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Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states
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We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quan-
tum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne
local-oscillator angle; fon-mode systems they depend oeterodyne mixing angles. The canonical formal-
ism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of
homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In
the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton pro-
cesses and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence
and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators
with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning
of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the
relevance of the formalism for the study of degene(afe)down-conversion processes. In a companion paper
[F. Dell’Anno, S. De Siena, and F. llluminatg§9, 033813(2004], we provide the extension of the nonlinear
canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed
states, and we discuss their possible experimental realization.
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[. INTRODUCTION to improve optical communication®] and to measure and
detect weak forces and signals such as gravitational waves

d q on b f the K e th 10]. Moreover, twin beams of bipartite systems, i.e., two-
attracted renewed attention because of the key role they may, jq squeezed states, are maximally entangled states, a
play, beyond the traditional realm of quantum optics, in re-

. . operty of key importance in quantum computation and in
search fields of great current interest, such as laser puls%iJ pery y Imp g P

X . ) antum information processing.
atoms and moleculegl], Bose-Einstein condensation and P g

| > q e o th Fund Realistic and scalable schemes of quantum devices and
atom laserg2], and quantum information t eofﬁ.]- unda-  gperations with continuous variables might however require
mental physical properties for an efficient functioning of the

: S the realization of multiphoton processes. In this respect, it is
guantum world such as interferometric visibility, robustness

. . . ; crucial to investigate the existence and structurmoftipho-
of superpositions against environmental perturbations, an

) .27ton nonclassical states of light. A challenging goal is to de-
degree of entanglement are typically enhanced by exploitingo g jitaple multiphoton generalizations of the effective
states which exhibit strong nonclassical features.

The simplest hetvpal | f Inesical t,[Hamiltonian description of two-photon down-conversion
€ simplest archetypal examples of nonclassical Slalegqcegses and two-photon squeezed states. Natural candi-
are of course number states, whose experimental realizati

) - ; tes should be nonclassical states obtained by nonlinear
is however difficult to achieve. Moreover they share very

¢ £ th h ios th d be desirable b nitary evolutions associated to anharmonic Hamiltonians
ew of the coherence properties that would be desirable botg, y multiphoton down-conversion processes. In turn, nonlin-

n pracq_chal |mplementat|ons and. n fur;ldamentalib?xpen-ear unitary evolutions might be of great importance in the
rrllentg. | e most |mprcl);t/ant hexperlmenta )(/jacces& € noni'mplementation of universal quantum computation with con-
classical states are thio-photonsqueezed statefl—6]. iy ous variables systenj1,12. Experimental realizations

They are Gaussian, exhibit several important coherencg, iy pe optained by considering the dynamics of the polar-
properties, and can be obtained by suitably generalizing thfazability in nonlinear optical medial3]:
notion of coherent statd§]. Squeezed states can be easily '

introduced by linear Bogoliubov canonical transformationsp, = ¢ [ \VE; +Xi('2k)EjEk+ ey LE
and the associated eigenvalue equations for the transforme J rz-n
field operatorsb(a,a’): b|W)z=p/W¥), They can be pro- (1)
duced in the laboratory through the dynamical evolution ofy o rep is the polarization vectory™ the nth order suscep-
parametric amplifier$8], and provide a useful tool in vari- tibi

f h. For inst thev h b lity tensor, andE the electric field. Implementation of
ous areas of research. For instance, they have been prOpoﬁ‘ﬁéher—order multiphoton parametric processes involves sev-

eral terms in the expansion, E(.). For instancek-photon
parametric down-conversions involve all contributions at

