
1, USA

PHYSICAL REVIEW A 69, 033811 ~2004!
Bifurcations and interacting modes in coupled lasers: A strong-coupling theory
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The paper presents a theoretical study of synchronization between two coupled lasers. A theory valid for
arbitrary coupling between lasers is used. Its key feature is that the laser field is decomposed in terms of the
composite-cavity modes reflecting the spatial field dependence over the entire coupled-laser system. The
ensuing multimode equations are reduced to class-B, and further to class-A equations which resemble com-
peting species equations. Bifurcation analysis, supported by insight provided by analytical solutions, is used to
investigate influences of pump, carrier decay rate, polarization decay rate, and coupling mirror losses on
synchronization between lasers. Population pulsation is found to be an essential mode competition mechanism
responsible for bistability in the synchronized solutions. Finally, we discovered that the mechanism leading to
laser synchronization changes from strong composite-cavity mode competition in class-A regime to frequency
locking of composite-cavity modes in class-B regime.
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I. INTRODUCTION

The first observation of light amplification by stimulate
emission of radiation took place in 1960@1#. Soon after,
lasers became sufficiently reliable for scientists to cons
coupling and synchronizing two lasers@2–4#. These inquires
were driven by purely academic interest as well as by ex
ing applications. A single unperturbed laser can be viewed
a paradigm of synchronization. It works because all the
oms in the active medium are fully synchronized, they os
late in-phase and produce coherent radiation. An interes
question arises about the conditions under which two dif
ent sets of synchronized atoms can synchronize with e
other. Synchronized lasers are desired for a wide rang
applications, such as frequency stabilization against cav
length fluctuations@5,6#, high power operation@7–10#, and
selective mode suppression@11#.

The first theories of coupled lasers were proposed by
sov et al. @2#, Perel and Rogova@3#, and Spencer and Lam
@4#. They derived equations for the electric-field intens
and phase in each individual laser and found that coup
lasers may synchronize, i.e., lase at the same frequency
spite differences in resonator lengths. Since then, cou
lasers remain an intensively studied problem for which s
eral models were proposed. The early studies were c
cerned with synchronization between two gas lasers@12–15#.
As this research was continued@16–25# some investigators
tried to understand systems of three coupled lasers@26,27#
and even large arrays of solid-state lasers@28–31#. In the late
1980’s the focus shifted towards coupled semiconductor
sers @32–38# and semiconductor laser arrays@39–48#. At
present, linear semiconductor laser arrays constitute the
commercially available coupled lasers.

Besides continuous wave operation, coupled lasers o
show complicated dynamical behavior and instabiliti
Among the recent studies of coupled lasers are those inv
ing synchronization of coupled-chaotic lasers@26,49–52#,
and large arrays of nonidentical lasers@53#. In particular,
studies of chaotic synchronization, with a significant con
bution from the laser field@49,50#, gave a more genera
1050-2947/2004/69~3!/033811~17!/$22.50 69 0338
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meaning to the word ‘‘synchronization’’ which was orig
nally used to describe synchronized periodic oscillators.

An important aspect of coupled laser theories is the
scription of the laser field and its interaction with the acti
medium. In the framework of a semiclassical approach,
laser medium is described quantum mechanically and
laser field is described classically@54#. The theory results in
equations of motion for the intracavity electric field, activ
medium polarization and population inversion. In gener
these quantities are functions of both space and time, wh
dynamics are governed by partial differential equatio
~PDEs!. In particular, the laser field equation is an inhom
geneous wave equation that is derived from Maxwell’s eq
tions by assuming that the effects of the active medium m
be represented by a macroscopic polarization. Differ
methods exist for solving the PDEs; see the examples
treating external cavity lasers@55,56#, multisection DFB la-
sers@57,58#, and coupled multimode lasers@59#.

The solution of PDEs is often numerically demandin
and more importantly in our case, not well suited for bifu
cation analysis. Fortunately, simpler models, which are s
based on semiclassical laser theory, have been develope
widely used approach involves solving the inhomogene
wave equation by expanding the laser field as a linear su
position of the solutions of the homogeneous wave equat
These solutions are commonly referred to as the pass
cavity eigenmodes. The expansion coefficients~electric-field
amplitudes!, which depend only on time, are then govern
by ordinary differential equations~ODEs!.

There are two approaches to treating the passive-ca
mode aspect of the coupled-laser problem. The more c
mon approach neglects the effects of coupling between
resonators when solving the homogenous wave equa
The solutions are then simply the passive-cavity eigenmo
of the individual uncoupled resonators, and the contributio
from resonator coupling are transferred to the inhomo
neous wave equation@36,41,52#. Basically, the laser field
amplitude equations consist of the free-running laser con
butions, together with terms describing the presence in
cavity of a small portion of fields from neighboring laser
©2004 The American Physical Society11-1
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When combined with the appropriate active medium desc
tion, the approach has been demonstrated to accuratel
produce experimental results under special conditi
@52,60,61#. In addition, it has the advantage of flexibility, i
terms of readily allowing the introduction of delay in th
coupling fields@48#, and global coupling via interaction o
individual lasers with a mean field@53#. A serious concern is
the ability of a field expansion in terms of uncoupled las
modes to accurately describe situations other than those
volving weakly coupled lasers.

The second approach to treating the passive-cavity p
lem involves solving the homogeneous wave equation in
presence of resonator coupling. Since the solutions are
eigenmodes of the entire coupled-resonator system, they
often referred to as the passive composite-cavity modes@12–
14# or supermodes@39#. There are several advantages to u
ing the composite-resonator mode approach. The most
portant is that the description is valid for arbitrary couplin
from zero coupling, where the composite-cavity modes
the modes of the individual resonators, to maximum c
pling, where the composite-cavity modes are the modes
single resonator that has the combined volume of the
lasers. In particular, the dependences of eigenfrequencies
eigenfunctions on coupling between cavities are precis
determined~see Fig. 2!. Such a feature is, of course, n
present when the field expansion is in terms of uncoup
individual-cavity modes. Another advantage is that the in
mogeneous wave equation, which governs the time evolu
of the electric field amplitudes for composite-resona
modes, takes the form of that for the familiar multimo
single-resonator laser. Thus one benefits from previously
veloped techniques and concepts, especially those relatin
mode competition and locking. Furthermore, with the res
ing numerical model described entirely by differential alg
braic equations~DAEs!, the numerics are less computer r
source demanding and bifurcation analysis becom
possible. The third advantage involves physical propertie
the coupled-laser system that are sensitive to spatial
variations. The description of such properties, e.g., coup
mirror losses, are more accurate and straightforward in te
of composite-cavity eigenmodes.

Owing to the above advantages, we choose to work w
the composite-cavity mode approach in this paper. The in
mogeneous wave equation, in the slowly varying amplitu
and phase approximation, can then be written as a se
coupled ODEs, describing the time evolution of t
composite-cavity mode amplitudes and phases. Each e
tion contains a driving term that is due to the active medi
polarization. The next step in the development of a coupl
laser theory is the derivation and solution of the quantu
mechanical equations of motion for the polarization a
population. Two levels of approximations exist for the tre
ment of these equations. They involve the adiabatic elimi
tion of the polarization equation~class-B lasers!, and elimi-
nation of both the polarization and population equatio
~class-A lasers!. Both cases are considered in this paper.

