhlenbeck equation
and follows the work of[12,13].

II. OVERVIEW

The physical process of CRBS is illustrated in Fig. 1. Two
pump beams, both polarized perpendicular to the page, are
focused and crossed at their foci. They form an interference
pattern and generate a wavelike density perturbation field in
the gas. A probe beam is then coherently scattered from the
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perturbation and forms the CRBS signal, which is also a
beam.

It is through the optical dipole force that the pump beams
generate the gas density perturbation. As discussed by Boyd
[21], a molecule with polarizabilitya in an electric fieldE
obtains a potential energyU=−1

2auEu2. If the electric field is
inhomogeneous, the tendency for the system to approach
minimum potential energy manifests itself as the optical di-
pole force on the moleculeF =−¹U. Therefore, a molecule
is pushed by the optical dipole force to the region where the
field intensity is stronger.

The generated gas density perturbation has a coherent
wave structure following the pump beams’ interference pat-
tern, as illustrated in Fig. 1. When the probe beam, counter-
propagated against pump beam 2, is shone upon the density
wave, it will be coherently scattered. The signal beam main-
tains the probe beam’s polarization and follows a path deter-
mined by the phase matching condition:

ksignal− kprobe= k = k1 − k2, s1d

whereksignal and kprobe are the wave vectors of the signal
and the probe beams, respectively;k is the gas density
wave vector;k1 and k2 are the wave vectors of the pump
beams. The phase matching condition states the momen-
tum conservation in this process. The process also main-
tains energy conservation, which is

vsignal− vprobe= v = v1 − v2, s2d

where v1 and v2 represent the frequencies of two single
mode pump beams. The frequency of the CRBS signalvsignal
is shifted from that of the probe beamvsignal by the fre-
quency of the density perturbation wavev. In this work,
the gas density perturbation wave has a wavelength of
about 256 nm and the frequencyv spans about 6GHz.

The intensity of light scattered by a collection of scatter-
ers is derived from the Maxwell equations[22]. The scatter-
ing results from the dielectric constant fluctuationsd« of the
medium, and the intensity of the scattered light is propor-
tional to d«2. In fluids, the dielectric constant is generally a
function of density and temperature[23]. In dilute gases, its
dependency on temperature can be ignored and the dielectric
constant fluctuation is proportional to gas density fluctuation.
Thus, we have the intensity of the scattered light,

Isc~ dr 2I inc,

wheredr is the gas density fluctuation, andI inc is the inci-
dent light intensity.

Based on the results in[9], one finds thatdr2 is propor-
tional to the product of the pump lasers’ intensity in CRBS.
Therefore, the signal intensity in CRBS is

Icrbs~ Ipump1Ipump2Iprobe, s3d

which is a general formula for a third order nonlinear optical
process.

For an incident light whose power spectrum is ad func-
tion, the power spectrum of the scattered lightSsk ,vd is
proportional to the spectral density of the dielectric constant
fluctuationsSesk ,vd [23]:

Ssk,vd ~ Sesk,vd = Fhkde*sk,0ddesk,tdlj, s4d

whereFhj denotes Fourier transform and the time correlation
of the dielectric constant fluctuation is defined as

kde*sk,0ddesk,tdl =E de*sk,tddesk,t + tddt.

We will look for a steady state solution to our problem. For
such a solution, in which the direction of time does not play
a role, the time correlation function equals its time convolu-
tion

de*sk,td * desk,td =E de*sk,tddesk,t − tddt.

Using the convolution theorem of Fourier transform in Eq.
s4d and the relationde~dr, we conclude that the coherent
Rayleigh–Brillouin scattering power spectrumSsk ,vd is re-
lated to the gas density perturbation by

Ssk,vd ~ dr̄*sk,vddr̄sk,vd, s5d

where

dr̄sk,vd =
1

2p
E E e−isk·r−vtddrsr,tdd3r dt s6d

is the space-time Fourier transform of the gas density pertur-
bation. Our task to find the power spectrum of the scattered
light then becomes finding the gas density perturbation.

III. EXPERIMENT

The experimental setup is shown in Fig. 2. AQ
-switched, frequency doubled, broad band, pulsed Nd:YAG
laser was used to produce the two pump beams. The laser

FIG. 2. The experimental setup of coherent Rayleigh-Brillouin
scattering in gases.
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beam was first passed through a half-wave plate and a Glan
polarizer. The polarizer was used to set the polarization of
the pump beams. Turning the half-wave plate allows one to
control the beam power passing through the polarizer. In this
way, the beams’ pulse energy could be controlled while the
pulse’s temporal profile was maintained.

The pump laser beam was then split into two by a 50/50
beam splitter. The two pump beams were directed into a gas
cell from opposite ends. They were focused by two plano-
convex lens and were crossed at their foci in the gas cell. The
path lengths of the two beams were carefully matched so that
the two pulses reached the interaction volume simulta-
neously. The pump beam pulse had a duration of about 10 ns
and the pulse energy directed into the interaction region was
around 6 mJ/pulse for each beam.

The pump laser’s power spectrum was measured using a
plane-parallel Fabry-Perot etalon to have a full width at half
maximum (FWHM) of 24.8±2.5 GHz. There was also a
250 MHz longitudinal mode structure in the pump laser’s
power spectrum, which matched the laser’s cavity length.
This mode structure manifested itself in the raw profile of the
scattered light. The pump beams’ broad band power spec-
trum indicated that the gas density waves generated by them
also had a broad band power spectrum, i.e., a continuous
superposition of sinusoidal wave modes.

The probe laser was an injection seeded, frequency
doubled, pulsed Nd:YAG laser. Its pulse duration was 7 ns.
The laser was operated in a single longitudinal mode with an
~150 MHz band width.

The probe beam was also passed through a half-wave
plate and a Glan polarizer, so that the beam’s power could be
controlled while its temporal profile was maintained. The
probe beam’s polarization was set perpendicular to that of
the pump beams’. Therefore, the probe beam would not form
an interference pattern with the pump beams, and complexi-
ties associated with this were avoided. In addition, since we
used a counterpropagating scheme for pump beam 2 and the
probe beam, a perpendicular polarization prevented the
probe beam from the entering pump laser and vice versa.

The probe beam was then directed and focused onto the
pump beams’ crossing volume in the gas cell. Two 500 mm
focal-length planoconvex lenses were used to focus the
beams. The pump beams passed off-axis through the lenses
and intersected at their foci at a 178° angle. The diameter of
the focal region was about 200mm. The probe beam was
counterpropagated against pump beam 2. The arrival time of
the probe pulse was adjusted relative to that of the pump
pulses so that maximum signal was obtained. The optimal
delay was about 1 ns. The jitter of the two lasers was each
about 2 ns.