The study of the nonclassical states of light has recentl

i1+ +Ein+...],

*Electronic address: dellanno@sa.infn.it least up to the term with coupling®, whose strength in
"Electronic address: desiena@sa.infn.it nonlinear crystals is in general extremely weak Ko 2. It
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as electromagnetically induced transparency and coheredenote as Part | and Part Il, we show that these difficulties
population trapping manipulations of photons in cavities pro-can be overcome and that it is indeed possible to introduce a
vide new promising technigues to generate large and lossleggneral canonical formalism of multiphoton quantum optics.
optical nonlinearitie$14]. In the present papéPart |) we determine the most general
Phenomenological theories of multiphoton parametricnonlinear canonical structure for single-mode systems by in-
amplification, based on expansion, Ef), were introduced troducing canonical transformations that depend on generic
by Braunstein, Caves, and McLachlgtb], who considered nonlinear functions of homodyne combinations of pairs of
nonlinear interaction terms of the forga'™-za producing  canonically conjugate quadratures. The homodyne canonical
k-photon correlations. The problem was numerically ad-formalism defines a class of single-mode, homodyne multi-
dressed by the authors, who showed that these interactiophoton squeezed states; it includes the single-mode, single-
generate squeezing and display remarkable phase-spageadrature multiphoton squeezed states as a particular case,
properties. Another interesting approach, but rather abstraend introduces a tunable free parameter, a local-oscillator
since it involves infinite powers of the canonical creation andmixing angle, which allows us to interpolate between differ-
annihilation operators, was put forward in REE6] where  ent multiphoton model Hamiltonians and to arbitrarily vary
generalized multiboson, non-Gaussian squeezed states wehe field statistics of the states. In the companion pépart
introduced. A crucial question left unanswered by the aboveH) [21] we extend the multiphoton canonical formalism to
mentioned attempts is that, although the first nonlinear ordemultimode systems. We show that such extension is realized
in expansion Eq(1) can be associated, through the linearby nonlinear canonical transformations of heterodyne com-
Bogoliubov transformation, to an exactly diagonalizablebinations of field quadratures. The scheme defines a structure
two-photon Hamiltonian and to exact two-photon coherenof multimode, heterodyne multiphoton squeezed states that
states[5,6], higher-order nonlinearities have not been assoreduce to the homodyne states for single-mode systems. In
ciated so far to exact Hamiltonian models of multiphotonPart Il we also show that the heterodyne squeezed states and
effective interactions in a simple and physically transparenthe associated effective multiphoton Hamiltonians can be re-
way. alized by relatively simple schemes of multiphoton conver-
In a series of recent papef47,18, the first step was sion processe§21]. In this way we introduce a complete
realized in this direction by defining canonical transforma-hierarchy of canonical multiphoton squeezed sta@smul-
tions that allow the exact diagonalization of a restricted classimode heterodyne squeezed staigs,single-mode homo-
of multiphoton Hamiltonians. In this formalism one adds to dyne squeezed states, ayl single-mode, single-quadrature
the linear Bogoliubov transformation a nonlinear function ofsqueezed states. In the limit of vanishing nonlinearity the
a generic field quadrature. The canonical conditions imposenultiphoton squeezed states reduce to the stangmdle-
very stringent relations on the parameters of the transformamode or multimodgtwo-photon squeezed states.
tions, and the resulting Hamiltonians describe a very peculiar To construct a general canonical formalism of multipho-
and restricted class of nonlinear interactions, not easily amaen quantum optics one must first circumvent the restrictions
nable to realistic experimental realizations. following from the canonical conditions. In particular, the
Studying the simplest case of a quadratic nonlinearityprescription that a general, nonlinear mode transformation be
[17,18, one determines multiphoton squeezed states both ivanonical prevents the possibility of introducing arbitrary
the case of nonlinear functions of the first quadratfe  nonlinear functions depending simultaneously on two conju-
=(a+a")/\2 and in the case of nonlinear functions of the gate quadratureX; and X%. In fact, if the form of the non-
second quadratuné,=—i(a— aT)/\Z These states exhibit in- linear function is not constrained at all, the canonical condi-
teresting nonclassical statistics and squeezing in the quadrtiens force the nonlinear coupling to be trivially zero.
ture associated to the nonlinearity; they may be denoted as It is however possible to define a general canonical
single-quadrature multiphoton squeezed std&@MPSS. scheme by introducing a simultaneous nonlinearity in two
The unitary operators associated to the two transformationsonjugate quadratures if the nonlinear part of the transforma-
are a composition of squeezing, displacement, and a nonlirtion is an arbitrary function of thééomodynecombination
ear phase transformatiofil8] (see also Ref[19]). The \2| n|(cos OX;+sin 6X;) of the two quadratures(
scheme, although limited to one-mode systems, still provides |»|expié is arbitrary complex numbgrSuch a canonical
some insights for experiments in quantum information ex-structure allows naturally for a local-oscillator anglemix-
ploiting multiphoton processe$20]. In fact, the single- ing the quadratures. The mixing is a physical process that
quadrature multiphoton squeezed states include as a particoan be easily realized, e.g., by a beam splitter positioned in
lar case the generalized “cubic phase” stafesginally  front of a nonlinear crystal. Tuning the continuous parameter
introduced in the framework of quantum computat{dd]) 6 then allows us to vary the physical properties, and in par-
proposed by Bartlett and Sanders by adding displacemetticular the statistical properties, of the associated homodyne
and squeezing to the pure cubic phase transformdfidgh ~ multiphoton squeezed states.
The single-quadrature canonical formaligend the associ- The plan of the paper is as follows. In Sec. Il we develop
ated single-mode, single-quadrature multiphoton squeezetie general formalism of nonlinear canonical transformations
state$ is thus very limited because it amounts only to a purefor homodyne variables. In Sec. Il we study the multiphoton
(nonlineay phase transformations on a single quadratureHamiltonians associated to the nonlinear transformations,
Moreover, it does not allow nontrivial extensions to multi- specializing to the case of quadratic nonlinearity. We com-
mode systems and nondegenerate processes. pute the wave functions of coherent states associated to the
In the present and in a companion paper, which we shalfransformations, such as functions of the mixing anglén
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Sec. IV we determine the explicit form of the unitary opera- Re[é€ Ay —v'y)]=0. (5)
tors associated to the canonical transformations. They are

composed by the product of a squeezing, a displacement, aVith the parametrization

a mixing operator with nonquadratic exponent which com- . _ s

bines conjugate quadratures. In Sec. V, we study the statisti- w=coshr, v=sinhre'?, y=|[y€?’, (6)
cal properties of the homodyne multiphoton squeezed states.
We compute the uncertainty products, and determine th
condition for “quasiminimum” uncertainty. We then study
the quasiprobability distributions, and the photon statistics. _S i =

