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Bifurcations and interacting modes in coupled lasers: A strong-coupling theory
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The paper presents a theoretical study of synchronization between two coupled lasers. A theory valid for
arbitrary coupling between lasers is used. Its key feature is that the laser field is decomposed in terms of the
composite-cavity modes reflecting the spatial field dependence over the entire coupled-laser system. The
ensuing multimode equations are reduced to di&sand further to clas#- equations which resemble com-
peting species equations. Bifurcation analysis, supported by insight provided by analytical solutions, is used to
investigate influences of pump, carrier decay rate, polarization decay rate, and coupling mirror losses on
synchronization between lasers. Population pulsation is found to be an essential mode competition mechanism
responsible for bistability in the synchronized solutions. Finally, we discovered that the mechanism leading to
laser synchronization changes from strong composite-cavity mode competition irAalegsne to frequency
locking of composite-cavity modes in claBsregime.
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[. INTRODUCTION meaning to the word “synchronization” which was origi-
nally used to describe synchronized periodic oscillators.

The first observation of light amplification by stimulated  An important aspect of coupled laser theories is the de-
emission of radiation took place in 196Q]. Soon after, scription of the laser field and its interaction with the active
lasers became sufficiently reliable for scientists to considemedium. In the framework of a semiclassical approach, the
coupling and synchronizing two lasdia-4]. These inquires laser medium is described quantum mechanically and the
were driven by purely academic interest as well as by excitlaser field is described classica[lg4]. The theory results in
ing applications. A single unperturbed laser can be viewed asquations of motion for the intracavity electric field, active
a paradigm of synchronization. It works because all the atmedium polarization and population inversion. In general,
oms in the active medium are fully synchronized, they oscil-these quantities are functions of both space and time, whose
late in-phase and produce coherent radiation. An interestingynamics are governed by partial differential equations
question arises about the conditions under which two differ{PDES. In particular, the laser field equation is an inhomo-
ent sets of synchronized atoms can synchronize with eaceneous wave equation that is derived from Maxwell’s equa-
other. Synchronized lasers are desired for a wide range dfons by assuming that the effects of the active medium may
applications, such as frequency stabilization against cavitybe represented by a macroscopic polarization. Different
length fluctuationg5,6], high power operatiofn7—10], and methods exist for solving the PDEs; see the examples of
selective mode suppressipil]. treating external cavity lasef8§5,56], multisection DFB la-

The first theories of coupled lasers were proposed by Basers[57,58, and coupled multimode lasels9].
sovet al.[2], Perel and RogovE3], and Spencer and Lamb The solution of PDEs is often numerically demanding,
[4]. They derived equations for the electric-field intensity and more importantly in our case, not well suited for bifur-
and phase in each individual laser and found that coupledation analysis. Fortunately, simpler models, which are still
lasers may synchronize, i.e., lase at the same frequency dbeased on semiclassical laser theory, have been developed. A
spite differences in resonator lengths. Since then, coupledidely used approach involves solving the inhomogeneous
lasers remain an intensively studied problem for which sevwave equation by expanding the laser field as a linear super-
eral models were proposed. The early studies were corposition of the solutions of the homogeneous wave equation.
cerned with synchronization between two gas lafE2s-15.  These solutions are commonly referred to as the passive-
As this research was continu¢ti6—25 some investigators cavity eigenmodes. The expansion coefficidetectric-field
tried to understand systems of three coupled lag28s27) amplitude$, which depend only on time, are then governed
and even large arrays of solid-state lagé&-31]. In the late by ordinary differential equation€ODES.

1980's the focus shifted towards coupled semiconductor la- There are two approaches to treating the passive-cavity
sers[32-38 and semiconductor laser arraj39—48. At mode aspect of the coupled-laser problem. The more com-
present, linear semiconductor laser arrays constitute the oniyjon approach neglects the effects of coupling between the
commercially available coupled lasers. resonators when solving the homogenous wave equation.

Besides continuous wave operation, coupled lasers oftefihe solutions are then simply the passive-cavity eigenmodes
show complicated dynamical behavior and instabilities.of the individual uncoupled resonators, and the contributions
Among the recent studies of coupled lasers are those involfrom resonator coupling are transferred to the inhomoge-
ing synchronization of coupled-chaotic las¢6,49-52, neous wave equatiofi36,41,52. Basically, the laser field
and large arrays of nonidentical lasd&s3]. In particular, amplitude equations consist of the free-running laser contri-
studies of chaotic synchronization, with a significant contri-butions, together with terms describing the presence in the
bution from the laser field49,50, gave a more general cavity of a small portion of fields from neighboring lasers.
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When combined with the appropriate active medium descripEssentially, these techniqu§é2] allow swift continuation
tion, the approach has been demonstrated to accurately rén a two-dimensional parameter plaraf the transitions be-
produce experimental results under special conditiondveen qualitatively different types of dynamical behavior,
[52,60,6]. In addition, it has the advantage of flexibility, in mclu_dlng un_stable states. As a result, we can be more certain
terms of readily allowing the introduction of delay in the thatinteresting, or possibly different physical phenomena as-
coupling fields[48], and global coupling via interaction of sociated with coexisting attractors, saddle points and global

individual lasers with a mean fiel®3]. A serious concern is bifurcations, are not overlooked, as would likely be the case
’ in traditional analyses. Incorporating our DAEs into

the ability of a field expansion in terms of uncoupled laseryif cation-continuation techniquds?] allows for system-
mod_es to accurately describe situations other than those igic and extensive analysis of synchronizaticking) and
volving weakly coupled lasers. _ _ instabilities in coupled lasers. Consequently, one obtains a
The second approach to treating the passive-cavity probmore complete understanding of the physics underlying
lem involves solving the homogeneous wave equation in theoupled-cavity laser behavior, and in terms of device design,
presence of resonator coupling. Since the solutions are th@e capability for optimization studies over a considerably
eigenmodes of the entire coupled-resonator system, they atgoader parameter space than previously possible.
often referred to as the passive composite-cavity mptizs Sections Il A and 1l B review the laser theory based on
14] or supermodef39]. There are several advantages to us-passive composite-cavity modes. The treatment of the active
ing the composite-resonator mode approach. The most inmedium is discussed in Secs. [l C 1 and Il C 2. Section |1 C 2
portant is that the description is valid for arbitrary coupling: also shows that in the clags-approximation, analytic solu-
from zero coupling, where the Composite-cavity modes ardions exist, which give invaluable insight to numerical re-
the modes of the individual resonators, to maximum cou-sults. The remainder of the paper is devoted to using bifur-
pling, where the composite-cavity modes are the modes of gation theory with the microscopic coupled-laser theory to
single resonator that has the combined volume of the tw§tudy coupled-laser behavior. In Sec. Ill, we consider the
lasers. In particular, the dependences of eigenfrequencies af@Se Of single-frequency synchronizatidacking) between
eigenfunctions on coupling between cavities are precisel(/O end-to-end coupled lasers, and systematically study the

determined(see Fig. 2 Such a feature is, of course, not Nfluénces of population pulsations and coupling mirror
present when the field expansion is in terms of uncoupledI_osses on the lockband. We define the lockband as the range

individual-cavity modes. Another advantage is that the inho—Of cavity detuning within which the two coupled lasers are

