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The dynamics of a two-level atom driven by a single laser beam and three-level atom(Lambda configura-
tion) irradiated by two laser beams are studied taking into account of the quantized center-of-mass motion of
the atom. It is shown that the trapped atom system under appropriate resonance condition exhibits the large
time-scale revivals when the index of the vibrational sideband responsible for the atomic electronic transition
is greater than unity. The revival times are shown to be dependent on the initial number of vibrational
excitations and the magnitude of the Lamb-Dicke parameter. The sub-Poissonian statistics in vibrational quan-
tum number is observed at certain time intervals. The minimum time of interaction for which the squeezed
states of motional quadrature are generated is found to be decreasing with the increase in the Lamb-Dicke
parameter.
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I. INTRODUCTION

During the last decade a significant progress has been
made in the experimental and theoretical methods of laser
cooling of the free as well as the trapped two-level and three-
level atoms. With the various cooling techniques, namely the
Doppler cooling[1], sideband cooling[1], Sisyphus cooling
[2], dark-state cooling[3], and so on, the temperature of the
atoms can be lowered to such a limit that they start behaving
like the quantum-mechanical objects. The methods of prepar-
ing such a trapped atom in a chosen quantum state of its
center-of-mass(c.m.) motion, such as Fock state, coherent
state, squeezed state, the Schrödinger cat states, are already
accomplished[4]. The generation of these nonclassical states
have found their application in the field of quantum compu-
tation.

The nonlinear and the quantum effects of the interactions
involving one atom with few energy levels and one or more
near resonant electromagnetic(em) fields are generally stud-
ied either by quantizing the interacting field or by allowing
the atom to undergo quantized motion around its c.m. by
placing it in a harmonic trap. The effects arising due to the
first method have been investigated extensively theoretically
as well as experimentally, whereas not enough study is made
in the effects due to the quantization of the atomic motion.
This paper is an attempt to throw some light on the dynami-
cal and the statistical properties of such system. The dynam-
ics of the atomic inversion of a two-level trapped atom have
been studied for initial coherent vibration of the atomic c.m.
[5]. The nonlinear effects arising due to the interaction of a
single three-level atom with Raman lasers have been ana-
lyzed to generate the squeezed states at short interaction
times[6]. The wave-mixing response of a two-level atom in
a harmonic trap interacting with a classical em field has been
studied and it has been shown that the quantized motion of
the trapped atom can significantly influence the nonlinear
optical processes such as multiwave mixing[7].

In this paper we study dynamics of an atomic system
embedded in a harmonic trap and interacting with classical

em fields paying particular attention to the revival times. We
also find the system parameters that are responsible for the
occurrence of the large time-scale revivals. The model cases
chosen for studying the above phenomena are(i) a single
two-level atom undergoing quantized motion around its c.m.
and irradiated by a monochromatic field and(ii ) a single
three-level atom undergoing quantized motion and Raman
coupled with two laser fields. Vogel and de Matos Filho[5]
have shown that under appropriate resonance conditions and
far from the Lamb-Dicke(LD) regime the interaction of such
a trapped two-level atom with classical em field is well de-
scribed by a Hamiltonian which is similar to that nonlinearly
coupled multiquantum Jaynes-Cummings(JC) model. By
adiabatic elimination of the second excited state, which is
assumed to be far-off resonance, we have reduced the three-
level atom in RamansLd configuration to aneffective two-
level model. We also show that far from the LD regime this
effective two-level atom Hamiltonian can be reduced to a
form that is equivalent to the one derived in the case of
trapped two-level atom interacting with a single classical
field.

The present paper investigates the collapse and revival
properties of trapped atom system for the above described
model cases. It will be shown that, if the frequency(relative
frequency) of the interacting classical field(s) is resonant
with the nth vibrational sideband, then the dynamical vari-
ables exhibit large time-scale revivals or “delayed revivals,”
whenn is greater than unity. In order to provide an estimate
for the time for which this delayed revival occurs, we derive
the general expression for the revival time for model I when
the interacting field is detuned to anynth motional sideband.
It is shown that, in both the models, the ratio of the revival
times for the second and the first sideband transition is in-
versely proportional to the square root of the average number
of the vibrational excitation for the initial coherent vibration.
For model I this ratio is inversely proportional to the LD
parameter. In the case of model II this time ratio is a com-
plicated function of the LD parameters of both the fields. We
discuss the special cases of model II when the ratio of the
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revival times for second and first sideband transition pro-
cesses becomes same as that of model I.

The long time-scale revivals discussed in this paper are
not the same as thesuper-revivalsthat are studied by Dutra
et al. [8] in cavity QED system and by Moya-Cesset al. [9]
in trapped atom system. The authors of Ref.[9] have dem-
onstrated the existence of the super-revivals in trapped three-
level atom system beyond the LD regime. The large time-
scale revivals studied here, which we call delayed revivals,
are normal revivals occurring at late times due to some
change in system preparation, whereas the super-revivals are
the revival of revivals occurring at larger times. Our study
suggests that the delayed-revival phenomena may be ob-
served within and beyond the LD regime.

The difference between the nonlinear multiquantum JC
model for the cavity field and that of the trapped atom sys-
tem is that the effective interaction in the latter case corre-
sponds to the resultant process of all the finite quantum JC-
type interactions starting with zero vibrational quantum. This
inherent nonlinearity in the coupling of the atomic electronic
and motional degrees of freedom leads to very interesting
and distinct nonclassical phenomena. This paper investigates
the possible generation of the nonclassical states of the vi-
brational modes by examining the second-order coherence
function. It is shown that at certain times of interaction the
second-order coherence function is less than unity thereby
implying that the normally ordered variance of the vibra-
tional excitation is less than zero. At those times the vibra-
tional modes are said to follow sub-Poissonian statistics, an
effect similar to the antibunching of the photons in the case
of cavity modes coupled with the atomic electronic states.

Finally, we show that at certain time intervals of interac-
tion the variance in either component of the motional(vibra-
tional) quadrature is less than the corresponding coherent
state value, thereby generating the squeezed motional state
for that quadrature. It is also found that the early onset to the
quadrature squeezing is achieved by increasing the value of
the LD parameter.

