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Spin textures in slowly rotating Bose-Einstein condensates
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Slowly rotating spin-1 Bose-Einstein condensates are studied through a variational approach based upon
lowest Landau level calculus. The author finds that in a gas with ferromagnetic interactions, stiBtb,as
angular momentum is predominantly carried by clusters of two different types of skyrmion textures in the
spin-vector order parameter. Conversely, in a gas with antiferromagnetic interactions, siibla,aangular
momentum is carried by disclinations in the nematic order parameter which arises from spin fluctuations. For
experimentally relevant parameters, the cores of thesésclinations are ferromagnetic, and can be imaged
with polarized light.
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One of the most remarkable features of recent experismall compared tédw, wheretfi is Planck’s constant, andl is
ments on quantum degenerate alkali-metal atoms has bedéme frequency of the harmonic trap which confines the gas.
the observation of quantized vortices in rotating Bose conOur qualitative predictions, especially those based upon
densates o$pin polarized®’Rb and?*Na[1]. These vortices symmetry arguments, can be applied to denser systems. Ad-
are a consequence of the irrotational nature of the superfluiditionally, we restrict ourselves to the slowly rotating limit
flow in a scalar condensatgi.e., one without any spin de- where the angular momentum per particle is on the order of
grees of freedom If these same experiments were conductec® few?. In this limit, the angular momentum is carried by a
in the absence of a magnetic field, the velocity of thes¢small number of “elementary” textures, each of which is
spin-1 atoms would no longer be constrained to be irrota&nalogous to a single vortex. We reserve the discussion of
tional; however, the curl of the velocity field would be fixed faster rotation speeds, where a regular lattice of these tex-
by spatial variations in the direction of the atomic spjas  tures are found, to a future paper. _ o
The vortices would therefore be replaced by intricate spin _This paper is organized into the following topia$) a
textures. Here we predict the detailed spin patterns whiclRrief introductory example which illustrates the typical struc-
will be found in such a rotating gas of spin-1 bosons. ture of spin textures(n).a review of the Hamlltonla_p and

Our first understanding of these structures came from H&rder parameter of a spin-1 gas of neutral Bose ateiifsa
[3] and Machida and Ohnf#], who independently proposed description qf our main theoretical approadhr) results; and
that spin textures replace vortices in spinor gases. SubséY) broader implications.
quently several other authors investigated the detailed struc- | INTRODUCTION
ture of these textures in both the slowly rotatij and fast
rotating limits [6]. The present work differs from these pre-  In this section we discuss the two-component Bose gas in
vious calculations in two vital waysi) it makes use of very order to develop intuitive understanding of how internal de-
simple variational wave functions from which the essentialgrees of freedom affect a rotating condensate. Later we will
physics can be easily extracted, afiid it emphasizes the apply this intuition to the spin-1 gas. In addition to simplic-
rotational properties of the local order parametehich has  ity, the two-component gas has the advantage of extensive
both a vector and a nematic componeffthe advantage of €xperimental investigations. As a concrete example one can
this approach, which explicitly considers the order parametegonsider two hyperfine states #Rb in a magnetic trap, as
symmetry, is that it provides a scheme for classifying theproduced at JILA[8]. The order parameter here is a two-
spin textures, illustrates their structure, and most importantlycomponent single-particle wave functidn= (o, 1), where
suggests a means for experimentally detecting them. ¥ and ¢, are the macroscopically occupied spatial wave

Although lacking our emphasis on symmetry argumentsfunction of each of the hyperfine states. Using a phase-
similar theoretical techniques have recently appeared in atnprinting technique, the experimentalists are able to place
excellent preprint by Reijnderst al. [7]. That preprint sur- One componenty; into a vortex state, while leaving in
veys the properties of rotating spin-1 bosons for all possibléhe ground state of the trgp]. As a simple variational cal-
parameters. As such, it is complementary to the more foculation showg10], this unusual “half-vortex” state is actu-
cused study that we present. ally the ground state of the system for some rotation speed,

Throughout this paper, we work within the mean-field and in the limit of weak interactions in two dimensions can
lowest Landau-level approximation. This variational ap-be written as

proach, detailed in Sec. lll, is quantitatively accurate when o 1 -
the gas is so dilute that the interaction energy per particle is v = (lﬁ ) = (z/d) WRELE (1
1
where z=x+iy is the coordinate in the plane, and
*Electronic address: em256@cornell.edu =\Jh/mw is the oscillator length, formed from Planck’s
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[14] recently created the spin-1 and spin-2 analogy of this
texture. Similar structures have been seen in rotating super-
fluid *He-A [15] and in quantum hall systenj46]. The re-
mainder of this paper predicts the equilibrium spin textures
which will be found in rotating spin-1 condensates.