In the experiment, the overlap of the probe beam and
pump beam 2 was achieved by aligning them so that both
passed through two apertures located at different places
along the path. Pump beam 1 was then fine tuned so that a
strong signal was obtained. When the room was dark, the
signal generated by a 1 mJ/pulse probe beam and
6 mJ/pulse pump beams in room air could be clearly seen by
eye on a white card. The measured signal beam intensity at
these conditions was less than 5mJ. To avoid the complexity
of gas density fluctuations generated by the probe and signal

beams’ interaction, we reduced the pulse energy of the probe
beam to minimum level in the experiment.

The gas cell was a 5 cm diameter and 0.8 m long stainless
steel tube with windows on both ends. Before each scan, the
cell was evacuated and purged with the working gas several
times before being charged to the desired pressure.

By the phase matching condition, the signal beam fol-
lowed, in reverse, the path of pump beam 1. A thin film
polarizer was used to separate the signal beam from pump
beam 1. The signal beam was then propagated for 7 m in the
laboratory to be detected. At this distance, the background
ambient scattering of laser light from optical elements was
greatly attenuated. Still, mirrors and lenses were carefully
turned to keep surface reflections of laser beams away from
the signal beam’s direction.

The detection system was composed of two photodetec-
tors and an air spaced plane-parallel Fabry-Perot etalon. The
inward facing surfaces of the two etalon mirrors had a
99.6 % reflectivity at 532 nm. As calibrated by the manufac-
turer, the mirror set yielded a finesse of 215 at a test wave-
length of 543 nm. One of the etalon mirrors was mounted on
a piezoelectric mount. The three piezostacks were indepen-
dently controlled by a ramp generator. The other mirror was
mounted on a high precision hand adjustable mount. The
entire etalon was put in an enclosure whose temperature was
stabilized to within ±0.1 K.

In the laboratory, the etalon was aligned using a HeNe
laser at 632.8 nm. The HeNe beam was collimated and ex-
panded to a 20 mm diameter. Coarse alignment was done by
adjusting the high precision hand adjustable mounts. Fine
alignment was performed using the ramp generator. The eta-
lon mirror separation could be adjusted to fit the needs of the
measurement task. For most scans of CRBS data in this pa-
per, the free spectral range was set at 11.85 GHz.

The photodetectors were photomultiplier tubes(PMT).
About 4 % of the signal beam was directed to a photodetec-
tor for normalizing purpose. We call it the normalizing PMT,
and it corresponds to PD 2 in Fig. 2. The majority of the
signal was sent into the etalon and the passed light was re-
ceived by another PMT. This PMT corresponds to PD 1 in
Fig. 2, and will be called the signal PMT. The output from
both PMTs were sent to a gated averager and the data were
collected by a computer.

In the experiment, the probe laser’s frequency was
scanned by scanning the voltage applied to the seed laser.
For each frequency step, the ratio of the signal intensity de-
tected by the signal PMT(the one after the etalon) to that by
the normalizing PMT made a data point of the profile. Thirty
shots were averaged for each frequency step.

The instrument function of the system had a full width at
half maximum of 150 MHz. It was measured by sending the
probe laser beam directly to the detector system and scan-
ning the laser frequency.

Two approaches may be used to resolve the power spec-
trum of the signal beam. In the first approach, the etalon is
scanned while fixing the probe laser’s frequency. To scan the
etalon, one changes the mirror separation by varying the
electric voltage applied onto the piezoelectric stacks on
which one of the mirrors is mounted. An alternative ap-
proach is to scan the probe laser while fixing the etalon mir-
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ror separation. This is the approach used for most scans in
this paper, mainly because the probe laser could be scanned
at a higher resolution. Both approaches yield the same pro-
file, which is a convolution of the signal beam’s power spec-
trum and the etalon’s transmission function.

As shown in Fig. 2, during each scan, part of the probe
beam was directed to a monitor etalon. This monitor etalon
was also an air spaced plane-parallel Fabry-Perot etalon, and
its free spectral range was set to be 900±0.2 MHz. When the
probe laser frequency was scanned, there is a passband at
every 900 MHz. These data were used to monitor the linear-
ity of the frequency scan and to convert the control voltage
applied on the seed laser to the probe beam’s frequency shift.

The voltage applied to the seed laserV was converted to
the frequency differencen using the monitor etalon transmis-
sion profile of the probe beam. A program was written to
identify the center of each passband. A quadratic relation
between the frequency difference and the control voltage,n
=n0+aV+bV2, was fitted to the data. In general, the coeffi-
cient of the linear terma is much larger than the quadratic
coefficient b, indicating good linearity of the scan. Still, a
quadratic fitting ofnsVd is necessary to take care of the long
term drifting of the frequency tuning.

The raw data of the coherent Rayleigh-Brillouin scatter-
ing profile are shown by the green curve in Fig. 3(a). A
periodic, small amplitude modulation is clearly noticeable. It
is due to the longitudinal mode structure of the pump laser.
This mode structure can be seen more clearly in the data’s
power spectrum, shown in Fig. 3(b). The pump laser’s mode
structure is shown as the isolated, well defined peak around
4.0 GHz−1. It shows that the pump laser’s longitudinal
modes are 250 MHz apart, a value that matched the pump
laser’s cavity length.

In the following section, we will compare the theoretical
model and the experimental data for a pump force field that
is constant in frequency. To accomplish this, we need to filter
out the pump laser’s mode structure from the raw data.

From the results of[9], and as will be confirmed later in
this paper, the power spectrum of the scattering signal can be
written as

Srawsvd = bF̄svd,crbssvd, s7d

where b is a constant coefficient,F̄svd is related to the
power spectrum of the dipole force field, and,crbssvd is the

coherent Rayleigh-Brillouin scattering line shape with a
force field that is constant in the frequency domain. Ide-
ally, one would like to have a force field uniform in fre-

quency, i.e.,F̄svd=const. In ourexperiment, the force can
be considered as a superposition of two components: one
is a broad Gaussian profile with24.8 GHz FWHM; the
other is a periodic component representing the 250 MHz
mode structure.

With a 24.8 GHz FWHM of the pump beam, the slowly
changing component of the force varies less than 2% over
the 6 GHz range of interest. We will therefore treat it as a
constant over this range. We decompose the force as

F̄svd = F̄0 + F̄1svd, s8d

whereF̄0 is a constant andF̄1svd represents the mode struc-
ture.

We apply Fourier transform to Eq.(7):

FhSrawsvdj = FhsF̄0 + F̄1svdd,crbssvdj

=F̄0Fh,crbssvdj + FhF̄1svdj * Fh,crbssvdj. s9d

The convolution termFhF̄1svdj* Fh,crbssvdj is well sepa-
rated from the first term in the Fourier transform of the
data, and is filtered out numerically. The filtered data are
shown in Fig. 3sad by the blue curve. The profile is a
convolution of the coherent Rayleigh-Brillouin scattering
line shape and the instrument function, and it will be com-
pared with the theoretical line shape.