We show that these properties depend strongly on the local- coshr cog(§~ &) = sinhr codd+ 6~ ¢) = 0. ™

oscillator anglef. In Sec. VI, we summarize our results and Equation(7) can be solved numerically. For instance, given
discuss the outlook and extensions that are developed in t%me fixedr, 6, and¢ we can find numerical solutions for

e can express the canonical conditions, E®&S, in the
orm of the transcendental equation

companion paper, Part II. the phase variablé, which can be used as an adjustable
parameter for the canonicity of the transformation. Alterna-
II. NONLINEAR CANONICAL TRANSEFORMATIONS tively, we can look for particular analytical solutions of Eg.
FOR HOMODYNE VARIABLES (7): letting ¢=0, we obtain the simplified expression
We could naively imagine that the problem of introducing tan 6 tan 56=-¢e . (8)

nonlinear canonical transformations for a single bosonic ) ) o

modea should be solved by adding to the standard BogoliuFor given values of the local-oscillator angiehis is a rela-
bov linear transformation an arbitrafgufficiently regulay ~ tion between the phasgof the nonlinearity and the strength
Hermitian nonlinear functiorF(a,a’) of the fundamental I ©of the squeezing; e.g., fixing=+m/4, we get tans

mode variables. a': =Fe %, Setting §=—5 implies instead tad=e". Of
course, Eq(7) admits infinite solutions which correspond
b=pa+va'+ yF(a,a"). (2) toagreat variety of nonlinear canonical operators. We can

however select more stringent conditions, imposing
Rquiring that the transformed mode be bosonic, i.e.,
[b,b"]=1, and exploiting the well-known formulas S—0=+ %T skm 5+ 60— = 17—271 har, )
[a,G(a,a")]= 0 G(X,Y)/3Y|x-ay=a
with k,h arbitrary integers. This choice allows us to satisfy
Eq. (7) at the price of eliminating one degree of freedom
from the problem. In conditions, Eq$9), it is obviously
sufficient to consideikk=h=0. From Eqgs.(5) and (7) it is
evident that the modulus of is irrelevant in the determina-
tion of the canonical constraints of the transformations.

[a",G(a,a")] == 9 G(X,Y)/d X|xzay=a"

then the condition for the transformation, Eg), to be ca-
nonical reads

oFt Therefore, from now on we séy|=1/42. In this way, the
|l = [+ |y F,F1] + wy oo homodyne character of the transformation scheme be-
a comes fully evident. We can in fact express the transfor-
LOFT . dF , 9F _ mation, Eq.(4), in terms of the rotated homodyne quadra-
Ty g eyl 3 turesX,,P, defined as
It is very difficult to determine the most general expres- X,=(ae'?+ale?)/\2 =X, cos 6+ X, sin 6,

sion of the nonlinear functiof, which allows us to satisfy
the condition, Eq(3). Nevertheless, if we assume that the
nonlinear function is Hermitian, then canonical generaliza-

tions of the Bogoliubov transformation do exist, and theyjth [X, P,]=i. The transformed modb can then be ex-

most general ex.pressio.n is in terms of arpitrary Hermitianpressed in terms of the rotated modg=ae’, or of the
nonlinear, analytic functions of homodyne linear combina- ytated quadraturX,, as

tions of the fundamental mode variables. It reads

Py = Xgsmo=—Xq Sin 6+ X, cos 0, (10

X b=Ta,+7al+ yF(X,), 11
b= ua+val + yF(ya+ nal), (4) HBg+ v+ 9F (X (D
. _ - ) with the rotated parameters
with »=|»|€? a complex number. Exploiting the functional
dependence df on the homodyne combination of the modes n=pel T=vel? (12
a anda', one finds that the general relation, E8), reduces

to the following algebraic constraints on the complex coeffi-From Egs.(10)—(12) the canonical conditions, Eq&), can
cients of the transformation: be expressed in terms of the rotated parameters as

2= [v?=1, B2 =[7=1,
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Rd(y -7"9)]=0. (13) F(Xg) = X5, (18

The form, Eq.(11), of the canonical transformation, E@t), Inserting Eq.(18) in Egs.(15) and(16), the associated four-
allows the straightforward determination of the coherenfphoton Hamiltonian reads

states of the transformed modes, and of the unitary operators " 2 ‘3 ‘4 N
associated to the transformations, as we will show in the Hap=Ao+ (Aja’ +Aa’“+Aa’"+Aa’"+H.c) +Bea'a

following §ections. Opviously, Wherjv:Q one recovers the +B,at%a?+CaZa+Da'a+H.c., (19)
standard linear Bogoliubov transformations and the structure o
of standard two-photon coherent states. where the coefficient#,B;,C,D are
3 1 = 3. x 6. *
A= [P+ 3% Ac=gpiy+svy +€0y,
lIl. MULTIPHOTON HAMILTONIANS ‘ . ‘
AND MULTIPHOTON SQUEEZED STATES A =3Py P+ 'y, Ag=3€8 0 y+ 28y
We now consider the Hamiltonians that can be associated L aiol 12 5 5 5
to the canonical transformations, E@). We will restrict As=36"9% Bo=|[ul*+[v]*+ 3y%
ourselves to the case of quadratic Hamiltonians diagonal in
. 3 1 i * * * *
the transformed modes: Bi=31y% C=3"%uy +vy)+u’y+vy,
H=b'b, (14) :
D =€?%4/2. (20)

whose general expression in termsaph’ reads
The Hamiltonian, Eq(19), describes one-, two-, three-, and

— 2 2 2\ 4t * N2
H= v+ (uf+[1)a'a+ (pra®+H.c) four-photon processes with effective linear and nonlinear

