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The spontaneous spin polarization and bifurcation delay in two-component Bose-Einstein condensates
coupled with laser or/and radio-frequency pulses are investigated. We find that the bifurcation and the spon-
taneous spin polarization are determined by both physical parameters and relative phase between two conden-
sates. Through bifurcations, the system enters into the spontaneous spin polarization regime from the Rabi
regime. We also find that bifurcation delay appears when the parameter is swept through a static bifurcation
point. This bifurcation delay is responsible for metastability leading to hysteresis.
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I. INTRODUCTION

Electronic and nuclear-spin polarization in an atomic va-
por with optical pumping have been investigated extensively
[1]. Under conditions in which electronic spin exchange
takes place faster than spin relaxation, spontaneous spin po-
larization appears. This interesting phenomenon is very simi-
lar to ferromagnetism and has been observed in wide ranges
of atomic intensity, pump laser frequency, and intensity. The
appearance of spontaneous spin polarization means that the
atomic vapor has two stable states with large spin polariza-
tion. The experimental realization of it has been applied to
the field of optical bistability[2]. The atomic spin polariza-
tion exhibits striking hysteresis in switching between the
bistable states[1]. This is analogous to ferromagnetic sys-
tems displaying magnetic hysteresis[3].

With more and more deeply exploring the mechanism of
the spontaneous spin polarization phenomena in thermal
atomic gases, the question arises whether the spontaneous
spin polarization in ultracold atomic gases is the same as the
one in thermal gases. Recently, the experimental realization
of multicomponent Bose-Einstein condensates(BECs) [4,5]
in different hyperfine levels causes our interest in consider-
ing the similar behavior of the ultracold atomic gases. There
are many distinguishable differences between thermal atomic
gases and cold ones. The first one is that the collision among
thermal atomic gases is noncoherent. However, when the
temperature is close to the critical temperature for realizing a
BEC sT,TBECd or below it, the collision among ultracold
atomic gases is coherent due to the path between such colli-
sion being smaller than the phase coherence length[7,8].

Can this coherence property play an important role in the
polarization process of ultracold atoms? Another distinct dif-
ference is that the interaction strength of cold atoms can be
controlled easily[7,9]. But the interaction strength in the
thermal case is very difficult to control.

In this paper, we shall show how the coherence among
ultracold atoms gives rise to the phase-dependent spontane-
ous spin polarization and bifurcation, which depend both on
the physical parameters and on the relative phase. In the
following section, using the variational approach, we gain
the model from the mean-field description of laser coupled
BECs in different hyperfine levels of the same kind of atoms.
Then, based upon the obtained model, we analyze the param-
eter dependence and the phase dependence of the spontane-
ous spin polarization from the points of bifurcation. We si-
multaneously find that bifurcation delay, which is relative to
bistability/metastability, appears when related parameters
slowly sweep through static bifurcation points. Lastly, we
take a brief look at experimental possibilities. In the third
section, we summarize and discuss the obtained results.

II. PHASE-DEPENDENT SPONTANEOUS SPIN
POLARIZATION AND BIFURCATION DELAY

We consider that the same kind of bosonic atoms, which
are trapped in a single-well potential are condensed in two
different hyperfine levelsu1l and u2l. Raman transitions or
two-photon transitions between two hyperfine states are in-
duced by the laser fields with the effective Rabi frequencyV
and a finite detuningd. The internal Josephson effect
[4,5,10–14], coherent coupling effects[15], vortices [16],
and spin textures[17] in such systems have stimulated great
interest. In the rotating frame of coupling fields, dropping the
high-frequency terms in the atom-field interaction(that is
making the rotating-wave approximation) and neglecting

*Email address: chlee@mpipks-dresden.mpg.de and
chleecn@hotmail.com

PHYSICAL REVIEW A 69, 033611(2004)

1050-2947/2004/69(3)/033611(6)/$22.50 ©2004 The American Physical Society69 033611-1



damping and finite-temperature effects, this coupled two-
component BEC system can be described by a pair of
coupled Gross-Pitaevskii equations(GPEs) [11,15,16],
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Here, the free evolution HamiltoniansHi
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frequency,vx, vy, andvz are the trapping frequencies), the
macroscopic wave functions can be written in form of the
variational ansatzCisrY ,td=cistdFisrY d si =1,2d with ampli-
tudes cistd=ÎNistdeiaistd and spatial distributionsFisrY d. In
this ansatz, the complex functioncistd contains all time de-
pendence in the macroscopic wave functionCisrY ,td and does
not depend on the spatial coordinates. The symbolsNistd and
aistd are the atomic population and phase of theith compo-
nent, respectively. Because the coupling is very weak, the
spatial distributions vary slowly in time and are very close to
the adiabatic solutions to the time-independent uncoupled
case for GPEs(1), being slaved by the populations[11].
Thus, the amplitudes obey the coupled nonlinear dynamical
equations
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The terms inK describe the internal tunneling between two
BEC states, whereas the terms inUij , which depend on the
numbers of atoms in each BEC state, describe the mean-field