The final and perhaps most important step in our stud
the introduction of the modern tools from bifurcation theo
into the framework of the microscopic coupled-laser theo
03381
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Essentially, these techniques@62# allow swift continuation
~in a two-dimensional parameter plane! of the transitions be-
tween qualitatively different types of dynamical behavio
including unstable states. As a result, we can be more ce
that interesting, or possibly different physical phenomena
sociated with coexisting attractors, saddle points and glo
bifurcations, are not overlooked, as would likely be the ca
in traditional analyses. Incorporating our DAEs in
bifurcation-continuation techniques@62# allows for system-
atic and extensive analysis of synchronization~locking! and
instabilities in coupled lasers. Consequently, one obtain
more complete understanding of the physics underly
coupled-cavity laser behavior, and in terms of device des
the capability for optimization studies over a considera
broader parameter space than previously possible.

Sections II A and II B review the laser theory based
passive composite-cavity modes. The treatment of the ac
medium is discussed in Secs. II C 1 and II C 2. Section II C
also shows that in the class-A approximation, analytic solu-
tions exist, which give invaluable insight to numerical r
sults. The remainder of the paper is devoted to using bi
cation theory with the microscopic coupled-laser theory
study coupled-laser behavior. In Sec. III, we consider
case of single-frequency synchronization~locking! between
two end-to-end coupled lasers, and systematically study
influences of population pulsations and coupling mirr
losses on the lockband. We define the lockband as the ra
of cavity detuning within which the two coupled lasers a
locked: operate with the same frequency. The results are
presented for class-A lasers, where the synchronizatio
mechanism is the competition between composite-ca
modes. Then we discuss the transition from class-A to
class-B equations. Here, bifurcation theory shows a quali
tive change in the physical mechanism responsible for
transition between locked and unlocked lasers. In clasB
lasers, the synchronization mechanism changes to frequ
locking of the composite-cavity modes. The transition
class-B lasers is the starting point for investigating the im
portant and more complicated class of coupled semicond
tor lasers.

II. THEORY

The description of the coupled-laser model is divided in
three parts. In the first part we describe passive~empty!
composite-cavity modes and derive equations which de
mine the eigenfrequencies and eigenfunctions. In the sec
part, the equations for the time evolution of the electric-fie
amplitude and phase associated with a particular compo
cavity mode are derived from Maxwell equations. Furth
more, the equations describing the time evolution of the
larization and population inversion in a two-level mediu
are derived from quantum mechanics. In the third part,
show the reduction of the full set of equations by adiaba
elimination of polarization and population difference.

A. Composite-cavity modes

The wave equation

¹2EW2
eb~rW !

c2
EẄ2m0s EẆ5m0 PẄ 1¹W ~¹W •EW!, ~1!
1-2
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describes the propagation of the electric-fieldEW ~in a medium
with the dielectric constanteb(rW) and conductivitys) driven
by the field-induced polarizationPW ; c51/Ae0m0 is the speed
of light in the vacuum. For the transversal field,¹W (¹W •EW)

50W . In a passive cavity (PW 50W ) without losses (s50) and
under the assumption that the electric-field varies along
longitudinalz direction only, we get

]2

]z2
E~z,t !5m0e0 eb~z!

]2

]t2
E~z,t !. ~2!

Following Spencer and Lamb@4#, we define for the coupled
cavity structure in Fig. 1~a! the background dielectric con

FIG. 1. Two resonators withnA51, nB51.5, andLA /l5106

coupled by a common coupling mirror of transmissionT ~a!. Panels
~b! show the antisymmetric~out-of-phase! ~b1! and the symmetric
~in-phase! ~b2! composite-cavity mode in the strong-coupling r
gion of T50.1 anddL/l50.01. Panels~c! show the antisymmetric
~out-of-phase! ~c1! and the symmetric~in-phase! ~c2! composite-
cavity mode in the weak-coupling region ofT50.01 anddL/l
50.1.
03381
e
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eb~z!5Q~2LA,0!eb
A1Q~0,LB!eb

B1
h

k
d~z!, ~3!

where forx1<x2 we define the rectangular function

Q~x1 ,x2!51 for x1,x,x2,

Q~x1 ,x2!50 for x1.x.x2. ~4!

d(z) is the Dirac delta function, andk5V/c is the wave
vector in vacuum. The coupling mirror of transmissionT is
modeled as a dielectric ‘‘bump’’ with a coupling coefficien
h given by

h5~nA1nB!A12T

T
. ~5!

The electric-field with amplitudeE0 and associated with a
passive composite-cavity eigenmode

E~z,t !5E0u~z! exp~2 iVt !1c.c., ~6!

is substituted into Eq.~2! to yield the equation for an eigen
function u(z)

d2

dz2
u~z!52m0 e0eb~z!V2 u~z!. ~7!

As shown in Refs.@4,14#, each eigenfunction satisfies th
boundary conditions

d

dz
u~01!2

d

dz
u~02!52kh u~0!, ~8!

u~01!5u~02!, ~9!

u~2LA!5u~LB!50., ~10!

where 01 and 02 denote positions infinitesimally before an
after the coupling mirror, andz52LA ,LB are the end mirror
positions.

The nth mode solution of Eq.~8! satisfying the boundary
conditions~8!–~10! is

un~z!5An sin@knnA~z1LA!# for 2LA<z<0,

un~z!5Bn sin@knnB~z2LB!# for 0<z<LB .
~11!

The eigenmodes obey the orthogonality relation

E
2LA

LB

dzeb~z! un~z!um~z!5Ndnm, ~12!

whereN is the normalization constant. From the orthogon
ity relation we get
1-3
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An
2nA

2LAS 1

2
2

sin~2knnALA!

4knnALA
DAT1Bn

2nB
2LB

3S 1

2
2

sin~2knnBLB!

4knnBLB
DAT

1An
2 ~nA1nB!

kn
sin2~knnALA!A12T5NAT

~13!

which needs to be solved simultaneously with the bound
conditions~8! and ~9!:

AT@BnnB cos~knnBLB!2An nA cos~knnALA!#

52A12T An ~nA1nB! sin~knnALA!, ~14!

and

An sin~knnALA!52Bn sin~knnBLB!, ~15!

to obtain the wave vectorskn and the corresponding
composite-mode amplitudesAn andBn . More generally, this
can be done for any numberm of coupled lasers where on
has to solvem11 algebraic equations to determine t
composite-cavity modes@12#.

In the remaining part of this manuscript we are concern
with coupled lasers hosting the same type of an active
dium eb5eb

A5eb
B . Furthermore, we chooseN5ebL, where

L5LA'LB , and introduce the relative length difference

dL

l
5

LB2LA

l
, ~16!

where l51 mm is approximately the wavelength of th
free-running single laser.

Four examples of calculated composite-cavity modes
plotted in Figs. 1~b! and 1~c!. In the region of strong cou
pling, as shown in panel~b!, composite-cavity eigenmode
have roughly similar amplitudes in both cavities. Furth
more, solutions of Eq.~15! can be described asantisymmet-
ric ~b1! and symmetric~b2!. These names refer to the fa
that, at the end mirrors, the field of the symmetric mode
in phase while the field of the antisymmetric modes isp out
of phase. Panels~c1! and ~c2! show the antisymmetric an
the symmetric modes, respectively, in the region of we
coupling. As the coupling decreases to zero, we find that
symmetric modes reside in cavityA and the antisymmetric
modes reside in cavityB for LA,LB , and otherwise forLA
.LB .