The organization of the paper is as follows. In Sec. II we
describe the two-level atom under consideration and the
model Hamiltonian. Sec. III describes the model system of
three-level atom in the harmonic trap and presents the effec-
tive two-level atom Hamiltonian. In Sec. IV we evaluate the
wave function at any later time assuming that the atom is in
the ground state initially, undergoing coherent vibrations
around its center of mass. In Sec. V we study the dynamics
of the atomic inversion for the two models. Here we derive
the expression for revival time fornth sideband transition
process. The time for which the revival occurs first in model
I and model II is compared for a particular sideband transi-
tion. Section VI shows the collapse and revival pattern of the
vibrational quantum number for the two models. In Sec. VII
we study the generation of the nonclassical states of the vi-
brational mode by investigating the appearance of sub-
Poissonian statistics of the average excitation number. Fi-
nally, in Sec. VIII the squeezing properties of the motional
quadratures are discussed. The conclusions are summed up
in Sec. IX. The details of the adiabatic removal of the far
resonant excited state to reduce the three-level atom Hamil-
tonian to the effective two-level Hamiltonian are provided in
the Appendix.

II. MODEL I: TWO-LEVEL ATOM

In this section we depict the model of the two-level atom
trapped in a harmonic potential and irradiated by a standing
wave field. The system under consideration consists of a
two-level atom of transition frequencyv0 in a harmonic trap.
Let the frequency of oscillation of the atom in the trap ben.
We assume that the atom is interacting with a classical em
field of frequencyvl directed along one of the principal axes
of the harmonic potential so that the motion of the atom is
restricted to one dimension only. If the field is resonant with
nth red sideband, i.e., if

vl = v0 − nn, s1d

then the Hamiltonian describing the coupling between the
atomic internal and external degrees of freedom in rotating
wave approximationsRWAd and beyond the LD limit is
given by s"=1d f5,10g

H = na†a + v0sz + eo
k=0

`

ffksa†dkak+ns+e−ivlt + H.c.g, s2d

wheree is the atom-field coupling constant anda anda† are
the annihilation and the creation operators for the vibrational
quantum. The atomic raising and lowering operators are de-
noted by s+ and s−, respectively. The LD parameter-
dependent constantfk has the following form,

fk =
s− 1dkj2k+nexps− j2/2d

k ! sk + nd!
sinSnp

2
+ f0D . s3d

Here j is the LD parameter andf0 defines the equilibrium
position of the atom in the trap with respect to the field. The
RWA assumes that the separationn between the sidebands is
larger than the Rabi frequency of transition between the
atomic electronic levels. This puts an upper bound on the
value of the applied field strength. Now, in a frame rotating
with vl, the Hamiltonians2d reads as

HI = na†a + nnsz + eo
k=0

`

ffksa†dkak+ns+ + H.c.g. s4d

We will use the Hamiltonians4d to study the dynamical and
statistical properties of this system.

III. MODEL II: THREE-LEVEL ATOM IN A L

CONFIGURATION

In this section we describe the model for the three-level
trapped atom and derive its effective two-level Hamiltonian.
The scheme for the adiabatic elimination of a level of cavity
QED has been successfully adopted in the trapped atom case.

We consider a single three-level atom in Raman configu-
ration (L type) trapped in a harmonic potential and interact-
ing with two lasers of frequenciesv1 andv2 with j1 andj2
as the corresponding LD parameters. Both the fields are
treated classically. The fields are assumed to be propagating
along one of the principal axes of the harmonic potential so
that we have one-dimensional problem. The energy-level
diagram for a trapped three-level atom in aL configuration
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is shown in Fig. 1. It is the generalization of the electronicL
scheme in trapped atom system with the levelsug,m−ql and
ue,m+pl being independently coupled with the levelur ,ml.
The notations ug,m−ql;uglum−ql, ue,m+pl;uelum+pl,
and ur ,ml;urluml represent the vibrational-assisted elec-
tronic states whereugl, uel, andurl denote the bare electronic
states of the three-level atom with the corresponding energies
Eg, Ee, andEr, respectively, andum−ql, um+pl, and uml are
the Fock states of the harmonic trap. We have also assumed
that the field frequencyv1 is resonant with theqth red-
shifted sideband whereas the field frequencyv2 is resonant
with the pth blue-shifted sideband of the vibrational states.
The system is tuned consistent with two-photon energy con-
servation so that the detuningD satisfies the relations

v1 + D = Er − Eg − qn,

s5d

v2 + D = Er − Ee + pn,

wheren is the frequency of oscillation of the atomic c.m. in
the trap. From Eq.(5) we get the relative frequencyvl of the
two fields as

vl = v1 − v2 = v0 − nn, n = p + q, s6d

where v0=Ee−Eg is the effective transition frequency be-
tween the levelsuel and ugl. Equations6d implies that the
relative frequency of the two laser beams is resonant with the
nth red-shifted vibrational sideband. Note that the reso-
nance conditions6d is equivalent to Eq.s1d of Sec. II.

Next, we assume that the detuningD is sufficiently large
such thatD@Ee−Eg. Under this assumption we will show
that the laser fields effectively drive the electric-dipole for-
bidden transitionugl↔ uel. The interaction of the trapped
atom with the standing-wave field is governed by the total
Hamiltonian

H = Egsgg + Ersrr + Eesee+ na†a + e1sinsk1R+ f1dssrge−iv1t

+ H.c.d + e2sinsk2R+ f2dssree
−iv2t + H.c.d, s7d

where fi =kiR0si =1,2d are the phases introduced due to
equilibrium position of the atom in the trap with respect to
the nodes and the antinodes of the interacting fields of fre-

quenciesvisi =1,2d. The operatorssi jsi , j =g,e,rd are the
atomic transition operators.

Now, the adiabatic removal of the levelurl and introduc-
tion of the creation and annihilation operators of the mo-
tional statesa†, a in the “sine” terms, as described in the
Appendix, results in the effective interaction Hamiltonian
given by

HI = nnsz + na†a +
er

2
heij+sa+a†d eif+ + e−ij+sa+a†d e−if+

− eij−sa+a†d eif− − e−ij−sa+a†de−if−jhs+ + s−j, s8d

whereer is the effective coupling constant of the two-level
representation of the three-level atom system. In the follow-
ing we will analyze the Hamiltonians8d in the LD regime as
well as far from the LD regime of both the fields.