interaction between atoms. WhenU21 and d equal zero,
these coupled equations can also describe a BEC in a
double-well potential or a nonlinear dimerf18g. We intro-
duce a Bloch spin vector with the following components
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Obviously, u2+v2+w2=1. When the total atomic number
NT=N1+N2=c1
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constant"=1, the Bloch spin components satisfy
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In the above Bloch equation, the parameters satisfyg=E2
0

−E1
0+NTsU22−U11d /2−d and G=NTsU22+U11−2U12d /2.

Comparing the above equation with the one for the linear
casesUij =0d of Eq. s2d, one can find that the mean-field
interaction induces a shiftGw in the transition frequency
and this shift is apparently proportional to the relative
populationw.

Taking u1l as spin-up state andu2l as spin-down state, the
above two-component BECs system can be regarded as an
ensemble of quantum spin-1/2 particles. Thus, the longitu-
dinal componentw of the pseudospin describes the relative
population, and the transverse componentsu and v charac-
terize the coherence. In this language, the effective Rabi fre-
quency causes an effective transverse magnetic fieldK along
the u axis, the effective detuning induces an effective longi-
tudinal magnetic fieldg, and the mean-field interaction
brings an effective longitudinal magnetic fieldGw which de-
pends on the longitudinal spin component. If one introduces

a spinSY =su,v ,wd to describe the coupled BECs, the corre-
sponding equation of motion depicting the evolution can be
written as

dSY

dt
= − SY 3 BY ef f, s5d

where the effective magnetic fieldBY ef f=s−K ,0 ,−g−Gwd.
From the definition of the Bloch spin components, we

know that the above system can be described with only two
independent variables. If we use the longitudinal spin com-
ponentw and the relative phasef=a2−a1 as independent
variables, rescaling the timeKt to t, the equations of motion

dw/dt = − Î1 − w2 sin f,
s6d

df/dt = − g/K − sG/Kdw + w cosf/Î1 − w2

are equivalent to the Bloch equation. The above equations
are consistent with those derived from the second quantized
model of Ref.[10]. The form of the equation of motion(6) is
similar to the one for the condensates in a double-well po-
tential coupled with tunneling[18]. However, due to the dif-
ference between the original model, the physical meaning of
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the parameters is very different. For condensates in a double-
well potential, the two condensates are well spatially sepa-
rated, thus the mean-field interaction between two conden-
sates can be ignored; but for the case of coupled two
hyperfine-level condensates, the intercondensate mean-field
interaction plays a very important role due to their significant
overlap. One distinct result induced by this difference is the
sign of the parameterG. For the case of condensates in a
double-well potential, the sign is just determined by the sign
of the scattering length; but for the other case, the sign is
determined by the balance between the internal condensate
and intercondensate mean-field interactions.

A. Phase-dependent spontaneous spin polarization

Before analyzing the spontaneous spin polarization in a
coupled two-component BEC, we give a brief review of the
spontaneous spin polarization in a thermal gas and the spon-
taneous magnetization which is very similar to the spontane-
ous spin polarization[1,3].

Usually, for a laser pumped thermal gas, if the spin ex-
change takes place faster than the spin relaxation and the
coupling laser only excites some certain hyperfine levels of
the ground state, spontaneous spin polarization occurs when
the laser intensity is large enough. This bistable phenomenon
involves three basic processes: laser pumping, spin ex-
change, and spin relaxation. The imbalance of transition
probabilities among different hyperfine states induced by the
pumping laser will amplify the spin polarization. The spin
exchange will keep the transition imbalance and does not
destroy the spin polarization. However, the spin relaxation
will decrease the spin polarization. In the case when the rates
of spin exchange and laser pumping are larger than some
certain threshold values, the thermal gas supports two meta-
stable incompletely polarized states. This means the balance
between spin relaxation and cooperation of laser pumping
and spin exchange.