In Fig. 2, we plot some solutions of Eq.~15! as a function
of the coupling mirror transmissionT. The eigenmode wave
vectors were assigned the labelsa for antisymmetric ands
for symmetric. For small values ofdL/l andT the symmet-
ric and the antisymmetric solutions, namelyks6n andka6n ,
stay close to each other as compared to the distance bet
ka(s)6n andka(s)6(n61) . WhendL/l reaches the value 0.2
all the modes become equidistant, and asdL/l approaches
0.5 they again resemble the situation fordL/l5 0.05 except
03381
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that ks6n takes place ofka6n . Here, we focus our attention
on the interaction between the two modes, denoted aska and
ks in Fig. 2, so we consider the range20.25<(dL/l)
<0.25

Lastly, we note that the assumption of perfectly reflecti
end mirrors is an idealization used to obtain norm
composite-cavity eigenmodes. This assumption is valid,
example, in coupled VCSEL’s@10# and low-gain lasers.
When outcoupling losses become significant, the more c
plicated nonorthogonal eigenmodes should be conside
@63,64#.

B. Laser equations

In this section, we are concerned with the time evoluti
of ~i! the real electric-field amplitudeEn(t) and phasefn(t)
associated with thenth composite-cavity eigenmode,~ii ! the
corresponding complex polarization amplitudesPn(t), and
~iii ! the population inversionNA(B) in cavitiesA andB. We
rewrite Eq.~1! in the form

S 2
]2

]z2
1

eb~z!

c2

]2

]t2
1m0s

]

]t D E~z,t !52m0

]2

]t2
P~z,t !,

~17!

where the electric-field lossesGE5s/(e0eb) are

GE~z!5Gout1GML d~z!52
c

2~LA1LB!
ln~R1R2!

1GML d~z!, ~18!

whereGout accounts for the outcoupling losses,R1 and R2
are the end mirrors reflectivities, andGM accounts for the
absorption or scattering at the coupling mirror. The to
electric field E(z,t) and the total macroscopic polarizatio
P(z,t) are expanded in terms of the composite-cavity eig
modes

FIG. 2. Evolution of the composite-mode wave numberskx @so-
lutions of the transcendental equation~14!# with increasingT. From
~a! to ~c! dL/l takes values: 0.05, 0.25, and 0.5 whileLA /l
5106.
1-4
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E~z,t !5
1

2 (
m

$Em~ t !exp@2 i ~nmt1fm~ t ! !# um~z!1c.c.%,

~19!

and

P~z,t !5
1

2 (
m

$Pm~ t !exp@2 i ~nmt1fm~ t ! !# um~z!1c.c.%,

~20!

whereEm(t) andfm(t) are the real, slowly varying, electric
field amplitude and phase of themth mode, andPm(t) is the
corresponding complex, slowly varying, polarization amp
tude.

1. Electric field

Substituting Eqs.~19! and ~20! into Eq. ~17! ~see Ref.
@54#, p. 100! we arrive at the self-consistency equations

Ėn52
1

2
~CnnGout1un

2~0!GM !2
nn

2e0eb
Cnn Im~Pn!,

~21!

ḟn5Vn2nn2
nn

2e0eb
Cnn

Re~Pn!

En
, ~22!

where the self-consistency arises from demanding that
electric field, inducing the active medium polarizatio
equals the field resulting from the induced polarization. A
consequence of the composite-cavity configuration, we h
the modal integrals

Cnm5
eb

NE
2LA

LB
dz un~z!um~z!5Cnm

A 1Cnm
B , ~23!

Cnm
A 5

1

2L
AnAmS sin@~kn2km!nALA#

~kn2km!nA

2
sin@~kn1km!nALA#

~kn1km!nA
D , ~24!

Cnm
B 5

1

2L
BnBmS sin@~kn2km!nBLB#

~kn2km!nB

2
sin@~kn1km!nBLB#

~kn1km!nB
D . ~25!

In a long ~compare to the wavelengthl) cavity, CnÞm is
almost zero andCnn is close to unity.

2. Active medium

In semiclassical laser theory, the macroscopic polariza
P(r ,t) of a two-level medium is given by

P~z,t !5D~z! mab rab~z,t !1c.c., ~26!

where mab is the dipole matrix element,r i j is the matrix
element of the population operator~see Ref.@54#, p. 103!,
and the local density of atoms is
03381
e
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D~z!5Q~2LA,0!DA1Q~0,LB!DB . ~27!

These matrix elements evolve accordingly to

ṙab~z,t !52 iv rab~z,t !2Grab~z,t !1
i mab

\
E~z,t !

3@rbb~z,t !2raa~z,t !#, ~28!

ṙaa~z,t !5La~z!2Garaa~z,t !2
i mab

\
E~z,t !

3@rab~z,t !2rba~z,t !#, ~29!

ṙbb~z,t !5Lb~z!2Gbrbb~z,t !1
i mab

\
E~z,t !

3@rab~z,t !2rba~z,t !#, ~30!

where G5 1
2 (Ga1Gb)1Gdephase is the polarization decay

rate,Gdephaseincludes dephasing effects due to elastic co
sions,La(z) andLb(z) are the pump rates into levelsa and
b, respectively, whileGa and Gb are the decay rates from
levelsa andb, respectively.

Identifying the positive-frequency parts in Eqs.~26! and
~20!

D~z! mabrab~z,t !5 1
2 (

k
Pk~ t !uk~z!exp~2 ick!, ~31!

whereck5nkt1fk is the total phase of thekth mode, we
find that thekth mode of complex, slowly varying polariza
tion

Pk~ t !5P k
A~ t !1P k

B~ t !

5
2

Nexp~ ick! E
2LA

LB
dz uk~z!eb~z! D~z!mabrab~z,t !,

~32!

has its source in oscillating dipoles within cavitiesA andB

P k
A(B)~ t !5

2

Nexp~ ick!mabeb
A(B)rab

A(B)~ t !E
2LA(0)

0(LB)

dz uk~z!.

~33!

Combining time derivative of Eq.~32! with Eq. ~28!, defin-
ing population inversion in cavity A(B) as NA(B)

5DA(B)(raa
A(B)2rbb

A(B)), gives time evolution for thekth
mode of polarization

P k
A(B)5@ i ~nk2v!2G#P k

A(B)2
imab

2

\

3(
n

Enexp~2 icnk!Ckn
A(B)NA(B) , ~34!

wherecnk5cn2ck .
To obtain equations of motion for the population inve

sionsNA(B) , we multiply Eqs.~29! and ~30! by D(z), sub-
1-5
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stitute Eq.~19!, use Eq.~33!, integrate over (2LA,0) and
(0,LB) to distinguish between different cavities, and subtr
the resulting equations for the density of electrons in levea
andb. This gives

ṄA(B)5LA(B)2GN NA(B)1
1

\ (
k

Ek Im~P k
A(B)!, ~35!

where the pumping isLA(B)5(La
A(B)2Lb

A(B)) DA(B) , and
the population-difference decay rate isGN5Ga5Gb .

C. Laser classes

The dynamics of a multimode double-cavity laser,
semiclassical theory, is fully described by Eqs.~21!, ~22!,
~34!, and ~35!. If the decay ratesG, GE , and GN are of
similar magnitude all these equations are required to pr
erly describe the laser dynamics. Such lasers, accordin
the notation introduced in Ref.@65#, are called class-C laser

Trajectories of a single-mode class-C laser evolve in
four-dimensional phase space$E,N,Re(P),Im(P)% as shown
in Fig. 3~a!. However, most lasers are characterized by v
short dephasing times, mostly due to elastic collisions, s
that G@GE ,GN which allows the adiabatic elimination o
P(t). WhenG@GE.GN , trajectories in the phase space ra
idly approach the two-dimensional manifold defined byP
5P„E(t),N(t)… and then evolve on this manifold as show
in Fig. 3~b!. Such lasers belong to classB. When GE
!G,GN , one can further reduce the system by eliminat
population equation. These are class-A lasers and the
electric-field alone is sufficient to describe their dynami
For typical class-A lasers,G.GN and the trajectory rapidly
converges to the two-dimensional manifold defined byP
5P„E(t),N(t)… and, staying on this manifold, rapidly ap
proaches the one-dimensional manifold defined byN
5N„E(t)…. Then, the trajectory slowly evolves along th
one-dimensional manifold@Fig. 3~c!#. WhenG;GN one can-
not distinguish the two steps in the fast approach towards
one-dimensional manifold.

