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The dynamics of a two-level atom driven by a single laser beam and three-levellaomhda configura-
tion) irradiated by two laser beams are studied taking into account of the quantized center-of-mass motion of
the atom. It is shown that the trapped atom system under appropriate resonance condition exhibits the large
time-scale revivals when the index of the vibrational sideband responsible for the atomic electronic transition
is greater than unity. The revival times are shown to be dependent on the initial number of vibrational
excitations and the magnitude of the Lamb-Dicke parameter. The sub-Poissonian statistics in vibrational quan-
tum number is observed at certain time intervals. The minimum time of interaction for which the squeezed
states of motional quadrature are generated is found to be decreasing with the increase in the Lamb-Dicke

parameter.
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[. INTRODUCTION em fields paying particular attention to the revival times. We

also find the system parameters that are responsible for the

During the last decade a significant progress has beebccurrence of the large time-scale revivals. The model cases
made in the experimental and theoretical methods of lasethosen for studying the above phenomena @& single
cooling of the free as well as the trapped two-level and threetwo-level atom undergoing quantized motion around its c.m.
level atoms. With the various cooling techniques, namely thend irradiated by a monochromatic field aid) a single
Doppler cooling[1], sideband cooling1], Sisyphus cooling three-level atom undergoing quantized motion and Raman
[2], dark-state cooling3], and so on, the temperature of the coupled with two laser fields. Vogel and de Matos Fi[lsp
atoms can be lowered to such a limit that they start behavingave shown that under appropriate resonance conditions and
like the quantum-mechanical objects. The methods of prepafar from the Lamb-Dick&LD) regime the interaction of such
ing such a trapped atom in a chosen quantum state of i trapped two-level atom with classical em field is well de-
center-of-masgc.m) motion, such as Fock state, coherentscribed by a Hamiltonian which is similar to that nonlinearly
state, squeezed state, the Schrodinger cat states, are alreadypled multiguantum Jaynes-Cumming¥C) model. By
accomplished4]. The generation of these nonclassical statesidiabatic elimination of the second excited state, which is
have found their application in the field of quantum compu-assumed to be far-off resonance, we have reduced the three-
tation. level atom in RamariA) configuration to areffective two-

The nonlinear and the quantum effects of the interactionsevel model We also show that far from the LD regime this
involving one atom with few energy levels and one or moreeffective two-level atom Hamiltonian can be reduced to a
near resonant electromagnet@) fields are generally stud- form that is equivalent to the one derived in the case of
ied either by quantizing the interacting field or by allowing trapped two-level atom interacting with a single classical
the atom to undergo quantized motion around its c.m. byfield.
placing it in a harmonic trap. The effects arising due to the The present paper investigates the collapse and revival
first method have been investigated extensively theoreticallproperties of trapped atom system for the above described
as well as experimentally, whereas not enough study is madaodel cases. It will be shown that, if the frequeriogiative
in the effects due to the quantization of the atomic motionfrequency of the interacting classical figls) is resonant
This paper is an attempt to throw some light on the dynamiwith the nth vibrational sideband, then the dynamical vari-
cal and the statistical properties of such system. The dynanables exhibit large time-scale revivals or “delayed revivals,”
ics of the atomic inversion of a two-level trapped atom havewhenn is greater than unity. In order to provide an estimate
been studied for initial coherent vibration of the atomic c.m.for the time for which this delayed revival occurs, we derive
[5]. The nonlinear effects arising due to the interaction of athe general expression for the revival time for model | when
single three-level atom with Raman lasers have been andhe interacting field is detuned to anth motional sideband.
lyzed to generate the squeezed states at short interactidnis shown that, in both the models, the ratio of the revival
times[6]. The wave-mixing response of a two-level atom intimes for the second and the first sideband transition is in-
a harmonic trap interacting with a classical em field has beerersely proportional to the square root of the average number
studied and it has been shown that the quantized motion aif the vibrational excitation for the initial coherent vibration.
the trapped atom can significantly influence the nonlineaFor model | this ratio is inversely proportional to the LD
optical processes such as multiwave mix|iag parameter. In the case of model Il this time ratio is a com-

In this paper we study dynamics of an atomic systenplicated function of the LD parameters of both the fields. We
embedded in a harmonic trap and interacting with classicadliscuss the special cases of model Il when the ratio of the
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revival times for second and first sideband transition pro- Il. MODEL I: TWO-LEVEL ATOM

cesses becomes same as that of model I. In thi . deoict th del of the two-level at
The long time-scale revivals discussed in this paper are 'N 1S S€Clion we depict the model of (neé two-level alom

not the same as theuper-revivalshat are studied by Dutra trapped in a harmonic potential and irradiated by a standing

et al. [8] in cavity QED system and by Moya-Cestal.[9]  Wave field. The system under consio_leration con_sists of a
in trapped atom system. The authors of R6l. have dem- two-level atom of transition f_requenayo ina h_armonlc trap.
onstrated the existence of the super-revivals in trapped threé£t the frequency of oscillation of the atom in the trapibe
level atom system beyond the LD regime. The large time\We assume that the atom is interacting with a classical em
scale revivals studied here, which we call delayed revivalsfield of frequencyw, directed along one of the principal axes
are normal revivals occurring at late times due to somedf the harmonic potential so that the motion of the atom is
change in system preparation, whereas the super-revivals arestricted to one dimension only. If the field is resonant with
the revival of revivals occurring at larger times. Our studynth red sideband, i.e., if

suggests that the delayed-revival phenomena may be ob-

served within and beyond the LD regime. w = wo = Nv, (1)

The difference between the nonlinear multiquantum JGpon the Hamiltonian describing the coupling between the

model for the cavity field and that of the trapped atom SyS-qmic internal and external degrees of freedom in rotating

tem is that the effective interaction in the latter case correy ~ve approximatioRWA) and beyond the LD limit is

sponds to the resultant process of all the finite quantum ‘]C'iven by (7:=1) [5,10]

type interactions starting with zero vibrational quantum. This?