From the viewpoints of bistability, spontaneous spin po-
larization is similar to spontaneous magnetization. For a fer-
romagnetic system, if its temperature is below the Curie tem-
perature, slowly changing the magnetic field from negative
to positive, a first order phase transition occurs when the
magnetic field sweeps through the zero point. At the zero-
field point, two metastable states with different spontaneous
magnetization directions appear. The appearing state depends
on the initial magnetization. Increasing the temperature
above the Curie temperature, the spontaneous magnetization
disappears, this corresponds to occurrence of a second-order
phase transition.

Under some certain conditions, both spontaneous spin po-
larization in a thermal gas and spontaneous magnetization in
a ferromagnetic system support bistability, and they just only
depend on the related parameters. In the following, we find a
character of the spontaneous spin polarization in laser
coupled two-component BECs: phase dependence. That is,
the spontaneous spin polarization in coupled two-component
BECs depends not only on the related parameters but also on
the relative phase between two condensates.

Now, let us analyze the spontaneous spin polarization in a
coupled two-component BEC. It is well known, for a

bounded dynamical system, that the stable behavior usually
involves oscillations around some stationary states. This in-
dicates, the nonzero time-averaged value of a physical vari-
able in a stable evolution requires that the system possesses
at least a stationary state with nonzero value for this variable.
Thus if multiple stationary states coexist with nonzero spin
polarization w appearing in the coupled two-component
BEC, spontaneous spin polarization will appear. This means,
one can explore the behavior of spontaneous spin polariza-
tion by analyzing the corresponding stationary states. The
stationary states can be obtained from the stable fixed points
of the system which correspond to those solutions satisfying
dw/dt=0 anddf /dt=0. In the regionf0,2pd of the relative
phase, we find two different modes of stationary states exist-
ing in the system: one is the equal-phase mode with zero
relative phasesf=0d, the other one is the antiphase mode
with p relative phasesf=pd. Small oscillations around
those stationary states with nonzero spin polarization are
special kinds of macroscopic quantum self-trapping(MQST)
states, which have also been found in condensates trapped in
a double-well potential[18]. The general definition of MQST
sates requires that the states oscillate arounddw/dt=0, thus
running-phase MQST states can appear. However, for the
small oscillations around stationary states, the centers of os-
cillations are stationary states which satisfy bothdw/dt=0
anddf /dt=0, thus running-phase MQST states never appear
as long-lived oscillations in the particular system under
study. From the point of view of stability, running-phase
MQST states are unstable, but all small oscillations around
stationary states are stable.

The number of fixed points and stationary states depend
on the ratiosg /K, G/K, and the relative phase. For the
equal-phase mode, only one fixed point exists whenG/K
ø1 and this fixed point is stable. WhenG/K.1, there are
two stable fixed points and an unstable one forsG/Kd2/3

−sg /Kd2/3.1 and only one stable fixed point forsG/Kd2/3

−sg /Kd2/3,1. Saddle-node bifurcations occur at the points
satisfying sG/Kd2/3−sg /Kd2/3=1. In the left column of Fig.
1, we show the values for the longitudinal component of the
fixed points in the equal-phase mode with different ratios
g /K and G/K. For the antiphase mode, the parametric de-
pendence of fixed points and stationary states is very differ-
ent. WhenG/Kù−1, only one fixed point appears and it is
stable. WhenG/K,−1, two stable fixed points and an un-
stable one exist forsG/Kd2/3−sg /Kd2/3.1 and only one

FIG. 1. The fixed points for the system with different ratiosg /K
andG/K. The numbers labeled on the lines are values forG/K.
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stable fixed point emerges forsG/Kd2/3−sg /Kd2/3,1.
Saddle-node bifurcations also occur at the points satisfying
sG/Kd2/3−sg /Kd2/3=1. The fixed points of the antiphase
mode with different ratiosg /K andG/K are exhibited in the
right column of Fig. 1.

In Fig. 1, the fixed points between a pair of bifurcation
points with same ratioG/K are unstable and the values for
dsg /Kd /dw at the bifurcation points equal zero. From the
previous analysis, we find bistability exists in either the
equal-phase mode or the antiphase mode when the param-
eters obeysG/Kd2/3−sg /Kd2/3.1. The appearance of bista-
bility indicates the existence of spontaneous spin polarization
in this coupled two-component BEC system. When
uK /Gu,1 and g /K goes through the bifurcation points,
which satisfysG/Kd2/3−sg /Kd2/3=1, the spin polarization of
either the equal-phase mode or the antiphase mode is discon-
tinuous at the bifurcation points. This transition of the spin
polarization is reminiscent of a first-order phase transition. It
resembles the first-order phase transition of spontaneous
magnetization in a ferromagnetic system below the Curie
temperature that takes place when the direction of the mag-
netic field is varied. The difference is that spontaneous mag-
netization only occurs at the zero field point, however, spon-
taneous spin polarization occurs in the region between a pair
of bifurcation points. IncreasinguK /Gu to 1, the spontaneous
spin polarization vanishes, which corresponds to a second-
order phase transition of the spin polarization. In a similar
way spontaneous magnetization disappears in a ferromag-
netic system when the temperature is increased to the Curie
temperature. Thus, the ratioK /G corresponds to the tempera-
ture in a ferromagnetic system anduK /Gu=1 takes the role of
Curie temperature.