We have so far obtained data in argon, krypton, nitrogen,
oxygen, and carbon . The argon and krypton data have been
reported in[9,24]. The nitrogen, oxygen, and carbon dioxide
data are shown in Figs. 4, 5, and 7 with the blue curve. The
data present common characteristics. Fromy,0 to y*1, the
profile evolves from a near Gaussian curve to a curve with
three distinctive peaks. For the line shape with a largey
parameter, the central, unshifted, peak is due to the non-
propagating entropy fluctuations, and can be identified as the
coherent Rayleigh peak. The position of the two side peaks
corresponds to the speed of sound in the gas. The sidebands
are due to the coherent sound waves generated by the optical
dipole force field, and can be identified as the coherent Bril-
louin peaks. At largery, the intensity ratio between the two
Brillouin peaks and the Rayleigh peak keeps growing. This is
different from the spontaneous Rayleigh-Brillouin scattering,
where the ratio tends to a limitcv / scp−cvd given by Landau
and Placzek[25].

IV. A MODEL FOR COHERENT RAYLEIGH-BRILLOUIN
SCATTERING IN MOLECULAR GASES

In [9], we presented a model for CRBS line shape of
atomic gases. The perturbations on mass, momentum, and
energy were solved from a linearized kinetic equation. The
source of the perturbations is the optical dipole force field
and the perturbations relax through collisions. The CRBS
line shape of atomic gases was obtained analytically. It is
found that the line shape in different gases scales with they

FIG. 3. (a) Raw CRBS data are shown by the upper curve, offset
vertically by 0.5. The lower curve is the data after the mode struc-
ture is filtered,(b) the power spectrum of the raw experimental data.
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parameter and the match between the model and the data is
satisfactory. A step-by-step derivation of the model can be
found in Chap. 3 of[26]. In this paper, we discuss a model of
coherent Rayleigh–Brillouin scattering for molecular gases.
We compare it with experimental data in nitrogen, oxygen,
and carbon dioxide. Suppressing the internal energy modes,
this model can be used for atomic gases as well.

The important difference between atomic gases and mo-
lecular gases is in a collision event. In an atomic gas, we
only need to consider translational energy conservation. In a
molecular gas, rotational and vibrational energy also need to
be considered. We collectively call them internal energy. A
collision event can be elastic, in which the total translational
energy of the colliding particles is conserved, or it can be
inelastic, in which translational energy is transferred into in-
ternal energy, or the other way around. We therefore need to
find a kinetic equation that properly takes the internal energy
levels into account. Wang-Chang, Uhlenbeck, and De Boer
first proposed such a kinetic equation[14], which was suc-
cessfully applied to problems such as transport coefficients
[27,28], sound dispersion[29], and light scattering[12] in
molecular gases. Following[14,28–30], Boley et al. [12]
presented an eigentheory for the linearized Wang-Chang–
Uhlenbeck equation. A model collision term was constructed
using the eigentheory. They obtained a model for the spon-
taneous Rayleigh-Brillouin scattering line shape.

Our model for coherent Rayleigh-Brillouin scattering in
molecular gases is an extension of the spontaneous Rayleigh-
Brillouin scattering model by Boleyet al. [12]. We add to the
equation a source term due to the optical dipole force field
and solve for the steady state solution. The solution proce-
dure greatly resembles the atomic CRBS model presented in
[9]. We will first linearize the WCU equation and use the
model collision term. By taking the inner product of the lin-
earized WCU equation and the eigenfunctions of the elastic
collision operator, we obtain a linear equation set for the
perturbed quantities(e.g., density, flow velocity, and tem-
perature) in the Fourier domain. The perturbed quantities are
then solved from this linear equation set. The line shape of
the coherent Rayleigh-Brillouin scattering can therefore be
calculated from the density perturbation.

We consider a gas whose molecular mass isM at tempera-
ture T and hasN internal energy levels. The distribution
function of the ith energy level is denoted byf isv ,r ,td. In
equilibrium, f i follows the Boltzmann distribution, i.e.,

f i,eqsv,r,td = n0xifsvd, s10d

wheren0 is the average number density,xi is the fraction of
molecules with internal energyEi at the equilibrium state,

xi =
gie

−Ei/kbT

o
j

gje
−Ej/kbT

, s11d

wheregi is the degeneracy of statei. fsvd is the Maxwellian
distribution

fsvd = S 1

pv0
2D3/2

expS−
v2

v0
2D , s12d

where

v0 = Î2kbT/M . s13d

For such a gas, the full WCU equation is

S ]

] t
+ v · ¹ + a ·¹vD f isv,r,td

= o
jkl
E sfk8f l8 − f i f jduv − v1usi j

kldV d3v1. s14d

This is a set of equations that describes the dynamics of the
distribution function of each internal state. In this paper, we
assume that the accelerationa of each molecule due to the
optical dipole force does not depend on the internal state.
This means that the polarizability of the gas particles does
not change significantly for different internal states. The col-
lision integral on the right hand side describes a collision
between two particles. One is in theith state before the col-
lision, and has velocityv. It transits to thekth state after the
collision. The second particle is in thej th state before the
collision and has velocityv1. It transits to thelth state after
the collision. The collision cross sectionsi j

klsv ,v1;v8 ,v18d de-
pends on the internal energy levels involved in the collision,
as well as the relative velocity of the two particles. Such a
collision term includes the effects of elastic collisions, where
k= i and l = j , as well as inelastic collisions.

The derivation of WCU equation follows the same argu-
ments used in the derivation of the Boltzmann equation. It is
based on the assumptions that only binary collisions are im-
portant and that previous collisions do not influence subse-
quent collision probabilities(molecular chaos). As a result,
the WCU equation satisfies the conservations of mass, mo-
mentum, and total energy. It also satisfies theH theorem. In
addition, the principle of detailed balancing is assumed in the
WCU equation. A possible weakness of the WCU equation is
the assumption that there is no degeneracy in the internal
energy levels. This setsgi =1 in Eq.(11). The spatial degen-
eracy of rotational states(due to the orientation of the rotor)
seems to pose a serious limit, however, for scalar problems
such as density perturbation, the average effect of many col-
lisions of the same kind is spherically symmetric. In this
sense, the degeneracy of rotational states does not compro-
mise the usefulness of WCU equations in scalar problems, as
shown by its many successful applications.