inherent nonlinearity in the coupling of the atomic electronic o

and motional degrees of freedom leads to very interesting  H = ya'a+ wyo, + €, [f(@hka o, et + H.ecl, (2)
and distinct nonclassical phenomena. This paper investigates k=0

the possible generation of the nonclassical states of the vi-h . ) : t
brational modes by examining the second-order coherencineree is the atom-field coupling constant aacanda’ are

function. It is shown that at certain times of interaction thethe annihilation and the creation operators for the vibrational
second-order coherence function is less than unity thereb§uantum. The atomic raising and lowering operators are de-
implying that the normally ordered variance of the vibra-Noted by o and o_, respectively. The LD parameter-
tional excitation is less than zero. At those times the vibradependent constarif has the following form,

tional modes are said to follow sub-Poissonian statistics, an (= )keHmexp(— &/2)
effect similar to the antibunching of the photons in the case f, = 3 Xp- & sin(n—ﬂ + ¢o>- (3)
of cavity modes coupled with the atomic electronic states. k! (k+n)! 2

Finally, we show that at certain time intervals of interac- . ) _
. - T - Hereis the LD parameter ang, defines the equilibrium
tion the variance in either component of the motiafwibra Eosition of the atom in the trap with respect to the field. The

tional) quadrature is less than the corresponding cohere . : :
state value, thereby generating the squeezed motional stafy//* aSsumes that the separatiohetween the sidebands is

for that quadrature. It is also found that the early onset to thé?79€r than the Rabi frequency of transition between the
quadrature squeezing is achieved by increasing the value G{OMic €lectronic levels. This puts an upper bound on the

the LD parameter. value of the applied field strength. Now, in a frame rotating
The organization of the paper is as follows. In Sec. Il weWith @, the Hamiltonian(2) reads as
describe the two-level atom under consideration and the ®
model Hamiltonian. Sec. Il describes the model system of — ot Tykqk+n
. : H, =va'a+nvo,+ f(@")a +H.cl. 4
three-level atom in the harmonic trap and presents the effec- = vz 6,(2:0[ «a) T+ ! @

tive two-level atom Hamiltonian. In Sec. IV we evaluate the . o ]

wave function at any later time assuming that the atom is iVe Will use the Hamiltoniar4) to study the dynamical and
the ground state initially, undergoing coherent vibrationsStatistical properties of this system.

around its center of mass. In Sec. V we study the dynamics

of the atomi_c inversion_ for t_he two models. Here we _d_erive IIl. MODEL II: THREE-LEVEL ATOM INA A

the expression for revival time fanth sideband transition CONFIGURATION

process. The time for which the revival occurs first in model

| and model Il is compared for a particular sideband transi- In this section we describe the model for the three-level
tion. Section VI shows the collapse and revival pattern of thérapped atom and derive its effective two-level Hamiltonian.
vibrational quantum number for the two models. In Sec. VII The scheme for the adiabatic elimination of a level of cavity
we study the generation of the nonclassical states of the VIQED has been successfully adopted in the trapped atom case.
brational mode by investigating the appearance of sub- We consider a single three-level atom in Raman configu-
Poissonian statistics of the average excitation number. Firation (A type) trapped in a harmonic potential and interact-
nally, in Sec. VIII the squeezing properties of the motionaling with two lasers of frequencies, and w, with & and &,
guadratures are discussed. The conclusions are summed ag the corresponding LD parameters. Both the fields are
in Sec. IX. The details of the adiabatic removal of the fartreated classically. The fields are assumed to be propagating
resonant excited state to reduce the three-level atom Hami&long one of the principal axes of the harmonic potential so
tonian to the effective two-level Hamiltonian are provided inthat we have one-dimensional problem. The energy-level
the Appendix. diagram for a trapped three-level atom imaconfiguration
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quencieswi(i=1,2). The operatorsoy(i,j=g,e,r) are the

vi . "
v§— I, m > atomic transition operators.
— Now, the adiabatic removal of the levig) and introduc-
CA tion of the creation and annihilation operators of the mo-
tional statesa', a in the “sine” terms, as described in the
Appendix, results in the effective interaction Hamiltonian
""" T given by
o, @, :
lg, m > # e, mr+p > H, =nvo, + vala+ %{ei§+(a+a*) g+ 4 giéuaral) grid,
g mq> —2L—— : le, m >

_ gétaval) g _ e—ig_(a+aT)e—i¢-}{o-+ +0.}, (8)

wheree, is the effective coupling constant of the two-level
FIG. 1. The energy-level diagram of the trapped three-levelepresentation of the three-level atom system. In the follow-
atom in A configuration. ing we will analyze the Hamiltoniaf8) in the LD regime as
well as far from the LD regime of both the fields.

is shown in Fig. 1. It is the generalization of the electrohic
scheme in trapped atom system with the leyglsn—q) and
|e,m+p) being independently coupled with the leyejm). In this case we havé; <1 and&,<1. We examine the
The notations |g,m-qg)=|g)|m-q), |e,m+p)=|e))m+p),  Hamiltonian(8) in some special cases.

and |[r,my=|r))m) represent the vibrational-assisted elec- Case |.£,<¢;, S0 &,=£_~¢;. Since bothé, and £ are
tronic states wherf), |e), and|r) denote the bare electronic very much less than unity hence we can retain the terms upto
states of the three-level atom with the corresponding energieiie first order ing; in the exponentials appearing in E®)

Eg Ee andE,, respectively, andm-q), [m+p), and|m) are  and write the total Hamiltonian as

the Fock states of the harmonic trap. We have also assumed

thgt the _field frequencyw, is resonant with t_heqth red- H, = nvo,+ va'a+ ﬁ{[1+i§1(a+aT)]ei¢+

shifted sideband whereas the field frequengyis resonant 2

with the pth blue-shifted sideband of the vibrational states.
The system is tuned consistent with two-photon energy con-

