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We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quan-
tum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne
local-oscillator angle; forn-mode systems they depend onn heterodyne mixing angles. The canonical formal-
ism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of
homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In
the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton pro-
cesses and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence
and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators
with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning
of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the
relevance of the formalism for the study of degenerate(up-)down-conversion processes. In a companion paper
[F. Dell’Anno, S. De Siena, and F. Illuminati,69, 033813(2004)], we provide the extension of the nonlinear
canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed
states, and we discuss their possible experimental realization.
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I. INTRODUCTION

The study of the nonclassical states of light has recently
attracted renewed attention because of the key role they may
play, beyond the traditional realm of quantum optics, in re-
search fields of great current interest, such as laser pulsed
atoms and molecules[1], Bose-Einstein condensation and
atom lasers[2], and quantum information theory[3]. Funda-
mental physical properties for an efficient functioning of the
quantum world such as interferometric visibility, robustness
of superpositions against environmental perturbations, and
degree of entanglement are typically enhanced by exploiting
states which exhibit strong nonclassical features.

The simplest archetypal examples of nonclassical states
are of course number states, whose experimental realization
is however difficult to achieve. Moreover they share very
few of the coherence properties that would be desirable both
in practical implementations and in fundamental experi-
ments. The most important experimentally accessible non-
classical states are thetwo-photonsqueezed states[4–6].
They are Gaussian, exhibit several important coherence
properties, and can be obtained by suitably generalizing the
notion of coherent states[7]. Squeezed states can be easily
introduced by linear Bogoliubov canonical transformations
and the associated eigenvalue equations for the transformed
field operatorsbsa,a†d: buClb=buClb. They can be pro-
duced in the laboratory through the dynamical evolution of
parametric amplifiers[8], and provide a useful tool in vari-
ous areas of research. For instance, they have been proposed

to improve optical communications[9] and to measure and
detect weak forces and signals such as gravitational waves
[10]. Moreover, twin beams of bipartite systems, i.e., two-
mode squeezed states, are maximally entangled states, a
property of key importance in quantum computation and in
quantum information processing.

Realistic and scalable schemes of quantum devices and
operations with continuous variables might however require
the realization of multiphoton processes. In this respect, it is
crucial to investigate the existence and structure ofmultipho-
ton nonclassical states of light. A challenging goal is to de-
fine suitable multiphoton generalizations of the effective
Hamiltonian description of two-photon down-conversion
processes and two-photon squeezed states. Natural candi-
dates should be nonclassical states obtained by nonlinear
unitary evolutions associated to anharmonic Hamiltonians
and multiphoton down-conversion processes. In turn, nonlin-
ear unitary evolutions might be of great importance in the
implementation of universal quantum computation with con-
tinuous variables systems[11,12]. Experimental realizations
could be obtained by considering the dynamics of the polar-
izability in nonlinear optical media[13]:

Pi = e0fxs1dEi + xi jk
s2dEjEk + ¯ + xii 1i2¯in

snd Ei1
+ ¯ + Ein

+ ¯g,

s1d

whereP is the polarization vector,xsnd thenth order suscep-
tibility tensor, andE the electric field. Implementation of
higher-order multiphoton parametric processes involves sev-
eral terms in the expansion, Eq.s1d. For instance,k-photon
parametric down-conversions involve all contributions at
least up to the term with couplingxskd, whose strength in
nonlinear crystals is in general extremely weak fork.2. It
must however be remarked that coherent atomic effects, such
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as electromagnetically induced transparency and coherent
population trapping manipulations of photons in cavities pro-
vide new promising techniques to generate large and lossless
optical nonlinearitiesf14g.

Phenomenological theories of multiphoton parametric
amplification, based on expansion, Eq.(1), were introduced
by Braunstein, Caves, and McLachlan[15], who considered
nonlinear interaction terms of the formzka

†k−zk
*ak producing

k-photon correlations. The problem was numerically ad-
dressed by the authors, who showed that these interactions
generate squeezing and display remarkable phase-space
properties. Another interesting approach, but rather abstract
since it involves infinite powers of the canonical creation and
annihilation operators, was put forward in Ref.[16] where
generalized multiboson, non-Gaussian squeezed states were
introduced. A crucial question left unanswered by the above-
mentioned attempts is that, although the first nonlinear order
in expansion Eq.(1) can be associated, through the linear
Bogoliubov transformation, to an exactly diagonalizable
two-photon Hamiltonian and to exact two-photon coherent
states[5,6], higher-order nonlinearities have not been asso-
ciated so far to exact Hamiltonian models of multiphoton
effective interactions in a simple and physically transparent
way.

In a series of recent papers[17,18], the first step was
realized in this direction by defining canonical transforma-
tions that allow the exact diagonalization of a restricted class
of multiphoton Hamiltonians. In this formalism one adds to
the linear Bogoliubov transformation a nonlinear function of
a generic field quadrature. The canonical conditions impose
very stringent relations on the parameters of the transforma-
tions, and the resulting Hamiltonians describe a very peculiar
and restricted class of nonlinear interactions, not easily ame-
nable to realistic experimental realizations.