+(u ya'F + v yaF +|y?FTF + H.c)). (15)  photon-photon interactions associated to degenerate paramet-
- ric down-conversion processes in nonlinear media.
In terms of the rot_ated quadratur¥sg, F_’(,, ar_1d exploiting the We see that the Hamiltonian coefficients, ER0), cru-
canonical constraints, E¢7), the Hamiltonian, Eq(15), can cially depend on the homodyne angleallowing for a great
be recast in the form freedom in searching for physical implementations of multi-
Hz =24+ 17 +32C + 17 = 712P2 + [1I2FA(X photon state_s_l_)y processes associated to higher-order nonlin-
2+ alB T+ olB =AY+ [ FAX) ear susceptibilities.
i * s~ ~
+ 7=y (= V{PsF(Xp)}, (16)
\57 K P % B. Homodyne multiphoton squeezed states
where {---,---} denotes the anticommutator. The Hamil- We now compute the coherent states associated to the
tonian, Eq.(16), is further simplified if we make use of the canonically transformed Hamiltonian. We define the coherent
conditions, Eqs(9): stategV); associated to Hamiltonian, E(L5), as the eigen-
or o states (with complex eigenvalug8=|g|€¥¢) of the trans-
e + = ilati .
H= 2_ 4 [P,+\2ye"F(X) 2. (17) formed annihilation operatds:

2 2 2

Equation (17) is of the same form as obtained in Refs. ) ) ) )
[17,18, but with the crucial difference that the nonlinearity Choosing the representatiohs(x,) =(x,| V) in which the
is now placed on the homodyne mixed, rotated quadratyre homodyne rotated quadratuxg is diagonal, the eigenvalue
rather than on a single one of the original quadratiteand ~ equation, Eq(21), reads

moreover the mixing depends on a tunable free parameter, 1 a

the Iocgil-oscnl_ator angle. Equatlon(1_7) clea_lrly shows_ that _ ﬁxg‘l’ﬁ(xa) = ——[(m+D)x,+ \"E)/F(X(,) - V"Z,B]\Ifﬁ(xg),

the variableX, is squeezed, and that its conjugate variable, in M-V

the sense of being antisqueezed by a corresponding amount, (22)

is the “generalized momentumP,+\2|y|eF(X,). One _ _

then can expect that the quasiprobability distributions willwhere we have useB,=-idy . The general solution of Eq.
be squeezed along a rotated axis, as will be shown in th&22) is
following sections.

b|‘1’>3: ,3|q’>ﬁ- (21)

a %o
W 5(Xp) :Nexp[— §x§+ CXg— bJ dyF(y)} . (23
A. The case of quadratic nonlinearity

wh
In studying the statistical properties of the coherent states

associated to the Hamiltonians, E¢$5) and (16), we will R (Rec])?
specialize to the case of the lowest possible nonlinearity in N= Rda] &P~ Rda]
powers of the homodyne rotated quadratures, i.e., we will

consider the quadratic form is the normalization, and the coefficients read
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T+ \513 C. Reduction to single-quadrature multiphoton squeezed states

oo V27 o
-7 - -7 -7 When considering the special casts0 and ==/2 the

. B o HOMPSS reduce to the SQMPSS previously introduced in
It can be easily verified that it is always R§>0 and Refs.[17,18. In these two special cases the canonical trans-
Regb]=0. We can express the wave function in the form formations, Eq(11), reduce to

a=

Rda] | Y4 Rda] Rec])? b=pa+va +yF(X), i=1,2, (29)
W 5(X) = exp| — Xg— ) )
™ 2 Rea] wherei=1 for =0 andi=2 for 6=/2.
Xg Im[a] The associated coherent states are defined as the eigen-
xXexp| — i(lm[b] J dyF(y) + Txﬁ states ofb with eigenvalueg; in the particularly interesting
case of zero phase difference betwgeand v, and param-
etrizing B in terms of the coherent amplitude, 8=ua
= Im[clxy ) |- (25) +va’ (a=aqtiay), they read17,18
. - 1 (% = %)
By recalling the definition of the parameters, E¢8), and W (x) = —— exp} - ———
the canonical conditions, Eq9), the expression, Eq25), B Ve 2 2e 7
d t ~ .
e xexplilcx + €G], 1212, (29)
etZr — B
W (xg) = A exp{— 5 [X,— V2|B8le*" cog&- 0)]2} where
r=r, rIy,=-r,
P . %
X exp{|vzer{|ﬂ|sm(§— )Xy~ |y|f dyF(y)”, 5 5
y=1m(y), 7¥=-Rdy),
(26)
z
where A=714*2 The wave function, Eq(26), has a G(Z):J F(y)dy,
0

Gaussian density in the variablg, with a squeezed vari-

ance, while both the phase and the density depend crucially _ _
on the homodyning, i.e., on the local-oscillator anglenNe X0 =1\2a;, ¥ =-12a,,
name therefore the states, E¢®1)—(26), homodyne multi-
photon squeezed statddOMPSS.

The dependence on the homodynimghas important
physical implications, especially with regard to the statisticalThe expression, E¢29), for the SQMPSS shows immedi-
properties of the HOMPSS. In fact, in general the states, Eqsitely that the quadrature associated to the nonlinearity is
(25) and(26), in the X,~diagonal representation display non- squeezed, while, in the chosen representation, the nonlinear
Gaussian terms in the phase, for instance, a cubic phase teffinction F enters in the phase of the wave packet. Explicit
in X, for a quadratic nonlinearity. Moreover, the nontrivial non-Gaussian densities are again realized if we adopt the
structure of the HOMPSS emerges clearly when we writé‘coordinate” representatio(in which X; is diagonal when
them in terms of the original quadratures, for instance, in théhe nonlinearity is placed oX,, or vice versa.