In this paper, we first present a systematic study of s
chronization in coupled-cavity lasers in class-A regime
where we can derive analytical solutions for steady sta
and identify mechanisms for composite-cavity mode com
tition. Then, we study the transition from classA to classB.
A systematic study of class-B lasers, which include the
widely used semiconductor lasers, will be the subject o
later publication.

1. Class-B approximation

We multiply Eq. ~35! by exp@2i(nk2v)1G# t and inte-
grate over the interval (2`,t). Under the assumptionG
@GE,GN , the variablesE, f, andN vary little in the time
G21, so that

Pn52
imab

2

\G (
k

Ekexp~2 i ckn!L~nk!~12 iak!

3~Cnk
A NA1Cnk

B NB!, ~36!
03381
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P n
A(B)52

imab
2

\G (
k

Ekexp@2 i ~ckn!#L~nk!

3~12 iak!Cnk
A(B) NA(B) , ~37!

where we introduced the Lorentzian

L~nn!5
G2

G21~v2nn!2
, ~38!

and frequency pulling parameter

an5
v2nn

G
. ~39!

After substituting the imaginary part of Eq.~36! into Eq.
~21!, and the real part of Eq.~36! into Eq. ~22!, we obtain
class-B field equations for the coupled lasers:

FIG. 3. Sketches of a typical trajectory approaching a sta
fixed point in class-A, class-B, and class-C free-running lasers.
1-6
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Ėn52
1

2
GE

n En1
mab

2 nn

2e0eb \G
Cnn(

k
L~nk!@cos~ckn!

2aksin~ckn!#~Ckn
A NA1Ckn

B NB! Ek , ~40!

ḟn1nn5ċn5Vn1
mab

2 nn

2e0eb \G
Cnn (

k
L~nk!@ak cos~ckn!

1sin~ckn!#~Ckn
A NA1Ckn

B NB!
Ek

En
, ~41!

where

GE
n5CnnGout1un

2~0!GM ~42!

represents the modal cavity losses. We recall that for a t
level ~homogeneous! medium, frequencies of the modes a
always pulled, due toak in Eq. ~41!, towards the center o
the gain profile atv.

Substituting the imaginary parts of Eq.~37! into Eq.~35!,
gives the class-B equations of motion for population in cav
ties A andB

ṄA(B)5LA(B)2GNNA(B)2
mab

2

\2G
(
m,n

Cnm
A(B)L~nm! EmEn

3@cos~cmn!2amsin~cmn!#NA(B) . ~43!

Equation~43! includes some effects that are not present i
single-mode single-cavity laser. In multimode lasers th
occurs an important effect of pulsation in population diffe
ence at the beat frequenciescnm . This effect is calledpopu-
lation pulsation and causes strong coupling between
modes @54,14#. Another important feature arises from th
composite-cavity configuration. The factorsCnm

A(B) ~equal
unity in single-cavity lasers! vary in coupled lasers with the
detuning between cavities causing changes in mode com
tition.

To determine the modal gaingnk5gnk
A 1gnk

B and gain-
induced refractive indexdnnk5dnnk

A 1dnnk
B , we use the

definitions

d

dt
En52

1

2
GE

nEn1
c

nb
(

k
gnkEk ~44!

and

d

dt
fn5~Vn2nn!2

nn

nb
(

k
dnnk , ~45!

and extract from Eqs.~40! and ~41!

gnk
A(B)~n,N!5CnnCkn

A(B)
mab

2 nn

2 ce0nb\G
L~nk!

3@cos~ckn!2ak sin~ckn!#NA(B) ~46!

and
03381
o-

a
e

e

e-

dnnk
A(B)~n,N!52Cnn Ckn

A(B)
mab

2

2e0nb\G
L~nk!@ak cos~ckn!

1sin~ckn!#NA(B) , ~47!

so thenth mode frequency pulling parameteran becomes

an52
nn

c

dnnn

gnn
. ~48!

Because we have a multimode field, formulas~46! and ~47!
describe constantdiagonal terms(n5k) and oscillatoryoff-
diagonal terms(nÞk). Furthermore, the expressions forgnk
and dnnk consist of two types of contributions. One is th
modal contribution represented byCnn and Cnn

A(B) that de-
pends on the coupled-cavity configuration. In particular,
tegralsCnn

A(B) describe the overlap of the composite-cav
mode with the gain medium in cavityA(B). The other is the
local contribution that reflects the properties of the act
medium. The local gain has the Lorentzian profile charac
istic for homogeneously broadened media.

In terms of the modal gain~46! and the modal index
change~47! , the population equation~43! becomes

d

dt
NA(B)5LA(B)2GNNA(B)2(

m,n

4 gnm
A(B)

Cnn

I nm

\nn
, ~49!

where the effective electric-field intensity~in units of energy!
is

I nm5 1
2 ce0nb EnEm . ~50!

The factor 4 in Eq.~49! appears because we deal wi
population-difference density. For semiconductor lasers,
considers the equation for the total carrier density in the c
duction or valence band~Ref. @66#, p. 47! in which case one
gets a factor of 2 instead of 4.

Similarly, rewriting polarization~36!

Pn52
2e0eb

Cnnnn
(

k
S i

c

nb
gnk2

nn

nb
dnnkDEk ~51!

highlights the response of the active medium to a multimo
electric field.

It is more convenient to work with the equations in
dimensionless form obtained by rescaling~i! the electric field
Ek with respect to the electric field of the free-runnin
single-cavity laser pumped twice above threshold,~ii ! the
population differenceN with respect to its threshold valu
for the free-running single-cavity laser, and~iii ! the time t
with respect toGN

21 . Using the new quantities

Ẽk5EkA mab
2

\2GGN

, Ñ5N
mab

2 n

e0eb\GGE
,

t̃ 5tGN , ñk5
nk

GN
, Ṽk5

Vk

GN
,

1-7
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L̃A(B)5LA(B)

mab
2 n

e0eb\GGEGN
, g5

Gout

2GN
,

gM5
GM

Gout
, and gn5g@11gMun

2~0!#, ~52!

we rewrite Eqs.~40!, ~41!, and~43!

Ė̃n52gnẼn1gCnn(
k

L~nk!@cos~ckn!2ak sin~ckn!#

3~Ckn
A ÑA1Ckn

B ÑB!Ẽk , ~53!

ḟn1 ñn5ċn5Ṽn1gCnn(
k

L~nk!@ak cos~ckn!1sin~ckn!#

3~Ckn
A ÑA1Ckn

B ÑB!
Ẽk

Ẽn

, ~54!

Ṅ̃A(B)5L̃A(B)2ÑA(B)2(
m,n

Cnm
A(B)L~nm!ẼmẼn

3@cos~cnm!1amsin~cnm!#ÑA(B) , ~55!

where the derivatives are taken with respect to the new
caled timet̃ . This is the final form of the equations used f
describing dynamics of class-B coupled-cavity multimode
lasers with homogeneously broadened media.

Equations~53!–~55! for the pair of modes, denoted asks
andka in Fig. 2, together with the mode equations~13!–~15!
were used for all numerical calculations presented in Sec
The complexity of these equations requires numerical an
sis and, as a consequence, full physical understandin
sometimes difficult to achieve. An alternative is to start w
the class-A approximation.