Studying the simplest case of a quadratic nonlinearity
[17,18], one determines multiphoton squeezed states both in
the case of nonlinear functions of the first quadratureX1
=sa+a†d /Î2 and in the case of nonlinear functions of the
second quadratureX2=−isa−a†d /Î2. These states exhibit in-
teresting nonclassical statistics and squeezing in the quadra-
ture associated to the nonlinearity; they may be denoted as
single-quadrature multiphoton squeezed states(SQMPSS).
The unitary operators associated to the two transformations
are a composition of squeezing, displacement, and a nonlin-
ear phase transformation[18] (see also Ref.[19]). The
scheme, although limited to one-mode systems, still provides
some insights for experiments in quantum information ex-
ploiting multiphoton processes[20]. In fact, the single-
quadrature multiphoton squeezed states include as a particu-
lar case the generalized “cubic phase” states(originally
introduced in the framework of quantum computation[11])
proposed by Bartlett and Sanders by adding displacement
and squeezing to the pure cubic phase transformation[12].
The single-quadrature canonical formalism(and the associ-
ated single-mode, single-quadrature multiphoton squeezed
states) is thus very limited because it amounts only to a pure
(nonlinear) phase transformations on a single quadrature.
Moreover, it does not allow nontrivial extensions to multi-
mode systems and nondegenerate processes.

In the present and in a companion paper, which we shall

denote as Part I and Part II, we show that these difficulties
can be overcome and that it is indeed possible to introduce a
general canonical formalism of multiphoton quantum optics.
In the present paper(Part I) we determine the most general
nonlinear canonical structure for single-mode systems by in-
troducing canonical transformations that depend on generic
nonlinear functions of homodyne combinations of pairs of
canonically conjugate quadratures. The homodyne canonical
formalism defines a class of single-mode, homodyne multi-
photon squeezed states; it includes the single-mode, single-
quadrature multiphoton squeezed states as a particular case,
and introduces a tunable free parameter, a local-oscillator
mixing angle, which allows us to interpolate between differ-
ent multiphoton model Hamiltonians and to arbitrarily vary
the field statistics of the states. In the companion paper(Part
II ) [21] we extend the multiphoton canonical formalism to
multimode systems. We show that such extension is realized
by nonlinear canonical transformations of heterodyne com-
binations of field quadratures. The scheme defines a structure
of multimode, heterodyne multiphoton squeezed states that
reduce to the homodyne states for single-mode systems. In
Part II we also show that the heterodyne squeezed states and
the associated effective multiphoton Hamiltonians can be re-
alized by relatively simple schemes of multiphoton conver-
sion processes[21]. In this way we introduce a complete
hierarchy of canonical multiphoton squeezed states:(a) mul-
timode heterodyne squeezed states,(b) single-mode homo-
dyne squeezed states, and(c) single-mode, single-quadrature
squeezed states. In the limit of vanishing nonlinearity the
multiphoton squeezed states reduce to the standard(single-
mode or multimode) two-photon squeezed states.

To construct a general canonical formalism of multipho-
ton quantum optics one must first circumvent the restrictions
following from the canonical conditions. In particular, the
prescription that a general, nonlinear mode transformation be
canonical prevents the possibility of introducing arbitrary
nonlinear functions depending simultaneously on two conju-
gate quadraturesX1 and X2. In fact, if the form of the non-
linear function is not constrained at all, the canonical condi-
tions force the nonlinear coupling to be trivially zero.

It is however possible to define a general canonical
scheme by introducing a simultaneous nonlinearity in two
conjugate quadratures if the nonlinear part of the transforma-
tion is an arbitrary function of thehomodynecombination
Î2uh u scosuX1+sin uX2d of the two quadratures (h
= uh uexp iu is arbitrary complex number). Such a canonical
structure allows naturally for a local-oscillator angleu mix-
ing the quadratures. The mixing is a physical process that
can be easily realized, e.g., by a beam splitter positioned in
front of a nonlinear crystal. Tuning the continuous parameter
u then allows us to vary the physical properties, and in par-
ticular the statistical properties, of the associated homodyne
multiphoton squeezed states.

The plan of the paper is as follows. In Sec. II we develop
the general formalism of nonlinear canonical transformations
for homodyne variables. In Sec. III we study the multiphoton
Hamiltonians associated to the nonlinear transformations,
specializing to the case of quadratic nonlinearity. We com-
pute the wave functions of coherent states associated to the
transformations, such as functions of the mixing angleu. In
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Sec. IV we determine the explicit form of the unitary opera-
tors associated to the canonical transformations. They are
composed by the product of a squeezing, a displacement, and
a mixing operator with nonquadratic exponent which com-
bines conjugate quadratures. In Sec. V, we study the statisti-
cal properties of the homodyne multiphoton squeezed states.
We compute the uncertainty products, and determine the
condition for “quasiminimum” uncertainty. We then study
the quasiprobability distributions, and the photon statistics.
We show that these properties depend strongly on the local-
oscillator angleu. In Sec. VI, we summarize our results and
discuss the outlook and extensions that are developed in the
companion paper, Part II.

II. NONLINEAR CANONICAL TRANSFORMATIONS
FOR HOMODYNE VARIABLES

We could naively imagine that the problem of introducing
nonlinear canonical transformations for a single bosonic
modea should be solved by adding to the standard Bogoliu-
bov linear transformation an arbitrary(sufficiently regular)
Hermitian nonlinear functionFsa,a†d of the fundamental
mode variablesa,a†:

b = ma + na† + gFsa,a†d. s2d

Requiring that the transformed modeb be bosonic, i.e.,
fb,b†g=1, and exploiting the well-known formulas