The full, nonlinear, WCU equation is hard to handle. We
now linearize it and use a model collision term to replace the
collision integral. The material from here to Eq.(36) closely
follows Boleyet al. [12]. Notice that our definition ofv0 and
several eigenfunctions are different. We write the distribution
function of theith internal level with a linearized deviation
from the overall equilibrium as

f isv,r,td = n0xifsvdf1 + hisv,r,tdg, s15d

where the deviationhisv ,r ,td is dimensionless andxi and
fsvd have been given above.
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The perturbation quantities that we are interested in can
be expressed by the distribution function. These quantities
include the deviation from equilibrium of the number densi-
ties of each internal state:

n0xinisr,td = n0xi E fsvdhisv,r,tdd3v, s16d

the deviation of the total number density:

n0nsr,td = n0o
i

xi E fhid
3v, s17d

the macroscopic flow velocity,

v0usr,td = o
i

xi E vfhid
3v, s18d

the deviation of the translational temperature,

T0ttrsr,td = o
i

xi E SMv2

3kb
− T0Dfhid

3v, s19d

and the deviation of the internal temperature,

T0tintsr,td =
1

kbcint
o

i

xi E sEi − kEldfhid
3v, s20d

where the angle brackets mean the average of all internal
states, i.e.,

kEl = o
i

xiEi , s21d

and the dimensionless internal specific heat capacitycint is
defined as

cint =
1

kb

dkEl
dT0

=

o
i

xisEi − kEld2

skbT0d2 . s22d

The deviation in total temperatureT0t is then equal to the
deviation of local average energy divided bys3/2+cintdkb,

T0tsr,td =
T0

3/2 +cint
S3

2
ttr + cinttintD . s23d

The translation and internal heat flux are given by, respec-
tively,

n0kbT0v0qtr = n0o
i

xi E SMv2

2
−

5kbT0

2
Dvfhid

3v, s24d

n0kbT0v0qint = n0o
i

xi E sEi − kEldvfhid
3v. s25d

In addition, the deviation of the traceless pressure tensor
from equilibrium is given by

n0kbT0pab = n0Mo
i

xi E Svavb −
1

3
dabv2Dfhid

3v.

s26d

Assuming the perturbation is small, i.e.,hi !1, we plug
Eq. (15) into Eq.(14) to obtain the linearized WCU equation

S ]

] t
+ v · ¹Dhi −

2

v0
2a ·v

= n0o
jkl

xj E E d3v1dVfsv1duv − v1usi j
kl

3fhksv8d − hlsv18d − hisvd − hjsv1dg. s27d

We have used the total energy conservation relation inside
the collision integral and ignored higher order small terms
Oshi

2d. We have also applied the small perturbation approxi-
mation to the force term, which is

1

fsvd
a ·¹vffsvds1 + hidg <

1

fsvd
a ·¹vfsvd = −

2

v0
2a ·v.

s28d

It is convenient to work on the problem in a Hilbert space.
We choose to use the Dirac notations and write the column
vectorhi as

uhl = 1h1

h2

A
2 . s29d

The Hermitian conjugate ofuhil is then a row vector

khiu = sh1
* ,h2

* , . . . ,hn
*d.

The Hilbert space is based on the following definition of the
inner product of vectorskhu and uh8l,

khuh8l ; o
i

xi E fsvdhi
*svdhi8svdd3v. s30d

Using Dirac notation, Eq.s27d can be written as

S ]

] t
+ v · ¹Duhl −

2

v0
2a ·v = n0Juhl. s31d

The collision operatorJ is an N3N matrix, and each
element of this matrix is an integral operator. One can sepa-
rate the operatorJ into its elastic and inelastic partsJ=J8
+J9. The elastic collision operatorJ8 comes from the terms
in Eq. (31) that havek= i and l = j , and the inelastic operator
consists of all other terms. Argument based on the symmetry
of the elastic collision process leads to the conclusion thatJ8
is a Hermitian operator with

khuJ8uh8l = kh8uJ8uhl,

and theH theorem requires that

khuJ8uh8l ø 0, khuJ9uh8l ø 0.

Wang-Chang and Uhlenbeck have found the eigenvectors
and eigenvalues for the elastic collision operatorJ8 for mol-
ecules that interact by the Maxwell force lawFM =k / r5,
where r is the separation between the colliding molecules
and the force constantk is the same for all colliding pairs. In
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this work, we assume that the gas molecules are Maxwellian
molecules. The Maxwell force law is spherically symmetric,
but molecules in general are not spherically symmetric. This
seemingly contradictory assumption is again justified by the
fact that the average cross section of numerous collisions is
spherically symmetric.

The eigentheory ofJ8 has been clearly explained by Bo-
ley et al. [12]. The reader is referred to[12,26] for detail.
The eigenvectors are denoted byuCrlm,nl. They are orthogo-
nal to one another, i.e.,

kCrlm,nuCr8l8m8,n8l = drr8dll8dmm8dnn8. s32d

The eigenvectorsCrlm,n span the entire Hilbert space, giving
the completeness condition,

o
rlmn

uCrlm,nlkCrlm,nu = 1. s33d

Explicitly, the eigenvectorCrlm,n is given by

Crlm,n = 1FrlmPns«1d
FrlmPns«2d

A
2 , s34d

whereFrlm’s are the eigenfunctions of the collision operator
for an atomic gas with a Maxwell force law, or a gas with
only one internal energy state.Pns«id is a polynomial of the
dimensionless internal energy«i =Ei /kbT0. The first twoPn’s
are given by

P0s«id = 1, P1s«id =
«i − k«l

Îks« − k«ld2l
.

Using the dimensionless velocityc=v /v0, the functionFrlm
is written explicitly as

Frlm =Î 2p3/2r!

sr + l + 1/2d!
Sl+1/2

srd sc2dclYlmsĉd, s35d

where Sn
smdsxd is the Sonine polynomial andYlmsĉd is the

spherical harmonicsf31g given on the direction of the dimen-
sionless velocityc.

The first severalFrlm’s, which we will use, are

F000= 1, F010= Î2cz,

F100=Î2

3
S3

2
− c2D, F110=

2
Î5

S5

2
− c2Dcz,

F020=
1
Î3

s3cz
2 − c2d,

where the dimensionless velocity alongz axis iscz=c cosu.
The eigenvectors ofJ8 we will be using include, with the
subscripts denotingsrl ,nd, C00,0, C00,1, ¯, C00,sN−1d, C01,0,
C10,0, C11,0, C01,1, C02,0. These terms have clear physical
meanings. The firstN eigenvectors denote the fraction of
particles in a specific internal state.C01,0 is the momen-
tum, C10,0 is the translational energy term,C11,0 corre-
sponds to translational heat flux,C00,1 is the internal en-
ergy, C01,1 is the internal heat flux, andC02,0 is the
traceless pressure tensor. Only very limited knowledge of
the eigentheory of the inelastic collision operatorJ9 is
available. The five known eigenvectors all have an eigen-
value of zero. They areC000,0, C01m,0, and −C100,0
+Î2cint /3C000,1, corresponding to the quantities that are
conserved in an inelastic collision, i.e., mass, momentum,
and total energy, respectively.