X;-diagonal representatiol 5(x) = (x| ¥),. Specializing to
the quadratic nonlinearitf(X,) =X3 for a generic angled IV. UNITARY OPERATORS
different from 07, one has

Cl = \““’2612, C2 == \e"Zal.

The expression, E@26), allows us to identify, in terms of
the homodyne rotated quadratures, the unitary opetéigy
associated to the canonical transformation, Ed), such
that the HOMPSS are obtained by applyitl,,, to the
whereAIi[- - -] denotes the Airy function, and the coefficients vacuum:
a,b,c,d are given by

W 45(x) = N expliax? + bx}Ai[C)C(Z—Tj], (27)

[¥)5=Unon{0), (30)
az—l cotg, b=—b— Y where |0) is the vacuum state of the original field mode
2\2y sirf 6 a: a/0)=0. The unitary operatdd,,, then reads
Upom=Uy(X,)D Sy(Lp), 31
o= -i(-7) _ (,u—v)2 B B hom o(Xo)D ol ag)Sy(£p) (31
2ysit g 8Ysimt g ysi? o where

. . D e al - a,a
The general non-Gaussian character of the HOMPSS s thus ag) = exp(ady~ ady)

apparent when writing them in the original field-quadratureis the standard Glauber displacement operator with
representation. = B-7B" and
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§; 2) V. STATISTICAL PROPERTIES AND HOMODYNE

4
Sy({) = eXD(- an;er 5% ANGLE TUNING

' A. Uncertainty products
is the standard squeezing operator Witk re!®=29. Finally,

R When considering the statistical properties of the
the “mixing” operatorU, reads

HOMPSS we first study the behavior of the uncertainties in
. the homodyne quadratures,;, P, We first express the gen-
0 . . .
U.(X.) = exd —i Imlb f dYRY } 32 eralized variables in terms of the transformed mode operators
X9 p[ [b] R (32 b andb' (see the Appendix

where, exploiting the canonical conditions, E8), Im[b] X,= ir[(ﬁ* -P)b+ (R-Pb', (36)
=+.2|y/e*", and the abstract operatorial integration ac- V2
quires a precise operational meaning in any chosen repre-
sentation. . P

If we specify to the case of quadratic nonlinearft(X,) Py= TE[(#” b'=(u +v)b=2i Im(uy =7 y)F(Xy)].
=X2, we have v

(37)
Uy(Xy) = exp(~i Im[b]37'27%¥%(ae™’ + a'e’)3} These relations lead to the following expressions for the un-
=exp-i |m[b]3—12—3/2(a3e—3i0 + 38310 4 357520710 certainties:
+3a'%ad’ + 3ae? + 3a'd?)}. (33) AX, =3[ -72,
The structure olJ, becomes clearer by expressing it in ) L~ L ~2 itk
terms of the field quadratures: APy =5l +" + 2 Im "y =7y']
X(F2)p=(F)p) =2 Im [1"y=5y']
Uy(X,) = exp{—i Im[b]37X(X3 cos 6+ X sin® 6 pE ;
XIm[ (e +v)([F,b']gl, (38)

+3X32X, cog 6 sin 6+ 3X; X5 sir? 6 cos § , _
where(: --); denotes the expectation value in the HOMPSS

+3iX; cos 6 'sin 6+ 3iX, sir? 6 cos 6)}. (34) |¥) g and[---, -] denotes the commutator. It is evident that
) the nonlinearity affects onlP,, as the second of EQ&38)
The unitary operatol,, Eq.(34), depends on all powers of gy pjicitly depends on the form of the functidh Consider-

the conjugate field quadratures uprte 1 if the nonlinearity ing the quadratic form fofF and assuming the canonical
F is a power of ordem of the homodyne quadratuné,. conditions, Eqs(9), Eqs.(38) become

Moreover it is apparent that, is a mixing operator: it mixes

nontrivially the original quadratures depending on the values A?X,= 377,

of the local-oscillator angle, except for the special cages

=0 and ¢=n/2 treated in Refs[17,18, where the mixing AP, = 16t + 72|21 + 4 82+ 4 Rde262]}.
disappears and the nonlinearity is a simple power of a single

field quadrature(either X; or X,). Obviously, the quadratic (39

nonlinearity is only one of a large class of possible choicest e now consider the uncertainty product, and if we define
allowed forF in Eq. (32), so that many complex nonlinear s—|s|d¢ Eqgs.(39) give

unitary homodyne mixing of the original field quadratures
are possible. AZX AP, = 7 + 2|92 {1 + 482 + 4 B2 cos A& - 6)}.