A. Hamiltonian in the LD regime

In this case we havej1!1 andj2!1. We examine the
Hamiltonian(8) in some special cases.

Case I.j2!j1, so j+=j−<j1. Since bothj+ and j− are
very much less than unity hence we can retain the terms upto
the first order inj1 in the exponentials appearing in Eq.(8)
and write the total Hamiltonian as

HI = nnsz + na†a +
er

2
hf1 + ij1sa + a†dgeif+

+ f1 − ij1sa + a†dge−if+ − f1 + ij1sa + a†dgeif−

− f1 − ij1sa + a†dge−if−jhs+ + s−j, s9d

which can be further simplified to

HI = nnsz + na†a + erfscosf+ − cosf−d

− j1sa + a†dssin f+ − sin f−dghs+ + s−j. s10d

For appropriate choices of the equilibrium positions of the
atomic c.m. with respect to the fields and in RWA one can
rewrite Eq.s10d in a form that is analogous to usual single-
photon JC Hamiltonian.

Verify that, if f1=p and f2=p /6 or f1=0 and f2
=7p /6, then in RWA Eq.(10) reduces to

HI = nnsz + na†a + erj1sa†s− + s+ad. s11d

Case II. j1=j2, so j+=2j1 and j−=0. Hence, in the LD
regimesj+!1d the Hamiltonian(8) reduces to

H = nnsz + na†a + erfscosf+ − cosf−d − 2j1sa + a†dsin f+g

3hs+ + s−j. s12d

Note that, forf1=0 andf2=7p /6 or f1=7p /6 andf2=0
and in RWA, Eq.s12d reduces to Eq.s11d. Thus in both the
above cases the interaction is governed by a Hamiltonian that
one would expect in the case of model I in the LD regime
with j1 as the LD parameter.

B. Hamiltonian beyond the LD regime

By disentangling the exponentials containinga,a† we
may write the Hamiltonian(8) as

FIG. 1. The energy-level diagram of the trapped three-level
atom inL configuration.
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HI = nnsz + na†a +
er

2Fe−j+
2/2Ho

k,l

sij+dk+l

k ! l!
sa†dkaleif+

+ o
k,l

s− ij+dk+l

k ! l!
sa†dkale−if+J

− e−j−
2/2Ho

k,l

sij−dk+l

k ! l!
sa†dkaleif−

+ o
k,l

s− ij−dk+l

k ! l!
sa†dkale−if−JGhs+ + s−j. s13d

For the field frequencies close to the lower motional side-
band resonance, i.e.,

uvl − sv0 − nndu ! nn,

only transitions with decreasing quantum number byn are
important. Under the above resonance condition along with
the assumption that only one transition can take place at one
time the Hamiltonians13d, in a frame rotating withvl and in
RWA, assumes the following form of nonlinear multiquan-
tum JC interaction

HI = nnsz + na†a + erFo
k=0

`

Fksa†dkak+ns+ + Fk
*sa†dk+naks−G ,

s14d

where the parameter

Fk = Pk − Qk s15d

is a function of the LD parameters of both the fields and the
equilibrium positions of the atom, with

Pk = e−j+
2/2s− 1dksj+d2k+n

k ! sk + nd!
cosSnp

2
+ f+D s16d

and

Qk = e−j−
2/2s− 1dksj−d2k+n

k ! sk + nd!
cosSnp

2
+ f−D . s17d

The Hamiltonians14d is equivalent to the Hamiltonians4d of
Sec. II with fk being replaced byFk.

We have thus shown that the three-level atom undergoing
quantized motion in a harmonic trap and interacting with two
classical fields can be reduced to an effective two-level atom
in both the LD regime as well as beyond that regime. This is,
to our knowledge, the first attempt towards the adoption of
the scheme of adiabatic elimination of a level to reduce the
three-level trapped atom to the effective two-level picture in
the most general form.

The Hamiltonian(14) has some special properties. If one
of the driving fields is turned off(the LD parameter corre-
sponding to that field vanishes) then it is straightforward to
show thatPk=Qk andFk=0, hence the coupling between the
atomic electronic and motional states breaks. Further, if the
LD parameters of both the fields are equal thenQk vanishes

andFk reduces toPk. In this case the system behaves like a
two-level atom driven by single em field with 2j as the LD
parameter.

We will use Eq. (14) to the study of the dynamics of
model II.

IV. TIME EVOLUTION OF WAVE FUNCTION

In the last two sections we have presented the Hamilto-
nians for model I[Eq. (4)] and model II [Eq. (14)]. The
eigenstates of both the Hamiltonians have the general form

ucm
± l =

1
Î2

fum,el ± um+ n,glg, s18d

where uml and um+nl refer to the vibrational states withm
andm+n number of vibrational quantum, respectively. The
atomic ground and excited states are represented byugl and
uel, respectively. The statesucm

± l, m=0,1,2, . . .,constitute
the sm+1dth manifold of the excited dressed states. The
corresponding eigenvalues are

l± = Sm+
n

2
Dn ± bsmd, s19d

wherebsmd is the effective Rabi frequency of the nonlinear
multiquantum JC-type interaction for the respective models.
For a two-level atom

bsmd = eo
k=0

m

fk

Îm ! sm+ nd!
sm− kd!

, s20d

whereas for the three-levelseffective two-leveld atom

bsmd = ero
k=0

m

Fk

Îm ! sm+ nd!
sm− kd!

. s21d

Since we are interested in the fluctuation dynamics around
the Rabi oscillation we restrict our study to the initial deex-
cited state of the atom’s electronic part. This is because the
initial excited state adds to the fluctuations due to spontane-
ous emission. Att=0 the composite state of the system may
be represented as

ucs0dl = o
m=0

`

Cmum,gl. s22d

The constantCm is determined by the initial state of the
vibrational motion. For the motion initially in the coherent
stateual,

Cm =
am

Îm!
expF−

uau2

2
G , s23d

whereuau2 is the average number of vibrational excitation.
On expressing the initial state in terms of the eigenstates

ucm
± l of HI we get

ADITI RAY PHYSICAL REVIEW A 69, 033806(2004)

033806-4



ucs0dl =
1
Î2

o
m=0

`

Cmhucm−n
+ l − ucm−n

− lj. s24d

The state at any later timet is then given by

ucstdl = o
m=0

`

Cme−ism−n/2dnthcosfbsm− ndtgum,gl

− i sinfbsm− ndtgum− n,elj. s25d

Equations25d describes the time evolution of the state func-
tion when the atom is initially prepared in the ground state
and the atomic c.m. motion is coherent. This equation will be
used in the following sections to determine the quantum av-
erages of various system observables.