Similar to the case of thermal atoms, spontaneous spin
polarization can be induced by adjusting the coupling lasers.
Additionally, because the collisions among ultracold atoms
can be controlled easily, spontaneous spin polarization in
Bose condensed atoms can also be induced by adjusting the
collision strength through bifurcation. This seems to adjust
the temperature of a ferromagnetic system. Tuning the cou-
pling laser with fixed intensity to a certain detuning satisfy-
ing g=0, the bifurcation and the spontaneous spin polariza-
tion caused by the ultracold collisions can be obtained. For
the equal-phase mode, only one stable fixed pointw=0 exists
if G/K,1 and two new stable fixed pointsw±
= ±Î1−sG/Kd−2 appear with the original onew=0 becomes
unstable ifG/K.1. This means a Hopf bifurcation takes
place whenG/K=1. The system goes from the Rabi regime
sG/K,1d into the spontaneous spin polarization regime
sG/K.1d through this Hopf bifurcation. However, for the
antiphase mode, the Hopf bifurcation occurs atG/K=−1.
There is only one stable fixed pointw=0 for G/K.−1 and
two stable fixed pointsw±= ±Î1−sG/Kd−2 with an unstable
one atw=0 for G/K,−1. Correspondingly, the parametric
regime sustaining spontaneous spin polarization satisfies
G/K,−1. The Hopf bifurcations in both equal-phase mode
and antiphase mode are shown in Fig. 2. The solid lines are
stable equilibria(stationary states), the dot lines are unstable
equilibria.

B. Phase-dependent bifurcation delay

The bifurcations obtained by analyzing the equilibria with
fixed parameters are static bifurcations. For a real physical
system, some parameters can be accurately tuned by turning
knobs of the experimental apparatus. When the parameters
are swept through a static bifurcation point, an interesting
phenomenon emerges: the system starting close to the ini-
tially stable equilibrium does not immediately react to the
bifurcation. Furthermore, it remains for some time close to
the unstable equilibrium, then quickly falls into one of the
newly formed stable equilibria. This has been named bifur-
cation delay which has been found in a variety of physical
systems[19]. The bifurcation delay, which might lead to hys-
teresis, is the response to bistability.

Slowly varying some parameters, the coupled two-
component BEC system also exhibits the phenomenon of
bifurcation delay. For the equal-phase mode with fixed effec-
tive detuningg=0, slowly sweeping up the ratioG/K from
R0 with sweeping rater (i.e., G/K=R0+rt ,1@ r .0), choos-
ing R0,1 and the initial state close to the stable equilibrium,
the system evolves along the unstable equilibrium for a pe-
riod of time after the ratio sweeps through the static bifurca-
tion point sG/K=1d, then it quickly goes into a small oscil-
lation around one of two new stable equilibria. The
equilibrium, which the system evolves around finally, is de-
termined by the state at the static bifurcation point. The sys-
tem evolves around the up branch when this state is close to
the up branch; otherwise, the system evolves around the
down branch. WhenR0.1, slowly sweeping down the ratio
through the static bifurcation point with initial state close to
one of two stable equilibria, the system evolves near the
stable equilibrium before it sweeps through the static bifur-
cation point, then it goes into a small Rabi oscillation around
the ordinary equilibriumsw=0d. For the same sweeping rate,
averaging the small oscillations, the process of sweeping up
and down generates a loop in the plane extended byG/K and
w. The area enclosed in the loop increases with the sweeping
rate. This means that the energy exchanged between the at-
oms and the environments increases with the sweeping rate.
The bifurcation delay in the equal-phase mode with different
sweeping rate is shown in Fig. 3. For the antiphase mode, a
similar behavior can be observed near the static bifurcation
point G/K=−1.