. ; . .~ locked: operate with the same frequency. The results are first
mogeneous vvlave.equatlon,'whlch governs the time evomt'oBresented for clasa- lasers, where the synchronization
of the electric field amplitudes for COMPOSIte-reSonatoN, e chanism is the competition between composite-cavity
modes, takes the form of that for the familiar multimode modes. Then we discuss the transition from classo

single-resonator laser. Thus one benefits from previously des55sB equations. Here, bifurcation theory shows a qualita-

veloped techniques and concepts, especially those relating {Re change in the physical mechanism responsible for the

mode competition and locking. Furthermore, with the resultyansition between locked and unlocked lasers. In diass-

ing numerical model described entirely by differential alge-|asers, the synchronization mechanism changes to frequency

braic equationgDAEs), the numerics are less computer re- |ocking of the composite-cavity modes. The transition to

source demanding and bifurcation analysis becomesglassB lasers is the starting point for investigating the im-

possible. The third advantage involves physical properties ofortant and more complicated class of coupled semiconduc-

the coupled-laser system that are sensitive to spatial fieltbr lasers.

variations. The description of such properties, e.g., coupling

mirror losses, are more accurate and straightforward in terms Il. THEORY

of composite-cavity eigenmodes. ... The description of the coupled-laser model is divided into
Owing to the above advantages, we choose to work W'”fhr

. . . . . ee parts. In the first part we describe pasdiempt
the composite-cavity mode approach in this paper. The 'nhoéompor;ite-cavity modes IOand derive equatiopns whicrr)1 y)deter-

mogeneous wave equation, in the slowly varying ampl't“d%}\ine the eigenfrequencies and eigenfunctions. In the second

and F%asgggprogmatlpbn, Ca?hthetn be ert}e? as a} steht art, the equations for the time evolution of the electric-field
coupled s, describing the time - evolution o eamplitude and phase associated with a particular composite-
composite-cavity mode amplitudes and phases. Each eq

- uéélvity mode are derived from Maxwell equations. Further-

tion contains a driving term that is due to the active mediumy, .o e equations describing the time evolution of the po-
polarization. The next step in the development of a CouDIedrarization and population inversion in a two-level medium

laser theory is the derivation and solution of the quantum-, . qarived from quantum mechanics. In the third part, we

mechamcal equations  of motion fo_r the p_olanzatlon andshow the reduction of the full set of equations by adiabatic
population. Two levels of approximations exist for the treat-

. ; g . =T elimination of polarization and population difference.
ment of these equations. They involve the adiabatic elimina- P Pop

tion of the polarization equatioftlassB laserg, and elimi- A. Composite-cavity modes
nation of both the polarization and population equations
(classA laser3. Both cases are considered in this paper.
The final and perhaps most important step in our study is -
) . . . . eb(l’)-;, E s > 5 >
the introduction of the modern tools from bifurcation theory V25— E— oo E=pg P+V(V-&) (1)
into the framework of the microscopic coupled-laser theory. c?

The wave equation
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R=1 T R=1 stant

(a)

. . .
cavity A cavityB e(2)=0(~Lp0)eh+O0(0Lg) S+ 8(2), (3

where forx;<x, we define the rectangular function

O(X,X)=1 for x;<x<Xy,

(b1) O(X1,X)=0 for Xx;>X>X,. (4)
8(2) is the Dirac delta function, and=(/c is the wave
vector in vacuum. The coupling mirror of transmissibris
modeled as a dielectric “bump” with a coupling coefficient

Lp
7 given by
(b2) 1-T
n=(Np+ng) 1 6
Lp
I7%aV%a%

The electric-field with amplitud€, and associated with a
passive composite-cavity eigenmode

E(z,t)=Eyu(z) exp(—iQt)+c.c., (6)
(e1)
: is substituted into Eq.2) to yield the equation for an eigen-
functionu(z)

d2

—u(2)=— g €0€p(2) Q% U(Z). 7
172 (2)=— po €0€n(2) (2) (7)
(c2)
As shown in Refs[4,14], each eigenfunction satisfies the
boundary conditions

~Ly 0 Lg

d N d 3

FIG. 1. Two resonators with,=1, ng=1.5, andL,/\=10° d_zu(O )= d—zu(O )=—knyu(0), (8)
coupled by a common coupling mirror of transmissiofa). Panels
(b) show the antisymmetri¢out-of-phasg (b1) and the symmetric u(0*)=u(0") 9)
(in-phase (b2) composite-cavity mode in the strong-coupling re- '
gion of T=0.1 anddL/A =0.01. Panel$c) show the antisymmetric
(out-of-phasg (c1) and the symmetricin-phase (c2) composite- u(—La)=u(Lg)=0., (10)
cavity mode in the weak-coupling region d@=0.01 anddL/\
=0.1. where 0" and 0~ denote positions infinitesimally before and

after the coupling mirror, and= — L, ,Lg are the end mirror
describes the propagation of the electric-fiélin a medium ~ POSitions. _ o
with the dielectric constamb(F) and conductivityo) driven c Or-:-(;z gr:r;(gg?fo??éu“on of Eq®) satisfying the boundary
by the field-induced polarizatioR; c=1/\/eou, is the speed

of light in the vacuum. For the transversal fieRi(V - &) Ur(2)=A, sik,na(z+La)] for —La<z<0,
=0. In a passive cavity®=0) without losses ¢=0) and u,(z)=B,sinMk,ng(z—Lg)] for O<z<Lg. 1D
under the assumption that the electric-field varies along the
longitudinal z direction only, we get The eigenmodes obey the orthogonality relation
2 2 .8
—&(Z,1) = poeg €n(2)—5E(Z,Y). 2 f dzey(2) Up(Z2)um(z) =Nénm, (12
0z ot —La

Following Spencer and Lanld], we define for the coupled- where\ is the normalization constant. From the orthogonal-
cavity structure in Fig. () the background dielectric con- ity relation we get
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1 sin(2k,nala) (@) ksi+1 (b) 4 (c)
Aﬁ”i'—A(E_ TAKnaLa VT+BinLe 4/ st ks +1
. - ko +1 /ﬁi/
« E B sin(2k,ngLg) T TE ks \ kg 41
2 4knnBLB \0._‘ / /
= 0 % k ks
,(NatNg) g ¢ //’a/ k
Ank—nSIﬂz(knnALA)\ll—TzNﬁ (\Il-st/ ky 1 a
D I B
(13) -4 kﬂ -1 /ka/—’l//- ks -1
ko1
which needs to be solved simultaneously with the boundary /
conditions(8) and (9): -6 dL/X = 0.05 dL/A =0.25 dL/A=0.5
' 02 06 1 02 06 102 06 qi

VT[Bng costknnsls) ~An N COSknaL o)) FIG. 2. Evolution of the composite-mode wave numberfso-

——1-TA (na+ng) sin(k,nal a) (14) lutions of the transcendental equatidd)] with increasingl. From
" " (8 to (c) dL/\ takes values: 0.05, 0.25, and 0.5 whilg /\
and =10
Ansin(kpnal a) = — By sin(k,nglg), (19  thatks., takes place ok,.,. Here, we focus our attention

) ) on the interaction between the two modes, denotdd, and
to obtain the wave vectork, and the corresponding k_ in Fig. 2, so we consider the range 0.25<(dL/\)
composite-mode amplitudes, andB,,. More generally, this < 25

can be done for any number of coupled lasers where one | astly, we note that the assumption of perfectly reflecting
has to solvem+1 algebraic equations to determine theend mirrors is an idealization used to obtain normal
composite-cavity modefsi2]. composite-cavity eigenmodes. This assumption is valid, for

In the remaining part of this manuscript we are concernedgxamme, in coupled VCSEL$10] and low-gain lasers.
with coupled lasers hosting the same type of an active mewhen outcoupling losses become significant, the more com-
dium e,= €, = €, . Furthermore, we choos¥’=eyL, where  plicated nonorthogonal eigenmodes should be considered
L=La~Lg, and introduce the relative length difference  [63,64].