V. DELAYED REVIVAL OF ATOMIC INVERSION

The time evolution of the average population in the state
uel is governed by

kszstdl = kcstduszucstdl = −
1

2 o
m=0

`

uCmu2cosf2bsm− ndtg.

s26d

In the following sections we will discuss the collapse and
revival pattern of atomic inversion for the model systems.

A. Model I

It can be noticed from Eq.(3) that for j,1, fk decreases
very rapidly as we increase the value ofk. Hence the contri-
bution to the Rabi frequencybsmd comes mainly fromk=0
term. As a typical example, in Fig. 2 we have plotted the
functionSskd= fkÎm! sm+nd! / sm−kd! as a function ofk for a
particular value ofm with j=0.1, uau2=10, f0=p /4, and
n=1.

The figure shows that the maximum of the function oc-
curs atk=0 and alsoSskd reduces to zero within fewk. The
same is true for model II also.

Let us now consider the first term(k=0 term) of the series
describing the Rabi frequencybsmd given in Eq.(20),

bsmd = ef0
snd

Îm ! sm+ nd!
m!

= gn
Îsm+ 1dsm+ 2d ¯ sm+ nd,

s27d

wheregn=ef0
snd and f0

snd is the value offk for k=0 andnth
vibrational level. With the above Rabi frequency the
population inversion of Eq.s26d becomes

kszl = −
1

2 o
m=0

`

uCmu2cosh2gntÎmsm− 1d ¯ fm− sn − 1dgj.

s28d

For n=1, Eq.s28d simplifies to

kszl = −
1

2 o
m=0

`

uCmu2coss2g1tÎmd. s29d

This expression for the atomic inversion is the same as that
of the usual JC model of two-level atom interacting with
single photon of a cavity mode.

For n=2, the population inversion of Eq.(28) reduces to

kszl = −
1

2 o
m=0

`

uCmu2cosf2g2tÎmsm− 1dg. s30d

This result is the same as one would expect for the atomic
inversion in the case of driven JC model or two-photon one-
mode JC modelf11–13g. The only difference is that, unlike
the cavity modes,m here represents the vibrational modes.
Further, in the trapped atom case the coupling parametergn
is not a constant. It is a nonlinear function of LD parameter.
Moreover, the coupling strength depends on the vibrational
level.

The time evolution of population inversion shows usual
collapse and revival pattern. In order to find the revival time
we expand the functionÎmsm−1d¯ fm−sn−1dg about the
average number of the vibrational quantumm0. The first term
in the Taylor series expansion of the above function, i.e.,
Îm0sm0−1d¯ fm0−sn−1dg, leads to the usual Rabi oscilla-
tion. The second term or the first-order term insm−m0d will
determine the revivals. Thus revivals occur at times when
two oscillations are in phase, or, when the coefficient of the
term sm−m0d in the Taylor series expansion of the above
function in the argument of cosine function in Eq.(28) sat-
isfies the relation

gnFÎ m0!

sm0 − nd! oz=1

n
1

fm0 − sz− 1dgGtr
n = 2pln,

ln = 1,2, . . . , s31d

where tr
n is the revival time for thenth sideband transition

process. Thus there will be series of revivals forln=1, ln
=2, and so on.

From Eq.(31) one can easily find the revival time for the
first sideband transitionsn=1d as

FIG. 2. Sskd= fkÎm! sm+nd! / sm−kd! vs k for the two-level atom
model withn=1, j=0.1, uau2=10, andf0=p /4 takingm=32.
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tr
1 = 2pl1g1

−1m0
1/2, g1 = ef0

s1d, l1 = 1,2, . . . , s32d

where f0
s1d is the value offk for k=0 andn=1. Hence the

ratio of the times for which the revival of the population
inversion occurs firstsl1=1,ln=1d in thenth sn.1d and first
sn=1d sideband transition is

tr
n

tr
1 =

n!

jn−1

1

m0
Îsm0 − nd!

sm0 − 1d!Fo
z=1

n
1

fm0 − sz− 1dgG−1

. s33d

In deriving the above form we have made use of Eq.(3)
and adjusted the equilibrium position of the atom with re-
spect to the node or the antinode of the standing wave so that
the phase part offk is unity in the respective cases. Equation
(33) shows that for a particular value ofj andm0 the time of
occurrence of the first revival increases with the increase in
n, the sideband index responsible for atomic transition. Also
for a particular sideband transition the ratio increases with
the decrease inj.

In order to examine the exact dependence of the vibra-
tional quantum number on the revival time ratio, in the fol-
lowing we analyze the cases of secondsn=2d and first sn
=1d red-sideband transitions. The revival time for the second
sideband transitionsn=2d, obtained from Eq.(31), reads as

tr
2 = 2pl2g2

−1
Îm0sm0 − 1d

s2m0 − 1d
. s34d

Now dividing Eq. s34d by Eq. s32d we get the ratio of the
times for which the population inversion revives first for the
second and first sideband processes. So

tr
2

tr
1 =

g1
Îm0 − 1

g2s2m0 − 1d
=

2Îm0 − 1

js2m0 − 1d
. s35d

For m0@1, the ratio reduces to

tr
2

tr
1 =

1

jÎm0

. s36d

Now if the right-hand side of Eq.(36) is greater than
unity, i.e., the productjÎm0 is less than unity thentr

2 will be
greater thantr

1, or the first revival in the second sideband
transition will occur at a later time than the first revival in the
first sideband transition. For a particular sideband transition
process we have two controlling parameters to observe the
delayed revival. They are(i) the LD parameterj and(ii ) the
average quantum number of the initial coherent vibration,
m0= uau2. Thus the time evolution of the inversion may ex-
hibit delayed-revival phenomena even in the LD regime if
the initial number of the vibrational quantum is bounded by
the relationm0,1/j2.