We use the collision model developed by Hanson and
Morse [32] and Boleyet al. [12]. It is constructed by the
method of Gross and Jackson[33]. The collision model is the
summation of the elastic and the inelastic models, given by

sJs7duhldi = − J8030ni − J0309 n − 2c ·uJ030+ ttrFs− J030+ J100dSc2 −
3

2
D −

3

2cint
J100s«i − k«ldG

+ tintF− J100Sc2 −
3

2
D + S 3

2cint
J100− J0309 Ds«i − k«ldG + 2c ·qtrFsJ110− J030d

2

5
Sc2 −

5

2
D − J011

110Î 2

5cint
s«i − k«ldG

+ 2c ·qintF− J0119110Î 2

5cint
Sc2 −

5

2
D + sJ011− J030d

«i − k«l
cint

G + pabsJ020− J030dScacb −
1

3
dabc2D + J030hi , s36d

whereJrln’s, with or without primes and superscripts, are related to the eigenvalues. They are related to gasdynamics param-
eters through a Chapman-Enskog analysis. Details aboutJrln’s can be found inf12,29g.

Now we proceed to solve for the gas density perturbation from the linearized Wang-Chang–Uhlenbeck with a model
collision term

S ]

] t
+ v · ¹Duhl −

2

v0
2a ·v = n0Juhl. s37d

We seek for a steady state wavelike perturbation along thez axis of the form expf−iskz−vtdg. Thez axis is perpendicular to
the fringes shown in Fig. 1. It is parallel to the direction of the optical dipole force and the density perturbation wave
vectork. We havea·v=avz andk ·v=kvz. An approximation is made to the pressure tensor term: We only keep thepzz
term and ignore other components of the tensor.
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We will first apply a space time Fourier transform to Eq.
(37), and then take the inner product, as defined by Eq.(30),
of the transformed equation and the corresponding eigenvec-
tors. We therefore obtain a system of seven linear equations
of the physical quantities:nsk,vd, uzsk,vd, qtr,zsk,vd,
pzzsk,vd, ttrsk,vd, tintsk,vd, qint,zsk,vd.

The Fourier transform pair of gas density perturbation is

nsz,td =
1

2p
E nsk,vdexpfiskz− vtdgdkdv, s38d

nsk,vd =E nsz,tdexpf− iskz− vtdgdzdt. s39d

The same transform is applied to the other six perturbed
quantities, uhl and the accelerationa. For simplicity, the
same symbol is used for each Fourier pair, but they have

different dimensions. For example, whilensz,td is dimen-
sionless,nsk,vd is of dimensionflength/ timeg; and while
asz,td is of dimensionflength/ time−2g, ask,vd is of dimen-
sion flength2/ time−1g.

In the following, we use the dimensionless variables

j =
v

kv0
, y7 = −

nJ030

kv0
. s40d

Notice that, sinceJ030ø0, we havey7ù0. It also proves
convenient to define

Isj,y7;czd =
1

j + iy7 − cz
. s41d

Taking the Fourier transform of Eq.(37) and multiplying
both sides byIsj ,y7;czd, we obtain the kinetic equation for
uhl in the frequency domain as

kv0

in0
uhl = Isj,y7;czdH− J0308 unl − J0309 nuC000,0l − J030

Î2uzuC010,0l + FJ100Î3

2
tint + sJ030− J100dÎ3

2
ttrGuC100,0l

+ F− J100
3

2Îcint

sttr − tintd − J0309 ÎcinttintGuC000,1l + Fs− J030+ J011dÎ 2

cint
qint,z − J011

110 2
Î5

qtr,zGuC010,1l

+ F− sJ110− J030d
2
Î5

qtr,z + J011
110Î 2

cint
qint,zGuC110,0l + sJ020− J030d

1
Î3

pzzuC020,0l +
Î2a

n0v0
uC010,0lJ , s42d

where, the gas perturbation vectorunl=col hn1,n2, . . .j. The equation has been sorted using the eigenvectors of the elastic
collision operator.

Taking the inner product of Eq.(42) and uC000,0l=col s1,1, . . .d, we obtain the mass equation. Taking the inner product of
Eq. (42) and uC010,0l=Î2czcol s1,1, . . .d, we obtain the momentum equation. Similarly, one can work out the other five
equations. The result is shown below by the matrix equation Eq.(43):

AX= B, s43d

with

A =
n0

kv01
− J030I00

00 −
kv0

in0

− J030I01
00 sJ030− J110dI11

00 sJ020− J030dI02
00 sJ030− J100dI10

00 J100
001I10

00 J011
110I11

00

− J030I00
01 − J030I01

01 −
kv0

in0

sJ030− J110dI11
01 sJ020− J030dI02

01 sJ030− J100dI10
01 J100

001I10
01 J011

110I11
01

− J030I00
11 − J030I01

11 sJ030− J110dI11
11 +

kv0

in0

sJ020− J030dI02
11 sJ030− J100dI10

11 J100
001I10

11 J011
110I11

11

− J030I00
02 − J030I01

02 sJ030− J110dI11
02 sJ020− J030dI02

02 −
3kv0

i2n0

sJ030− J100dI10
02 J100

001I10
02 J011

110I11
02

− J030I00
10 − J030I01

10 sJ030− J110dI11
10 sJ020− J030dI02

10 sJ030− J100dI10
10 +

kv0

in0

J100
001I10

10 J011
110I11

10

0 0 − J011
110I01

00 0 − J100
001I00

00 sJ001− J030dI00
00 −

kv0

in0

sJ011− J030dI01
00

0 0 − J011
110I01

01 0 − J100
001I00

01 sJ001− J030dI00
01 sJ011− J030dI01

01 −
kv0

in0

2 ,
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X =1
n

Î2uz

s2/Î5dqtr,z

s1/Î3dpzz

Î3/2ttr

Îcinttint

sÎ2/cintdqint,z

2, B = −
Î2a

kv0
21

I01
00

I01
01

I01
11

I01
02

I01
10

0

0

2 .

We have used the relation,

J100=Î2cint

3
J100

001=Î2cint

3
J001

100=
2cint

3
J001, s44d

to write the matrix elementsAs6,5d, As7,5d and the sixth
column ofA in a concise form. This relation comes from the
fact that the collision operator is Hermitian and the total
energy is conserved in a collision.

It is interesting to compare our equation with Eq.(43) of
Boley et al. [12]. Our matrix A is essentially the same as
Boley et al.’s. The sign difference in columns 3 and 5 and
elementAs4,4d is due to different choices of the eigenvec-
tors F100, F110, andF020. Boley’s choices resulted in a con-
cise formula, while ours follow Eq.(35) and preserve the
orthornormalilty of the eigenvectors. As long as the calcula-

tion of the Irl
r8l8 is consistent with one’s choice of the eigen-

functions, the results about the perturbation quantities such
asnsv ,kd are the same.