In the special case®=0 andf=m/2 the HOMPSS reduce (40)
to the SQMPSS. Then, from the choice of representation of
Eq. (29) we can immediately argue the form of the unitary It is to be remarked that this last relation attains its minimum
operators that produce these particular multiphoton squeezdadr - 6=+/2:
sates: AZX AP = b+ 4]y, (41)
Ui = exflie™,G(X;)ID(a)S(r), (35  Equation(41) can be seen as a quasiminimum uncertainty

relation; in fact, although the second term is not exactly zero,

whereS(r) is the one-mode squeezing operator o0 and  for small nonlinearities it will be surely very small with re-
D(«) is the Glauber displacement operator. We see that ispect to the first ternti.e., the Heisenberg minimumdue
these particular cases the nonlinear part of the transformatidooth to|y| <1 and to the decreasing contribution of the ex-
adds to the squeezing and the displacement a pure, nonlingaonential for a suitable choice of the signrof
phase term in one of the quadratures. We also notice that
with the choicerxf we recover the cubic phase states pro-
posed in Ref[12] as a useful tool for the realization of We now turn to the calculation of the average number of
gquantum logical gates. photons(ny=(a'a) in HOMPSS|\If)ﬁ. We specialize to the

B. Average photon number
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FIG. 1. Mean photon numbein) as a function of|y|, for a FIG. 2. The mean photon numbém) as a function ofe, for
HOMPSS with magnitude of squeezimg 0.8, coherent squeezed HOMPSS with r=0.83=3, for the canonical conditions- 6
amplitude8=3, for the canonical conditiond—=-m/2, 6+6-¢ =-7/2, 6+ 60— p=—m/2, and different strengths of the nonlinearity:

=-m/2, and different mixing angles¥=0 (full line), 6==/6  |y|=0 (full line), |y|=0.5(dashed ling and|y|=1 (dotted ling.
(dashed ling and #=/4 (dotted ling.

C. Quasiprobability distributions and phase-space analysis

case of a quadratic nonlinearity. We will show tHa is We now turn to the study of the statistics of direct, het-

strongly affected both by the strendf of the nonlinearity  erodyne, and homodyne detection for the homodyne multi-

and by the mixing anglé. In Fig. 1 we study the behavior of photon squeezed statg),, showing in particular how the

(n) as a function ofy| for fixed values of the squeezed statistics are significantly modified by the tuning of the mix-

coherent amplitudg and of the magnitude of the squeez-  ing angled. We will consider the HOMPSS, E¢6), corre-

ing, and for three different values of the mixing angleDue  sponding to the canonical conditions, E¢®), and we will

to the canonical conditionp=26, there cannot be pure specialize to the lowest nonlinear functiﬁlﬁxg):xz.

squeezing fory# 0 even in absence of the nonlinearity, and  First of all we consider the quasiprobability distributions

thus at ’y:O we have different initial average numbers of associated to HOMPSS for some valuesgofnd compare

photons depending on the value®fThe analytic expression them to the corresponding distributions associated to the

for (n) for a homodyne transformation witly|=0 and¢  standard two-photon squeezed states. This will allow a better

=20 reads understanding of the behavior of the photon number distri-
butions and of the normalized correlation functions that will

()= | cosh 2 R4 42 Isinh 2 +sinffr. (42 P°LOTELeC e

We see from Fig. 1 tha¢n) need not show a monotonic Q(a):£|<a|‘1’>/3|2 (43)

behavior as a function of the nonlinearity. It is in fact very ™

sensitive to the mixing anglé, and although it eventually

9 . ives the statistics of heterodyne detection, and corresponds
always grows for sufficiently large values pfi, it can how- 9 y b

P : i to a measure of two orthogonal quadrature compongags
ever |_n|t|aIIy _decreas_e, depending on the mixing argjland being the coherent state associated to the coherentngmplitude
then Increasing again very slowly at larger valuesof a=aq+iay). Figures 3 and 4 show three-dimensional plots of

This behavior _suggests thaﬂ_ will ShPW even more re- the Q function of the HOMPSS, for fixed values of |y, 3,
markable properties when varyirggfor different, fixed val-  5nd for two different values of. For 6= 712, which corre-
ues of|4|. In Fig. 2 we analyze the behavior @f) as func-  gyonds to the case=x2 i.e., no mixing, the plot resembles
tion of 6, at fixed|y|. For[y|=0 we recover the oscillatory the Q function for a squeezed state, but we can observe a
behavior ofn) as a function of the squeezing phage26 of  geformation of the basis, curved along the &k a; axis.
the standard two-photon squeezed state. In Fig. 2 we choosgyr g=7/3, a case of true mixing of the field quadratures,
the two particular values dfy| =0.5,1.0; we can see that the the deformation becomes much more evident and the
oscillations of(n) become faster, and both peaks and bottomsynction is strongly rotated and elongated with respect to
quickly rise to larger values with respect to the linear casethe Q function of the two-photon squeezed state.
Moreover, the behavior ofn) is not symmetric around Homodyne detection measures a quadrature component
=0,7 when|y| # 0, due to the fact that the nonlinearity in- XA=(1/\52)(aA+aI), where\ is a phase determined by the
troduces several terms with different periodicity @nin the  phase of the local oscillator. Homodyne statistics correspond
expression ofn) (see the Appendix to project the Wigner quasiprobability distribution onto,a

The nonlinearity plays the role of a “quantum coherentaxis. With the identificatiol\=6 we plot the Wigner qua-
pump” allowing for very large average numbers of photonssiprobability distribution for orthogonal quadrature compo-
even in the case of lowest, quadratic nonlinearity. nentsx, and py:
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FIG. 5. Plot of the Wigner functiohV(x,, p,), with r=0.8, |y|
=0.4, =3, 6=m/2, for the canonical constraid—0=-m/2, &

FIG. 3. Plot of theQ function, withr=0.8, |y|=0.4, 3=3, 6 +O-¢p=m/2.
=/2, for the canonical condition8- 6=-u/2, 5+ 60— p=m/2.

viding evidence of the complex statistical structure of the
1 HOMPSS when a true homodyne mixing is realized.