fa,Gsa,a†dg = ] Gsx,yd/] yux=a,y=a†,

fa†,Gsa,a†dg = − ] Gsx,yd/] xux=a,y=a†,

then the condition for the transformation, Eq.s2d, to be ca-
nonical reads

umu2 − unu2 + ugu2fF,F†g + mg* ] F†

] a†

− ng* ] F†

] a
+ m*g

] F

] a
− n*g

] F

] a† = 1. s3d

It is very difficult to determine the most general expres-
sion of the nonlinear functionF, which allows us to satisfy
the condition, Eq.(3). Nevertheless, if we assume that the
nonlinear function is Hermitian, then canonical generaliza-
tions of the Bogoliubov transformation do exist, and the
most general expression is in terms of arbitrary Hermitian,
nonlinear, analytic functionsF of homodyne linear combina-
tions of the fundamental mode variables. It reads

b = ma + na† + gFsh*a + ha†d, s4d

with h;uhueiu a complex number. Exploiting the functional
dependence ofF on the homodyne combination of the modes
a anda†, one finds that the general relation, Eq.s3d, reduces
to the following algebraic constraints on the complex coeffi-
cients of the transformation:

umu2 − unu2 = 1,

Re feiusmg* − n*gdg = 0. s5d

With the parametrization

m = coshr, n = sinh reif, g = ugueid, s6d

we can express the canonical conditions, Eqs.s5d, in the
form of the transcendental equation

coshr cossu − dd − sinh r cossd + u − fd = 0. s7d

Equations7d can be solved numerically. For instance, given
some fixedr, u, andf we can find numerical solutions for
the phase variabled, which can be used as an adjustable
parameter for the canonicity of the transformation. Alterna-
tively, we can look for particular analytical solutions of Eq.
s7d: letting f=0, we obtain the simplified expression

tan u tan d = − e−2r . s8d

For given values of the local-oscillator angleu this is a rela-
tion between the phased of the nonlinearity and the strength
r of the squeezing; e.g., fixingu= ±p /4, we get tand
= 7e−2r. Setting u=−d implies instead tand=e−r. Of
course, Eq.s7d admits infinite solutions which correspond
to a great variety of nonlinear canonical operators. We can
however select more stringent conditions, imposing

d − u = ±
p

2
± kp, d + u − f = ±

p

2
± hp, s9d

with k,h arbitrary integers. This choice allows us to satisfy
Eq. s7d at the price of eliminating one degree of freedom
from the problem. In conditions, Eqs.s9d, it is obviously
sufficient to considerk=h=0. From Eqs.s5d and s7d it is
evident that the modulus ofh is irrelevant in the determina-
tion of the canonical constraints of the transformations.
Therefore, from now on we setuh u =1/Î2. In this way, the
homodyne character of the transformation scheme be-
comes fully evident. We can in fact express the transfor-
mation, Eq.s4d, in terms of the rotated homodyne quadra-
turesXu ,Pu defined as

Xu = sae−iu + a†eiud/Î2 = X1 cosu + X2 sin u,

Pu ; Xu+p/2 = − X1 sin u + X2 cosu, s10d

with fXu ,Pug= i. The transformed modeb can then be ex-
pressed in terms of the rotated modeau=ae−iu, or of the
rotated quadratureXu, as

b = m̃au + ñau
† + gFsXud, s11d

with the rotated parameters

m̃ = meiu, ñ = ne−iu. s12d

From Eqs.s10d–s12d the canonical conditions, Eqs.s5d, can
be expressed in terms of the rotated parameters as

um̃u2 − uñu2 = 1,
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Refsm̃g* − ñ*gdg = 0. s13d

The form, Eq.(11), of the canonical transformation, Eq.(4),
allows the straightforward determination of the coherent
states of the transformed modes, and of the unitary operators
associated to the transformations, as we will show in the
following sections. Obviously, wheng=0 one recovers the
standard linear Bogoliubov transformations and the structure
of standard two-photon coherent states.

III. MULTIPHOTON HAMILTONIANS
AND MULTIPHOTON SQUEEZED STATES

We now consider the Hamiltonians that can be associated
to the canonical transformations, Eq.(4). We will restrict
ourselves to the case of quadratic Hamiltonians diagonal in
the transformed modes:

H = b†b, s14d

whose general expression in terms ofa,a† reads

H = unu2 + sumu2 + unu2da†a + smn*a2 + H.c.d

+ sm*ga†F + n*gaF + ugu2F†F + H.c.d. s15d

In terms of the rotated quadraturesXu ,Pu, and exploiting the
canonical constraints, Eq.s7d, the Hamiltonian, Eq.s15d, can
be recast in the form

H = − 1
2 + 1

2um̃ + ñu2Xu
2 + 1

2um̃ − ñu2Pu
2 + ugu2F2sXud

+
i

Î2
g*sm̃ − ñdhPu,FsXudj, s16d

where h¯ ,¯ j denotes the anticommutator. The Hamil-
tonian, Eq.s16d, is further simplified if we make use of the
conditions, Eqs.s9d:

H =
e±2r

2
Xu

2 −
1

2
+

e72r

2
fPu ± Î2ugue±rFsXudg2. s17d

Equation s17d is of the same form as obtained in Refs.
f17,18g, but with the crucial difference that the nonlinearity
is now placed on the homodyne mixed, rotated quadratureXu

rather than on a single one of the original quadraturesXi, and
moreover the mixing depends on a tunable free parameter,
the local-oscillator angleu. Equations17d clearly shows that
the variableXu is squeezed, and that its conjugate variable, in
the sense of being antisqueezed by a corresponding amount,
is the “generalized momentum”Pu±Î2ug ue±rFsXud. One
then can expect that the quasiprobability distributions will
be squeezed along a rotated axis, as will be shown in the
following sections.