dL Lg—Lp
SR (16 B. Laser equations

In this section, we are concerned with the time evolution
where A\=1 um is approximately the wavelength of the of (i) the real electric-field amplitudg,(t) and phasep,(t)
free-running single laser. associated with thath composite-cavity eigenmodegi) the

Four examples of calculated composite-cavity modes areorresponding complex polarization amplitudBs(t), and
plotted in Figs. b) and Xc). In the region of strong cou- (iii) the population inversioM g, in cavitiesA and B. We
pling, as shown in pangb), composite-cavity eigenmodes rewrite Eq.(1) in the form
have roughly similar amplitudes in both cavities. Further-
more, solutions of Eq(15) can be described amtisymmet- 9  €e(z2) 0 d 7
ric (b1) and symmetri¢b2). These names refer to the fact | — ﬁ22+ o Eﬂuo(fﬁ 5(Z,t)=—,uo?77(2,t)a
that, at the end mirrors, the field of the symmetric modes is 17)
in phase while the field of the antisymmetric modesrisut
of phase. Panel&l) and (c2) show the antisymmetric and
the symmetric modes, respectively, in the region of weakwhere the electric-field lossd&=o/(egep,) are
coupling. As the coupling decreases to zero, we find that the
symmetric modes reside in cavify and the antisymmetric

modes reside in cavitl for Lo<Lg, and otherwise foL 5 Ie(2)=T o+ Tyl 8(z)= _ﬁm(Rle)
>Lg. ATLB
In Fig. 2, we plot some solutions of EQL5) as a function +T L 8(2), (18)

of the coupling mirror transmissioh. The eigenmode wave

vectors were assigned the labeldor antisymmetric and

for symmetric. For small values afL/\ andT the symmet- wherel,,; accounts for the outcoupling lossd®, and R,

ric and the antisymmetric solutions, namély. , andk,,,, are the end mirrors reflectivities, arld,, accounts for the
stay close to each other as compared to the distance betweabsorption or scattering at the coupling mirror. The total
Ka(s)+n @NdKyes)+(n-1)- WhendL/\ reaches the value 0.25 electric field £(z,t) and the total macroscopic polarization
all the modes become equidistant, anddag\ approaches 7P(z,t) are expanded in terms of the composite-cavity eigen-
0.5 they again resemble the situation édr/\ = 0.05 except modes
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D(Z):®(_LA,O)DA+®(O,LB)DB (27)

These matrix elements evolve accordingly to

(19
and pab(Z.0)=~ 10 pan(20) ~ Tpan(z.0)+ 528(2,1)
1
P2,)=5 2 {Pu(eXd —i (vut+ n(t))] Un(2) +c.c}, X[pon(2.t) = Paa(z.)], (28
(20 | ab

paa(Zt)=Ag(2)—T z,t)— E(z,t
whereE ,(t) and¢,(t) are the real, slowly varying, electric- Paa(21) = Aa(2) = Tapaa(2t) — 82

field amplitude and phase of timeth mode, andP,,,(t) is the
corresponding complex, slowly varying, polarization ampli-
tude.

x[pab(zlt)_pba(zat)]! (29)

Pob(Z,1) = Ap(2) —Tpppp(z,t) + lgabg(Z.t)

1. Electric field

Substituting Eqs(19) and (20) into Eq. (17) (see Ref.
[54], p. 100 we arrive at the self-consistency equations

X[pab(z,t)—pba(z,t)], (30)

where I'=3(I'3+T,) + gepnase iS the polarization decay
rate,I'ye phaseincludes dephasing effects due to elastic colli-
sions,A 4(z) and A (z) are the pump rates into levedsand
(21 b, respectively, whilel', andI',, are the decay rates from
levelsa andb, respectively.
Identifying the positive-frequency parts in Eq26) and
(20)

. 1 2 Vh
En=— E(Cnnrout+ Un(O)FM) _Toebcnn Im(Py),

Vn Re(Pr)
E, ’

(-ﬁn:Qn_Vn_ (22

2606b
where the self-consistency arises from demanding that the
electric field, inducing the active medium polarization,

equals the field resulting from the induced polarization. As a
consequence of the composite-cavity configuration, we havehere ¢, = vt + ¢, is the total phase of thith mode, we

D(2) Mabpab<z,t>=%2k Pdtu(z)exp —igy), (31)

the modal integrals

€p Lg
CanK/’J . dz Lh(Z)um(Z)=Cﬁm+ CEm’ (23
—La

cA 1 (sin[(kn—km)nALA]
LTI (Ky—Km)Na
sin (K +Km)naLa]
a (kn+ km) nA ) , (24)
B 1 (Sin[(kn—km)nBLB]
nmooL T (Ky—Km)Ng
sin (ky+km)ngLg]
T Re K ) 9

In a long (compare to the wavelength) cavity, C,..,, is
almost zero andC,,, is close to unity.

2. Active medium

In semiclassical laser theory, the macroscopic polarization

P(r,t) of a two-level medium is given by

P(th):D(Z) Mabpab(z1t)+c-c-u (26)

where u,p, is the dipole matrix elementp;; is the matrix

element of the population operatsee Ref[54], p. 103,
and the local density of atoms is

find that thekth mode of complex, slowly varying polariza-
tion

P =PRO+PR(1)

2 Lg
= expting f " d20@ (0 D@paspal2).

(32

has its source in oscillating dipoles within cavitidsand B

2 O(Lg)
PR ()= Fexpli vh) maven @i (1) f dzu(2).
—La(0)

Combining time derivative of Eq32) with Eq. (28), defin-
ing population inversion in cavityA(B) as Nag,
=Dae)(pa—pp?), gives time evolution for thekth
mode of polarization

. iMib

PR =[i(n— )~ TP —==

xg EneXp—i o) CoaINpy, (34

Wherel//nkzi Yn— lr/fk: ) ] )
To obtain equations of motion for the population inver-

sionsNa(g) , we multiply Egs.(29) and (30) by D(z), sub-
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stitute Eq.(19), use Eq.(33), integrate over {L,,0) and
(0,Lp) to distinguish between different cavities, and subtract @ A class —C

the resulting equations for the density of electrons in legels P
andb. This gives
: 1 AB)
NA(B):AA(B)_FN NA(B)+g; Eklm(Pk ), (35)
where the pumping is\ pg)=(AL® —AL®) Dpgy, and N ’ .

the population-difference decay ratelig=1",=1".

C. Laser classes (b) class — B

The dynamics of a multimode double-cavity laser, in P
semiclassical theory, is fully described by Eg@2l), (22),
(34), and (35). If the decay rated’, I'z, andI'y are of
similar magnitude all these equations are required to prop-
erly describe the laser dynamics. Such lasers, according to
the notation introduced in R€i65], are called class-C lasers.

Trajectories of a single-mode class-C laser evolve in a
four-dimensional phase spaffe,N,Re(P),Im(P)} as shown
in Fig. 3(a@). However, most lasers are characterized by very
short dephasing times, mostly due to elastic collisions, such
that I'>I"g, Iy which allows the adiabatic elimination of
P(t). Whenl'>T'g>T"y, trajectories in the phase space rap-
idly approach the two-dimensional manifold defined By
="P(E(t),N(t)) and then evolve on this manifold as shown
in Fig. 3b). Such lasers belong to cla®®. When I'c
<I',I'y, one can further reduce the system by eliminating
population equation. These are cladsstasers and the
electric-field alone is sufficient to describe their dynamics.
For typical classA lasers,I'>T"y and the trajectory rapidly
converges to the two-dimensional manifold defined By
="P(E(t),N(t)) and, staying on this manifold, rapidly ap-
proaches the one-dimensional manifold defined My FIG. 3. Sketches of a typical trajectory approaching a stable

N N(E,(t))' Then, the.traje_ctory slowly evolves along this fixed point in classA, classB, and classz free-running lasers.
one-dimensional manifolgFig. 3(c)]. WhenI'~1I"y one can-

not distinguish the two steps in the fast approach towards thg,4
one-dimensional manifold.