A. Hamiltonian in the LD regime

+[1-ig(a+ahle’? —[1+ig(a+al)le?-

servation so that the detuniry satisfies the relations -[1-iga+ah)]e'*Ho, + o}, (9
o +A=E -E4-q, which can be further simplified to
(5 H, = nvo, + va'a+ ¢[(cos ¢, — cos ¢_)
w,+A=E, —Eo+ pv, - &a+ah)(sin ¢, -sinp) o, +o ). (10)

where is the frequency of oscillation of the atomic c.m. in FOr appropriate choices of the equilibrium positions of the
the trap. From Eq(5) we get the relative frequenay; of the atomic c.m. with respect to the fields and in RWA one can

two fields as rewrite Eq.(10) in a form that is analogous to usual single-
photon JC Hamiltonian.
W =w - w,=wy— Ny, N=p+dq, (6) Verify that, if ¢;=7 and ¢,=7/6 or ¢ =0 and ¢,

. . . =7 hen in RWA Eq(1
where wy=E.—E, is the effective transition frequency be- /6, then in q(10) reduces to

tween the levelge) and|g). Equation(6) implies that the H, =nvo,+ va'a+ & (a'o_ + 0,a). (17
relative frequency of the two laser beams is resonant with the .
nth red-shifted vibrational sideband. Note that the reso- C8S€ Il.£1=£&, S0£,.=2¢ and §.=0. Hence, in the LD
nance conditior(6) is equivalent to Eq(1) of Sec. II. regime(¢, <1) the Hamiltonian(8) reduces to

Next, we assume that the c_jetuniﬁg's s_ufficiently large = nvo, + va'a+ [(CoS ¢, — Cos ¢_) — 2&(a+ ahsin ¢, ]
such thatA>E.-E,. Under this assumption we will show
that the laser fields effectively drive the electric-dipole for-  X{os+o_}. (12
bidden transition|g) < |e). The interaction of the trapped - - - -
atom_ With the standing-wave field is governed by the totalglr?éeir:hs\tjvzr(éa_(gz?Tg(fjceZZgGE%r(ﬂl). -T-EL/JS i?]ng(;{:ﬁ tge
Hamiltonian above cases the interaction is governed by a Hamiltonian that
H=E 0y +E,0, + Eoooe+ vala+ esin(kR+ ) (o, 671! one would expect in the case of model | in the LD regime

9reg - T meree _ = with & as the LD parameter.
+H.c) + &SiN(kR+ ¢,) (0,72 + H.C), (7)

where ¢;=kRy(i=1,2 are the phases introduced due to B. Hamiltonian beyond the LD regime

equilibrium position of the atom in the trap with respect to By disentangling the exponentials containiaga’ we
the nodes and the antinodes of the interacting fields of fremay write the Hamiltoniarg8) as
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&| - (ig)! . andF, reduces tcP,. In this case the system behaves like a
H =nvo, +va'a+ E{e 53/2{2 Kl (@ ale/? two-level atom driven by single em field withé2xs the LD
ki 2T parameter.
(—ig,)k! . We will use Eq.(14) to the study of the dynamics of
+ % ki (aT)kale P model Il.
i k+l
_ e‘fz/Z{E (USMPRTRErS IV. TIME EVOLUTION OF WAVE FUNCTION
k!
! " In the last two sections we have presented the Hamilto-
G o nians for model I[Eq. (4)] and model II[Eq. (14)]. The
* % kI (@)ae lo+o}. (13) eigenstates of both the Hamiltonians have the general form
For the field frequencies close to the lower motional side- £y _ 1 +lma
band resonance, i.e., Vi) \E[|m,e>_ m+n.g)], (18)
| = (wo—nv)| < nv, where|m) and|m+n) refer to the vibrational states witim

. . . andm+n number of vibrational quantum, respectively. The
only transitions with decreasing quantum numberrbgre atomic ground and excited states are representdd)bgnd
important. Under the above resonance condition along with ; - :

p 9 M), respectively. The statelg,), m=0,1,2,...,constitute
e (m+1)th manifold of the excited dressed states. The

time the Hamiltoniar(13), in a frame rotating witho; and in corresponding eigenvalues are

RWA, assumes the following form of nonlinear multiquan-
tum JC interaction

)\i:<m+g)vi,8(m), (19)

H, =nvo, + vala+e| >, F@)a o, + F;(a’r)““akcr_] ,

k=0 where B(m) is the effective Rabi frequency of the nonlinear

(14) multiquantum JC-type interaction for the respective models.
For a two-level atom

where the parameter

m !,—
ym! (m+n)!
Fi=Py— Q (15) Bm) = eX f—————, (20)
k=0 (m - k)
is a function of the LD parameters of both the fields and the
equilibrium positions of the atom, with whereas for the three-levé&tffective two-level atom
Kk 2k+n m .
_ D& {n_ﬂ' ) ~ ym! (m+n)!
e ey 2 T (19 B = e 3 RS (21)
and Since we are interested in the fluctuation dynamics around
‘o ok the Rabi oscillation we restrict our study to the initial deex-
Q.= e—é/z(— D%E) COS(”_W v ) (17)  Cited state of the atom’s electronic part. This is because the
K k! (k+n)! 2 v initial excited state adds to the fluctuations due to spontane-

ous emission. At=0 the composite state of the system may
The Hamiltonian(14) is equivalent to the Hamiltoniaf#) of be represented as

Sec. Il with f, being replaced by,.

We have thus shown that the three-level atom undergoing *
guantized motion in a harmonic trap and interacting with two |4(0)) = >, Crlm,0). (22
classical fields can be reduced to an effective two-level atom m=0
in both the LD regime as well as beyond that regime. This is ) ) o
to our knowledge, the first attempt towards the adoption offhe constantC, is determined by the initial state of the
the scheme of adiabatic elimination of a level to reduce th&ibrational motion. For the motion initially in the coherent
three-level trapped atom to the effective two-level picture instate|a),
the most general form.