2. Class-A approximation

To illustrate the boundary between class-A and class-B
lasers, we consider a coupled-laser system that is opera
with a single composite-cavity mode, and useCA5CB5 1

2

~equal cavity lengths!. Then, Eqs.~53! and~55! take the form

Ė̃5g~ 1
2 Ñ21!Ẽ,

Ṅ̃5L̃2Ñ~12 1
2 Ẽ2!, ~56!

whereÑ5ÑA1ÑB and L̃5L̃A1L̃B . At the fixed pointẼ

5AL̃22,Ñ52, a stability analysis gives the eigenvalues

l1,252
L̃

4
6AL̃2

16
2g~L̃22!. ~57!

If ( L̃2/16),g(L̃22), we have two complex conjugate e
genvalues and the fixed point is approached in the oscilla
fashion often calledrelaxation oscillation. On the other
hand, if (L̃2/16).g(L̃22) we have two real negative e
03381
s-

I.
y-
is

ing

ry

genvaluesl1!l2 indicating that the dynamics can be r
duced from two dimensions to only one dimension. The c
dition (L̃2/16)5g(L̃22), plotted in Fig. 4, defines the
border between class-B lasers and class-A lasers. In class-A

lasers, the population difference decays much faster theẼ
and can be adiabatically eliminated.

There is a price to pay when eliminating population equ
tion in a multimode theory. On the one hand, one can neg
the population pulsation terms in Eq.~55! and set the left
hand side of Eq.~55! to zero. The resulting expression fo
NA(B) is valid for high pumping but does not include pop
lation pulsations. On the other hand, when the oscillat
terms in Eq.~55! are kept, one needs to use a perturbat
approach. The resulting expression forNA(B) includes popu-
lation pulsations but is valid only near threshold. Becau
population pulsations are important in our analysis we m
tiply Eq. ~55! by et and formally integrate to obtain

ÑA(B)5e2tE
2`

t H L̃A(B)e
t2(

m,n
Cnm

A(B)L~nm!ẼmẼn

3@cos~cnm!1amsin~cnm!#ÑA(B)~ t !etJ dt .

~58!

For Ẽk50 one getsÑA(B)
(0) 5L̃A(B) . Using ÑA(B)(t)5L̃A(B)

in the right-hand side of Eq.~58!, and assuming thatẼk and
fk vary little during the timet̃ 51 leads to

ÑA(B)
(2) 5L̃A(B)2L̃A(B)„Caa

A(B)L~na!Ẽa
21Css

A(B)L~ns!Ẽs
2

1ẼaẼsCas
A(B)Dsa$w@dsasin~csa!1cos~csa!#

1vas@sin~csa!2dsacos~csa!#%…, ~59!

where

FIG. 4. The border between class-A and class-B regime for

single-composite-mode coupled lasers whereL̃5L̃A1L̃B .
1-8
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BIFURCATIONS AND INTERACTING MODES IN . . . PHYSICAL REVIEW A69, 033811 ~2004!
dnm5
nn2nm

GN
, Dnm5

GN
2

GN
2 1~nn2nm!2

, ~60!

and

w5L~na!1L~ns!, vas5aaL~na!2asL~ns!. ~61!

We then substitute Eq.~59! into Eq. ~53! and neglect the
following terms. Assuming equal pumpsL̃A5L̃B5L̃, we
notice that (Cas

A L̃A1Cas
B L̃B)!(Cnn

A L̃A1Cnn
B L̃B) due to

Cas
A '2Cas

B . Furthermore, when the lasers are unlock
terms involving relative phasescsa(t) are negleted in the
random phase approximation. Inside the lockband, wh
csa5const, numerical analysis shows that eitherẼa or Ẽs

vanishes. In either case terms of the typeẼaẼs sin(csa) can
be dropped. The resulting class-A equations for the intensi
ties Ĩ n5Ẽn

2 of the composite-cavity eigenmodes are

Ĩ̇ a5~ja2baĨ a2uasĨ s! Ĩ a , ~62!

Ĩ̇ s5~js2bsĨ s2usaĨ a! Ĩ s . ~63!

Because we chose to keep population pulsations, our claA
equations are valid for equally pumped lasers operating n
threshold. Equations~62! and~63! clearly describe a compe
tition between the two modes@54,14# and are equivalent to
the equations describing dynamics of two species compe
for the same source of food@67#. For thenth mode, the net
gain is

jn52gS Cnn
2 L~nn!L̃2

gn

g D , ~64!

and the self-saturation coefficient is

bn52gCnnL 2~nn!L̃ @~Cnn
A !21~Cnn

B !2#. ~65!

The cross-saturation coefficient for thenth mode saturated
by themth mode,

unm5unm
hb 1unm

pp , ~66!

contains a spatial hole burning part

unm
hb 52gCnnL~nn!L~nm!L̃~Cnn

A Cmm
A 1Cnn

B Cmm
B !, ~67!

and a population pulsation part

unm
pp5gCnnL~nm!L̃@~Cnm

A !21~Cnm
B !2#Dnm@w~am dnm11!

2vnm~am2dnm!#. ~68!

As it was recognized in Ref.@54# ~Sec. 9-2!, the behavior of
a two-mode laser strongly depends on the coupling par
eter

C5
uas usa

ba bs
, ~69!
03381
,

re

-
ar

g

-

and on the effective gains

ja85ja2
uas

bs
js and js85js2

usa

ba
ja . ~70!

Here are the stable, positive intensity, fixed points of E
~62! and ~63! @54#. If js8,0 andja.0 , then

Ĩ a5
ja

ba
and Ĩ s50, ~71!

and if ja8,0 andjs.0, then

Ĩ a50 and Ĩ s5
js

bs
. ~72!

For C,1 andja8.0, andjs8.0, we have

Ĩ a5
ja8/ba

12C
and Ĩ s5

js8/bs

12C
. ~73!

Not all of these solutions can be stable at the same ti
The two first stable fixed points~71! and ~72! may coexist
while the third fixed point~73! can be the only stable fixed
point in the system. This can be understood in terms of
competition between the modes.

If the modes are strongly coupled, the cross-satura
coefficientsunm are big enough for both solutions, Eqs.~71!
and ~72!, to be stable. Then, we speak ofstrong mode com-
petition that allows for one winner only. The moden which
reaches the threshold first is the only survivor. The ot
modem, even though it is pumped above thresholdjm.0,
experiences negative effective gain (jm8 ,0) due to the cross-
saturation by the moden, and will never rise above thresh
old. Strong mode competition is characterized byC.1.
WhenC,1 we speak ofweak mode competitionthat allows
for the possibility of both modes to be above threshold~73!.
If one of the modes experiences more gain, it will oscilla
with the higher amplitude but will never be able to depre
the other mode. Lastly, note that in the weak competit
case, one of the modes may experiencejm8 ,0 due to higher
losses or by moving out of the gain profile. Then, the sta
solution is Eq.~71! for the nth mode. The survivor is se
lected not via strong competition but simply due to the de
of the competitor.

Our calculations show that including population puls
tions is necessary to achieve strong competition betw
composite-cavity modes. The customary treatment negl
the phenomenon resulting in a complete lack of bistability
the locked solutions.

III. RESULTS

Our main objective is to study single-frequency synch
nization~locking! between two coupled lasers. In this pap
lockband is defined as a range of~normalized! cavity length
differencedL/l within which the two lasers are locked to
single frequency. In terms of composite-cavity modes,
lasers are single-frequency locked when~i! only one
1-9
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S. WIECZOREK AND W. W. CHOW PHYSICAL REVIEW A69, 033811 ~2004!
composite-cavity mode is above threshold as described
the solutions~71! and ~72! or, ~ii ! when both composite
cavity modes are above threshold~73! and are frequency
locked with csa5 const. There are other possibilities fo
synchronization~locking! which are not considered in thi
paper because they do not fall into the single-frequency lo
ing category. Examples include synchronization of mu
mode lasers and situations involving instabilities leading
more complicated behavior and more general types of s
chronization. This will be a subject of later publication de
ing with coupled semiconductor lasers.