Using our notation, the spontaneous Rayleigh-Brillouin
scattering would have aB vector as

Bspt= −
1

k2v01
I00
00

I00
01

I00
11

I00
02

I00
10

0

0

2 . s45d

This will be used later, when we compare our calculation of
the spontaneous Rayleigh-Brillouin line shape with Tentiet
al.’s.

In order to solve from Eq.(43) the gas density perturba-
tion nsv ,kd and other physical quantities of interest, we need

to calculateJrln
r8l8n8’s and Irl

r8l8’s. Jrln
r8l8n8’s are determined by

four gas parameters through a Chapman-Enskog analysis.
This has been done by Hanson and Morse[32] and Boleyet
al. [12]. The gas parameters include the shear viscosityh,
bulk viscosityhb, heat conductivitys, and the dimensionless
internal specific heat capacitycint as defined in Eq.(22).

For computation purposes, it is convenient to use dimen-
sionless quantities: the dimensionless internal heat capacity
cint, they parameter, the internal relaxation numberRint, and
the Eucken factorfu. The latter three are given by

y =
n0kbT0

hkv0
, Rint =

3hb

2h

s3/2 +cintd
cint

,

fu =
Ms

hkbs3/2 +cintd
. s46d

In terms of the dimensionless numbers, we rewrite the

relations betweenJrln
r8l8n8’s and the gasdynamic quantities as

n0

kv0
J020= − y,

n0

kv0
J030= −

3

2
y,

n0

kv0
J100= −

y

Rint

cint

3/2 +cint
, s47d

n0

kv0
J110= −

2

3
y −

5

6

y

Rint

cint

3/2 +cint
,

n0

kv0
J011

110= −Î 5

8cint

y

Rint

cint

3/2 +cint
,

n0

kv0
J011= −

2

3
y

cint

3/2 +cint

2

5
S3

2
+ cintD +

3 + cint

2Rint
+

9fu

16Rint
2

− 1 +
4

15
fuS3

2
+ cintD +

cintfu

3Rint

.

From these relations, one can see thaty7=3y/2.

Irl
r8l8sj ,y7d’s in Eq. (43) are defined by

Ir8l8
rl sj,y7d ; E fsvdIsj,y7;czdFrl0svdFr8l80svdd3v.

s48d

Before calculatingIrl
r8l8sj ,y7d’s, we discuss the integration

wjsZd =E
−`

+` tj exps− t2d
Z − t

dt, j = 0,1,2, . . . , s49d

whereZ is a complex variable in the first or second quadrant.
w0sZd is the plasma dispersion function multiplied by
s−Îpd f34g. Simple relations exist forwj’s, and the follow-
ing were used in the computation:

w1 = − Îp + Zw0, w2 = Zw1,

w3 = −
Îp

2
+ Zw2, w4 = Zw3,

w5 = −
3

4
Îp + Zw4, w6 = Zw5.

After completing the integration over the radial velocity

components,Irl
r8l8sj ,y7d’s are represented withwjsZ=j+ iy7d

as
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I00
00 =

1
Îp

w0, I02
02 =

2

3Îp
sw0 − 2w2 + 2w4d,

I00
01 =Î 2

p
w1, I02

10 =
1

3Î2p
sw0 + 4w2 − 4w4d,

I00
02 =

1
Î3p

s− w0 + 2w2d, I00
10 =

1
Î6p

s− w0 + 2w2d,

I01
01 =

2
Îp

w2, I02
11 =

1
Î15p

s− w1 + 8w3 − 4w5d,

I10
10 =

1

6Îp
s5w0 − 4w2 + 4w4d, s50d

I00
11 =

1
Î5p

s− 3w1 + 2w3d, I01
02 =Î 2

3p
s− w1 + 2w3d,

I10
11 =

1
Î30p

s7w1 − 8w3 + 4w5d,

I01
10 =

1
Î3p

s− w1 + 2w3d, I01
11 =Î 2

5p
s− 3w2 + 2w4d,

I11
11 =

1

5Îp
s13w2 − 12w4 + 4w6d.

With Eqs. s47d and s50d, we can solve the matrix Eq.s43d.
The solution is

X = A−1B, s51d

whereA−1 is the inverse matrix ofA and both are dimension-
less. We see that the gas density perturbationnsj ,yd is a
product ofa/kv0

2 and a part independent of the force. Using
the relation between the gas density perturbation and the
power spectrum of the scattered light, we obtain the CRBS
line shape

Ssj,yd ~ n0
2n*sj,ydnsj,yd ~ Sn0a

kv0
2D2

,crbssj,y;cint,Rint, fud.

s52d

This general relation is similar to that obtained in the atomic
gas modelf9g. It is a product of two factors: the first factor
containingasj ,yd2 is related to the power spectrum of the
pump field; the second factor,crbssj ,y;cint ,Rint , fud is a
function of they parameter as well as other gasdynamics
parameters, but is independent of the optical dipole force.
For a pump beam constant in the frequency range of in-
terest, the CRBS signal power spectrum reveals the force
independent part,crbssj ,y;cint ,Rint , fud. This property was
used in Sec. III to filter out the pump beams mode struc-
ture from the raw data. We conclude that, in the perturba-

tion regime, the CRBS line shape is independent of the
pump beams’ intensity.

Because we have kept seven physical quantities in the
above derivation, we call the model given by Eqs.(43), (47),
(50), and(51) the seven moment model, or, thes7 model. We
are also interested in a six moment model, called thes6
model, which does not include the traceless pressure tensor
pab. We can obtain thes6 model by repeating the derivation
as with thes7 model or we can obtain it by reducing Eqs.
(43) and (45) directly. We delete the fourth row and the
fourth column of matrixA, and change allJ030 into J020 in
matrix A. The deleted elements are associated with the trace-
less pressure tensor elementpzz. We also delete the fourth

elements in vectorsX andB. The calculation ofIrl
r8l8 will be

changed accordingly. In thes7 model, we haveIrl
r8l8sj ,y7d as

defined by Eqs.(41) and(48). In the six moment model, we

haveIrl
r8l8sj ,yd, replacingy7 with y in Eq. (41).

We now compare the model with experimental data in
nitrogensN2d, oxygensO2d, and carbon dioxidesCO2d. The
gasdynamic parameters needed by the model are listed in
Table I for T0=292 K. The shear viscosity and heat conduc-
tivity data were found from the CRC handbook[35] and
interpolated at the temperature. The bulk viscosity data of
nitrogen were found in[13,36–38], of oxygen in[39,40], of
carbon dioxide in[37].