In this paper, we first present a systematic study of syn- iﬂib
chronization in co'upled—cavilty Iaserg in classtegime PQ(B)z T 2 Evexd —i () 1L(vy)
where we can derive analytical solutions for steady states k
and identify mechanisms for composite-cavity mode compe-
tition. Then, we study the transition from claagto classB.
A systematic study of clas®- lasers, which include the
widely used semiconductor lasers, will be the subject of
later publication.

P(E(t), N(t))

class— A

X (1=ia) Col® Nagey » (37)
ay\/here we introduced the Lorentzian

2
1. Class-B approximation L(vg)= ., (38)

%+ (w—v,)?
We multiply Eqg. (35) by exgd —i(y,«—w)+I']t and inte-
grate over the interval {o0,t). Under the assumptiol’ and frequency pulling parameter
>I"g,I'y, the variablesE, ¢, andN vary little in the time
', so that o—v,

(39

i
a ;;Fb 2 Exexp( —i yn) L(vi) (L—iay)
k

Pn= After substituting the imaginary part of E436) into Eq.

A 5 (21), and the real part of Eq36) into Eq. (22), we obtain
X(CriNa+CrNp), (36)  classB field equations for the coupled lasers:
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- n :u’ab n
Eq= F Ent See i O L(mlcod i)
— ;SN 1n) 1(Ciey Na+ Ciy Ni) E, (40)
Iu’ab n
¢n+Vn ¢n CnnE E(Vk)[akcos((ﬂkn)
; A B Ex
+S|n(¢kn)](canA+CanB)E_r (41)
n
where
I‘E:Cnnrout"'uﬁ(o)FM (42

PHYSICAL REVIEW A9, 033811 (2004

M b
S (1,N) = = Con Ct™ 5 £(110 Lt 008 i)

+sin( in) INaGB) » (47)

so thenth mode frequency pulling parametef, becomes

vy Ny
ap=—— .
C gnn

(48)

Because we have a multimode field, formu{d6) and (47)
describe constartiagonal termgn=k) and oscillatoryoff-
diagonal termgn#k). Furthermore, the expressions fgy;
and on,, consist of two types of contributions. One is the
modal contribution represented I, and CA(® that de-

represents the modal cavity losses. We recall that for a twoPends on ghe coupled-cavity configuration. In particular, in-
level (homogeneoysmedium, frequencies of the modes aretegrals Cy (B) describe the overlap of the composite-cavity
always pulled, due tayy in Eq. (41), towards the center of mode W|th the gain medium in cavi#(B). The other is the

the gain profile atw.
Substituting the imaginary parts of E@7) into Eq.(35),

local contribution that reflects the properties of the active
medium. The local gain has the Lorentzian profile character-

gives the clas® equations of motion for population in cavi- istic for homogeneously broadened media.

tiesA andB

:“ b
- z Cﬁr(‘nB)'C( vm) EnEn
F m,n

Nacey=Aae)—T'nNae)—

X[ oS ¢mp) — amsin( l/’mn)]NA(B) . (43

In terms of the modal gairi46) and the modal index
change(47) , the population equatio3) becomes

gA(B) |

Cnn

nm

hv,’

d
&NA(B)ZAA(B)_FNNA(B)_E (49
m,n

where the effective electric-field intensitiy units of energy

Equation(43) includes some effects that are not present in ds

single-mode single-cavity laser. In multimode lasers there

occurs an important effect of pulsation in population differ- l'nm
ence at the beat frequencigs,,. This effect is callegopu-

lation pulsation and causes strong coupling between theThe factor 4 in Eq.(49) appears because we deal with
modes[54,14. Another important feature arises from the population-difference density. For semiconductor lasers, one
composite-cavity configuration. The facto@A®) (equal  considers the equation for the total carrier density in the con-
unity in single-cavity lasejsvary in coupled lasers with the duction or valence ban(Ref.[66], p. 47 in which case one

=1ceon, ELEpy. (50)

detuning between cavities causing changes in mode compé@ets a factor of 2 instead of 4.

tition.

To determine the modal gaig,.=ga+95 and gain-
induced refractive indexsn, = én4\+onE,, we use the
definitions

c
GtEn= " 5 TEEn T - 2 gni (44)
and
gt 0= Qo= wp) == > A, (45)
and extract from Eq940) and(41)
Msz
a n
gﬁﬁB)(V,NFCnnCﬁ\rﬁB)Wﬁ( V)
X[ cod ¢n) — ai SIN(Pin) INa@)  (46)

and

Similarly, rewriting polarization(36)

2€p€ c v
s i —Onk— —n5nnk) Ex (51)
Ny Ny

n

Chnvn K

highlights the response of the active medium to a multimode
electric field.

It is more convenient to work with the equations in a
dimensionless form obtained by rescaliingthe electric field
Ey with respect to the electric field of the free-running
single-cavity laser pumped twice above threshdid, the
population differenceN with respect to its threshold value
for the free-running single-cavity laser, afid) the timet
with respect td“,gl. Using the new quantities

2 2
~ Map  ~ MapV
=B ATy NN eI Te
~ -~ V ~ L
. k R

szl-w_Na Qk_l-w_Na
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i _A Mibv _ Fout 10t H
AB)TRAB) ¢ ATTLy | 20y’ ;
Iy 2 4
T and y,=y[1+yyuy(0)], (52
ou
we rewrite Egs(40), (41), and(43) 100 class-B
En= = 7aEat yCan 2 L(1)LCOS Yn) ~ SN Y]
X(C,Ii\nNA"— CEnNB)Ek ) (53 class-A
ot Vn= =0t ¥Crn2s L(vi)[ ar COL Pin) +SIN( )] 10~ -
K 2 4 6 8 10 12 }
AT g~ Ey FIG. 4. The border between cladsand clas$ regime for
X(CinNat CanB)E_' (54) single-composite-mode coupled lasers wh&re A+ Ag .
n
- ~ - AB) - genvaluesh ;<<\, indicating that the dynamics can be re-
Nag)=Aaw) —Napr)— % Chm L(vm)EnEn duced from two dimensions to only one dimension. The con-
’ dition (A2/16)=y(A—2), plotted in Fig. 4, defines the
X[ o ham) + amSIN Ynm) TN AB) » (55  border between clad3-lasers and clasa-lasers. In clasg:

o , lasers, the population difference decays much faster Ehen

where the derivatives are taken with respect to the new resyg can be adiabatically eliminated.
caled timet. This is the final form of the equations used for  There is a price to pay when eliminating population equa-
describing dynamics of clags-coupled-cavity multimode tion in a multimode theory. On the one hand, one can neglect
lasers with homogeneously broadened media. the population pulsation terms in E¢p5) and set the left

Equations(53)—(55) for the pair of modes, denoted ks  hand side of Eq(55) to zero. The resulting expression for
andk, in Fig. 2, together with the mode equatiod8)—(15)  Njg) is valid for high pumping but does not include popu-
were used for all numerical calculations presented in Sec llllation pulsations. On the other hand, when the oscillatory
The complexity of these equations requires numerical analyterms in Eq.(55) are kept, one needs to use a perturbative
sis and, as a consequence, full physical understanding ipproach. The resulting expression iy g, includes popu-
sometimes difficult to achieve. An alternative is to start withlation pulsations but is valid only near threshold. Because
the classA approximation. population pulsations are important in our analysis we mul-

tiply Eq. (55) by €' and formally integrate to obtain
2. Class-A approximation

To illustrate the boundary between classand clasB ~ t (. o
lasers, we consider a coupled-laser system that is operating NA(B):e_tf [AA(B)et_E CHP L(vm) EnEy
with a single composite-cavity mode, and u8&=CB=1 o ma
(equal cavity lengths Then, Egs(53) and(55) take the form ~

X[ cos ¢nm) + apsin( wnm)]NA(B)(t)et dt.