The physical reason behind thej, n, anduau2 dependence
of the revival time is the following. The collapse and revival
is the result of the interference between different Rabi fre-
quencies corresponding to different values of vibrational
quantum number in their distribution, which is coherent ini-
tially. The structure of the revivals thus depends on probabil-
ity distribution uCmu2 (henceuau2) of the vibrational states and
the vibrational quantum number dependent Rabi frequency

bsmd. The j and n dependence of the revival time comes
from oscillation periodbsmd which is a function of both LD
parameter and vibrational level throughfk or Fk as the case
may be. In fact, delayed revival for anynth trap state as
compared to the first state is expected for any value ofj
provided the number of vibrational quantum present in the
mode can causen sideband transition of the trapped states.
When j is large the motional states are very close together
and absorption and emission of a photon will always cause
some change in the motional states of the atom. On the other
hand whenj is small then the trap states are well spaced and
many photons need be absorbed or emitted before the atom
changes the vibrational level. This paper, to the best our
knowledge, is the first one to study the delayed-revival phe-
nomena in two-level and three-level atoms undergoing quan-
tum oscillations in a harmonic trap and interacting with clas-
sical em field.

For further illustration we take the example ofm0=10.
The value of the ratiotr

2/ tr
1, as calculated from Eq.(36), is

<316 and 3 forj=0.001 andj=0.1, respectively. Thus the
first revival in the second sideband process occurs at 316 and
three times the first revival time for first sideband process for
the above two cases.

B. Model II

In Sec. III we have shown that three-level trapped atom
interacting with two em fields can be reduced to effective
two-level system by eliminating the second excited state. We
have also shown that except the effective coupling strength
the effective two-level atom Hamiltonian(14) is the same as
the two-level atom Hamiltonian(4) presented in Sec. II.
Hence, the general expression for the revival time(31) de-
rived for the two-level atom case holds for the three-level
atom case also except the coupling constantg. Following
Eqs. (32) and (34) we may express the first revival time of
the atomic inversion for the first and the second sideband
transition cases as

tr
1 =

2pÎm0

g18
s37d

and

tr
2 =

2pÎm0sm0 − 1d
g28s2m0 − 1d

, s38d

respectively, with

g18 = erF0
s1d = − erfe−j+

2/2j+sin f+ − e−j−
2/2j−sin f−g s39d

and

g28 = erF0
s2d = − ser/2dfe−j+

2/2j+
2cosf+ − e−j−

2/2j−
2cosf−g.

s40d

Thus form0@1, the ratio of the revival times is
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tr
2

tr
1 =

g18

2g28Îm0

=
1

Îm0

e−j+
2/2j+sin f+ − e−j−

2/2j−sin f−

e−j+
2/2j+

2cosf+ − e−j−
2/2j−

2cosf−

.

s41d

If we take f+=f−=p /2 for n=1 andf+=f−=0 for n=2,
then the ratio becomes

tr
2

tr
1 =

1
Îm0

e−j+
2/2j+ − e−j−

2/2j−

e−j+
2/2j+

2 − e−j−
2/2j−

2
, s42d

which is a complicated function ofj1 and j2. For delayed
revival to occur forn=2 the right-hand side of the above
expression has to be greater than unity. Dividing the numera-
tor and the denominator of the right-hand side of Eq.s42d by
j+

2exps−j+
2 /2d we may rewrite the ratio of the two revival

times as

tr
2

tr
1 =

1

j+
Îm0

1 − esj+
2−j−

2d/2sj−/j+d

1 − esj+
2−j−

2d/2sj−
2/j+

2d

=
1

j+
Îm0

1 − e2j1j2s1 − j2/j1d/s1 + j2/j1d
1 − e2j1j2s1 − j2/j1d2/s1 + j2/j1d2 . s43d

As it is not very obvious from the general expression of the
time ratio given by Eq.s43d that revivals forn=2 are de-
layed, we examine the same in some special cases.

(i) j1@j2, so j2/j1!1, Eq. (43) approximates to

tr
2

tr
1 <

1

j+
Îm0

, s44d

which is same as Eq.s36d, obtained for the two-level atom
model, except thatj is replaced byj+<j1.

(ii ) j1=j2, the expression for the time ratio of Eq.(43)
simplifies to

tr
2

tr
1 =

1

2j1
Îm0

. s45d

This is again same as Eq.s36d with j replaced by 2j1.
(iii ) j1!j2, so j2/j1@1, it can be shown that

tr
2

tr
1 <

1

j+
Îm0

1 + e2j1j2

1 − e2j1j2
. s46d

If the value ofj1 andj2 are such that the product 2j1j2!1
then time ratio can be further simplified to

tr
2

tr
1 <

1

j+j1j2
Îm0

, s47d

with a minus sign which could be removed by a proper
choice of the equilibrium position of the atom. For the same
values ofj1, j2, andm0 this case offers larger revival time in
n=2 process than casesid and casesii d.

We have therefore proved that under suitable values for
the parametersj1, j2, and m0 large time-scale revivals do
occur in three-level trapped atom also. In fact the three-level
atom does not play any extra role in the generation of

delayed-revival pattern as long as it is picturized as effective
two-level system whose dynamics is no different from actual
two-level atom system.

In Fig. 3 we have plotted the atomic inversion given in
Eq. (26) as a function of scaled timeet (solid curve) andert
(dashed curve) with Fig. 3(a) and 3(b) representing the cases
of n=1 andn=2, respectively. The solid curves in both the
figures refer to the case of two-level atom withj=0.01,m0
= uau2=10, andf0=p /4 whereas the dashed curves are plot-
ted for the effective two-level model withj1=0.007, j2
=0.003,f1=p /4, andf2=0. The first revival in Fig. 3(a)
occurs atet<2808 in the solid curve andert<4683 in the
dashed curve. The positions are matching with those pre-
dicted analytically in Eqs.(32) and (37). Note from the
curves of Fig. 3(b) that the first revival occurs atet
<88 425 (in solid curve) and ert<105 642 (in dashed
curve). Thus the revival in Fig. 3(b) seems to be occurring at
much greater value ofetsertd than in Fig. 3(a).