The results are presented in the form of lockbands i
two-dimensional parameter plane (T,dL/l). First, we focus
on classA, and then, consider the transition from class-A to
class-B lasers. Furthermore, we systematically study the
pendence of the lockband on the carrier decay rateGN , po-
larization decay rateG, pumpL̃, and coupling mirror losses
gM . To calculate the lockband, we use the bifurcation c
tinuation packageAUTO @62#. Under the variation of one pa
rameter the transition between locked and unlocked laser
eration is detected as a bifurcation, and is then continue
two parameters. This method is superior over the traditio
approach which requires sampling of the entire param
space by simulations@68#. All the numerical calculations in
this section are performed using class-B Eqs. ~53!–~55!
~valid in class-B and class-A regime! for the pair of modes
ka andks . On the other hand, our class-A Eqs.~62! and~63!
together with the analytical solutions~71!–~73! prove helpful
by validating near threshold and providing physical expla
tion of the numerical results.

We set the length of cavityA to LA51 m, and the length
of cavity B is LB51m1dL. Furthermore, we usev5(2p
3106)c and nk5Vk in the formulas forL(nk), ak , dnm ,
andDnm . After a close inspection of the analytical formula
for jn , bn , and unm we decided to divide the numerica
investigation into two parts. We start with largeG
51000 GHz and then study the changes in the lockband aG
decreases to a few GHz.

A. Rapid polarization decay

In Fig. 5 we show lockbands for zero losses in the co
pling mirror. The dashed curve is obtained using class-A Eqs.
~62! and ~63!, while the solid curves were obtained usin
class-B equations~53!–~55!. In class-A equations a locked
state continuously turns into an unlocked state via transc
cal bifurcation ~Ref. @69#, p. 326!. In class-B equations
~solved in class-A regime!, the locked state disappears alo
the solid curve and the system settles down to the rem
unlocked state. This discontinuous transition between
stable states involves a narrow region of coexistence betw
locking and unlocking which is explained in Sec. III C.

For G51000GHz@uv2ns(a)u, we can make the approxi
mationsL(nn)'1 andan'0. Then, according to formula
~64!–~66!, the lockband depends on the carrier decay rateGN

via Dnm , on the pumpL̃, and on the losses in the couplin
mirror gM . Furthermore, if the coupling mirror is lossles
we expect the lockbands for the antisymmetric mode and
the symmetric mode to be almost identical.
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The lockbands in Fig. 5 are bistable which means that
parameter range where the lasers can lock at the frequen
of the antisymmetric and symmetric mode fully coales
Consequently, we see only one curve defining the transi
from locking to unlocking. For the parameters inside t
lockband, there exist two stable points and they have eq
basins of attraction~equally large regions in the phase spa
with initial conditions leading to a given fixed point!. Which
fixed point the system settles to depend on the initial con
tion. Population pulsations and hole burning are necess
for the bistability to occur@54,14#.

According to Eqs.~68! and~60! the coupling between the
modes increases withGN because of increasing populatio
pulsation. Figure 5 indeed shows that the bistable lockb
expands with increasingGN . Figure 6 illustrates the depen

dence of the lockband on pumpL̃. The expected result from
a multimode theory with weak coupling between the mod
is that subsequent modes reach threshold as pump incre
However, with strong mode competition one expects the
ser to remain single mode. In our example of a two-mo
laser system, coupling~competiton! between composite

cavity modes is enhanced withL̃ ~Fig. 6!. The bistable lock-

band widens withL̃ as in the early experiment from Re
@15#.

So far, all the lockbands we presented were fully bista
and almost symmetric with respect todL/l50. Formulas
for jn , bn , andunm already suggest this type of symmetr
note that for long cavities considered here,Caa'Css and
Caa

A(B)'Css
B(A) . The asymmetry in the lockband may then

caused either by the different losses associated with the
ferent modes or by the different detunings of the modes fr
the atomic frequencyv. We first focus on the influence o
different cavity losses. The influence of detuning is discus

FIG. 5. Bistable lockband calculated using class-A equations
~62! and ~63! ~dotted curve! for GN50.2 GHz and class-B equa-
tions ~53!–~55! ~solid curves! for GN50.1, 0.2, and 0.5 GHz. Othe

parameters areGE50.01 GHz, G51000 GHz, gM50, and L̃
51.1.
1-10
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BIFURCATIONS AND INTERACTING MODES IN . . . PHYSICAL REVIEW A69, 033811 ~2004!
in the following section because it does not play any role
the largeG considered here.

According to formula ~42!, different composite-cavity
modes may experience different cavity losses if their am
tudes at the lossy coupling mirror are different. As can
seen in Fig 1~b!, the antisymmetric mode amplitude atz
50 is usually negligible while the symmetric mode amp
tude atz50 can be as large as the amplitude of the mo
itself. Hence, we expect the symmetric mode to experie
higher cavity losses then the antisymmetric mode. The lo
bands for different relative coupling mirror lossesgM
5GM /Gout are plotted in Figs. 7 and 8. The dotted curv
represent the lossless coupling mirror and are included
reference. The key difference from the results shown in F
5 and 6 is that, for nonzerogM , lockbands for different
modes no longer coalesce.

At the low pump ofL̃51.1 , assuming barely 1% of th
outcoupling losses in the coupling mirror already affects
bistable lockband@Fig. 7~b!#. As expected, the symmetri
mode lockband shrinks with increasinggM , and almost dis-
appears atgM5 0.5. On the other hand, the antisymmet
mode lockband expands asymetrically@Fig. 7~a!# because
us(0) is not a symmetric function ofdL/l. For gM50.5 in
Fig. 7~a!, the antisymmetric mode lockband extends into
region of largedL/l where the mode competition is wea
(C,1), and where two-mode operation is expected. The
we have an example of a single winner due to the death
the competitor, namely, the extra losses due to the absorp
in the coupling mirror overcome the low gain and cause
symmetric mode to be below threshold.

When the lasers are pumped three times above thres
their ability to synchronize becomes more resistant
changes ingM . Small gM50.01 does not visibly influence
the bistable lockband and deviations from the dashed cu
appear atgM50.1. Figure 8~b! shows that the symmetri
mode lockband starts shrinking at two places nearT50.9
anddL/l560.1. AsgM increases further it splits into thre
pieces. AtgM50.25 @Fig. 8~b!#, the lower piece is com-

FIG. 6. Bistable lockband for different values of the pumpL̃
while GE50.01 GHz,GN50.2 GHz,G51000 GHz, andgM50.
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pletely separated from the middle piece, and the upper p
is begining to detach. With further increase ingM , the side
pieces disappear and the middle piece shrinks toward
origin of the (T,dL/l) plane.

The antisymmetric mode lockband widens slightly@Fig.
8~a!# but no longer extends to the region of weak mode c
pling whereC,1; compare with Fig. 7~a!.

It is important to realize that losses in the coupling mirr
not only affect the shape of the lockband in the parame
space as shown in Fig. 8. They also decrease the bas
attraction for the symmetric mode fixed point.