E=(

m

N—-1)

N

(58)
N=R-N(1-1E?), (56) - o . -
For Ex=0 one getsN{(h =Aae). Using Nag)(t)=Aae)
whereN=Np+Ng and A=A ,+Ag. At the fixed pointE in the right-hand side of E¢58), and assuming tha, and
=VA—-2,N=2, a stability analysis gives the eigenvalues ¢, vary little during the timet =1 leads to

Az o~ = -
+\ /E— y(A-2). (57) Nite) = Aam) — Aae)(Cav) L(va) B2+ CLP L(v ) EL

_ _ +EaECA Dea WL doSin trsa) + c08 ths) ]
If (A%/16)<y(A—2), we have two complex conjugate ei- .
genvalues and the fixed point is approached in the oscillatory +0ad SiN(¢sa) — dsCO Psa) 1}), (59)
fashion often calledrelaxation oscillation On the other

hand, if (A%/16)>y(A—2) we have two real negative ei- where

B>

Nyo=—
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2
Yn™ Vm 1—‘N
dym= , Dypp=————, 60
nm FN nm Fﬁrﬁ‘(]}n—]}m)z ( )
and
W=L(va)+L(vs), vas=aal(vy)—asl(ve). (61)

We then substitute Eq59) into Eqg. (53) and neglect the
following terms. Assuming equal pumps,=Ag=A, we
notice that CAAA+CEAR)<(ChAA+CEAp) due to

PHYSICAL REVIEW A9, 033811 (2004

and on the effective gains

Gas sa
Bs Ba

Here are the stable, positive intensity, fixed points of Egs.
(62) and(63) [54]. If ¢,<0 and&,>0 , then

gallzga_ ¢ and fézfs— €a. (70)

A B
Cas~—Cas. Furthermore, when the lasers are unlockedgng if £2<0 andé,>0, then

terms involving relative phasegg,(t) are negleted in the

random phase approximation. Inside the lockband, where

isa=const, numerical analysis shows that eitigr or Es
vanishes. In either case terms of the typé sin(ys) can

be dropped. The resulting clagsequations for the intensi- ForC<1 and&,>0, andé;>0, we have

tiesT,=E2 of the composite-cavity eigenmodes are
Ta=(éa=Bala= bad ITa, (62

Ts:(gs_ BSTS_ esaTa)Ts- (63

Because we chose to keep population pulsations, our Alass
equations are valid for equally pumped lasers operating ne
threshold. Equationg2) and(63) clearly describe a compe-

tition between the two modg$4,14 and are equivalent to

the equations describing dynamics of two species competin

for the same source of fod®7]. For thenth mode, the net
gain is

~ Y
én= 2y( CaoL(v) A~ 7) : (64)
and the self-saturation coefficient is
Bn=2yConl(v) A[(Ch)?+(CR)Z]. (69

The cross-saturation coefficient for tmh mode saturated
by themth mode,

_ phb
anm_ anm+ 0221'

(66)
contains a spatial hole burning part
Onm=27CnnL () L(vm) A(CR.ChmT CornCinm)» (67)
and a population pulsation part
022’1: YCnnL( Vm)x[(cé\m)z"' (CEm)Z]Dnm[W(am dymt1)
—Unm(@m—dpm) |- (68)

As it was recognized in Ref54] (Sec. 9-2, the behavior of

Ta=% and T,=0, (72)
~ ~ &
[,=0 and Ts=—. 72
an 5. (72)
~ &4l Ba ~ &l Bs
Ia:l—C an Is—l_c. (73

Not all of these solutions can be stable at the same time.
The two first stable fixed point&71) and (72) may coexist
while the third fixed point(73) can be the only stable fixed

‘point in the system. This can be understood in terms of the

ompetition between the modes.

If the modes are strongly coupled, the cross-saturation
coefficientsé,,,, are big enough for both solutions, Eqg1)
8nd (72), to be stable. Then, we speak sifong mode com-
petition that allows for one winner only. The mocewhich
reaches the threshold first is the only survivor. The other
modem, even though it is pumped above threshéj¢>0,
experiences negative effective ga#},<0) due to the cross-
saturation by the mode, and will never rise above thresh-
old. Strong mode competition is characterized @y 1.
When(C<1 we speak ofveak mode competitiotmat allows
for the possibility of both modes to be above threshdig).

If one of the modes experiences more gain, it will oscillate
with the higher amplitude but will never be able to depress
the other mode. Lastly, note that in the weak competition
case, one of the modes may experieéite<0 due to higher
losses or by moving out of the gain profile. Then, the stable
solution is Eq.(72) for the nth mode. The survivor is se-
lected not via strong competition but simply due to the death
of the competitor.

Our calculations show that including population pulsa-
tions is necessary to achieve strong competition between
composite-cavity modes. The customary treatment neglects
the phenomenon resulting in a complete lack of bistability in
the locked solutions.

Ill. RESULTS

Our main objective is to study single-frequency synchro-

a two-mode laser strongly depends on the coupling paramization (locking) between two coupled lasers. In this paper,

eter

035 033
C= ,
BaBs

(69

lockband is defined as a range (obrmalized cavity length
differencedL/\ within which the two lasers are locked to a
single frequency. In terms of composite-cavity modes, the
lasers are single-frequency locked whén only one
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composite-cavity mode is above threshold as described by
the solutions(71) and (72) or, (ii) when both composite- 0.2
cavity modes are above threshdld3) and are frequency
locked with ;.= const. There are other possibilities for
synchronization(locking) which are not considered in this
paper because they do not fall into the single-frequency lock-
ing category. Examples include synchronization of multi-
mode lasers and situations involving instabilities leading to dL
more complicated behavior and more general types of syn- 75~ 0
chronization. This will be a subject of later publication deal-
ing with coupled semiconductor lasers. T S
The results are presented in the form of lockbands ina -0.1
two-dimensional parameter plan&,fL/\). First, we focus
on classA, and then, consider the transition from cla#sse

unlocked

I'x[GHz]=0.1
locked v[GHz]
bistable

unlocked

classB lasers. Furthermore, we systematically study the de- _g o

pendence of the lockband on the carrier decay Fate po-

larization decay rat&, pumpA, and coupling mirror losses 0.2 0.4 0.6 0.8 p 1
vm - TO calculate the lockband, we use the bifurcation con-

tinuation packagauTo [62]. Under the variation of one pa- FIG. 5. Bistable lockband calculated using clés®quations

rameter the transition between locked and unlocked laser op62 and (63) (dotted curve for I'y=0.2 GHz and clas& equa-
eration is detected as a bifurcation, and is then continued ifons (53—(59) (solid curvesfor I'y=0.1, 0.2, and 0.5 GHz. Other
two parameters. This method is superior over the traditionaparameters ard’¢=0.01 GHz, I'=1000 GHz, yy=0, and A
approach which requires sampling of the entire parameter 1.1.
space by simulationf68]. All the numerical calculations in
this section are performed using cldsEgs. (53)—(55) The lockbands in Fig. 5 are bistable which means that the
(valid in classB and classA regime for the pair of modes  parameter range where the lasers can lock at the frequencies
ks andks. On the other hand, our clagsEqs.(62) and(63)  of the antisymmetric and symmetric mode fully coalesce.
together with the analytical solutiori#1)—(73) prove helpful  consequently, we see only one curve defining the transition
by validating near threshold and providing physical explanasrom |ocking to unlocking. For the parameters inside the
tion of the numerical result;. lockband, there exist two stable points and they have equal
we .set the length of cavith to L,=1 m, and the length basins of attractioiequally large regions in the phase space
of cavity B is Lg=1mt+dL. Furthermore, we use = (2 with initial conditions leading to a given fixed pojniVhich

x 10)c and =0 in the formulas forl(v), ak, dum: oy point the system settles to depend on the initial condi-
andD,,,. After a close inspection of the analytical formulas .. : ; .
tion. Population pulsations and hole burning are necessary

for &,, B,, and 6,,, we decided to divide the numerical for the bistability to occuf54,14.