A. The case of quadratic nonlinearity

In studying the statistical properties of the coherent states
associated to the Hamiltonians, Eqs.(15) and (16), we will
specialize to the case of the lowest possible nonlinearity in
powers of the homodyne rotated quadratures, i.e., we will
consider the quadratic form

FsXud = Xu
2. s18d

Inserting Eq.s18d in Eqs.s15d ands16d, the associated four-
photon Hamiltonian reads

H4p = A0 + sA1a
† + A2a

†2 + A3a
†3 + A4a

†4 + H.c.d + B0a
†a

+ B1a
†2a2 + Ca†2a + Da†3a + H.c . , s19d

where the coefficientsAi ,Bi ,C,D are

A0 = unu2 + 3
4ugu2, A1 = 1

2m*g + 3
2ng* + e2iun*g,

A2 = 3
2e2iuugu2 + m*n, A3 = 1

2e2ium*g + 1
2e2iung* ,

A4 = 1
2e4iuugu2, B0 = umu2 + unu2 + 3ugu2,

B1 = 3
2ugu2, C = 1

2e2iusmg* + n*gd + m*g + ng* ,

D = e2iuugu2. s20d

The Hamiltonian, Eq.(19), describes one-, two-, three-, and
four-photon processes with effective linear and nonlinear
photon-photon interactions associated to degenerate paramet-
ric down-conversion processes in nonlinear media.

We see that the Hamiltonian coefficients, Eq.(20), cru-
cially depend on the homodyne angleu, allowing for a great
freedom in searching for physical implementations of multi-
photon states by processes associated to higher-order nonlin-
ear susceptibilities.

B. Homodyne multiphoton squeezed states

We now compute the coherent states associated to the
canonically transformed Hamiltonian. We define the coherent
statesuClb associated to Hamiltonian, Eq.(15), as the eigen-
states (with complex eigenvalueb= ub ueij) of the trans-
formed annihilation operatorb:

buClb = buClb. s21d

Choosing the representationCbsxud;kxu uClb in which the
homodyne rotated quadratureXu is diagonal, the eigenvalue
equation, Eq.s21d, reads

]xu
Cbsxud = −

1

m̃ − ñ
fsm̃ + ñdxu + Î2gFsxud − Î2bgCbsxud,

s22d

where we have usedPu=−i]xu
. The general solution of Eq.

s22d is

Cbsxud = N expF−
a

2
xu

2 + cxu − bExu

dyFsydG , s23d

where

N = S p

RefagD
−1/4

expF−
sRefcgd2

2 Refag G
is the normalization, and the coefficients read
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a =
m̃ + ñ

m̃ − ñ
, b =

Î2g

m̃ − ñ
, c =

Î2b

m̃ − ñ
. s24d

It can be easily verified that it is always Refag.0 and
Refbg=0. We can express the wave function in the form

Cbsxud = FRefag
p

G1/4

expF−
Refag

2
Sxu −

Refcg
RefagD

2G
3expF− iSImfbgExu

dyFsyd +
Imfag

2
xu

2

− ImfcgxuDG . s25d

By recalling the definition of the parameters, Eqs.s6d, and
the canonical conditions, Eqs.s9d, the expression, Eq.s25d,
reduces to

Cbsxud = A expH−
e±2r

2
fxu − Î2ubue7r cossj − udg2J

3 expHiÎ2e±rFubusinsj − udxu − uguExu

dyFsydGJ ,

s26d

where A=p−1/4e±r/2. The wave function, Eq.s26d, has a
Gaussian density in the variablexu, with a squeezed vari-
ance, while both the phase and the density depend crucially
on the homodyning, i.e., on the local-oscillator angleu. We
name therefore the states, Eqs.s21d–s26d, homodyne multi-
photon squeezed statessHOMPSSd.

The dependence on the homodyningu has important
physical implications, especially with regard to the statistical
properties of the HOMPSS. In fact, in general the states, Eqs.
(25) and(26), in theXu-diagonal representation display non-
Gaussian terms in the phase, for instance, a cubic phase term
in Xu for a quadratic nonlinearity. Moreover, the nontrivial
structure of the HOMPSS emerges clearly when we write
them in terms of the original quadratures, for instance, in the
X1-diagonal representationCbsxd;kxuClb. Specializing to
the quadratic nonlinearityFsXud=Xu

2 for a generic angleu
different from 0,p, one has

Cbsxd = N exphiax2 + bxjAiFcx+ d

c2/3 G , s27d

whereAif¯g denotes the Airy function, and the coefficients
a,b,c,d are given by

a = −
1

2
cot u, b =

m − n

2Î2g sin2 u
,

c =
− ism̃ − ñd
Î2g sin3 u

, d =
sm − nd2

8g2 sin4 u
−

b

g sin2 u
.

The general non-Gaussian character of the HOMPSS is thus
apparent when writing them in the original field-quadrature
representation.

C. Reduction to single-quadrature multiphoton squeezed states

When considering the special casesu=0 andu=p /2 the
HOMPSS reduce to the SQMPSS previously introduced in
Refs.[17,18]. In these two special cases the canonical trans-
formations, Eq.(11), reduce to

b = ma + na† + gFsXid, i = 1,2, s28d

wherei =1 for u=0 andi =2 for u=p /2.
The associated coherent states are defined as the eigen-

states ofb with eigenvalueb; in the particularly interesting
case of zero phase difference betweenm andn, and param-
etrizing b in terms of the coherent amplitudea ,b=ma
+na* sa=a1+ ia2d, they read[17,18]

Cb
gFsxid =

1
Îpe−2ri

expH−
sxi − xi

s0dd2

2e−2ri
J

3exphifcixi + erig̃iGsxidgj, i = 1,2, s29d

where

r1 = r, r2 = − r ,

g̃1 = Imsgd, g̃2 = − Resgd,

Gszd =E
0

z

Fsyddy,

x1
s0d = Î2a1, x2

s0d = − Î2a2,

c1 = Î2a2, c2 = − Î2a1.