B. Slow polarization decay

When G decreases~due to decrease inGdephase) to the
value comparable withuv2ns(a)u, the frequency pulling pa-
rametersan and the LorentziansL(nn) change withT and
dL/l and affect the mode competition. Furthermore,an and
L(nn) may change independently ofT and dL/l, for ex-
ample, due to external magnetic field, changes in the cav
length LA(LB) or in the background refractive index. Her

FIG. 7. Lockbands of the antisymmetric~a! and the symmetric

~b! mode for different coupling mirror lossesgM . The pumpL̃
51.1 and other parameters are as in Fig. 6.
1-11
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in addition to scanning the (T,dL/l) plane, we choose to
tune the frequencies of the modes by varying the length
the cavities on the fine scale of a fraction of the wavelen
l. Parameterd is introduced to account for the differenc
from the cavity-A length of 1 m, and the cavity-B length of
(1m1dL). During calculations,d5LA21 m anddL5LB
21 m2d are the two independent parameters.

Let us fix the transmissionT to 10%, decreaseG from
1000 GHz to 2 GHz, and focus on Fig. 9. The dotted cur
define the lockband for the case of largeG and lossless cou
pling mirror. They show no variation for the range ofd
shown in the figure because Lorentzians are unity and
frequency pulling parameters equal zero. However, wheG
is decreased, the Lorentzians and thea parameters vary a
shown in Fig. 9~d!–9~e!. These variations have substant
consequence on the lockband@Fig. 9~a!#. One bistable lock-
band splits into two such that the locking to the antisymm
ric mode is more dominant for the negative values ofd and
the locking to the symmetric mode is more dominant for
positive values ofd. Furthermore, each lockband is bound
on one side within the considered range ofd. Including

FIG. 8. Lockbands of the antisymmetric~a! and the symmetric

~b! mode for different coupling mirror lossesgM . The pumpL̃
53 and other parameters are as in Fig. 6.
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losses in the coupling mirror makes the end of t
antisymmetric-mode lockband expands toward positived,
while the symmetric-mode lockband shrinks slightly@Fig.
9~b!#. This sensitive dependence ond almost disappears

FIG. 9. Lockbands of the antisymetrica and the symetrics
mode as a function ofd for fixed T50.1 @panels~a!–~c!#. Panel~d!
shows the gain profiles corresponding to the two modes atdL/l
50, and panel~e! shows the corresponding frequency pulling p
rametersaa andas at dL/l50. Here,G52 GHz and other param
eters are as in Fig. 6. The dotted curves are obtained foG
51000 GHz.
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when the pump is increased to three times above thres
@Fig. 9~c!#. Actually, the lockband in@Fig. 9~c!# has similar
shape to that in@Fig. 9~b!# but on the larger range ofd, to the
extent where extra modes have to be included. A summar
how the lockbands are affected by the parameters of
coupled-cavity laser is provided in Figs. 10 and 11. In b
figuresG is decreased from 1000 GHz to a few gigahertz.
start with no losses in the coupling mirror~Fig. 10!, then
includegM50.02 and detune the cavities in the favor of t
symmetric mode~Fig. 11!. The antisymmetric and the sym
metric mode lockbands almost overlap forG.10 GHz.
WhenG decreases to 5 GHz, the two lockbands differ visib
~Fig. 10!. The effect of smallG is similar to the effect ofgM .
The antisymmetric mode lockband again extends to the
gion of weak coupling@Fig. 10~a!# suggesting that the sym
metric mode moves out of the gain profile@Fig. 10~b!#. Fig-
ure 2~a! already shows that, with increasingT, the symmetric
mode becomes more detuned fromv than the antisymmetric
mode.

Increasing the length of the lasers byd/l50.1 has no
effect on the lockband forG.5 GHz. In particular, the sym

FIG. 10. Lockbands of the antisymmetric~a! and the symmetric
~b! mode for different values of the polarization decay rateG. Other
parameters are as in Fig. 6.
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metric mode lockband remains shrank due to coupling mir
losses. AsG decreases below 5 GHz, the symmetric mo
lockband expands toward the positive values ofdL/l as
shown in Fig. 11~b!. An additional piece of the symmetri
mode lockband appears in the upper-right corner of
(T,dL/l) plane@Fig. 11~b!#. The two pieces of the symmet
ric lockband approach each other atG'2.5 GHz and merge
into one lockband@G52 GHz in Fig. 11~b!#. Here, the effect
of d overcomes the effect due to mirror losses and result
partialy restored symmetric mode lockband. The antisy
metric mode lockband, shown in Fig. 11~a!, expands into the
region of negativedL/l.

Lastly, when the pump is increased toL̃53, the effects of
gM5 0.02 andd/l5 0.1 are small. Both lockbands are a
most restored to the shape of the dotted curve.

C. ClassA to classB

This section focuses on differences in the locking mec
nisms between class-A and class-B lasers. Bifurcation theory

FIG. 11. Lockbands of the antisymmetric~a! and the symmetric
~b! mode for different values of the polarization decay rateG in the
presence of middle-mirror lossesgM and cavity detuningd. Other
parameters are as in Fig. 6.
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is used to identify qualitative changes~bifurcations! @69# in
the phase space of the system at the locking-unlocking t
sition. In Fig. 12 bifurcations of stable solutions~called su-
percritical! are plotted as solid curves, and bifurcations
unstable solutions~called subcritical and needed for unde
standing the dynamical picture as they sometimes prod
stable solutions too! are plotted as dashed curves. In t
saddle-node bifurcation of fixed points denoted asS, two
fixed points are created. In a Hopf bifurcation denoted asH,
a fixed point bifurcates with a periodic orbit. In a gene
saddle node of periodic orbit bifurcationSL, two periodic
orbits are created.

It is important to note that, due to the symmetry betwe
the modes, bifurcations of the symmetric and the antisy
metric mode fixed points nearly overlap. Therefore, eacS
andH curve in Fig. 12 actually indicates two bifurcations~of
the two coexisting fixed points!. Furthermore, the saddl
node of periodic orbit bifurcationSL in Fig. 12 is close to a
singular saddle node of periodic orbit bifurcation~also called
subcritical pitchfork bifurcation! where an unstable orbi
turns stable and two extra unstable orbits appear.

In Fig. 12, the lockband is bounded by~i! the supercritical
parts of theS curve forg.0.5 and~ii ! either theSL curves
or H curves forg,0.5, due to hysteresis. The termcoexist-
ence denotes regions with two stable fixed points and
stable periodic orbit, whilebistabledenotes regions with two
stable fixed points.

In the class-A regime (g,0.5), a typical transition tha
occurs whendL/l changes is depicted in the first column

FIG. 12. Transformation of the lockband atT50.1 asg in-
creases from class-A to class-B regime. The term ‘‘bistable’’ de-
notes the region with two stable fixed points, while ‘‘coexistenc
denotes regions with two stable fixed points and one stable peri
orbit. H stands for Hopf,S for saddle-node of fixed points, andSL
for saddle-node of limit cycle. The solid curves represent superc
cal and the dashed curves represent subcritical bifurcations.

pump rate isL̃53 andG510 GHz.
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Fig. 14. For the parameters within the lockband@Fig. 14~a1!
and point a1 in Fig. 12# there exist two stable fixed points
They correspond to locking to either the antisymmetric or
symmetric mode. The antisymmetric~symmetric! mode fixed
point of Eqs.~53!–~55! has a large amplitude of the antisym
metric ~symmetric! mode but also a small contribution of th
symmetric~antisymmetric! mode. Cross-saturation preven
this small contribution from becoming significant. Th
phases of the two modes are locked (ċsa50) so the lasers
lase at the same frequency. Figure 14~a1! shows that, on top
of the two fixed points, there exist an unstable periodic or
~plotted in gray!. As u dL/l u increases towards the border
the lockband, two extra periodic orbits are born, one
which is stable, in supercritical saddle-node of periodic or
bifurcation SL @Fig. 14~b1! and point b1 in Fig 12#. The
stable periodic orbit~plotted in black! represents the state o