1500 GHz anl then sty the changes n the lockpafd as_ ACCOrdng © Eqs(68) an(60) the coupiing between the

decreases to a few GHz. modes increases withy because of increasing population
pulsation. Figure 5 indeed shows that the bistable lockband

expands with increasinfjy . Figure 6 illustrates the depen-

dence of the lockband on purdp. The expected result from
. . ) : ; ‘a multimode theory with weak coupling between the modes
pling mirror. The dashed curve is obtained using clagsqs. is that subsequent modes reach threshold as pump increases.

(62 and (63), while the solid curves were obtained using : -
. . However, with strong mode competition one expects the la-
classB equations(53)—(55). In classA equations a locked T
ser to remain single mode. In our example of a two-mode

state continuously turns into an unlocked state via transcriti: . ) .
cal bifurcation (Ref. [69], p. 326. In classB equations laser system, couplmg{comgeﬂtor) between composite-
(solved in classA regime, the locked state disappears along cavity modes is enhanced with (Fig. 6). The bistable lock-
the solid curve and the system settles down to the remoteand widens withA as in the early experiment from Ref.
unlocked state. This discontinuous transition between thg15].
stable states involves a narrow region of coexistence between So far, all the lockbands we presented were fully bistable
locking and unlocking which is explained in Sec. Il C. and almost symmetric with respect ¢i./\=0. Formulas
ForI'=1000GH2>|w— v4)|, we can make the approxi- for ¢,, 8,, and 6, already suggest this type of symmetry,
mations£(v,)~1 anda,~0. Then, according to formulas note that for long cavities considered he,,~C.. and
(64)—(66), the lockband depends on the carrier decaykate CA®)~CE  The asymmetry in the lockband may then be
via D,,,,, on the pumpA, and on the losses in the coupling caused either by the different losses associated with the dif-
mirror vy, . Furthermore, if the coupling mirror is lossless, ferent modes or by the different detunings of the modes from
we expect the lockbands for the antisymmetric mode and fothe atomic frequencyw. We first focus on the influence of
the symmetric mode to be almost identical. different cavity losses. The influence of detuning is discussed

A. Rapid polarization decay

In Fig. 5 we show lockbands for zero losses in the cou
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-0.1

-0.2

02 04 0.6 08 T 1

FIG. 6. Bistable lockband for different values of the pumip
while I'e=0.01 GHz,I'y=0.2 GHz,I'=1000 GHz, andyy=0.

in the following section because it does not play any role for
the largel’ considered here.

According to formula(42), different composite-cavity
modes may experience different cavity losses if their ampli-
tudes at the lossy coupling mirror are different. As can be
seen in Fig 1b), the antisymmetric mode amplitude at
=0 is usually negligible while the symmetric mode ampli-

tude atz=0 can be as large as the amplitude of the mode -0.1
itself. Hence, we expect the symmetric mode to experience
higher cavity losses then the antisymmetric mode. The lock-

-0.2

bands for different relative coupling mirror losseg,
=I'y /T’y are plotted in Figs. 7 and 8. The dotted curves
represent the lossless coupling mirror and are included for
reference. The key difference from the results shown in Figs.
5 and 6 is that, for nonzergy,, lockbands for different
modes no longer coalesce.

At the low pump ofA=1.1, assuming barely 1% of the
outcoupling losses in the coupling mirror already affects the . . .
bistable lockbandFig. 7(b)]. As expected, the symmetric pletely separated from the middle piece, and the upper piece

mode lockband shrinks with increasing, , and almost dis- is_ begining to detach. With fu_rther in_creasem , the side
appears atyy = 0.5. On the other hand, the antisymmetric pieces disappear and the middle piece shrinks toward the

. . origin of the (T,dL/\) plane.
mode lockband expands asymetricallyig. 7(a)] because . . . . .
u(0) is not a symmetric function aiL/x. For yy=0.5 in The antisymmetric mode lockband widens slighthig.

Fig. 7(a), the antisymmetric mode lockband extends into theg(a)] but no longer extends to the region of weak mode cou-

region of largedL/\ where the mode competition is weak pling whereC<1; compare with Fig. @.

O It is important to realize that losses in the coupling mirror
(C<1), and where two-mode operation is expected. Theregot only affect the shape of the lockband in the parameter

the competior namely. the exir losses dus (o he abserplifp2CC 35 Shown in Fig. 8. They also decrease the basin of
P ’ y: PUO%kraction for the symmetric mode fixed point.

in the coupling mirror overcome the low gain and cause the
symmetric mode to be below threshold.

When the lasers are pumped three times above threshold
their ability to synchronize becomes more resistant to WhenI decreasesdue to decrease it gepnasd t0 the
changes inyy . Small y=0.01 does not visibly influence value comparable withw — v4(4), the frequency pulling pa-
the bistable lockband and deviations from the dashed curveameterse,, and the Lorentzian€(v,) change withT and
appear aty,=0.1. Figure 8) shows that the symmetric dL/\ and affect the mode competition. Furthermazg,and
mode lockband starts shrinking at two places n€ar0.9  L(v,) may change independently df and dL/\, for ex-
anddL/A=*0.1. Asvyy increases further it splits into three ample, due to external magnetic field, changes in the cavity-
pieces. Atyy=0.25 [Fig. 8b)], the lower piece is com- lengthL(Lg) or in the background refractive index. Here,

0.2 0.4 0.6 0.8 7 1

FIG. 7. Lockbands of the antisymmetiia) and the symmetric

(b) mode for different coupling mirror lossegy, . The pumpA
=1.1 and other parameters are as in Fig. 6.