IIl. SYMMETRIES OF THE ORDER PARAMETER

In this section we describe the order parameter of a spin-1
Bose gas.

As first discussed by H@3] and by Machida and Ohmi
[4], a trapped gas of spin-1 bosons interacting via a pairwise
short-range interaction which is invariant under global spin
rotations has a Hamiltonian of the form

I 1
=3 (25+0) A ¥
Vij = (Co + €S - §p) &(ri —1y), (4)

wherei, | running from 1 toN label the particlesp;, r;, and

S, are the momentum, position, and spin operators for each
particle, m is the particle massJ(r)=mw?r?/2 is the har-
monic trapping potential, an¥ is the pairwise interaction
which is parametrized by two constantg and c,, which
represent density and spin interactions, respectively. The
most commonly studied alkali atoms hal®|/|cy| =0.05
<1. Ferromagneti¢c,<0) and antiferromagnetiéc, > 0)
interactions are, respectively, found §fRb and?3Na[3].

FIG. 1. Top view and perspective view of arékyrmion. Atthe In a Bose condensate of spin-1 _atoms' the order parameter
center(edge the spins point out ofinto) the page, while half way 1S the three-component wave functiopy, g, §-,) represent-
between the center and edge the spins lie in the plane of the pagéld the single-particle state which is macroscopically occu-
rotating once as one circles the center. The spins are located onfed. The indiced , 0, -1represent the spin projection along
two-dimensional plane, but point in three dimensions. the z direction. As pointed out by Machida and Ohpi, it

is convenient to introduce a Cartesian representation of this
constant:, the particle mase, and the frequency of the ~ Wave functiony,= (= ia) IN2, gy =i(da+ 1) N2, 4= o,
harmonic trap which is confining the particles. One canso thaty=(ix, #,#, transforms as a vector under spin ro-
interpret¥ in terms of a pseudospin with polar angle tations. The order parameter is conventionally normalized so

and azimuthal angle, by writing that the density ip(r)='(r) - %(r). In the remainder of this
. cog f/2)e 2 paper we will freely move between the Cartesigp
W = pelX sin(@12)d#2 )’ (2 =(y, iy, 9,)] and spherical (¢4, o, ¥-1)] representation of

the wave function, depending upon which is most useful. In
wherep and y represent the local density and phase, respecgeneral, latin indicessuch as, b) will refer to the Cartesian
tively. The pseudospin behavior is then shown in Fig. 1. Incomponents, while greek indicgsuch asu,v) refer to the
particular, at the center of the cloud, thle component van-  spherical components. Standard vector notation will be used
ishes, and the pseudospin points “up.” At the edge of thevhen working within the Cartesian representation.
cloud ¢y vanishes, and the pseudospin points “down.” In  The local expectation value of the spin in the condensate
between, the pseudo spin rolls from up to down, covering 4 s <S(r)>:<2j5(r—rj)Sj>=¢Z*(r) X g{r)/i. To minimize the
steradians of the sphere. This texture is often referred to as@in interaction term for a ferromagnetic/antiferromagnetic
skyrmion in analogy to the work of Skrynpi1]. A detailed gas one maximizes/minimizd§2=| 7 X 4f2. Consequently

analysis of this two-component Bose gas shows that the a ferromagnetic gas prefers an order parameter with the
skyrmion textures are ubiquitous, and that in the rapidly ro- 9 9as p P

tating limit angular momentum is carried by a lattice of skyr- structure
mions[12,13, where the geometry of the latticeis sensitive
to the interaction parameters.