The expression, Eq.s29d, for the SQMPSS shows immedi-
ately that the quadrature associated to the nonlinearity is
squeezed, while, in the chosen representation, the nonlinear
function F enters in the phase of the wave packet. Explicit
non-Gaussian densities are again realized if we adopt the
“coordinate” representationsin which X1 is diagonald when
the nonlinearity is placed onX2, or vice versa.

IV. UNITARY OPERATORS

The expression, Eq.(26), allows us to identify, in terms of
the homodyne rotated quadratures, the unitary operatorUhom
associated to the canonical transformation, Eq.(11), such
that the HOMPSS are obtained by applyingUhom to the
vacuum:

uClb = Uhomu0l, s30d

where u0l is the vacuum state of the original field mode
a: au0l=0. The unitary operatorUhom then reads

Uhom= UusXudDusaudSuszud, s31d

where

Dusaud = exp sauau
† − au

*aud

is the standard Glauber displacement operator withau

=m̃*b− ñb* and
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Suszd = expS−
zu

2
au

†2 +
zu

*

2
au

2D
is the standard squeezing operator withzu=reisf−2ud. Finally,
the “mixing” operatorUu reads

UusXud = expF− i ImfbgEXu

dYFsYdG , s32d

where, exploiting the canonical conditions, Eqs.s9d, Imfbg
= ±Î2ugue±r, and the abstract operatorial integration ac-
quires a precise operational meaning in any chosen repre-
sentation.

If we specify to the case of quadratic nonlinearityFsXud
=Xu

2, we have

UusXud = exph− i Imfbg3−12−3/2sae−iu + a†eiud3j

= exph− i Imfbg3−12−3/2sa3e−3iu + a†3e3iu + 3a†a2e−iu

+ 3a†2aeiu + 3ae−iu + 3a†eiudj. s33d

The structure ofUu becomes clearer by expressing it in
terms of the field quadratures:

UusXud = exph− i Imfbg3−1sX1
3 cos3 u + X2

3 sin3 u

+ 3X1
2X2 cos2 u sin u + 3X1X2

2 sin2 u cosu

+ 3iX1 cos2 u sin u + 3iX2 sin2 u cosudj. s34d

The unitary operatorUu, Eq. s34d, depends on all powers of
the conjugate field quadratures up ton+1 if the nonlinearity
F is a power of ordern of the homodyne quadratureXu.
Moreover it is apparent thatUu is a mixing operator: it mixes
nontrivially the original quadratures depending on the values
of the local-oscillator angle, except for the special casesu
=0 andu=p /2 treated in Refs.f17,18g, where the mixing
disappears and the nonlinearity is a simple power of a single
field quadratureseither X1 or X2d. Obviously, the quadratic
nonlinearity is only one of a large class of possible choices
allowed for F in Eq. s32d, so that many complex nonlinear
unitary homodyne mixing of the original field quadratures
are possible.

In the special casesu=0 andu=p /2 the HOMPSS reduce
to the SQMPSS. Then, from the choice of representation of
Eq. (29) we can immediately argue the form of the unitary
operators that produce these particular multiphoton squeezed
states:

Ui = expfierig̃iGsXidgDsadSsrd, s35d

whereSsrd is the one-mode squeezing operator forf=0 and
Dsad is the Glauber displacement operator. We see that in
these particular cases the nonlinear part of the transformation
adds to the squeezing and the displacement a pure, nonlinear
phase term in one of the quadratures. We also notice that
with the choiceF=X1

2 we recover the cubic phase states pro-
posed in Ref.f12g as a useful tool for the realization of
quantum logical gates.

V. STATISTICAL PROPERTIES AND HOMODYNE
ANGLE TUNING

A. Uncertainty products

When considering the statistical properties of the
HOMPSS we first study the behavior of the uncertainties in
the homodyne quadraturesXu ,Pu. We first express the gen-
eralized variables in terms of the transformed mode operators
b andb† (see the Appendix):

Xu =
1
Î2

fsm̃* − ñ*db + sm̃ − ñdb†g, s36d

Pu =
i

Î2
fsm̃ + ñdb† − sm̃* + ñ*db − 2i Imsm̃g* − ñ*gdFsXudg.

s37d

These relations lead to the following expressions for the un-
certainties:

D2Xu = 1
2um̃ − ñu2,

D2Pu = 1
2um̃ + ñu2 + 2 Im2fm̃*g − ñg*g

3skF2lb − kFlb
2d − 2 Im fm̃*g − ñg*g

3Imfsm̃ + ñdkfF,b†glbg, s38d

wherek¯lb denotes the expectation value in the HOMPSS
uClb, andf¯ ,¯ g denotes the commutator. It is evident that
the nonlinearity affects onlyDPu, as the second of Eqs.(38)
explicitly depends on the form of the functionF. Consider-
ing the quadratic form forF and assuming the canonical
conditions, Eqs.(9), Eqs.(38) become

D2Xu = 1
2e72r ,

D2Pu = 1
2e±2r + e72rugu2h1 + 4ubu2 + 4 Refe−2iub2gj.

s39d

If we now consider the uncertainty product, and if we define
b= ub ueij, Eqs.(39) give

D2XuD2Pu = 1
4 + 1

2ugu2e74rh1 + 4ubu2 + 4ubu2 cos 2sj − udj.

s40d

It is to be remarked that this last relation attains its minimum
for j−u= ±p /2:

D2XuD2Pu = 1
4 + 1

2ugu2e74r . s41d

Equations41d can be seen as a quasiminimum uncertainty
relation; in fact, although the second term is not exactly zero,
for small nonlinearities it will be surely very small with re-
spect to the first termsi.e., the Heisenberg minimumd, due
both to ug u ,1 and to the decreasing contribution of the ex-
ponential for a suitable choice of the sign ofr.