C. Experimental possibilities

Based upon the works of JILA[5]and LENS[6], we now
discuss experimental possibilities of observing spontaneous

FIG. 2. The static Hopf bifurcation and the spontaneous spin
polarization.
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spin polarization and bifurcation delay predicted above. Us-
ing the developed experimental technique[5,6], one can pre-
pare two BECs in theuF=1,mF=−1l and u2,1l hyperfine
spin states of87Rb which are coupled by introducing a two-
photon pulse with the two-photon Rabi frequencyV and a
finite detuningd. In the case of pure condensates, which has
been analyzed in this work, controlling the parametersK and
g can be realized by adjusting Rabi frequency and detuning
of the coupling lasers, respectively. Tuning the parameterG
can be accomplished by varying the scattering lengths with
Feshbach resonances[9]. The time-evolution of longitudinal
and transverse spin components can be measured with the
state-selective absorption imaging and Ramsey interference,
respectively[17].

Thus, to observe spontaneous spin polarization, one just
needs to choose proper fixed values for the Rabi frequency
V, detuning d, and scattering lengths satisfyingsG/Kd2/3

−sg /Kd2/3.1. To observe bifurcation delay, one has to fix
the Rabi frequencyV and detuningd and slowly vary the
scattering lengths(or fix the scattering lengths and detuning
and slowly tune the Rabi frequency) through a static bifur-
cation point. There are two ways to observe these behaviors,
one way is by directly observing the stationary states, the
other way is by observing small oscillations around station-
ary states. Observing stationary state behavior may not be
easy, because the relaxation time of a pure condensate is
much longer than that of a thermal gas and the time scale of
this relaxation process, which is relevant to real experimental
systems including finite temperature thermal clouds, is still
an open problem. Fortunately, because the averaged center of
small oscillations is very close to the surrounded stationary
state, the averaged center becomes a good understudy.

III. SUMMARY AND DISCUSSION

Summary, due to the coherent ultracold collision among
condensed bosonic atoms, the bifurcation and the spontane-
ous spin polarization in coupled two-component BECs rely
on both relative phase and physical parameters. These phe-
nomena are different from those only determined by physical
parameters, we name them as phase-dependent bifurcation
and phase-dependent spontaneous spin polarization, respec-

tively. For zero effective detuningg, Hopf bifurcation and
bifurcation delay can be induced by a Feshbach resonance in
either the equal-phase mode or the antiphase mode. The sys-
tem falls into the spontaneous spin polarization regime from
the Rabi regime after a bifurcation occurs. The appearance of
bifurcation delay indicates the existence of metastability and
hysteresis. Because of the inherent quantum coherence and
superposition of two condensates, this kind of quantum
metastability and hysteresis might open the door to storage
quantum data with Bose condensed atoms[20].

In this paper, we have focused on the phenomena in the
case of constant parameters. Now, we give a brief discussion
about the effects of the implicit time dependence of the pa-
rameters. In the weak coupling case, the spatial functions
FisrYd weakly depend on the population difference. Thus
these functions weakly rely on time implicitly when the
population difference varies with time. The numerical results
in Ref. [11] show that the overlap between two condensates
keeps nearly unchanged and the chemical potential differ-
ence is approximately a linear function of the population
difference when populations are varied. This indicates that
the parameters slowly fluctuate around some certain con-
stants with very small amplitudes when the population oscil-
lates. Thus the real population oscillation slightly departs
from the one with constant parameters.

We also note that bistability and antiphase mode are rela-
tive to population self-trapping states andp states in a
double-well Bose condensates or a nonlinear dimer[18]. The
appearance of bistability means the existence of metastable
self-trapping states. But not all self-trapping states exhibit
bistability, such as running-phase self-trapping states. Addi-
tionally, there exist distinct differences in physical models,
analysis methods and discussed phenomena. For the physical
models, two condensates in a double-well potential are well
spatially separated, thus mean-field interaction between two
condensates is negligible. However, mean-field interaction
between two hyperfine-state condensates plays an important
role due to their significant overlap. For the analysis meth-
ods, the authors of Ref.[18] solve the equations of motion
for some certain initial conditions with a numerical approach
or analyze stationary states of symmetric case. In this paper,
from the viewpoints of bifurcation, we exactly analyze not
only the fixed points themselves but also their stability for
arbitrary parameters. For the discussed phenomena, the
works in Ref. [18] are applied to population self-trapping
and macroscopic quantum tunnelling, our work firstly ex-
plores the spontaneous spin polarization and bifurcation de-
lay in laser pumped Bose condensed dilute atomic gases.
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