’
ic

i-
he

FIG. 13. Expended bifurcation diagram from Fig. 12 near t
generalized Hopf point GH1 ~a! and the Bogdanov-Takens poin
BT1 ~b!, respectively. In panel~b! h stands for homoclinic bifurca-
tion
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BIFURCATIONS AND INTERACTING MODES IN . . . PHYSICAL REVIEW A69, 033811 ~2004!
unlocked laser operation where both composite-cavity mo
are above threshold and their phases drift apart@Fig. 15~a!#.
In an experiment, and in most numerical analysis, the sys
settles to one of the stable fixed points and the appearan
the stable periodic orbit is usually unnoticed. Asu dL/l u
increases towardsH, the two unstable orbits, plotted in gra
in @Fig. 14~b1!#, shrink onto the stable fixed points. AtH, the
two stable fixed points almost simultaneously turn unsta
via subcritical Hopf bifurcation. The cross-saturation can
longer prevent multimode operation and the system mak
transition to the only stable state—the periodic orbit@Fig.
14~c1! and point c1 in Fig 12#. The lasers switch from locked
operation to unlocked operation that shows no traces of
former stable fixed points@Fig. 15~a!#. For parameters abov
~below! the upper~lower! curveH, the lasers are unlocked.
one reverses direction and decreasesu dL/l u the lasers re-
main unlocked until reaching the curveSL, where the stable
orbit disappears and the systems move to one of the st
fixed points. Due to the hysteresis, the border separa
locked and unlocked operation depends on the directio
which u dL/l u changes. Class-A lasers lock due to strong
composite-mode competition.

As g approaches the value 0.5@Fig. 12#, the SL curves
meet theH curves at codimension-two generalized-Ho
points ~Ref. @69# Sec. 8.3! GH1 and GH2 @Fig. 13~a!#, and
the H curves meet theS curves at codimension-two
Bogdanov-Takens points~Ref. @69# Sec. 8.4! BT1 and BT2

@Fig. 13~b!#. In a generic scenario for a Bogdanov-Take

FIG. 14. Trajectories in the inversionNB vs field amplitudeEa

plane showing locking-unlocking transition in class-A lasers~col-
umn 1! and in class-B lasers ~column 2!. From ~a1! to ~c1! g
50.125 anddL/l50.03, 0.037, and 0.042. From~a2! to ~c2! g
51 anddL/l50.005, 0.0095, and 0.011, as indicated in Fig. 1
The dots denote stable and the crosses denote unstable fixed p
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bifurcation, one expects an extra curve of homoclinic bif
cation where the period of the orbit born atH goes to infinity.
This global bifurcation curve, marked ash in Fig. 13~b!, was
calculated using the HomCont part ofAUTO @62#. It emerges
from BT as expected, then joinsS and continues alongS for
larger values ofg. In consequence, supercritical saddle-no
bifurcations forg.0.504 take place on a periodic orbit.

Past BT1 and BT2 one enters the regime of class-B lasers
where the nature of the locking-unlocking transition chang
significantly. In particular, the region of coexistence betwe
locking and unlocking disappears and the lockband beco
narrower. For g51 the lasers operate at the sing
composite-cavity mode only withinudL/l u,0.0025. As
udL/l u increases, the stable fixed points shift towards t
composite-cavity mode operation where the modes are
quency locked (ċsa50) @Fig. 14~a2! and point a2 in Fig.
12#. Near the border of, and still within, the lockband there
a saddle@crosses in Fig. 14~b2!# next to each stable fixed
point. Furthermore, all four points are on an invariant circ
formed by the unstable manifolds of the saddles. Along
supercritical branches ofS, the saddles collide with the stabl
fixed points and disappear via saddle-node bifurcation. W
remains is the stable periodic orbit corresponding to
locked operation@Fig. 14~c2! and point c2 in Fig. 12#. Out-
side the lockband, the phase differencecsa increases in time
and, in contrast to class-A regime, shows ‘‘ghosts’’ of the
stable fixed points@Fig. 15~b!#. Our analysis shows that mod
erately coupled class-B lasers lock due to frequency lockin
of the composite-cavity modes.

We would like to end our investigations by showing
Fig. 16 the entire lockband in class-B regime. Unlike in
class-A regime ~compare with Fig. 5!, there are now two
bifurcation curves, namely, saddle-nodeS and HopfH. Fur-
thermore, both curves become tangent at codimension-
saddle-node-Hopf pointsG1 and G2 ~Ref. @69#, Sec. 8.5!
where they change from supercritical to subcritical. The
sulting lockband is bounded by the supercritical parts ofH
and S bifurcation curves. Generically, one expects other
furcations to be created atG1 and G2 that may lead to
complicated dynamics and chaos~Ref. @69#, Sec. 8.5!. Those
extra bifurcations will be studied in detail in the future pu
lication.

IV. CONCLUSIONS

This paper describes a general theory of multimo
coupled-cavity lasers that is based on a laser field expan

.
nts.

FIG. 15. Evolution of the phase difference for the lase
unlocked periodic orbit from Fig. 14~c1! @panel~a!# and the laser-
unlocked periodic orbit from Fig. 14~c2! @panel~b!#.
1-15
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in terms of composite-cavity eigenmodes. The theory is va
for all values of coupling and can be extended to any num
of lasers. It accounts for nonlinear mode-coupling effec
coupling-mirror losses, and the dependence of the lasing
quencies on coupling. We derived the multimode coupl
laser equations and described their simplification by ad
batic elimination of the polarization and populatio
equations~class-B and class-A lasers!.

The full model consist of~i! differential equations for the
time evolution of the slowly varying electric-field amplitud
phase, polarization, and population, as well as~ii ! algebraic
equations determining the composite-cavity eigenmodes.
extended previous studies by incorporating our system

FIG. 16. Bistable lockband in class-B regime is bounded by the
solid parts of the saddle-nodeS and the HopfH curves which be-
come tangent at saddle-node-Hopf pointsG1 and G2. Here, g

52.5 andL̃53. The solid curves represent supercritical and
dashed curves represent subcritical bifurcations.
s

s

ov

n,
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differential algebraic equations into bifurcation continuati
techniques. This allows for a systematic study of synchro
zation over an extensive parameter space.

First, we treated the class-A limit, which leads to the sim-
plest form of the coupled-laser model. In this limit, the fie
intensity equations for the composite-cavity modes
equivalent to the equations describing competition of diff
ent species for the same source of food. Most importan
the class-A equations allowed for derivation of analytica
formulas describing laser locking in terms of competiti
between composite-cavity modes. In order to keep pop
tion pulsation effects, our class-A equations and resulting
analytical expressions are restricted to low pump level. Th
validate near threshold and provide physical insight into
more general numerical results~which have no restriction on
excitation level!, helping to understand how the polarizatio
decay rate, population difference decay rate, absorption
the coupling mirror and pump, influence the ability
coupled lasers to frequency lock. In particular, the classA
treatment reveales the importance of population pulsa
which gives rise to bistable laser-locked solutions.

Second, we investigated the transition between clasA
and class-B lasers and discovered a qualitative change in
nature of laser locking. Bifurcation theory was used to u
derstand how strong composite-cavity mode competiti
which is the laser-locking mechanism in class-A regime,
gives way to frequency locking of the composite-cav
modes, the laser-locking mechanism in class-B regime. The
results lay the foundation for a future investigation
coupled semiconductor lasers where the effects of inho
geneous broadening and many-body interactions will hav
be added to the theory presented in this paper.
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