Among these, the bulk viscosityhb is a controversial pa-
rameter[37,41]. Bulk viscosity originates from the equilibra-
tion of internal energy and translational energy. It is well
defined only when the time scale of the relaxation process is
much shorter than the characteristic time of the system. In
atomic gases, due to the decoupling of internal and transla-
tional energy modes, the bulk viscosity is zero. In molecular
gases, the bulk viscosity is nonzero, but there are only a
limited number of experimental measurements[36,39].
These measurements were based on sound wave dissipation
and are in the frequency range of several megahertz. Partially
because of this shortage ofhb data, the Stokes hypothesis,
hb=0, is widely used in fluid dynamics calculations. Our
experiment corresponds to a GHz frequency regime. The
definition and the value of the bulk viscosity in this regime
may need further study.

In Fig. 4, we compare the seven moment model with the
experimental data for nitrogen. The blue curve is the experi-
mental data. The red curve is a convolution of the theoretical
line shape and the instrument function. The only adjustment
was to match the height of the curves. The model matches
the experimental data reasonably well for the 1 and 4 atm
data, but underestimated the relative height of the Rayleigh
peak for the 2 and 3 atm data.

TABLE I. A list of gas dynamic quantities of gases atT0

=292 K.

Gas h (Pa s) hb/h s sW m−1 K−1d cint

N2 17.63310−6 0.73 25.2310−3 1.0

O2 20.21310−6 0.4 25.76310−3 1.0

CO2 14.6310−6 ,1000 16.2310−3 2.0
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In Fig. 5, experimental data in oxygen are compared with
the model results.hb/h=1.0 is used to calculate the model
curve. The value found in[39,40] is hb/h=0.4. The model
curve calculated with this value does not match the experi-
mental data. In Fig. 6, the model line shapes with different
hb are compared for oxygen aty=2.18. We see that the
model is reasonably sensitive to the bulk viscosity. This
opens the possibility to measure bulk viscosity using the co-
herent Rayleigh-Brillouin scattering.

In Fig. 7, the experimental data in carbon dioxide are
compared with the seven moment molecular model. The
comparison is not satisfactory. For the 1 atm data, the model
gives a higher Rayleigh peak. The most serious problem is
that at largery parameters, thep=3.0 atm andp=4.0 atm
panels, the model failed to predict the correct position of the
Brillouin peaks. The peak separation of the experimental
data at p=4.0 atm corresponds to a speed of sound at
283.0 m/s. Available CO2 data at 4 and 5 atm give a value
of the speed of sound as 280.0±5.8 m/s. This value is larger
than the values(,259 m/s at 273 K) listed in reference

books[35]. The model gives a speed of,305 m/s, which is
significantly larger than the experimental data. Here, a
simple fitting by varying the bulk viscosity is insufficient.
For a bulk viscosityhb that is ,103 times larger than the
shear viscosityh, the position of the Brillouin peak calcu-
lated by the model is no longer sensitive to the internal spe-
cific heat cint. If one wants to match the Brillouin peaks’
separation by using a smallhb/h,1, the calculated relative
intensity of the Brillouin peaks to the Rayleigh peak is much
smaller than the corresponding experimental data.

The mismatch between the model and the experiment in
CO2 indicates that the model needs further development. In
CO2, the vibrational modes come into play. In light diatomic
molecules, the vibrational quantum is much higher than
room temperature; for example, it is about 3000 K in N2.
The vibrational quantum of polyatomic molecules such as
CO2 is closer to the room temperature(,960 K in CO2)
[37]. It would be of interest to obtain the CRBS data in a
wide temperature range in various gases. The data would be
useful in the studies of kinetic theory.

FIG. 4. (Color) Coherent Rayleigh-Brillouin scattering in nitrogen. A comparison between the seven moment molecular gas model with
the experimental data. The blue curves are the experimental data, the red curves are the convolution of the instrument function(shown by
the dashed red curve in the 1 atm panel) and the theoretical line shape.
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V. MODEL COMPARISON

The molecular CRBSs7 ands6 models we developed in
Sec. IV are also applicable to atomic gases. We suppress the

internal modes by settinghb=0 andcint=0. In the calcula-
tion, we actually sethb=10−33h and cint=10−3 to avoid
numerical singularity.

We previously presented an atomic model[9] that
matches well with the CRBS data of atomic gases. We now
compare the moleculars7 model with this atomic model. The
two models have different definitions of they parameter. The
way to compare is to use the same optical configuration data
and the same gas pressure. For example, with our experimen-
tal setup, atp=1 atm, the atomic modely parameter is
ymono=0.47 and the molecular modely parameter isy=0.55.
The atomic model requires shear viscosity for the calcula-
tion, and the molecular s7 model needs both shear viscosity
and thermal conductivity.

Figure 8 shows the comparison using argon shear viscos-
ity and heat conductivity. Four pairs of curves were com-
pared, corresponding top=0, 1, 3, and 5 atm. Forp=0 atm,
the two models yield identical results. This is in accordance
with our expectation, since, in the collisionless limit, the col-
lision terms do not play a role. For the higher pressure cases,

FIG. 5. (Color) Coherent Rayleigh-Brillouin scattering in oxygen. A comparison between the seven moment molecular gas model with
the experimental data. The blue curves are the experimental data, the red curves are the convolution of the instrument function and the
theoretical line shape. A bulk viscosityhb=1.0h is used to calculate the theoretical line shape.

FIG. 6. Coherent Rayleigh-Brillouin scattering line shape in
oxygen with different bulk viscosity aty=2.18.
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the moleculars7 model predicts stronger Brillouin doublets
than the atomic model. We have observed in[9] that the
atomic model overestimates the Brillouin peaks, therefore,
the moleculars7 model performance has not surpassed the
atomic model for atomic gases.

It is a good place to revisit oury parameter given in[9],
we now denoteymono for clarity. Our choice of theymono
parameter does not follow a Chapman-Enskog analysis,
which is the basis for most other authors. We followed a
more empirical approach by identifying the collision fre-
quency in the BGK model literally and connecting it to the
shear viscosity. Such aymono parameter definition was justi-
fied by favorable agreement between the experimental and
theoretical line shapes. The match between thes7 model and
the atomic gas model over a wide kinetic range further sup-
ports this choice ofymono.

Next, we compare thes7 ands6 models. In a subsequent
paper, Tentiet al. [13] modified their model for the sponta-
neous Rayleigh-Brillouin scattering. They concluded that the
six moment model fits the experimental data better than the

seven moment model. Specifically, fory,1, their seven mo-
ment model shows a weaker Rayleigh peak than the six mo-
ment model, with the latter matching better with the ob-
served line shape in HD[13]. Since we have used the same
collision terms, it is necessary for us to check the relative
performance of thes6 ands7 models.