2
The Hamiltonian(14) has some special properties. If one C. = a—ie _ ﬂ] (23)
of the driving fields is turned oftthe LD parameter corre- ™ ml 2 |

sponding to that field vanishethen it is straightforward to

show thatP,=Q, andF,=0, hence the coupling between the where|a/? is the average number of vibrational excitation.
atomic electronic and motional states breaks. Further, if the On expressing the initial state in terms of the eigenstates
LD parameters of both the fields are equal tigvanishes  |¢) of H, we get

033806-4



DYNAMICS OF A TRAPPED TWO-LEVEL AND THREE.. PHYSICAL REVIEW A 69, 033806(2004)

|
(mym! (m+n)!

04 Am) = el =go\(m+ (m+2)--- (m+n),
03} (27
<02} whereg,=ef” and f\” is the value off, for k=0 andnth
n vibrational level. With the above Rabi frequency the
01l population inversion of Eq(26) becomes
0.0} _ 1S 2 ]
(o=~ 52 |Crl°cog2g,tvm(m=1) ---[m— (n - 1)]}.
m=0
01 2 a6 8 10 (28
FIG. 2. S(k)=f,/m! (m+n)!/ (m=K)! vs k for the two-level atom  Forn=1, Eq.(28) simplifies to
model withn=1, £=0.1, |a|?=10, and¢y=/4 takingm=32.
1 —
L (7)== 2 |Cyf*cod2g,tVm). (29
— m=0
|¢(O)> = TEE Cm{|(/l;w—n> - |'70m—n>}- (24)
Vem=0 This expression for the atomic inversion is the same as that
The state at any later timeis then given by of the usual JC model of two-level atom interacting with
. single photon of a cavity mode.
. Forn=2, the population inversion of E¢28) reduces to
0) = S, Coe ™2 cog fm - n)t]m,g) Pop ©9
m=0 .
1 —
—i sifB(m-n)t]m-n,e)}. (25) (op=- 52 |Cml2c0g2g,tvm(m—1)]. (30

m=0
Equation(25) describes the time evolution of the state func-
tion when the atom is initially prepared in the ground stateThis result is the same as one would expect for the atomic
and the atomic c.m. motion is coherent. This equation will beinversion in the case of driven JC model or two-photon one-
used in the following sections to determine the quantum avmode JC model11-13. The only difference is that, unlike
erages of various system observables. the cavity modesin here represents the vibrational modes.
Further, in the trapped atom case the coupling paranggter
is not a constant. It is a nonlinear function of LD parameter.
Moreover, the coupling strength depends on the vibrational
The time evolution of the average population in the statdevel.
le) is governed by The time evolution of population inversion shows usual
. collapse and revival patt/ern. In order to find the revival time
3 1 5 we expand the function'm(m-1)---[m-(n—-1)] about the
(o A0) = ()] o (1)) = - EEO |Crl“cog28(m - nt]. average number of the vibrational quantog The first term
in the Taylor series expansion of the above function, i.e.,

(26) \/rrb(nb—l)---[rrb—(n—l)], leads to the usual Rabi oscilla-

In the following sections we will discuss the collapse andtion. The second term or the first-order term(im—my) will
revival pattern of atomic inversion for the model systems. determine the revivals. Thus revivals occur at times when
two oscillations are in phase, or, when the coefficient of the
term (m—-my) in the Taylor series expansion of the above
function in the argument of cosine function in E@8) sat-

V. DELAYED REVIVAL OF ATOMIC INVERSION

A. Model |

It can be noticed from Eq3) that for é<1, f, decreases isfies the relation
very rapidly as we increase the valuekofHence the contri-
bution to the Rabi frequencg(m) comes mainly fronk=0
term. As a typical example, in Fig. 2 we have plotted the
function S(k) = f/m! (m+n)!/ (m-k)! as a function ok for a
particular value ofm with ¢=0.1, |a|?=10, ¢o=m/4, and

mg! " 1 n_
g”[ \/(rm—n)!gl[rrb—(z—l)]]tf'2”'“’
n=1.

The figure shows that the maximum of the function oc-wheret] is the revival time for thenth sideband transition

(31

curs atk=0 and alsdS(k) reduces to zero within felw. The
same is true for model Il also.

Let us now consider the first ter(k=0 term) of the series
describing the Rabi frequengg(m) given in Eq.(20),

process. Thus there will be series of revivals fgr1, |,
=2, and so on.

From Eq.(31) one can easily find the revival time for the
first sideband transitiofn=1) as
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tg':277|lgilrné/2, 0.= eng, L=1,2,..., (32 B(m). Thg g'and n erendenge qf the rev.ival time comes

@ - from oscillation period3(m) which is a function of both LD
where f;” is the value offy for k=0 andn=1. Hence the parameter and vibrational level throughor F, as the case
ratio of the times for which the revival of the population may be. In fact, delayed revival for amth trap state as
(n=1) sideband transition is provided the number of vibrational quantum present in the

N n 1 mode can cause sideband transition of the trapped states.
t_n 1 Jimp—n)! D 1 (33 When¢ s large the motional states are very close together
tt & tmy V(ime-D!| S [me—-(z-D] | and absorption and emission of a photon will always cause
o some change in the motional states of the atom. On the other

In deriving the above form we have made use of ).  hand whent is small then the trap states are well spaced and
and adjusted the equilibrium position of the atom with re-many photons need be absorbed or emitted before the atom
spect to the node or the antinode of the standing wave so thghanges the vibrational level. This paper, to the best our
the phase part dfi is unity in the respective cases. Equationknowledge, is the first one to study the delayed-revival phe-
(33) shows that for a particular value gfandm, the time of  nomena in two-level and three-level atoms undergoing quan-

occurrence of the first revival increases with the increase ifym oscillations in a harmonic trap and interacting with clas-
n, the sideband index responsible for atomic transition. Alsasjcal em field.

for a particular sideband transition the ratio increases with Eqor further illustration we take the example of,=10.

the decrease ig. _ The value of the ratid?/t}, as calculated from Eq36), is
In order to examine the exact dependence of the vibra~316 and 3 foré=0.001 and¢=0.1, respectively. Thus the
tional quantum number on the revival time ratio, in the fol- first revival in the second sideband process occurs at 316 and

lowing we analyze the cases of secofmd2) and first(n  three times the first revival time for first sideband process for
=1) red-sideband transitions. The revival time for the secondhe above two cases.