This (pseudgspin-1/2 example teaches us that a rotatingwhere n and m are real vectors witm L m and |n|=|m|,
spinor condensate tends to carry angular momentum bgorresponding to the spin with magnituf®?=|y{* pointing
twisting its spinor order parameter. Leanhaetlital. at MIT  out of the plane in whiclm andm lie. When restricted to this

g=n+im, (5)
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maximally polarized sector, the order parameter of the ferro- ,/,;(/,b
magnetic gas can be taken to be the orthogonal tria, S, Qap= ra (8)
whose transformational properties are isomorphic to the zc: beibe

group S@3). Conversely, in the antiferromagnetic gas, the
order parameter prefers to haj@?=0, which gives which carries all information about the local spin order pa-
rameters but no information about the density or phase. By
ur constructiorQ is Hermitian(Qab:Ql?a) and has trace 1. We
y=e’n, (6) decomposé) into a sum of irreducible tensor operators,
= Q06,3 +iey QY2 + Q2 9
wheren is a real vector ang is a phase. Thus antiferromag- Qap= Q™ 0a/3 +ieanQc Qb ©
netic interactions lead to an order parameter space isomor-

phic to S, X U(1)/Z,, whereS, is the sphere on which lies, Q¥=1, (10
U(1) is the symmetry of the phasg, and the quotient with

: " QW=s=(S)p (11)
the two-element discrete groufy represents the fact that '
is invariant under simultaneously reversing the direction of )
and takingg — ¢+ . Without the phase, the order parameter QD) = (2/13) 8, ~ ((S:S) +(SS)/20%, (12)

space is the grouf,/Z,, which can be identified with the

projective planeRP,. The importance of this projective the density. The three irreducible components are a constant

structure hgs be_en emphasized by Zhb. . scalarQ©, a vector QY which represents the local spin
A more intuitive approach to understanding the symme- . :
. ) A order, and a symmetric traceless ten®® which represents
tries of the spin-1 condensate comes from considering th . . . .
moments of the local Spin operator. A ferromaanetic interac '€ local spin fluctuations. The magnitude of these various
. | Spin operator. . 9 components are constrained by the fact tQas idempotent
tion favors a maximally polarized state; for example

(1, o, 1-1)=(1,0,0, for which the local spin igS)=2. In (Q*=Q). and hence

where e, is the totally antisymmetric unit tensor apdis

this case one can tak&), an object which transforms as a 0=TrHQ? - (TrQ) (13
vector, to be the relevant order parameter for discussing spin
textures. Antiferromagnetic interactions favor a minimally =-2/3+QW . QW2 + T (Q?)2]. (14)

polarized state; for exampldy,, o, ¥-1)=(0,1,0, for

which ($)=0. To find a useful order parameter, one mustThe last two terms are non—negati\_/e scalars W_hich represent
consider the fluctuations of the spiAS,0S,=ReS,S,)  (he amount of vector and nematic order. This expression

—(SXS,) [18], which for the (0,1,0 state is 65,65, plearly _shows that these are competing order parameters, as
= 5.(1-5,), where &, is the Kronecker delta. Conse- increasing one of them requires reducing the other.

guently, this state has no spin fluctuations in Zhdirections, Wriﬁgndiin:gprsgaotg ;2 the Appendix, the vorticity can be
and isotropic fluctuations in the-y plane. Due to the azi-

muthal symmetry, the spin fluctuation tensé®,dS, maps h

onto itself under rotation byr radians. Equivalently, one can V Xvg= |EQab(Vch) X (VQca)- (15
say that the spin fluctuations represent a nematic order pa-

rameter(meaning that it transforms under rotation as an arin the spin-polarized case@R,= 0,p—S:S+i€apS: (With s°s

row with no head on )t =1) one recovers the Mermin-H@2] relationship

As a consequence of the disparate types of spin textures "
that involve vector and.nematlc ord_er parameters, gases W!th V X Vo= e Si(Vsy) X (VSy). (16)
ferromagnetic and antiferromagnetic interactions behave in m

uite distinct manners. L . .
a In the purely(uniaxia) nematic case,,=nan, (with n-n