B. Slow polarization decay
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FIG. 8. Lockbands of the antisymmetria) and the symmetric

(b) mode for different coupling mirror lossegy, . The pumpA 083 -03 -02 -01 0 01 02 03
=3 and other parameters are as in Fig. 6.
021} (e) %)
in addition to scanning theT(dL/\) plane, we choose to o1 Qg
tune the frequencies of the modes by varying the lengths of
the cavities on the fine scale of a fraction of the wavelength & o
\. Parameters is introduced to account for the difference ~0.1
from the cavityA length of 1 m, and the cavitg-length of o2
(Im+dL). During calculations=L,—1 m anddL=Lg )

—1 m—§ are the two independent parameters. 03 02 01 0 01 02 03

Let us fix the transmissiof to 10%, decreas& from 8/
1000 GHz to 2 GHz, and focus on Fig. 9. The dotted curves
define the lockband for the case of ladfjeand lossless cou- FIG. 9. Lockbands of the antisymetri and the symetrics

pling mirror. They show no variation for the range 6f mode as a function of for fixed T=0.1[panels(@—(c)]. Panel(d)
shown in the figure because Lorentzians are unity and thehows the gain profiles corresponding to the two modesLah
frequency pulling parameters equal zero. However, when =0, and panele) shows the corresponding frequency pulling pa-
is decreased, the Lorentzians and theparameters vary as rametersy; andasatdL/A=0. Here,l'=2 GHz and other param-
shown in Fig. 9d)—9(e). These variations have substantial eters are as in Fig. 6. The dotted curves are obtainedI'for
consequence on the lockbalfig. 9a)]. One bistable lock- =1000 GHz.

band splits into two such that the locking to the antisymmet-

ric mode is more dominant for the negative valuessaind losses in the coupling mirror makes the end of the
the locking to the symmetric mode is more dominant for theantisymmetric-mode lockband expands toward positdye
positive values of5. Furthermore, each lockband is boundedwhile the symmetric-mode lockband shrinks slighfkyig.

on one side within the considered range &f Including  9(b)]. This sensitive dependence ah almost disappears
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(a)

A=11

T(GHz]= 1000 %, T'[GHz]= 1000 %,
-02 -02
02 0.4 0.6 08 T 1 0.2 0.4 0.6 08 T 1
FIG. 10. Lockbands of the antisymmet(&@ and the symmetric FIG. 11. Lockbands of the antisymmetf& and the symmetric
(b) mode for different values of the polarization decay dateOther  (b) mode for different values of the polarization decay it the
parameters are as in Fig. 6. presence of middle-mirror losseg, and cavity detunings. Other

parameters are as in Fig. 6.
when the pump is increased to three times above threshold
[Fig. %(c)]. Actually, the lockband irfFig. 9(c)] has similar  metric mode lockband remains shrank due to coupling mirror
shape to that ifiFig. 9(b)] but on the larger range @ tothe  |osses. AsI' decreases below 5 GHz, the symmetric mode
extent where extra modes have to be included. A summary ghckband expands toward the positive valuesdaf/\ as
how the lockbands are affected by the parameters of thenown in Fig. 11b). An additional piece of the symmetric
coupled-cavity laser is provided in Figs. 10 and 11. In bothmode lockband appears in the upper-right corner of the
flguresl_’ is decreased_ from 1000 GHztoa feyv gigahertz. We(T dL/\) plane[Fig. 11(b)]. The two pieces of the symmet-
start with no losses in the coupling mirr¢Fig. 10, then  yic jockband approach each otherlat 2.5 GHz and merge
include y\y=0.02 and detune the cavities in the favor of thejnto one lockbandil' =2 GHz in Fig. 11b)]. Here, the effect
symmetric modgFig. 11). The antisymmetric and the sym- of 5 overcomes the effect due to mirror losses and results in

metric mode lockbands almost overlap f6r>10 GHz.  partialy restored symmetric mode lockband. The antisym-
WhenI" decreases to 5 GHZ, the two lockbands differ V|S|b|ymetric mode |Ockband, shown in F|g(B;L expands into the

(Fig. 10. The effect of small” is similar to the effect ofy, . region of negativedL/X\.
The antisymmetric mode lockband again extends to the re-
gion of weak couplindFig. 10@)] suggesting that the sym-
metric mode moves out of the gain profjleig. 10b)]. Fig-
ure 2a) already shows that, with increasifiigthe symmetric
mode becomes more detuned franthan the antisymmetric
mode.

Increasing the length of the lasers BYA=0.1 has no This section focuses on differences in the locking mecha-
effect on the lockband for >5 GHz. In particular, the sym- nisms between clasi-and class3 lasers. Bifurcation theory

Lastly, when the pump is increasedie= 3, the effects of
ym= 0.02 andé/A= 0.1 are small. Both lockbands are al-
most restored to the shape of the dotted curve.

C. ClassA to classB
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class A | classB ——— (@)
. . a
. rN O H
cl, coexistence . cH*
0.04 —_1;1_:\:17“\{1 cH+ unlocked >~
0.034
0. SL
': dL
! p)
dL 0 locked E locked 0a2
A bistable ! bistable SL
1
| 0.03
{
[}
-0.02
H
coexistence _.-~" GH~
_0.04——-2- = o unlocked
1 . , i
0.5 1
fy 0.0242

FIG. 12. Transformation of the lockband @t=0.1 asy in-
creases from clasa-to classB regime. The term “bistable” de-
notes the region with two stable fixed points, while “coexistence”
denotes regions with two stable fixed points and one stable periodic
orbit. H stands for HopfS for saddle-node of fixed points, ai8L
for saddle-node of limit cycle. The solid curves represent supercriti- 47,
cal and the dashed curves represent subcritical bifurcations. The X

pump rate isA =3 andl'=10 GHz.

is used to identify qualitative changésifurcations [69] in
the phase space of the system at the locking-unlocking tran-
sition. In Fig. 12 bifurcations of stable solutiofsalled su-
percritica) are plotted as solid curves, and bifurcations of
unstable solutiongcalled subcritical and needed for under- ©-0234
standing the dynamical picture as they sometimes produce ) !
stable solutions tgoare plotted as dashed curves. In the 0.5025 0.505 ¥
saddle-node bifurcation of fixed points denoted Sagwo
fixed points are created. In a Hopf bifurcation denotetas ~ FIG. 13. Expended bifurcation diagram from Fig. 12 near the
a fixed point bifurcates with a periodic orbit. In a generic 9éneralized Hopf point GH (a) and the Bogdanov-Takens point
saddle node of periodic orbit bifurcatioBL, two periodic I?:T (b), respectively. In pangb) h stands for homoclinic bifurca-
orbits are created. tion
It is important to note that, due to the symmetry between
the modes, bifurcations of the symmetric and the antisymFig. 14. For the parameters within the lockbdfy. 14al)
metric mode fixed points nearly overlap. Therefore, each and point al in Fig. 1Pthere exist two stable fixed points.
andH curve in Fig. 12 actually indicates two bifurcatioftf ~ They correspond to locking to either the antisymmetric or the
the two coexisting fixed points Furthermore, the saddle Symmetric mode. The antisymmettieymmetri¢ mode fixed
node of periodic orbit bifurcatioSL in Fig. 12 is close to a Point of Eqs.(53)—(55) has a large amplitude of the antisym-
singular saddle node of periodic orbit bifurcati@iso called ~metric(symmetrig mode but also a small contribution of the
subcritical pitchfork bifurcation where an unstable orbit Symmetric(antisymmetri¢ mode. Cross-saturation prevents
turns stable and two extra unstable orbits appear. this small contribution from becoming Significant. The
In Fig. 12, the lockband is bounded by the supercritical  phases of the two modes are lockef,{=0) so the lasers
parts of theS curve fory>0.5 and(ii) either theSL curves lase at the same frequency. Figurdd¥ shows that, on top
or H curves fory<<0.5, due to hysteresis. The tegoexist-  of the two fixed points, there exist an unstable periodic orbit
ence denotes regions with two stable fixed points and a(plotted in gray. As | dL/\ | increases towards the border of
stable periodic orbit, whilbistabledenotes regions with two the lockband, two extra periodic orbits are born, one of
stable fixed points. which is stable, in supercritical saddle-node of periodic orbit
In the classA regime (y<<0.5), a typical transition that bifurcation SL [Fig. 14b1) and point bl in Fig 12 The
occurs wherdL/\ changes is depicted in the first column in stable periodic orbitplotted in black represents the state of
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2.5 1.5 T
%
. § ; 3
Np i . Ysa
1 2 a b
0.5 @)y (a2) —r (a) (b)
25 15 O time [IF!] 100  time (13!} 170

FIG. 15. Evolution of the phase difference for the laser-
unlocked periodic orbit from Fig. 141) [panel(a)] and the laser-
unlocked periodic orbit from Fig. 142) [panel(b)].