sideband transitiofin=2), obtained from Eq(31), reads as

(me—1) B. Model Ii
€= 27l,g; Mo = D). (34)
(2mg-1) In Sec. Ill we have shown that three-level trapped atom

interacting with two em fields can be reduced to effective
two-level system by eliminating the second excited state. We
have also shown that except the effective coupling strength
the effective two-level atom Hamiltonigi4) is the same as

Now dividing Eq. (34) by Eq. (32) we get the ratio of the
times for which the population inversion revives first for the
second and first sideband processes. So

2 gmp-1  2Vmy-1 the two-level atom Hamiltoniar(4) presented in Sec. Il
4= = . (35 Hence, the general expression for the revival tif8&) de-
t G2me=1)  §2me-1) rived for the two-level atom case holds for the three-level
For my> 1, the ratio reduces to atom case also except the coupling consi@gnFollowing
Egs.(32) and(34) we may express the first revival time of
2 1 the atomic inversion for the first and the second sideband
i = g\_rTb (36)  transition cases as
r
Now if the right-hand side of Eq(36) is greater than . 2,
unity, i.e., the producg\my is less than unity thetf will be tr=—"" (37)
greater thart?, or the first revival in the second sideband 9

transition will occur at a later time than the first revival in the d
first sideband transition. For a particular sideband transition
process we have two controlling parameters to observe the ———
delayed revival. They ar@) the LD parameteg and(ii) the 2= 2mimy(mp - 1) (39)
average quantum number of the initial coherent vibration, ' g,2my—-1)
my=|a|?. Thus the time evolution of the inversion may ex-
hibit delayed-revival phenomena even in the LD regime ifrespectively, with
the initial number o; the vibrational quantum is bounded by
the relationmy< 1/ [ N A /7 JH B2 o

The physical reason behind tigen, and|al? dependence 9.= &Fo ale™asin g, —eTresing.] (39
of the revival time is the following. The collapse and revival gpq
is the result of the interference between different Rabi fre-
quencies corresponding to different values of vibrational , 2 _
guantum number in their distribution, which is coherent ini- 92~ &Fg =~ (e/2)[e “Ecos b, — e #22c05 ..
tially. The structure of the revivals thus depends on probabil- (40
ity distribution|C,|2 (hencela|?) of the vibrational states and
the vibrational quantum number dependent Rabi frequencY¥hus formy,> 1, the ratio of the revival times is
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ﬁ gi _ 1 e &2 sin ¢, — €€ sin ¢
tt 2g5Vmy  Vmg e‘f2 V282005 b, — € 122005 b
(41)

If we take ¢,=¢_=m/2 for n=1 and ¢,=¢_=0 for n=2,
then the ratio becomes

2
1 e ety "
t mpe 22 - g2

which is a complicated function of; and &,. For delayed
revival to occur forn=2 the right-hand side of the above

expression has to be greater than unity. Dividing the numera- 953

tor and the denominator of the right-hand side of &@) by
Eexp(—£212) we may rewrite the ratio of the two revival
times as

ﬁ 1 1- e(éf-é)/z( £1E)
t} B §+\|"T]o 1- e(ff_é)/Z(gE/gz)
1 1-*192(1 - &1E)(1 +&lE)

T o L - (1 — 1) (L + £5]E)°

(43)

As it is not very obvious from the general expression of the V,

time ratio given by Eq(43) that revivals forn=2 are de-
layed, we examine the same in some special cases.
(i) &> &, S0 &,/ & <1, Eq.(43) approximates to

!
o Emy’
which is same as Ed36), obtained for the two-level atom
model, except thaf is replaced by, = ¢;.

(i) &1=¢&,, the expression for the time ratio of E¢13)
simplifies to

(44)

2
¢ 1

tr 26y

This is again same as E(B6) with £ replaced by 2.
(i) <&, s0&/ &> 1, it can be shown that

(45)

1 1+et®
£l 1 -2’

2
tl’

e (46)

If the value of&; and &, are such that the productZ,<1
then time ratio can be further simplified to

1

—_— (47)
o &&6mg
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FIG. 3. The atomic inversiokio,) plotted as a function okt
(two-level atom in the solid curve withé=0.01, ¢pg=m/4, andet
(effective two-level atormnin the dashed curve witl§;=0.007, &
=0.003,¢,=7/4, ¢»=0, ||?=10 for (a) n=1, (b) n=2.

delayed-revival pattern as long as it is picturized as effective
two-level system whose dynamics is no different from actual
two-level atom system.

In Fig. 3 we have plotted the atomic inversion given in
Eq. (26) as a function of scaled timet (solid curve and et
(dashed curvewith Fig. 3(a) and 3b) representing the cases
of n=1 andn=2, respectively. The solid curves in both the
figures refer to the case of two-level atom wgk0.01,m
=|a|?=10, and¢,=7/4 whereas the dashed curves are plot-
ted for the effective two-level model witlg;=0.007, &
=0.003, p1=m/4, and ¢,=0. The first revival in Fig. @)
occurs atet=2808 in the solid curve andt~4683 in the

with a minus sign which could be removed by a properdashed curve. The positions are matching with those pre-
choice of the equilibrium position of the atom. For the samedicted analytically in Eqs(32) and (37). Note from the

values of¢;, &, andm, this case offers larger revival time in
n=2 process than cage and casdii).

curves of Fig. 8) that the first revival occurs akt
~88 425 (in solid curvg and t=105 642 (in dashed

We have therefore proved that under suitable values focurve). Thus the revival in Fig. @) seems to be occurring at

the parameterg;, &, and my large time-scale revivals do

much greater value oft(et) than in Fig. 3a).

occur in three-level trapped atom also. In fact the three-level The physical reason behind this delayed revival in Fig.
atom does not play any extra role in the generation of3(b) corresponding tax=2 as compared to Fig.(& corre-
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sponding ton=1 can be explained by looking into the ex-  10.0
pressions for the effective Rabi frequency apdgiven by
Egs.(20) and(3), respectively. These two equations suggest
that for the same value @fandm,

Al B 48) g6 EE

iy

98}

The revival timet, is estimated as the time when two neigh- =
boring terms in Eq(26) for m=m, and m=my+1 differ in v 9.4
phase by a factor of 2 or in other wordst, satisfies the )
relation {28(my+1)-2B(my)}t,=27. Since the product of :
B(m) andt, is constant, hence it proves that g2l

tr|n=2> tr|n=1- (49) (

In the similar way, it can be easily shown thatramcreases %9660 200 300 400 500 ,[600 700 800 900 1000
the revival timet, increases at the cost of decreased value of et(ed)

Rabi frequencyB(m). The different frequency of oscillation (a)

makes the curves in Fig.(9 look different from those of
Fig. 3a).