B. Average photon number

We now turn to the calculation of the average number of
photonsknl=ka†al in HOMPSSuClb. We specialize to the
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case of a quadratic nonlinearity. We will show thatknl is
strongly affected both by the strengthugu of the nonlinearity
and by the mixing angleu. In Fig. 1 we study the behavior of
knl as a function ofugu for fixed values of the squeezed
coherent amplitudeb and of the magnituder of the squeez-
ing, and for three different values of the mixing angleu. Due
to the canonical conditionf=2u, there cannot be pure
squeezing foruÞ0 even in absence of the nonlinearity, and
thus atg=0 we have different initial average numbers of
photons depending on the value ofu. The analytic expression
for knl for a homodyne transformation withug u =0 and f
=2u reads

knl = ubu2 cosh 2r − Refb*2e2ıugsinh 2r + sinh2r . s42d

We see from Fig. 1 thatknl need not show a monotonic
behavior as a function of the nonlinearity. It is in fact very
sensitive to the mixing angleu, and although it eventually
always grows for sufficiently large values ofugu, it can how-
ever initially decrease, depending on the mixing angleu, and
then increasing again very slowly at larger values ofugu.

This behavior suggests thatknl will show even more re-
markable properties when varyingu for different, fixed val-
ues ofugu. In Fig. 2 we analyze the behavior ofknl as func-
tion of u, at fixed ugu. For ug u =0 we recover the oscillatory
behavior ofknl as a function of the squeezing phasef=2u of
the standard two-photon squeezed state. In Fig. 2 we choose
the two particular values ofug u =0.5,1.0; we can see that the
oscillations ofknl become faster, and both peaks and bottoms
quickly rise to larger values with respect to the linear case.
Moreover, the behavior ofknl is not symmetric aroundu
=0,p when ug u Þ0, due to the fact that the nonlinearity in-
troduces several terms with different periodicity inu in the
expression ofknl (see the Appendix).

The nonlinearity plays the role of a “quantum coherent
pump” allowing for very large average numbers of photons
even in the case of lowest, quadratic nonlinearity.

C. Quasiprobability distributions and phase-space analysis

We now turn to the study of the statistics of direct, het-
erodyne, and homodyne detection for the homodyne multi-
photon squeezed statesuClb, showing in particular how the
statistics are significantly modified by the tuning of the mix-
ing angleu. We will consider the HOMPSS, Eq.(26), corre-
sponding to the canonical conditions, Eqs.(9), and we will
specialize to the lowest nonlinear functionFsxud=xu

2.
First of all we consider the quasiprobability distributions

associated to HOMPSS for some values ofu and compare
them to the corresponding distributions associated to the
standard two-photon squeezed states. This will allow a better
understanding of the behavior of the photon number distri-
butions and of the normalized correlation functions that will
be computed later.

The Q function

Qsad =
1

p
ukauClbu2 s43d

gives the statistics of heterodyne detection, and corresponds
to a measure of two orthogonal quadrature componentssual
being the coherent state associated to the coherent amplitude
a=a1+ ia2d. Figures 3 and 4 show three-dimensional plots of
theQ function of the HOMPSS, for fixed values ofr, ugu, b,
and for two different values ofu. For u=p /2, which corre-
sponds to the caseF=X2

2, i.e., no mixing, the plot resembles
the Q function for a squeezed state, but we can observe a
deformation of the basis, curved along the Refag=a1 axis.
For u=p /3, a case of true mixing of the field quadratures,
the deformation becomes much more evident and the
function is strongly rotated and elongated with respect to
the Q function of the two-photon squeezed state.

Homodyne detection measures a quadrature component
Xl=s1/Î2dsal+al

†d, wherel is a phase determined by the
phase of the local oscillator. Homodyne statistics correspond
to project the Wigner quasiprobability distribution onto axl

axis. With the identificationl=u we plot the Wigner qua-
siprobability distribution for orthogonal quadrature compo-
nentsxu andpu:

FIG. 1. Mean photon numberknl as a function ofugu, for a
HOMPSS with magnitude of squeezingr =0.8, coherent squeezed
amplitudeb=3, for the canonical conditionsd−u=−p /2, d+u−f
=−p /2, and different mixing anglesu=0 (full line), u=p /6
(dashed line), andu=p /4 (dotted line).

FIG. 2. The mean photon numberknl as a function ofu, for
HOMPSS with r =0.8,b=3, for the canonical conditionsd−u
=−p /2, d+u−f=−p /2, and different strengths of the nonlinearity:
ug u =0 (full line), ug u =0.5 (dashed line), and ug u =1 (dotted line).
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Wsxu,pud =
1

p
E dye−2ipuyCb

* sxu − ydCbsxu + yd. s44d

In Figs. 5 and 6 we show, respectively, a global projection
and an orthogonal section of the Wigner function foru
=p /2, i.e., no mixing, fixed canonical constraint, and inter-
mediate valueug u =0.4 of the nonlinearity. We see from
Fig. 5 that the Wigner function displays interference
fringes and negative values, exhibiting a strong nonclas-
sical behavior. This is best seen in Fig. 6 representing a
bidimensional section of the Wigner function, Fig. 5, at
xu=0. In Fig. 7 we show the Wigner function, for the same
values ofr, ugu, b, but for u=p /3, a value that realizes a
true mixing of the field quadratures. We see that the dis-
tribution becomes strongly rotated and elongated, with a
pattern of interference fringes and negative values, pro-

viding evidence of the complex statistical structure of the
HOMPSS when a true homodyne mixing is realized.