=1), one instead finds an irrotational flow, X v¢=0. Note
A. Local vorticity that Eq.(15) is correct for all spin, not just spin 1.
In a more geometric language, the superfluid velocity is
We now discuss how the symmetries of the order paramthe phase one-form associated withits curl is the phase
eter are related to the curl of the velocity field, two-form, andQ is the operator which projects ont@a The
relationship(15) between the projector and the phase two-
% form, is generally valid, and shows up in other contd#9j.
Vo= _—(¢;V Y (/,;), (7) In addition to the division of) into irreducible spherical
2im tensors, there are other approaches to isolating the relevant
order. For instance, Snoek, and ZH@®), find it convenient

i — t
where repeated indices are summed over. The key observi2 WOrk with the  tensor Map= iy~ (1/3) SapZcic e
tion is that unlike a scalar condensate, the spin-1 condensataw(leg+Q;2g) (in various places, they use the notatiQror
can have a velocity field with extended vorticity. This prop- O? for this order parametgrimambekovet al. [21] directly

erty is most simply understood by introducing a tensor describe the nematic order in terms of fluctuations in the spin
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(cf. Sec. Iy, defining W,,=(S,S,) - 5.,(S?) (Imambekovet  rotation, as in the rotating frame the centrifugal force effec-
al. use the symboQ,;). Below, when discussing visualiza- tively reduces the trap strength, causing the cloud to spread
tion, | will work with the matrix Q '(Qab+Qba)/2 out over a larger area, reducing the density and hence the
=(1/3)6, b+Q _ Al of these various order parameters are Intéractions. Although motivated by this ultradilute limit, our

useful in different settings, and the reader should be alert té\pproach gives an effective approximation to the properties
which one is being used by a given author. f a system with much stronger interactions. For example,

both statig24] and dynamig25] properties of vortex lattices
in a scalar condensate have been very successfully modeled
B. Visualization by this method.

The ferromagnetic gas has a vector order param(&er In the rotating frame the Hamiltonian is shifted k'

which is visualized by drawing a vector at each point in:H_Q'L' where the vectof) points along the axis of ro-

space(as in Fig. 3. The antiferromagnetic gas has a moretﬁt'on W'tlh modulustgwen L:[:y th;atrr]ate 0'; rota\t;\(/)n al?dst
complicated order parameter. In the strongly antiferromag® € angufar momentum vector of the system. We restrict our-

neti imit, the order parameter has the form of @3, and 208 1 00 M E RERES B e e etstent
one can \_/isuAaIize the ord_er _by plotting a rod aligned alon ith the weakly interacting limit, where only a single mode
the directionn at each point in space. In general, the orderof the trapping potential is OCCLI ied in tizedirection. To
parameter deviates from E@@), and it is more convenient to pping p cup .
describe the order in terms @2 or Q(s_(Q +Qy)/2 extend_thls r_neth_od to describe the more genet_‘aﬂee- _
© ab’ <b dimensional situation, one can use a Thomas-Fermi approxi-
=(1/3) 6, b+Q . The tensoQ'® is simpler to work with than mation as in Ref[26]
Q@ asitis posmve semidefinitameaning that all eigenval- |, {he absence of interactions, the eigenstates of the two-
ues are greater or equal to ;)zrﬁir_]e sum of these elgeqval- dimensional single particle HamiltonianH;p: p?/2m
ues, equal to the trace ((g(s), is unity. In the case wheng is +mw?r2/2-0(rp,-1,p) have energies Eyy=fo+fi(w
given by. Eq.(6), thenQ hgs aAsmgIe.nonzero eigenvalue +Q)n+A(w0-Q)m, and angular momentunt.,,=%(n—m)
whose eigenvector points in thedirection. In the general iy -0 1, If theinteraction energy per particle is
case, one can defirfeto coincide with the direction of the sufficiéntly s,m:a\II compared té(w+Q) then one can build

i (s)
largGeeSrtleerli%ZIrlwg(csgor:;SD th.ree distinct eigenvalues, and there-—" the quantum state from the "lowest Landau leverL ),
fore describeys diaxial nemati Whicr? cannot E)e repre- made up of the states witi=0. Here we restrict our analysis
¢ P to the mean-field level, where one single-particle state is

ts;z (: tl?)(cj: gor!ilr{];rtliéeg?:jsezﬁb:grrg ng;i ?ﬁ;nféztse S lcgu”riescgi dmacroscopically occupied. The most general single-particle
’ P y €llip tate in the LLL can be written as