In our derivation, the difference between the spontaneous
and coherent scattering lies only in theB vector of Eq.(43).
For spontaneous scattering, the right-hand side of the matrix
equation is given by Eq.(45). In addition, the power spec-
trum is no longer given by Eq.(5). Instead, it is proportional
to the real part of the spontaneous density perturbation
nsptsk,vd:

,sptsk,vd ~ Refnsptsk,vdg. s53d

The reason for the difference is that, in spontaneous scatter-
ing, we solve an initial value problem and a Laplace trans-
form is applied over time; while in coherent scattering, we

FIG. 7. (Color) Coherent Rayleigh-Brillouin scattering in carbon dioxide. A comparison between the seven moment molecular gas model
with the experimental data. The blue curves are the experimental data, the red curves are the convolution of the instrument function and
theoretical line shape.
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solve for a steady state solution and a Fourier transform is
applied over time.

We first check the difference ofs6 ands7 models for the
spontaneous scattering. This way, we can compare our re-
sults with that of Tentiet al. [13]. Tenti’s FORTRAN program
of his six moment model is widely circulated. We obtained a
copy from Forkey[38]. The program has been slightly modi-
fied to adapt to more recent computer operating systems, but
the core algorithm remains original. We have used nitrogen
dynamics parameters to calculate the curves in this figure.
We also compared the model programs using parameters of
O2 and CO2. A similar difference as shown in Fig. 9 was
observed. In general, for spontaneous Rayleigh-Brillouin
scattering, thes6 ands7 models yield identical line shape for
y&0.5. In the range of 0.5&y&5, the s7 model predicts
slightly narrower and higher peaks for both the Rayleigh and
Brillouin peaks, representing a less damped perturbation.
Our observation of the two model’s differences is the oppo-
site of Tenti [13]. They found a sharper Rayleigh peak for
HD at y,1. The reason for the opposite observation remains
unsolved. A possible contradiction, which requires special

care, is the calculation ofIrl
r8l8’s. In s6 model, they are

Irl
r8l8sj ,yd, while in the s7 model, they areIrl

r8l8sj ,y7d, with
y7=s3/2dy.

We now compare the coherent Rayleigh-Brillouin line
shapes calculated by thes7 and thes6 model. We would like
to see which model matches the experimental data better. In
Fig. 10, we plot the line shape calculate by the seven mo-
ment and six moment models. Nitrogen gasdynamics param-
eters were used in the calculation.

For y&0.2, the results are indistinguishable. Obvious dif-
ference can be seen fory,1. For largery parameters, the
seven moment model in general predicts slightly sharper
Brillouin peaks, indicating slower dissipation processes.
With the uncertainty in bulk viscosities, the data do not show

a definitive preference. We feel that more experimental ob-
servation is necessary to judge which model is better.

VI. DISCUSSIONS

The experimental configuration of coherent Rayleigh–
Brillouin scattering follows a generic four wave mixing ex-
periment. The phase matching scheme can be quite flexible.
The data in this paper were collected using a coplanar back-
ward scattering phase matching configuration, illustrated in

FIG. 8. A comparison between the moleculars7 model (solid
curve) and the atomic model(dashed curve) for the coherent
Rayleigh-Brillouin scattering line shape in N2. The area under each
curve is normalized to 1. The curves are plotted using argon shear
viscosity and thermal conductivity at 292 K.

FIG. 9. A comparison of spontaneous Rayleigh-Brillouin scat-
tering line shape by three model programs in N2. The solid curve is
by the seven moment model(Pans7) program, the dashed curve by
the six moment model(Pan s6) program, and the dotted line by
Tenti six moment model(Tenti s6) program. The curves by the two
six moment model programs completely overlap. The area under
each curve is normalized to 1/2.

FIG. 10. A comparison of the coherent Rayleigh-Brillouin scat-
tering line shape calculated by the seven momentss7d and the six
moment ss6d models. The solid curves are calculated by thes7
model, the dashed curves by thes6 model. The area under each
curve is normalized to 1/2.
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Fig. 11(a). With a crossing angleu near 180°, the fringe
pattern has a large wave numberk, i.e., a short spatial period.
Such a configuration has a strong optical dipole force and a
small y parameter.

In Fig. 11(b), we also illustrate a backward scattering,
three dimensional, and two-color phase matching scheme.
By varying the crossing angleu, one can access differenty
parameter for a given gas pressure. The backward scattering
configuration is useful when the speed of sound in the gas is
of interest.

In the three-dimensional backward scattering scheme
shown in Fig. 11(c), the two pump beams(k1 andk2) define
a plane. The phonon wave vector lies in this plane and is
perpendicular to the equipartition line of the pump beams’
crossing angleu. The probe beam and the signal beam forms
a plane that intersects the pump beams’ plane along the pho-
non wave vector. This phase matching scheme is similar to
that of a foldedBOXCARS [42]. In a 3D phase matching
scheme, the signal beam no longer follows one of the pump
beams. The perpendicular polarization of the pump beams
and the probe beam is no longer necessary. The scheme im-
proves the signal-to-noise ratio since the signal beam is sepa-
rated in space, however, the alignment of the beams is a little
more challenging than in a coplanar scheme. Several scans in
room air were performed with this 3D phase matching
scheme. The two color configuration shown in Fig. 11(d) is
widely used in LITA and LIEG, usually with a cw probe
laser. Many experimental issues have been discussed in the
literature.

CRBS can be used as a laser diagnostic technique. To-
gether with laser induced thermal acoustics and laser induced
electrostrictive gratings, they provide technique capable of
making localized and high signal-to-noise ratio measure-
ments of gases from the collisionless limit to the hydrody-
namic regime. Further development of CRBS is desirable. In
our demonstrative experiments, it takes hundreds of laser
shots to scan a high resolution line shape. This limits the use
of CRBS in diagnostics where physical processes change
quickly. We note that the CRBS signal is sufficiently strong,
and a single shot scheme is possible. The challenge would be
to resolve the narrows,6 GHzd line width for the shot.
Overall, we expect wide application of CRBS in gas diag-
nostics.

The CRBS line shape is a result of the balance between
laser excitation and collisional relaxation of the gas density
perturbation. CRBS data can be a valuable source for the
study of kinetic theories. We propose to measure bulk vis-
cosity using coherent Rayleigh-Brillouin scattering in vari-
ous gases in a wide temperature and pressure range. The
unsatisfactory comparison between the theory and the CO2
data indicate that the theory needs refinement.

In CRBS, the electromagnetic energy of the pump beams
is coupled with the kinetic and internal energies of the gas
particles at a nonresonant frequency. In this paper, we only
considered a small optical dipole force. The potential well
produced by the crossing pump beams is much less than the
average thermal energy of the gas particles. The perturbation
to the gas particles’ energy distribution function is small so
that the kinetic equation can be linearized. With more inten-
sive pump laser beams, a significant amount of neutral par-
ticles may be trapped in the optical lattice, as suggested in
[43,44]. A strong optical dipole force field may be used to
perturb or transport an ensemble of gas particles at room
temperature. When an ensemble of particles is considered,
the balanced effects of the optical perturbation and the colli-
sional relaxation may be of interest in recent efforts of opti-
cally manipulating nanoscopic particles[45,46].
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