- APV (v — +v). The behaviors of the quasiprobability distributions sug-
W Po) T f dye Wﬁ(xe YV aXp+y). (44 gest the following considerations. First of all, we recall that
the HOMPSS, although being states of minimum uncertainty

In Figs. 5 and 6 we show, respectively, a global projectionn the transformed“dressed} modes(b,b"), are not mini-
and an orthogonal section of the Wigner function fér ~mum uncertainty states for the original quadratuxgsand

=/2, i.e., no mixing, fixed canonical constraint, and inter- Xz; in fact, Eqs(39)—41) show that a further term due to the
mediate valugy|=0.4 of the nonlinearity. We see from unavoidable statistical correlations adds to the pure vacuum

Fig. 5 that the Wigner function displays interference fluctuations. This fact is reflected in the rotation and in the
fringes and negative values, exhibiting a strong nonclasdeformation of the distributions. But we expect that this fea-
sical behavior. This is best seen in Fig. 6 representing &lre will affect also the behavior of other statistical proper-
bidimensional section of the Wigner function, Fig. 5, atties, such as the photon number distribution. In particular,
X,=0. In Fig. 7 we show the Wigner function, for the same shape distortions of the quasiprobability distributions
values ofr, |y], B, but for =x/3, a value that realizes a strongly modify the original ellipse associated to the stan-
true mixing of the field quadratures. We see that the disdard two-photon squeezed states, giving rise, for suitable
tribution becomes strongly rotated and elongated, with &alues of the parameters, to deformed intersection areas with

pattern of interference fringes and negative values, prothe circular crowns associated in phase space to number
states. In turn, this will lead to modified behaviors of the

10 photon number distribution, including possible enhanced or

W{0,po}

0.25 |

Pe

N A
\V

-0{.05 |

-0.1 L

FIG. 6. Bidimensional sectioi(x,=0,p,) of the Wigner func-
FIG. 4. Q function, withr=0.8,|y|=0.4, =3, 6=m/3, for the  tion with r=0.8, |y|=0.4, =3, 6=m/2, for the canonical condi-
canonical condition$-0=-7/2, 6+ 6-¢p=/2. tions 8- 0=-m/2, 5+ 60— p=l2.
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P(n) 02

FIG. 8. P(n) for the HOMPSS, corresponding to the canonical

FIG. 7. Plot of the Wigner functioNV(x,, p,), with r=0.8, | y| constraintsé—- =-m/2, 5+ — $=—m/2, for different values of the
=0.4, B=3, 6=m/3, for the canonical conditions—6=-/2, & parametersp=3, squeezing magnitude=0.8, and strength of the
+0-p=l2. nonlinearity|y| =0 (solid ling); =3, r=0.8,|y|=0.4, =0 (dotted
line); B=3, r=0.8, |y|=0.5, 6==/6 (dashed ling B=3, r
=0.5,|y|=0.5, #=m/4 (dot-dashed ling

subdued oscillation$22] as the mixing angled is varied.
Moreover, we expect that also the second- and fourth-order
normalized correlation functions will strongly depend én

showing a deeper nonclassical behavior, for instance, anti-
bunching, in correspondence to values éfassociated to

stronger nonclassical features of the Wigner function, such a&nd of the normalized fourth-order correlation function
negative values and interference fringes.

(a'%?) _(a}%a))
(@'ay® "~ (aja,?’

92(0) = (46)

4,4
g0 = 2%, (47)
D. Photon statistics @
for the HOMPSS, and determine the different physical re-
gimes. In Figs. 9 and 10 we compayé(0) as a function of
the squeezing parametefor the two-photon squeezed states
and for the HOMPSS at different values @f

We see that also the correlation functigl®(0) shows the
strong nonclassical features of the HOMPSS; both the non-
linearity strength/y| and angleé strongly influence the be-
havior of the curves. In fact, the curves deviate from the
5 standard form and saturate at lower values with respect to the

. (45  two-photon squeezed states.

We first analyze the probability for counting photons,
the so-called photon number distributioPND) P(n)
=|(n|¥)g2 in direct detection, and neglecting detection
losses:

2

P(n) = ’de¢9<n|x0><x0|\[’>,3

_ 1
- 2" 1 71_1/2

f dxee_xile n(Xg) W 5(Xp)

3.5

Due to the nonlinear nature of the functibnit is in general
impossible to write a closed analytic expression R{n),
which can however be easily determined numerically. In Fig.
8 we plot the PND of the HOMPSS for various intermediate
values of the local oscillato, together with the PND of the g5y »
two-photon squeezed states. As foreseen from the previou

phase-space analysis, the behavior of the PND strongly de 1.5

pends on the value of the mixing anghe and for suitable

choices of#é, r, and|y|, the PND shows larger oscillations !

with respect to the two-photon squeezed states and thi

HOMPSS with#=0. Moreover, the oscillation peaks persist 0 1 2 3 4

for growingn and are shifted for different values pf; this
behavior is due to the different terms entering in the unitary £ 9. The correlation functiog®(0) as a function of for the
operatorU,(X,), Eq. (34), which mix in a peculiar way theé  Hompss, corresponding to the canonical constrairdis @
quadrature operators fa@# 0, /2. =-7/2, 5+ 06— p=—m/2, for several choices of the parametess:

Regarding the correlation functions, it is interesting to=3, y=0 (solid line); B=3, |y| =0.4, =0 (dashed ling =3, |y|
study the behavior of the normalized second-order correla=0.05, ==/6 (dot-dashed ling 8=3, |y|=0.5, #==/6 (dotted
tion function line).
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0.8