Np
et . —_—
bifurcation, one expects an extra curve of homoclinic bifur-
(b2) cation where the period of the orbit bornthigoes to infinity.
This global bifurcation curve, marked asn Fig. 13b), was
calculated using the HomCont part @fito [62]. It emerges

(b1)
v 0 from BT as expected, then joirand continues alon§ for
+

0.5
2.5

1.5

larger values ofy. In consequence, supercritical saddle-node
bifurcations fory>0.504 take place on a periodic orbit.
Past BT and BT one enters the regime of claBslasers
where the nature of the locking-unlocking transition changes
0.5 Dos (c2) significantly. In particular, the region of coexistence between
0 Eq 25 0 Eq 2.5 locking and unlocking disappears and the lockband becomes
narrower. For y=1 the lasers operate at the single
FIG. 14. Trajectories in the inversiddg vs field amplitudeE, composite-cavity mode only withijdL/\ |<0.0025. As
plane showing locking-unlocking transition in claistasers(col- |dL/X | increases, the stable fixed points shift towards two

umn 1 and in class lasers(column 2. From (al) to (D) v composite-cavity mode operation where the modes are fre-
=0.125 anddL/\=0.03, 0.037, and 0.042. Froa2 to (c2) y

—1 anddL/A=0.005, 0.0095, and 0.011, as indicated in Fig. 12.9Uency locked ¢,=0) [Fig. 14a2) and point a2 in Fig.

The dots denote stable and the crosses denote unstable fixed poin’@]' Near the bord?r ij and still within, the lockband there is
a saddle[crosses in Fig. 1#2)] next to each stable fixed

) . ) point. Furthermore, all four points are on an invariant circle
unlocked laser operation where both composite-cavity modeg,imed by the unstable manifolds of the saddles. Along the
are above threshold and their phases drift afféig. 15a)].  gypercritical branches & the saddles collide with the stable
In an experiment, and in most numerical analysis, the systeffy e points and disappear via saddle-node bifurcation. What
settles to one of the stable fixed points and the appearance Rfmains is the stable periodic orbit corresponding to un-
the stable periodic orbit is usually unnoticed. ASL/N|  |qcked operatiofFig. 14¢c2) and point c2 in Fig. 1 Out-
increases towardd, the two unstable orbits, plotted in gray gjge the lockband, the phase differenkg, increases in time
in [Fig. 14b1)], shrink onto the stable fixed points. Al the and, in contrast to class-regime, shows “ghosts” of the
two stable fixed points almost simultaneously turn unstableapie fixed pointFig. 15b)]. Our analysis shows that mod-

via subcritical Hopf_bifurcation. T_he cross-saturation can ”Oerately coupled clasB-lasers lock due to frequency locking
longer prevent multimode operation and the system makes & e composite-cavity modes.

transition to the only stable state—the periodic offbitg.
14(c1) and point c1 in Fig 1R The lasers switch from locked
operation to unlocked operation that shows no traces of th
former stable fixed pointdFig. 15a)]. For parameters above
(below) the upper(lower) curveH, the lasers are unlocked. If
one reverses direction and decreaket/\ | the lasers re-

main unlocked until reaching the cur@, where the stable | hare they change from superecritical to subcritical. The re-
orbit disappears and the systems move to one of the stabigiing |ockband is bounded by the supercritical part$of
fixed points. Due to the hysteresis, the border separating,q S'hiturcation curves. Generically, one expects other bi-
locked and unlocked operation depends on the direction iR rcations to be created &3 and G~ that may lead to
which | dL/\ | changes. Clasé- lasers lock due to strong complicated dynamics and cha@ef. [69], Sec. 8.5. Those

composite-mode competition. _ extra bifurcations will be studied in detail in the future pub-
As y approaches the value 0[big. 12], the SL curves  |i-ation.

meet theH curves at codimension-two generalized-Hopf
points (Ref. [69] Sec. 8.3 GH" and GH [Fig. 13a)], and
the H curves meet theS curves at codimension-two
Bogdanov-Takens pointRef.[69] Sec. 8.4 BT* and BT This paper describes a general theory of multimode
[Fig. 13b)]. In a generic scenario for a Bogdanov-Takenscoupled-cavity lasers that is based on a laser field expansion

Np

We would like to end our investigations by showing in
Fig. 16 the entire lockband in clag-regime. Unlike in
ElassA regime (compare with Fig. § there are now two
bifurcation curves, namely, saddle-no8@and HopfH. Fur-
thermore, both curves become tangent at codimension-two
saddle-node-Hopf point&* and G~ (Ref. [69], Sec. 8.5

IV. CONCLUSIONS
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differential algebraic equations into bifurcation continuation
techniques. This allows for a systematic study of synchroni-
zation over an extensive parameter space.

First, we treated the clagsdimit, which leads to the sim-
plest form of the coupled-laser model. In this limit, the field
intensity equations for the composite-cavity modes are
equivalent to the equations describing competition of differ-
, ent species for the same source of food. Most importantly,
Tocked ; locked the classA equations allowed for derivation of analytical
bistable bistable formulas describing laser locking in terms of competition
between composite-cavity modes. In order to keep popula-
tion pulsation effects, our clags-equations and resulting

unlocked

0.1 analytical expressions are restricted to low pump level. They
validate near threshold and provide physical insight into the
unlocked more general numerical resuliwhich have no restriction on
0 excitation leve), helping to understand how the polarization

decay rate, population difference decay rate, absorption in
the coupling mirror and pump, influence the ability of
0.2 0.4 0.6 0.8 7 1 coupled lasers to frequency lock. In particular, the class-
treatment reveales the importance of population pulsation
FIG. 16. Bistable lockband in clag+egime is bounded by the \yhich gives rise to bistable laser-locked solutions.
solid parts of the saddle-nodgand the I-_iopﬂ-l curves which be- Second, we investigated the transition between ofass-
come tangent at saddle-node-Hopf poi@s and G™. Here,y  gnq classB lasers and discovered a qualitative change in the
=2.5 andA=3. The solid curves represent supercritical and thenatyre of laser locking. Bifurcation theory was used to un-
dashed curves represent subcritical bifurcations. derstand how strong composite-cavity mode competition,

in terms of composite-cavity eigenmodes. The theory is valid/Nich iS the laser-locking mechanism in classregime,

for all values of coupling and can be extended to any numbe!Ves way to frequency locking of the composite-cavity

of lasers. It accounts for nonlinear mode-coupling effects,mOdeS’ the Iaser-lockmg. mechanism in cIBgsegme. The
esults lay the foundation for a future investigation of

coupling-mirror losses, and the dependence of the lasing frd: ) .
quencies on coupling. We derived the multimode Coupled_coupled semiconductor lasers where the effects of inhomo-
laser equations and described their simplification by adia
batic elimination of the polarization and population
equationgclassB and classA lasers.

The full model consist ofi) differential equations for the
time evolution of the slowly varying electric-field amplitude, = We thank J. Sieber and E. Basset for stimulating discu-
phase, polarization, and population, as welligsalgebraic  sions. This work is supported in part by the U.S. Department
equations determining the composite-cavity eigenmodes. Wef Energy under Contract No. DE-AC04-94AL8500 and
extended previous studies by incorporating our system othe Alexander von Humboldt Foundation.

geneous broadening and many-body interactions will have to
be added to the theory presented in this paper.
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