whose three principle axes coincide with the eigenvectors o
QY. The length of the principle axes are taken to be propor- \z\2/2
tional to the eigenvalues. These ellipsoids are easily con- Pu(Xy) = Ecmx_,e (17)
structed by treatingQ'® as a linear transformation to a vl
sphere. Starting from a sphe& the resultlng ellipsoid is  wherez=(x+iy)/d is the coordinate in the plane in complex
defined as the set of points satlsfyu"gg:Q brb, forreS In notation, scaled by the oscillator Ienglltnﬁ/mw The co-
the uniaxial limit Qab Qab=naNp,, two of the ellipsoid's axes efficientsc;, can also be expressed in Cartesian notation
have length zero, and this degenerate ellipsoid becomes a rep=(ci,Cjy,Cj,). We normalize this wave function so that
pomtmg in the directiom. In the ferromagnetic limit Qab R
=, SsS,, the ellipsoid becomes a disc, whose normal is the f dx dy J, Y= Cj* g =1. (18
spin vectors. j

In both the ferromagnetic and antiferromagnetic gas, th
spins and directors point in three dimensional space. Due t oint enerav. the scaled ener er particle in the rotatin
this intrinsic three dimensionality, it is impossible to faith- ]E) b gy, gy perp 9
fully represent the spin textures on a two-dimensional sheel @M€ PECOMES
of paper. Consequently, in this paper we only provide (H-QL,
sketches of the simplest textures. Animated representatiorns™ m (19
of the more complicated structures can be found in the
EPAPS archivg23]. > - -

For simplicity, wherever possible we attempt to describe ___ 1 de gl V¥ V¢ meT W)
the nematic textures solely in terms fof fi(w=1Q) 2

ubstituting this ansatz into E¢B), and neglecting the zero-

1

IIl. LOWEST LANDAU-LEVEL CALCULUS — KO (Xdy = Yo 1) + 08 (z// PP+

In this section we present a calculational scheme for . 7 _ . _
studying Eq.(3). Our approximations are motivated by the =2, {(j +1)c ¢+ E[(l +C))(Tr d; -dj) — ¢y Tr dj|2]]
limit where interactions are weak compared to the trapping |
potential. Weak interactions are naturally reached under fast (20)
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__ N 1= (j+ 1) - g, (23)
2m(w=-Q)° i

(21)

. ] 1/2

(d)e=272 (k) (C-WsCu 7
k

=2 [(L+e)(Trd) -d) -S[Trd’l. (24

J
Here “Tr” signifies taking the trace of a matrix. The sim-

plicity of these equations illustrate the utility of the Car- Minimizing with respect tov with {¢;} fixed yields

tesian representation of. In the LLL, the system is pa-

rametrized by two dimensionless_ coupli_ngs; which H’=I1ﬁ[w /1+7]I_2w—ﬂ_ﬂ] (25)
measures the ratio between the interaction strength and I, o

the level spacing, and,=c,/c,, the relative strength of
spin and density interactions. Larger corresponds to

faster rotation. If one rotates at speeds wh@re w, the v2=1

centrifugal force becomes stronger than the trapping force

and the system becomes unstable. This centrifugal limitn the limit A= 5[(w-Q)/w][l,/1,]<1 one recovers Eq.

coincides withy—<. One can experimentally tung be-  (20). One can minimize Eq(25) by the methods already

tween 0 and ®. _ discussed. Note that instead of depending upon only two
In this paper we find the ground state as a functionyof experimental inputs; andC,, the minima in the extended

andc, by minimizing Eq.(20) with respect to the parameters | || ansatz also depends on the dimensionless ratio
C; using a conjugate gradient method. We truncate the aI(w_Q)/w_

lowed values ofj to bej=1,2,...,J. Convergence is en-

sured by taking several values &f ranging from 2 to 128,

and finding that for sufficiently largé the energy saturates. IV. SYMMETRIES OF THE SPIN TEXTURES

Although this variational approach is much simpler than di- A. Symmetries

rectly minimizing the Gross-Pitaevskii equation, it is still a ) .