FIG. 10.9@(0) as a function of for the HOMPSS, correspond-

ing to the canonicity condition§— 6=-7/2, 5+ 6- ¢p=/2, vs the FIG. 12.9'?(0) as a function o® for the HOMPSS, correspond-
two-photon squeezed statéfsll line) 8=3, for several choices of ing to the canonicity condition§— 0=-7/2, 6+ 6-¢=m/2, for B
the parameters=3, |y|=0.05, 6=47/9 (dashed ling =3, |y| =3,r=0.8,|y|=0.1(full line); B=3,r=0.5,|y| =0.4 (dashed ling
=0.2, §==/3 (dot-dashed ling B=3, |y|=0.5, #=u/3 (dotted

alized by adding a largely arbitrary nonlinear function of the
homodyne quadratureX,,P,. We have introduced the
o ) ) . HOMPSS defined as the eigenstates of the transformed an-
The most significant feature is however obtained plotting,inijation operator. The HOMPSS are in general non-
g®(0) as a function ofg, Figs. 11 and 12; the plots clearly Gaussian, highly nonclassical states which retain many prop-
demonstrate that it is possible to pass from a sub-Poissoniaitties of the standard coherent and squeezed states; in
to super-Poissonian statistics. So, tunihgve can have pho- particular, they constitute an overcomplete basis in Hilbert
ton bunching or antibunching and we can select the preferregpace. On the other hand, many of their statistical properties
statistics. can differ crucially from the ones of the Gaussian states. In
Also the fourth-order correlation functiag?”’(0) has been particular, we have shown the strong dependence of the pho-
studied as a function of the squeezing parameterd of the  ton statistics on the local-oscillator angte Among other
angle 6. Its behavior is very similar to that af®(0): both ~ remarkable features, there are the possibilities of exploiting
the shape ofg®(0) as a function ofr and the saturation the€ homodyne angle as a tuner to select sub-Poissonian or
levels are determined by the choice @f Moreover, four- super-Poissonian statistics, and as catalyzer enhancing the

photon bunching or antibunching in correspondence to dif_average_photon number_ln astate. .
ferent values of can be observed. The single-mode multiphoton canonical formalism selects

a large number of non-Gaussian, nonclassical states, includ-
ing the single-mode cubic phase state, which generalize the
degenerate, Gaussian squeezed states. On the other hand,
VI. CONCLUSIONS AND OUTLOOK both from the point of view of modern applications, such as,
We have introduced single-mode nonlinear canonicaf-g-» quantum computation, and for experimental implemen-

transformations, which represent a general and simple exte#@tions, generalizations to two and more modes acquire more

sion of the linear Bogoliubov transformations. They are re-Nterest. _ _ .
In the following companion papgiPart 1), we will ex-

tend the canonical scheme developed in the present paper
(Part ) to study multiphoton processes and multiphoton
squeezed states for systems of two correlated modes of the
electromagnetic field. This extension is important and desir-
able in view of the modern developments in the theory of
quantum entanglement and quantum information. In particu-
lar, we will show how to define two-mode nonlinear canoni-
cal transformations and we will determine the associated
“heterodyne multiphoton squeezed stat¢ésEMPSS. In the
context of macroscopi¢gquantum electrodynamics in non-
linear media, we will moreover discuss the kinds of multi-
photon processes that can allow the experimental realizabil-
ity of the HEMPSS and of the effective interactions

line).

g% (0)
2 r

osl associated to the two-mode nonlinear canonical formalism.
FIG. 11.g@(0) as a function of for the HOMPSS, correspond- APPENDIX: INVERSION FORMULA

ing to the canonicity condition$—6=/2, §+60-¢=/2, for B The nonlinear canonical transformation, Edl), offers

=3,r=0.5,|y|=0.4(full line); B=3,r=0.4,|y|=0.1(dashed ling the advantage to be invertible. In fact, it can be easily proved

B=3,r=0.1,|y|=0.1(dotted ling. that

033812-10



STRUCTURE OF MULTIPHOTON... I. ...

ay=7'b=7b" = (' y = 1y)F(X). (A1)

Using Eq.(A1) and employing the canonical condition, Eq.
(13), we obtain Eqs(36) and(37). Equations(A1) and(36)
allow us to obtain the operatarexpressed in terms d&fand

PHYSICAL REVIEW A 69, 033812(2004)

(n)=1BJ? cosh 2 +sint? r — 8|2 cos ¢ - )sinh &
+3%e 5+ 8P+ 3181]+ 1L +18P)IA]
xsin(g-0) +|B° sin (&= 0)] + |42 2[(3+28P)
x|BI? cos 2¢ - 6) + 3|B|* cos 4¢ - 6], (A2)

b'. Equation(A1) has been used to compute the uncertaintywhere g=|8|€¢. We see that the terms depending on the
products, the average photon number, and the second- am@dnlinear strengthy| are modulated by different periodic

fourth-order correlation functions.

functions of multiples of the homodyne angleand, there-

For instance, in the case of quadratic nonlinearity, for thefore, at variance with the case of linear Bogoliubov transfor-

canonical conditionsé—60=-m/2,6+60-¢p=—m/2, the ex-

mations, the average photon number in the presence of non-

pression for the average number of photons for the HOMPSS$nearities exhibits a nonsymmetric behavior arouwD, ,

reads

as shown in Fig. 2 in the main text of the present paper.
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