Moreover, it can be noticed from Figs(a3 and 3b) that
the ratio of the first revival times i$?/t'=88 425/2808
=31.4 for model I(solid curve. This is close to the value 95
predicted in Eq.(36) as for £&=0.01 andmy=10, 1/&/my
=31.6. The ratio of the revival times as observed from the
dashed curves is 105 642/4683=22.55 which is close to < 9.0 |
1/2&Vmy=22.58. The overall collapse and revival pattern of
the inversion dynamics of the effective two-level model is ;
same as the two-level atom model. 85

10.0

VI. DYNAMICS OF THE VIBRATIONAL MODE

_ _ _ 800250 500 750 1000 1250 1500 1750 2000
The time evolution of the average number of the vibra- et(er)

tional excitation is governed by (b)
_at _ t
(N®) =¢a'Ba(t)) = W(t)'a a| o) FIG. 4. The average number of motional quant{hi plotted as
> a function ofet in the solid curve withé=0.1, ¢g=m/4, andet in
= > |Cy/¥m—n sir? B(m - nt]}. the dashed curve with;=0.07, £=0.03, ¢,=7/4, ¢,=0, and
m=0 |a|>=10 for (@) n=1, (b) n=2.
(50)
) o tion processes. This is expected as the values of LD pa-
In Fig. 4 we have plotted the average excitation numbekameters chosen for plotting the respective cases of Fig. 4
(N) as a function of scaled time from E(50). Figure 48  are more by one order of magnitude than those in Fig. 3.
and 4b) refer to the cases of=1 andn=2, respectively. The = This supports our theoretical derivation of the revival time
solid curves in both Figs.(4) and 4b) are plotted for model presented in Sec. V. The estimate for the ratio of revival
| with £=0.1, my=10, and ¢y==/4 whereas the dashed times as derived in that section remains unaltered for the
curves refer to model II witmy=10, £;=0.07, £,=0.03,  time evolution of vibrational excitation.
¢$,=ml4, andp,=0. The curves show that the average exci- The qualitative difference between the curvesrferl and
tation number exhibits the similar pattern of collapse anch=2 of Fig. 4 is due to the difference in their oscillation
revival as seen in the atomic population inversion. The timerequency. Asn increases the vibrational-assisted Rabi fre-
evolution of the average vibrational quantum number and thguency decreases thereby increasing the revival time. It can
average population inversion is such that the sum of two is @lso be observed from the curves of Fig&)4nd 4b) that
constant of motion, i.e., at any time the ratiot?/t! is 3.15 for the solid curves and 2.25 for the
(N(D) + n(or(t)) = const. (51) dashed curves. These values are close to the analytical results

given in Eqgs.(36) and(47), respectively.
Also for anynth sideband transition both the variables os-
cillate with frequency B(m-n). Comparing the plots of VII. NONCLASSICAL STATES OF THE VIBRATIONAL

Figs. 3 and 4 one can easily note that the revival occurs at MODE
much earlier time in Fig. 4 than in Fig. 3 for both the first  In order to investigate the nonclassical properties of the
[the curves(a)] and secondcurves(b)] sideband transi- vibrational quantum, which plays the same role as the pho-
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tons of the cavity field in JC interaction, we examine the 25
second-order coherence function of the motional state de-

fined as[11] 20}
2
(2 — <aT 3.2> (52) Al5t
(a'a)?’ o
<10l
which in terms of normally ordered variance of the vibra- 10
tional quantum number denoted KyAN?:), with 05
(:ANZ) = (a'’a?) - (a'a)?,
0.0 | Aoz
may be rewritten as \
:AN?: 05646 20 30 40 50 60 70 80 90 100
2 =1+ < N7 >, N=a'a. (53 et(et)
(a)
The time evolution ofa’a) is given in Eq.(50). Using Eq.
3.2

(25) it is trivial to find that the time evolution otaT2a2> is
governed by
24|

(@"a% = [Cyim(m= 1) + ("’ - 2mn+n) A
m=0 MNsl
o

X sir?[ B(m—mt]}. (54) =

In Fig. 5 we present the behavior of the normally ordered V0.8t
variance(:AN?:) of motional quantum fon=1 in Fig. 5a)
andn=2 in Fig. §b), respectively. The solid curves of both
the figures represent the case of two-level atom model with
£=0.1, my=5, and ¢p==/4. The dashed curves show the
variance for the effective two-level atom model plotted with ~ -0.8 : : s : s : s . .
£,=0.08, &£=0.02, ¢,=7/4, ¢,=0, and the same value 0 50100150 200 250gt?%ort)350 400 450 500
of my. _ o (b)