nontrivial numerical task. Since; is a three-component Given the complexity of the energy landscape, an unre-
complex object, one has the equivalent dfréal variational ~ Stricted minimization of Eq(20) is a daunting task. The

parameters. Symmetries can be used to reduce the number!8f9e number of variational parameters makes the computa-
fion expensive, and the large number of metastable minima

independent parameters. All our results use the approximal . ; X

physical value,c,=+0.05 [27]. For a discussion of other Means t_hat an exhaustive search is n_eeded to flnq the abso-

values ofc,, see Ref[7]. lute minimum. Mo_rgover, a qlassnjcanon scheme is needed
Not surprisingly, the energy landscape is quite Compli-to describe the minimal configurations once they are found.

cated with many metastable local minima. Computationally Ve solve all of these problems by studying the possible sym-

this large degree of metastability makes finding the absolutd"€tries of the spin textures. In Sec. IV B, we discuss how

ground state quite difficult. In Sec. IV we show how symme-1€S€ symmetries can be used to detect the textures. This

tries can be used to help find these minima. This symmetrytr@t€dy was inspired by discussions with Dan Rokhsar, who,

approach is augmented by a brute-force search Stratedellth Dan Butts, used similar techniques in understanding

where we run our minimization routines from a very large VOrtex lattices in scalar condensafed].

number of initial conditions, and select out the lowest energy OUr Hamiltonian(3) is separately invariant under each of

minima found. Experimentally, the presence of so many locai® following operations:(i) rotating spatial coordinates

minima implies that the state found in the laboratory will 2P0Ut the origin by an arbitrary angé;

depend strongly upon the method of preparation. Moreover,

one would expect to see domain structures where different Yra) — Rap(6) ¢rp), (27)

parts of the sample exhibit different phases.

-Q
Lhe-O

cosf siné
R(6) =< ); (28)

A more general ansatz ~sing coso

Although all the numerical calculations presented here in—(") rotating all spins by arbitrary Euler anglefs 6, andy,

volve Eg. (20), it should be noted that by introducing an b, — R (6, (29)

extra variational parameter, one can greatly extend the realm " prnmmAsT

of validity of the LLL approximation. The resulting equa- e e

tions are not much more complicated than Ezf). R(60,¢,x) = € X 5™ 9%, (30)
The extended LLL ansatz scales the lengths in(E@). by

a new variational parameter so thatz=vY?(x+ly)/d. Ne-

glecting zero point motion, the energy per particle is

whereS,,S,,S,, are the operators for the spin components;
(iii ) simultaneously reflecting spatial coordinates across the
line perpendicular to the unit vectﬁr*and applying the time
reversal operatofwhich takesy, — 1//_M),

(H) _ w( 1) 7 _

NA | 2\V ) TGt em g (22) Yur) — - (Rar), (3D)
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Ral =r =20 -r; (32) Pp(R(2mla)r) = ™M3yqr), (37)

(iv) reflecting the spin across the plane perpendicular to th&/nerea is an integer which, together with the integey
unit vectori, describes the symmetry of the cluster of vortices.

The wave function for a cluster of vortices with a reflec-

> = = tion plane will be invariant under a combination of a reflec-
¥— Ray, (33 tion across a fixed line, time revergabmplex conjugatiop
and a gauge transformation,
Rar=—20 - (34 —
T YWRar)' = £ (), (38)
and(v) a global gauge transformation by an arbitrary phase
X where the line of reflection is perpendicular to the unit vector
n. We have written the gauge transformation as a multipli-
b, — e‘X%_ (35) cation by *1, as the only consistent phases yarer, 0.
Although the Hamiltonian is invariant under each of these )
transformations, the mean-field wave function is not. We will C.Spin1
classify spin textures by the way in which they break these As with vortices in a scalar gas, spin textures in a spinor
symmetries. condensate are characterized by their properities under dif-
ferent combinations of symmetry operations. The spin de-
B. Scalar grees of freedom only introduce additional symmetries.