The behaviors of the quasiprobability distributions sug-
gest the following considerations. First of all, we recall that
the HOMPSS, although being states of minimum uncertainty
in the transformed(“dressed”) modessb,b†d, are not mini-
mum uncertainty states for the original quadraturesX1 and
X2; in fact, Eqs.(39)–(41) show that a further term due to the
unavoidable statistical correlations adds to the pure vacuum
fluctuations. This fact is reflected in the rotation and in the
deformation of the distributions. But we expect that this fea-
ture will affect also the behavior of other statistical proper-
ties, such as the photon number distribution. In particular,
shape distortions of the quasiprobability distributions
strongly modify the original ellipse associated to the stan-
dard two-photon squeezed states, giving rise, for suitable
values of the parameters, to deformed intersection areas with
the circular crowns associated in phase space to number
states. In turn, this will lead to modified behaviors of the
photon number distribution, including possible enhanced or

FIG. 3. Plot of theQ function, with r =0.8, ug u =0.4, b=3, u
=p /2, for the canonical conditionsd−u=−p /2, d+u−f=p /2.

FIG. 4. Q function, with r =0.8, ug u =0.4, b=3, u=p /3, for the
canonical conditionsd−u=−p /2, d+u−f=p /2.

FIG. 5. Plot of the Wigner functionWsxu ,pud, with r =0.8, ug u
=0.4, b=3, u=p /2, for the canonical constraintd−u=−p /2, d
+u−f=p /2.

FIG. 6. Bidimensional sectionWsxu=0,pud of the Wigner func-
tion with r =0.8, ug u =0.4, b=3, u=p /2, for the canonical condi-
tions d−u=−p /2, d+u−f=p /2.
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subdued oscillations[22] as the mixing angleu is varied.
Moreover, we expect that also the second- and fourth-order
normalized correlation functions will strongly depend onu,
showing a deeper nonclassical behavior, for instance, anti-
bunching, in correspondence to values ofu associated to
stronger nonclassical features of the Wigner function, such as
negative values and interference fringes.

D. Photon statistics

We first analyze the probability for countingn photons,
the so-called photon number distribution(PND) Psnd
= uknuClbu2, in direct detection, and neglecting detection
losses:

Psnd = UE dxuknuxulkxuuClbU2

=
1

2nn ! p1/2UE dxue
−xu

2/2HnsxudCbsxudU2

. s45d

Due to the nonlinear nature of the functionF, it is in general
impossible to write a closed analytic expression forPsnd,
which can however be easily determined numerically. In Fig.
8 we plot the PND of the HOMPSS for various intermediate
values of the local oscillatoru, together with the PND of the
two-photon squeezed states. As foreseen from the previous
phase-space analysis, the behavior of the PND strongly de-
pends on the value of the mixing angleu, and for suitable
choices ofu, r, and ugu, the PND shows larger oscillations
with respect to the two-photon squeezed states and the
HOMPSS withu=0. Moreover, the oscillation peaks persist
for growing n and are shifted for different values ofugu; this
behavior is due to the different terms entering in the unitary
operatorUusXud, Eq. s34d, which mix in a peculiar way the
quadrature operators foruÞ0,p /2.

Regarding the correlation functions, it is interesting to
study the behavior of the normalized second-order correla-
tion function

gs2ds0d =
ka†2a2l
ka†al2 =

kau
†2au

2l
kau

†aul2 , s46d

and of the normalized fourth-order correlation function

gs4ds0d =
kau

†4au
4l

kau
†aul4 , s47d

for the HOMPSS, and determine the different physical re-
gimes. In Figs. 9 and 10 we comparegs2ds0d as a function of
the squeezing parameterr for the two-photon squeezed states
and for the HOMPSS at different values ofu.

We see that also the correlation functiongs2ds0d shows the
strong nonclassical features of the HOMPSS; both the non-
linearity strengthugu and angleu strongly influence the be-
havior of the curves. In fact, the curves deviate from the
standard form and saturate at lower values with respect to the
two-photon squeezed states.

FIG. 7. Plot of the Wigner functionWsxu ,pud, with r =0.8, ug u
=0.4, b=3, u=p /3, for the canonical conditionsd−u=−p /2, d
+u−f=p /2.

FIG. 8. Psnd for the HOMPSS, corresponding to the canonical
constraintsd−u=−p /2, d+u−f=−p /2, for different values of the
parameters:b=3, squeezing magnituder =0.8, and strength of the
nonlinearityug u =0 (solid line); b=3, r =0.8, ug u =0.4, u=0 (dotted
line); b=3, r =0.8, ug u =0.5, u=p /6 (dashed line); b=3, r
=0.5, ug u =0.5, u=p /4 (dot-dashed line).