From both the curves of Figs(& and %b) it is clear that
at certain times on its evolution the motional quantum iS g\ 5 The normally ordered variance of motional quantum
generated with statistical fluctuations greater than that would \N2.) vs et (solid curves with £=0.1, y=7/4, andet (dashed
be expected on the basis of Poissonian statistics, i.eeyrvg with £=0.08, £=0.02, ¢,=7/4, $,=0, |a?=5 for (@ n
(:AN%)>0. At those times the second-order coherepé =1, (b) n=2.
is greater than unity and the motional quanta are said to be

bunched. It is also observed that at some time intervals thgermits the variance to be zero upto some time after which it
motional quanta are generated with statistical fluctuationstarts deviating from coherent state. The smaller value of
less than the coherent state value, KeAN*)<0. In this  Rabi frequency fon=2 case maintains the antibunching for
situation the number distribution of motional modes is saidionger time.
to follow the sub-Poissonian statistics. This latter phenom- The bunching and antibunching phenomena of the mo-
enon is similar to the antibunching of the photons in cavitytional state are the result of the similar physical process that
QED. At those time intervals where the motional states fol-is responsible for the bunching and antibunching of the pho-
low the sub-Poissonian statistics the second-order coherenesns on interaction with two-level or three-level atoms in a
¥? is less than unity thereby implying the generation ofhigh-Q cavity. Moreover, the nonclassical behavior of the
nonclassical states of the motional states. vibrational excitation exhibited in Fig. 5 is similar to those
Note that the time duration for which the variance is nega-exhibited by the average photon numbers of the two modes
tive is more inn=2 [Fig. §b)] than inn=1 [Fig. Ya)] case. of the cavity field(Raman coupled with three-level atpims
The physical reason behind this generation of longer antireported in Ref[11]. The time behavior of the variance in
bunched statedy'? <1) for n=2 process tham=1 is the  the photon number of the first mode of the cavity field of that
following. Once the atom emits one vibrational quantum thereference plotted for finite number of photons initially ap-
second quantum cannot be emitted by the same atom unidears to be same as the time evolution of the normally or-
the atom is reexcited to its upper electronic state by the abdered variance of the vibrational excitation shown in Fig.
sorption of a motional quantum from the motional mode.5(a) referring ton=1. Further, the variance in the photon
This is done in a time determined by the vibrational-assistethumber of the second mode, with zero average number of
Rabi frequency. The greater Rabi frequencyrsfl case photons initially, is similar to the normal order fluctuation of
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the motional excitation plotted in Fig.(®) referring ton 1.12 —
=2 case.
110}
VIIl. SQUEEZED MOTIONAL STATES 1.08¢
Following Ref.[6] we consider the quadrature operator NQ»LOG -
. . <
x,=ad’+a'e’?, (55) 104

so that the position and the momentum of the atom’s c.m.is 4 55|
directly proportional tox, and x_,,, respectively. Accord-

ingly the variance$Axy)? and (Ax,,)? give the measure of 1.00
the quantum noise associated with the atomic position and
momentum. Those variances are related to the averages of 0.98
the quadratic combinations of the creation and annihilation
operators of the vibrational motion by the following rela-

tions: (a)

(Axp)?=[1+2 Rda? + 2(a'a) - {Re@)}?],  (56) 1.25

0 10 20 30 40 50 t60 70 80 90 100
€

(AX,2)?=[1 -2 Rda? + 2(a'a) - 4Im(a)}’]. (57) 120}

The uncertainties in the observabbesandx,,, are con-

iy
-
wn

strained by Heisenberg uncertainty relation ‘i?
<
(AX0)A(AX,0)* = 1. (58) 110+
A coherent state of motion is the one for which the uncer- 105

tainty product is minimum and the two quadratures have
equal variance(Axg)?=(Ax,»)?>=1. A quadrature compo-
nent is said to be squeezed if the value of its variance is less
than the value it has in the coherent state.

1.00

Assuming the vibrational motion to be initially in the co- 99,5555 35 35 .25 380 35 40
herent state we study the variances in the position and the et
momentum(Axy)? and (Ax,,)? as a function of dimension- (b)

less timeet for the atom initially in its ground state. The

initial ground state does not contribute to the fluctuation due FiG. 6. The variance in momentufx,,)? (solid) and position

to spontaneous emission, hence it offers early onset to th@x,)? (dashegl vs et for (a) £=0.005, (b) £=0.2 with v=10e,
guadrature squeezing. It is found that at certain time interval&|?=8.

either (Ax,)? or (Ax,,,)? is less than 1, which is their corre-

sponding coherent-state value. At those time intervals the Theé¢ dependence on the generation of the squeezed states
position or the momentum exhibits squeezing. We find ouis very normal, as for small LD parameter the spatial exten-
numerically those time intervals where the position or thesion of the motional wave packet of the trapped atom is
momentum of the c.m. of the atom is squeezed. In Figw. 6 small compared with the wavelength of the driving laser.
and &b) we have illustrated the way to achieve the squeezingVhen the atom is weakly localized @ris large then the

at earlier time by increasing the LD parameter. We consideinterference of the atomic matter wave with the irradiating
the situation of the standing wave in the two-level atomlaser field leads to the nonlinear modification of the dynam-
model, when the center of mass of the atom coincides witlics of the laser driven atom. When the spatial extension
the center of the trap, i.e¢,=0. The figures show the time reaches a size of the order of magnitude of the laser wave-
evolution of the variances ixy andx,,, for first red-sideband length then the atom-field interaction breaks down to the
transition with »=10¢, my=8. The solid and the dashed destructive interference between the motional wave and the
curves of Fig. 6a) correspond tdAx,,,)? and(Axy)?, respec- laser wave. The squeezed states of the atomic motion are the
tively, for £=0.005. Figure @) represents the same but for outcome of such nonlinear effect.