The physical reason behind this delayed revival in Fig.
3(b) corresponding ton=2 as compared to Fig. 3(a) corre-

FIG. 3. The atomic inversionkszl plotted as a function ofet
(two-level atom) in the solid curve withj=0.01,f0=p /4, andert
(effective two-level atom) in the dashed curve withj1=0.007,j2

=0.003,f1=p /4, f2=0, uau2=10 for (a) n=1, (b) n=2.
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sponding ton=1 can be explained by looking into the ex-
pressions for the effective Rabi frequency andfk given by
Eqs.(20) and (3), respectively. These two equations suggest
that for the same value ofj andm,

bsmdun=2!bsmdun=1. s48d

The revival timetr is estimated as the time when two neigh-
boring terms in Eq.s26d for m=m0 and m=m0+1 differ in
phase by a factor of 2p or in other wordstr satisfies the
relation h2bsm0+1d−2bsm0djtr =2p. Since the product of
bsmd and tr is constant, hence it proves that

trun=2@trun=1. s49d

In the similar way, it can be easily shown that asn increases
the revival timetr increases at the cost of decreased value of
Rabi frequencybsmd. The different frequency of oscillation
makes the curves in Fig. 3sbd look different from those of
Fig. 3sad.

Moreover, it can be noticed from Figs. 3(a) and 3(b) that
the ratio of the first revival times istr

2/ tr
1=88 425/2808

=31.4 for model I(solid curve). This is close to the value
predicted in Eq.(36) as for j=0.01 andm0=10, 1/jÎm0
=31.6. The ratio of the revival times as observed from the
dashed curves is 105 642/4683=22.55 which is close to
1/2j1

Îm0=22.58. The overall collapse and revival pattern of
the inversion dynamics of the effective two-level model is
same as the two-level atom model.

VI. DYNAMICS OF THE VIBRATIONAL MODE

The time evolution of the average number of the vibra-
tional excitation is governed by

kNstdl = ka†stdastdl = kcstdua†aucstdl

= o
m=0

`

uCmu2hm− n sin2fbsm− ndtgj.

s50d

In Fig. 4 we have plotted the average excitation number
kNl as a function of scaled time from Eq.(50). Figure 4(a)
and 4(b) refer to the cases ofn=1 andn=2, respectively. The
solid curves in both Figs. 4(a) and 4(b) are plotted for model
I with j=0.1, m0=10, and f0=p /4 whereas the dashed
curves refer to model II withm0=10, j1=0.07, j2=0.03,
f1=p /4, andf2=0. The curves show that the average exci-
tation number exhibits the similar pattern of collapse and
revival as seen in the atomic population inversion. The time
evolution of the average vibrational quantum number and the
average population inversion is such that the sum of two is a
constant of motion, i.e., at any time

kNstdl + nkszstdl = const. s51d

Also for anynth sideband transition both the variables os-
cillate with frequency 2bsm−nd. Comparing the plots of
Figs. 3 and 4 one can easily note that the revival occurs at
much earlier time in Fig. 4 than in Fig. 3 for both the first
fthe curvessadg and secondfcurvessbdg sideband transi-

tion processes. This is expected as the values of LD pa-
rameters chosen for plotting the respective cases of Fig. 4
are more by one order of magnitude than those in Fig. 3.
This supports our theoretical derivation of the revival time
presented in Sec. V. The estimate for the ratio of revival
times as derived in that section remains unaltered for the
time evolution of vibrational excitation.

The qualitative difference between the curves forn=1 and
n=2 of Fig. 4 is due to the difference in their oscillation
frequency. Asn increases the vibrational-assisted Rabi fre-
quency decreases thereby increasing the revival time. It can
also be observed from the curves of Figs. 4(a) and 4(b) that
the ratio tr

2/ tr
1 is 3.15 for the solid curves and 2.25 for the

dashed curves. These values are close to the analytical results
given in Eqs.(36) and (47), respectively.

VII. NONCLASSICAL STATES OF THE VIBRATIONAL
MODE

In order to investigate the nonclassical properties of the
vibrational quantum, which plays the same role as the pho-

FIG. 4. The average number of motional quantumkNl plotted as
a function ofet in the solid curve withj=0.1, f0=p /4, andert in
the dashed curve withj1=0.07, j2=0.03, f1=p /4, f2=0, and
uau2=10 for (a) n=1, (b) n=2.
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tons of the cavity field in JC interaction, we examine the
second-order coherence function of the motional state de-
fined as[11]

gs2d =
ka†2

a2l
ka†al2 , s52d

which in terms of normally ordered variance of the vibra-
tional quantum number denoted byk:DN2:l, with

k:DN2:l = ka†2
a2l − ka†al2,

may be rewritten as

gs2d = 1 +
k:DN2:l

kNl2 , N = a†a. s53d

The time evolution ofka†al is given in Eq.s50d. Using Eq.

s25d it is trivial to find that the time evolution ofka†2
a2l is

governed by

ka†2
a2l = o

m=0

`

uCmu2hmsm− 1d + sn2 − 2mn+ nd

3sin2fbsm− ndtgj. s54d

In Fig. 5 we present the behavior of the normally ordered
variancek:DN2:l of motional quantum forn=1 in Fig. 5(a)
andn=2 in Fig. 5(b), respectively. The solid curves of both
the figures represent the case of two-level atom model with
j=0.1, m0=5, and f0=p /4. The dashed curves show the
variance for the effective two-level atom model plotted with
j1=0.08, j2=0.02, f1=p /4, f2=0, and the same value
of m0.

From both the curves of Figs. 5(a) and 5(b) it is clear that
at certain times on its evolution the motional quantum is
generated with statistical fluctuations greater than that would
be expected on the basis of Poissonian statistics, i.e.,
k:DN2:l.0. At those times the second-order coherencegs2d

is greater than unity and the motional quanta are said to be
bunched. It is also observed that at some time intervals the
motional quanta are generated with statistical fluctuations
less than the coherent state value, i.e.,k:DN2:l,0. In this
situation the number distribution of motional modes is said
to follow the sub-Poissonian statistics. This latter phenom-
enon is similar to the antibunching of the photons in cavity
QED. At those time intervals where the motional states fol-
low the sub-Poissonian statistics the second-order coherence
gs2d is less than unity thereby implying the generation of
nonclassical states of the motional states.