FIG. 9. The correlation functiongs2ds0d as a function ofr for the
HOMPSS, corresponding to the canonical constraintsd−u
=−p /2, d+u−f=−p /2, for several choices of the parameters:b
=3, g=0 (solid line); b=3, ug u =0.4, u=0 (dashed line); b=3, ug u
=0.05, u=p /6 (dot-dashed line); b=3, ug u =0.5, u=p /6 (dotted
line).
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The most significant feature is however obtained plotting
gs2ds0d as a function ofu, Figs. 11 and 12; the plots clearly
demonstrate that it is possible to pass from a sub-Poissonian
to super-Poissonian statistics. So, tuningu, we can have pho-
ton bunching or antibunching and we can select the preferred
statistics.

Also the fourth-order correlation functiongs4ds0d has been
studied as a function of the squeezing parameterr and of the
angleu. Its behavior is very similar to that ofgs2ds0d: both
the shape ofgs4ds0d as a function ofr and the saturation
levels are determined by the choice ofu. Moreover, four-
photon bunching or antibunching in correspondence to dif-
ferent values ofu can be observed.

VI. CONCLUSIONS AND OUTLOOK

We have introduced single-mode nonlinear canonical
transformations, which represent a general and simple exten-
sion of the linear Bogoliubov transformations. They are re-

alized by adding a largely arbitrary nonlinear function of the
homodyne quadraturesXu ,Pu. We have introduced the
HOMPSS defined as the eigenstates of the transformed an-
nihilation operator. The HOMPSS are in general non-
Gaussian, highly nonclassical states which retain many prop-
erties of the standard coherent and squeezed states; in
particular, they constitute an overcomplete basis in Hilbert
space. On the other hand, many of their statistical properties
can differ crucially from the ones of the Gaussian states. In
particular, we have shown the strong dependence of the pho-
ton statistics on the local-oscillator angleu. Among other
remarkable features, there are the possibilities of exploiting
the homodyne angle as a tuner to select sub-Poissonian or
super-Poissonian statistics, and as catalyzer enhancing the
average photon number in a state.

The single-mode multiphoton canonical formalism selects
a large number of non-Gaussian, nonclassical states, includ-
ing the single-mode cubic phase state, which generalize the
degenerate, Gaussian squeezed states. On the other hand,
both from the point of view of modern applications, such as,
e.g., quantum computation, and for experimental implemen-
tations, generalizations to two and more modes acquire more
interest.

In the following companion paper(Part II), we will ex-
tend the canonical scheme developed in the present paper
(Part I) to study multiphoton processes and multiphoton
squeezed states for systems of two correlated modes of the
electromagnetic field. This extension is important and desir-
able in view of the modern developments in the theory of
quantum entanglement and quantum information. In particu-
lar, we will show how to define two-mode nonlinear canoni-
cal transformations and we will determine the associated
“heterodyne multiphoton squeezed states”(HEMPSS). In the
context of macroscopic(quantum) electrodynamics in non-
linear media, we will moreover discuss the kinds of multi-
photon processes that can allow the experimental realizabil-
ity of the HEMPSS and of the effective interactions
associated to the two-mode nonlinear canonical formalism.

APPENDIX: INVERSION FORMULA
The nonlinear canonical transformation, Eq.(11), offers

the advantage to be invertible. In fact, it can be easily proved
that

FIG. 10. gs2ds0d as a function ofr for the HOMPSS, correspond-
ing to the canonicity conditionsd−u=−p /2, d+u−f=p /2, vs the
two-photon squeezed states(full line) b=3, for several choices of
the parameters:b=3, ug u =0.05, u=4p /9 (dashed line); b=3, ug u
=0.2, u=p /3 (dot-dashed line); b=3, ug u =0.5, u=p /3 (dotted
line).

FIG. 11. gs2ds0d as a function ofu for the HOMPSS, correspond-
ing to the canonicity conditionsd−u=p /2, d+u−f=p /2, for b
=3, r =0.5, ug u =0.4 (full line); b=3, r =0.4, ug u =0.1 (dashed line);
b=3, r =0.1, ug u =0.1 (dotted line).

FIG. 12. gs2ds0d as a function ofu for the HOMPSS, correspond-
ing to the canonicity conditionsd−u=−p /2, d+u−f=p /2, for b
=3, r =0.8, ug u =0.1 (full line); b=3, r =0.5, ug u =0.4 (dashed line).
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au = m̃*b − ñb† − sm̃*g − ñg*dFsXud. sA1d

Using Eq.sA1d and employing the canonical condition, Eq.
s13d, we obtain Eqs.s36d and s37d. EquationssA1d and s36d
allow us to obtain the operatora expressed in terms ofb and
b†. EquationsA1d has been used to compute the uncertainty
products, the average photon number, and the second- and
fourth-order correlation functions.

For instance, in the case of quadratic nonlinearity, for the
canonical conditionsd−u=−p /2,d+u−f=−p /2, the ex-
pression for the average number of photons for the HOMPSS
reads

knl = ubu2 cosh 2r + sinh2 r − ubu2 cos 2sj − udsinh 2r

+ 3ugu2e−2rf 1
4 + ubu2 + 1

2ubu4g + ugufs1 + ubu2dubu

3sinsj − ud + ubu3 sin 3sj − udg + ugu2e−2rfs3 + 2ubu2d

3ubu2 cos 2sj − ud + 1
2ubu4 cos 4sj − u.dg , sA2d

where b= ub ueij. We see that the terms depending on the
nonlinear strengthugu are modulated by different periodic
functions of multiples of the homodyne angleu, and, there-
fore, at variance with the case of linear Bogoliubov transfor-
mations, the average photon number in the presence of non-
linearities exhibits a nonsymmetric behavior aroundu=0,p,
as shown in Fig. 2 in the main text of the present paper.
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