£=0.2. It can be easily seen that the squeezing in momentum To show how exactly the LD parameter changes the gen-
or position occurs at earlier times in Figh$ as compared to ~ eration of the squeezed state we plot in Fig. 7 the minimum
that in Fig. §a). So there is a decrease in the minimum timetime for which(Axo)? is less than 1 as a function éffor the

of occurrence of the squeezed states as we go for large reame value of and|a|? as used for Fig. 6. It is interesting to
coiling of the atom as compared to the wavelength of thenote that as the value @ increases the corresponding time
interacting field. If the recoil of the atom is considered to be(et),, does not decrease steadily rather it falls stepwise with
much smaller than the wavelength of the interacting laser plateau at some very smdlldomain. Though the overall
then the onset of the system to squeezing will be delayed. behavior seems to be close to the functief/£yVm,, which
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75

T/sar (B07%) Oy =T €W, oo =T, &P,

60 ‘ 1 Oge=Ogr " Ore = Bge eermt= a'gee_iwot, (A3)
With 0e=0g, - Ore. Sub_stituting Eq(A3) in Egs. (A1) and
(A2) we get the equations of motion for the new variables as
".}gr == i[A'b"gr + 6l(o'gg = oy)sin(kR+ (bl)eiqvt
+ €,0ge SIN(KR + ) P] (A4)

and

0 . n : : a're = i[A'&re + ela'ge sin(k;R + ¢1)e_qut - &0y
0.005 0.044 0.083 & 0.122 0.161 0.200

- 0edSiN(kR+ by)eP™]. (A5)

FIG. 7. The minimum time et) i for which (Axg)?< 1 vs & for For large detuningA > v) the approximate solutions of Eqs.

v=10¢, |a*=8. (A4) and (A5) are found to be
is plotted as a function of in the dashed curve of Fig. 7, but T = = — (00— 0,)SIN(KGR + by) €I
the reason behind the stepwise fall is not very clear. ¢ +A 9%
€ ) s
+ —=—0ye SIN(KR + py)e P, A6
IX. CONCLUSION pr— A% (R + &) (A6)
We have studied the dynamics of the two-level and three- e
level atom in a harmonic trap paying special attention to the Tre=— —1(~Tge sin(kR + ¢;)e 9"
observation of the large time-scale revivals termed as de- v+A
layed revivals. We conclude that as the sideband index re- €

sponsible for atomic transition increases the revival in the - (01 = TedSIN(GR+ )P, (A7)

system observables occur at longer times. Also we have pr-4
shown that the LD parameter and average number of initialhe terms diagonal in atomic variableg, i=g,e,r, lead to
vibrational excitation are the two parameters that largely instark shifts which we shall assume to be negligibly small. By

fluence the existence of delayed revival. It is shown that thejropping these terms from EqgA6) and (A7) we get the
time duration for which the motional quantum is antibunchedsimplified solutions

is more for second sideband transition process than the first
sideband transition process. The minimum time for which
the early onset to the quadrature squeezing occurs is shown
to be decreasing with the increase in the LD parameter.

~ € . o
Ogr = pv—EAUge sin(k,R+ ¢,)e P™

~- %age sinkoR + e, (A8)
APPENDIX
In this appendix we derive the effective two-level Hamil- ~ __ €& . (KR + p)eriant
tonian[Eq. (8)] for the present three-level atom ik con- Ore = —qv+ A Toe sin(k;R+ ;)€
figuration by adiabatic removal of the excited state.
The Heisenberg equations of motion for the atomic tran- ~— e_lage sin(k,R+ ¢py)e i, (A9)

sition operatorsoy, and o, corresponding to the Hamil-

tonian(7) are Using Eq.(A3) we find the solutions of the original variables

_ as
Ogr="— |[(Er - Eg)Ugr + el(o'gg_ Urr)Sin(klR+ 92’7l)e_|w1t
+ €,04SIN(kR + )], (A1) Ogr=— %age sin(k,R + ¢py)e P!t grient griant
; €. —invt ol wqt Qo
0= IL(E; ~ Eaye + €10geSIN(yR + ¢by) 1! == fsm(sz+ Br)oge € Me et
= &0y = oedSIN(KR + ¢2)eiw2t]- (A2) & . )
=7 e sin(k,R+ ¢hp)e 2t (A10)

Here we mtrpducg the slowly varying operaters, oy, 0ge
for the atomic variables as and
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_ t - t
0o = — %age sin(k,R+ ¢py)eert. (A11) kR=£(@+a), kR=g@+a), (AL5)
where
With the above expression&gs. (A10) and (A11)] for the
atomic operators the Hamiltonidid) reduces to 1 +
R= (a+a') (A16)
26162 \ZM 4

H=Eyo4g+ E;0y + EcOeet vala-
is the position operator of the c.m. of the vibrating atom of

X (o_€“t+ o e M) sin(k,R + ¢bp)SIN(KR + ¢by) massM.
(AL12) Using Eq.(A15) we can express the “sine” products ap-
pearing in Eq(Al4) as
where we have introduced the effective atomic raising and
the lowering operators, = geq and o= oy between the lev- sin(k;R+ ¢1)sin(k;R+ ¢,)

els |g) and |e). Since the leve|r) is assumed to be far-off

> ass _ = - Ljgéaraldd, 4 gritaralgrio, _ dé(ara)
resonance we can set the occupation in that level to zero, i.e., 4

o, =0. Also defining the atomic inversion operatey as xe4- - —i§7(a+af)e—i¢f], (A17)
20,= 0ge= Oy (A13) with
and shifting the zero of the energy scale(B{+E,)/2 the
Hamiltonian(A12) assumes the form &=61t 8, Pr=dit . (A18)
H = woo, + va'a - 2¢,(o_€“t + oe7'!Y) On using Eq(A17) the Hamiltonian(A14) may be rewritten
Xsin(kR+ ¢y)sSin(kR + ), (A14) 8

wheree, = €, 6,/ A refers to the effective coupling constant for
the two-level representation of the three-level model system.
Recall that there was no direct coupling between the two ) o ) . , .
levels|g) and |e) originally and hence the dipole transition + g 16(@r) gridy _ JE(@ra)) g  grit(@ra)gridoy,
between them was forbidden. The application of the laser has (A19)
made the coupling in such a way that it induces the transition
|g) —|e). These are the two levels between which the popuin the interaction picture or in a frame rotating with fre-
lation transfer takes place. We have thus derived the effectivguencyw, the Hamiltonian(A19) reduces to
two-level Hamiltonian for the trapped three-level atom un-
dergoing quantized motion.
Now, the wave vectors of the laser beakysand k, are
related with their corresponding LD parametéfsand &, in
the following manner: - déara) do _ grie @i, 4o

€, . _ . + .
H = wyo,+ va'a+ Er(a'_e""'t + g, e ot {gé@ra) gy

H, = nwo, + va'a+ %{ewf’”af) g +gribaral) grid
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