Note that the time duration for which the variance is nega-
tive is more inn=2 [Fig. 5(b)] than inn=1 [Fig. 5(a)] case.
The physical reason behind this generation of longer anti-
bunched statesgs2d,1d for n=2 process thann=1 is the
following. Once the atom emits one vibrational quantum the
second quantum cannot be emitted by the same atom until
the atom is reexcited to its upper electronic state by the ab-
sorption of a motional quantum from the motional mode.
This is done in a time determined by the vibrational-assisted
Rabi frequency. The greater Rabi frequency ofn=1 case

permits the variance to be zero upto some time after which it
starts deviating from coherent state. The smaller value of
Rabi frequency forn=2 case maintains the antibunching for
longer time.

The bunching and antibunching phenomena of the mo-
tional state are the result of the similar physical process that
is responsible for the bunching and antibunching of the pho-
tons on interaction with two-level or three-level atoms in a
high-Q cavity. Moreover, the nonclassical behavior of the
vibrational excitation exhibited in Fig. 5 is similar to those
exhibited by the average photon numbers of the two modes
of the cavity field(Raman coupled with three-level atom) as
reported in Ref.[11]. The time behavior of the variance in
the photon number of the first mode of the cavity field of that
reference plotted for finite number of photons initially ap-
pears to be same as the time evolution of the normally or-
dered variance of the vibrational excitation shown in Fig.
5(a) referring to n=1. Further, the variance in the photon
number of the second mode, with zero average number of
photons initially, is similar to the normal order fluctuation of

FIG. 5. The normally ordered variance of motional quantum
k:DN2:l vs et (solid curves) with j=0.1, f0=p /4, andert (dashed
curve) with j1=0.08, j2=0.02, f1=p /4, f2=0, uau2=5 for (a) n
=1, (b) n=2.
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the motional excitation plotted in Fig. 5(b) referring to n
=2 case.

VIII. SQUEEZED MOTIONAL STATES

Following Ref.[6] we consider the quadrature operator

xu = aeiu + a†e−iu, s55d

so that the position and the momentum of the atom’s c.m. is
directly proportional tox0 and xp/2, respectively. Accord-
ingly the variancessDx0d2 and sDxp/2d2 give the measure of
the quantum noise associated with the atomic position and
momentum. Those variances are related to the averages of
the quadratic combinations of the creation and annihilation
operators of the vibrational motion by the following rela-
tions:

sDx0d2 = f1 + 2 Reka2l + 2ka†al − 4hRekalj2g, s56d

sDxp/2d2 = f1 − 2 Reka2l + 2ka†al − 4hImkalj2g. s57d

The uncertainties in the observablesx0 andxp/2 are con-
strained by Heisenberg uncertainty relation

sDx0d2sDxp/2d2 ù 1. s58d

A coherent state of motion is the one for which the uncer-
tainty product is minimum and the two quadratures have
equal variance,sDx0d2=sDxp/2d2=1. A quadrature compo-
nent is said to be squeezed if the value of its variance is less
than the value it has in the coherent state.

Assuming the vibrational motion to be initially in the co-
herent state we study the variances in the position and the
momentumsDx0d2 and sDxp/2d2 as a function of dimension-
less timeet for the atom initially in its ground state. The
initial ground state does not contribute to the fluctuation due
to spontaneous emission, hence it offers early onset to the
quadrature squeezing. It is found that at certain time intervals
either sDx0d2 or sDxp/2d2 is less than 1, which is their corre-
sponding coherent-state value. At those time intervals the
position or the momentum exhibits squeezing. We find out
numerically those time intervals where the position or the
momentum of the c.m. of the atom is squeezed. In Figs. 6(a)
and 6(b) we have illustrated the way to achieve the squeezing
at earlier time by increasing the LD parameter. We consider
the situation of the standing wave in the two-level atom
model, when the center of mass of the atom coincides with
the center of the trap, i.e.,f0=0. The figures show the time
evolution of the variances inx0 andxp/2 for first red-sideband
transition with n=10e, m0=8. The solid and the dashed
curves of Fig. 6(a) correspond tosDxp/2d2 andsDx0d2, respec-
tively, for j=0.005. Figure 6(b) represents the same but for
j=0.2. It can be easily seen that the squeezing in momentum
or position occurs at earlier times in Fig. 6(b) as compared to
that in Fig. 6(a). So there is a decrease in the minimum time
of occurrence of the squeezed states as we go for large re-
coiling of the atom as compared to the wavelength of the
interacting field. If the recoil of the atom is considered to be
much smaller than the wavelength of the interacting laser
then the onset of the system to squeezing will be delayed.

Thej dependence on the generation of the squeezed states
is very normal, as for small LD parameter the spatial exten-
sion of the motional wave packet of the trapped atom is
small compared with the wavelength of the driving laser.
When the atom is weakly localized orj is large then the
interference of the atomic matter wave with the irradiating
laser field leads to the nonlinear modification of the dynam-
ics of the laser driven atom. When the spatial extension
reaches a size of the order of magnitude of the laser wave-
length then the atom-field interaction breaks down to the
destructive interference between the motional wave and the
laser wave. The squeezed states of the atomic motion are the
outcome of such nonlinear effect.

To show how exactly the LD parameter changes the gen-
eration of the squeezed state we plot in Fig. 7 the minimum
time for whichsDx0d2 is less than 1 as a function ofj for the
same value ofn anduau2 as used for Fig. 6. It is interesting to
note that as the value ofj increases the corresponding time
setdmin does not decrease steadily rather it falls stepwise with
a plateau at some very smallj domain. Though the overall
behavior seems to be close to the function,1/jÎm0, which

FIG. 6. The variance in momentumsDxp/2d2 (solid) and position
sDx0d2 (dashed) vs et for (a) j=0.005, (b) j=0.2 with n=10e,
uau2=8.
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is plotted as a function ofj in the dashed curve of Fig. 7, but
the reason behind the stepwise fall is not very clear.

IX. CONCLUSION

We have studied the dynamics of the two-level and three-
level atom in a harmonic trap paying special attention to the
observation of the large time-scale revivals termed as de-
layed revivals. We conclude that as the sideband index re-
sponsible for atomic transition increases the revival in the
system observables occur at longer times. Also we have
shown that the LD parameter and average number of initial
vibrational excitation are the two parameters that largely in-
fluence the existence of delayed revival. It is shown that the
time duration for which the motional quantum is antibunched
is more for second sideband transition process than the first
sideband transition process. The minimum time for which
the early onset to the quadrature squeezing occurs is shown
to be decreasing with the increase in the LD parameter.

APPENDIX

In this appendix we derive the effective two-level Hamil-
tonian [Eq. (8)] for the present three-level atom inL con-
figuration by adiabatic removal of the excited state.

The Heisenberg equations of motion for the atomic tran-
sition operatorssgr and sre corresponding to the Hamil-
tonian (7) are

ṡgr = − ifsEr − Egdsgr + e1ssgg − srrdsinsk1R+ f1de−iv1t

+ e2sgesinsk2R+ f2de−iv2tg, sA1d

ṡre = ifsEr − Eedsre + e1sgesinsk1R+ f1deiv1t

− e2ssrr − seedsinsk2R+ f2deiv2tg. sA2d

Here we introduce the slowly varying operatorss̃gr, s̃re, s̃ge
for the atomic variables as

sgr = s̃gr e−isv1+qndt, sre = s̃re eisv2−pndt,

sge= sgr · sre = s̃ge e−isvl+nndt = s̃gee
−iv0t, sA3d

with s̃ge=s̃gr ·s̃re. Substituting Eq.(A3) in Eqs. (A1) and
(A2) we get the equations of motion for the new variables as

ṡ̃gr = − ifDs̃gr + e1ssgg − srrdsinsk1R+ f1deiqnt

+ e2s̃ge sinsk2R+ f2de−ipntg sA4d

and

ṡ̃re = ifDs̃re + e1s̃ge sinsk1R+ f1de−iqnt − e2ssrr

− seedsinsk2R+ f2deipntg. sA5d

For large detuningsD@nd the approximate solutions of Eqs.
sA4d and sA5d are found to be

s̃gr = −
e1

qn + D
ssgg − srrdsinsk1R+ f1deiqnt

+
e2

pn − D
s̃ge sinsk2R+ f2de−ipnt, sA6d

s̃re = −
e1

qn + D
s̃ge sinsk1R+ f1de−iqnt

−
e2

pn − D
ssrr − seedsinsk2R+ f2deipnt. sA7d

The terms diagonal in atomic variablessii , i =g,e,r, lead to
stark shifts which we shall assume to be negligibly small. By
dropping these terms from Eqs.sA6d and sA7d we get the
simplified solutions

s̃gr =
e2

pn − D
s̃ge sinsk2R+ f2de−ipnt

< −
e2

D
s̃ge sinsk2R+ f2de−ipnt, sA8d

s̃re = −
e1

qn + D
s̃ge sinsk1R+ f1de−iqnt

< −
e1

D
s̃ge sinsk1R+ f1de−iqnt. sA9d

Using Eq.sA3d we find the solutions of the original variables
as

sgr = −
e2

D
s̃ge sinsk2R+ f2de−ipnt e−iv1t e−iqnt

= −
e2

D
sinsk2R+ f2dsge e−innte−iv1teiv0t

= −
e2

D
sge sinsk2R+ f2de−iv2t sA10d

and

FIG. 7. The minimum timesetdmin for which sDx0d2,1 vsj for
n=10e, uau2=8.
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sre = −
e1

D
sge sinsk1R+ f1deiv1t. sA11d

With the above expressionsfEqs. sA10d and sA11dg for the
atomic operators the Hamiltonians7d reduces to

H = Egsgg + Ersrr + Eesee+ na†a −
2e1e2

D

3ss−eivlt + s+e−ivltdsinsk1R+ f1dsinsk2R+ f2d,

sA12d

where we have introduced the effective atomic raising and
the lowering operatorss+=seg ands−=sge between the lev-
els ugl and uel. Since the levelurl is assumed to be far-off
resonance we can set the occupation in that level to zero, i.e.,
srr =0. Also defining the atomic inversion operatorsz as

2sz = see− sgg sA13d

and shifting the zero of the energy scale atsEg+Eed /2 the
HamiltoniansA12d assumes the form

H = v0sz + na†a − 2erss−eivlt + s+e−ivltd

3sinsk1R+ f1dsinsk2R+ f2d, sA14d

whereer =e1e2/D refers to the effective coupling constant for
the two-level representation of the three-level model system.

Recall that there was no direct coupling between the two
levels ugl and uel originally and hence the dipole transition
between them was forbidden. The application of the laser has
made the coupling in such a way that it induces the transition
ugl↔ uel. These are the two levels between which the popu-
lation transfer takes place. We have thus derived the effective
two-level Hamiltonian for the trapped three-level atom un-
dergoing quantized motion.

Now, the wave vectors of the laser beamsk1 and k2 are
related with their corresponding LD parametersj1 andj2 in
the following manner:

k1R= j1sa + a†d, k2R= j2sa + a†d, sA15d

where

R=
1

Î2Mn
sa + a†d sA16d

is the position operator of the c.m. of the vibrating atom of
massM.

Using Eq.(A15) we can express the “sine” products ap-
pearing in Eq.(A14) as

sinsk1R+ f1dsinsk2R+ f2d

= − 1
4feij+sa+a†deif+ + e−ij+sa+a†de−if+ − eij−sa+a†d

3eif− − e−ij−sa+a†de−if−g, sA17d

with

j± = j1 ± j2, f± = f1 ± f2. sA18d

On using Eq.sA17d the HamiltoniansA14d may be rewritten
as

H = v0sz + na†a +
er

2
ss−eivlt + s+e−ivltdheij+sa+a†d eif+

+ e−ij+sa+a†d e−if+ − eij−sa+a†d eif− − e−ij−sa+a†de−if−j.

sA19d

In the interaction picture or in a frame rotating with fre-
quencyvl the HamiltoniansA19d reduces to

HI = nnsz + na†a +
er

2
heij+sa+a†d eif+ + e−ij+sa+a†d e−if+

− eij−sa+a†d eif− − e−ij−sa+a†de−if−jhs+ + s−j.
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