, ) ) , .. At low rotation speeds one expects to find a continuous
_ To see how these symmetries manifest in spin textures, iy metry, generically involving the simultaneous rotation of
is helpful to fII"St qon§|_der a scalar condengai, for which space, spin, and phase. Without any loss of generality, we
only symmetriegi), (iii), and(v) are relevant. In the lowest o, (516 the spins to rotate about #hexis, in which case the
Landau-level approximation, the nonrotating scalar groun(iymmetry is formally described by the statement that there
state isy(r) =", which is invariant undei) and(iii), but  exists constants andn such that for allé,
not (v), i.e., the only broken symmetry in the nonrotating
condensate is the gauge symmetry. P, (R(O)N) =€™'R ,,(NO) (1), (39

At appropriate rotation speeds the ground state contains a

single vortex, andin the lowest Landau levelthe order  whereR(6) represents a spatial rotation about the origin by
parameter become$:ze‘|r|2’2, where, as usualz=x+iy.  anangles, R, (¢) represents a spin rotation about thaxis
This single vortex state is no longer invariant under any ofby an angles, andm,n count the number of times the phase
the transformationgj), (iii), or (v). However, it is invariant and spin angles rotate in comparison to the spatial afgle
under appropriate combinations. For example, rotating th&ingle valuedness of the left-hand side of E2) constrains
spatial coordinate by any angk transformsz— €%, and m andn to either both be integers, or both be half-integers.
can therefore be undone by a global gauge transformatioRurther explanation of this constraint will be given in
(36) with y=46. This is an example of a continuous symme-Sec. IV C 1.
try, as for eachd there is a combined spatial rotation and  Textures obeying Eq(39) will be described as the “el-
gauge transformation which leaves the state invariant. Thismental,” “single,” or “azimuthally symmetric” spin tex-
symmetry is not restricted to the lowest Landau-level aptures. They are the building blocks for all more complicated
proximation, and it should be clear that any condensate wittructures.
a single vortex at the center will have this symmetry, ex- At higher rotation speeds, this continuous symmetry is
pressed as replaced with a discrete one. In analogy to the scalar case

, (37), the discrete rotational symmetry is of the form

YR(O)r) = eMy(r), (36)

wherem s a fixed integer which gives the number of quanta
of circulation which are concentrated in the vortex core. Anyherea is a fixed integer describing the geometry of the
ordinary vortex hasn=+1. texture.

At faster rotation speeds, the condensate will contain a |n addition to rotational symmetries, the state may have
small cluster of vortices. As an example, one can imagingefiection symmetries. The most general form of reflection
two vortices, symmetrically placed at 2z, so that the  symmetry which we consider consists of simultaneously per-
order parameter isj=(z-zy)(z+z)e "2 No continuous forming transformationsii), (iv), and(v), namely, reflecting
symmetry exists here. However, there does exist a discretée spatial coordinates across a line, time reversal, reflecting
symmetry in that this state is invariant under rotating spacehe spins across a plane, and multiplying by the factor £1. By
by 6=. Similarly, three vortices which form an equilateral globally rotating our spins, we can always assume that the
triangle will be invariant under a rotation l§=2=/3. Such  spin and spatial reflection planes coincide. Mathematically
discrete symmetries are generally of the form this symmetry can be expressed as

¥, (R(2mla)r) = M?™aR  (n2m/a) (), (40)
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[ (RaNT = £ (Ra) (1), (41)

wheref is the normal to the reflection planﬁ is the spatial

reflection and(ﬁﬁ)w is the spin reflection. One can also
consider the case where no spin reflection is performed

[ou(Ran)] = 2 9,(0). (42
We will refer to Eq.(41) as a reflection and Eq42) as a
partial reflection

1. Implications

Enforcing the various possible symmetries described in
Egs. (3942), greatly reduces the number of parameters
which must be minimized. Given the explicit form of the
rotation operators

R(6)z=e7, (43

R,(0) = 38,,6%, (44)

f 2
and the lowest Landau-level ansaz==; c,;Ze’?72, the
continuous symmetry39), restrictsc,; to be zero unless

j=m+wn, (45)

Sincev=1,0,-1,this requires any nontrivial texture to have
m, n both be integers, or both be half-integers. At most three
c,;'s are nonzero. By combining an overall spin rotation, a
spatial rotation, and a gauge transformation, these three pa-
rameters can be taken to be real. Using the normalization FIG. 2. Top view and perspective view of am—&kyrmion_ This
constraints; ,|c,|°=1, one is left with only twdrea) varia- texture differs from Fig. 1 in that the planar projection of the spins
tional parameters. rotates twice as one circles the origin.

The discrete symmetries similarly reduce the number of
parameters. For example, the discrete rotation symmetry in
Eq. (40) forcesc,;=0 unless will therefore be referred to asmor 8 skyrmions. If one
looks down from above, as shown in the top panels of figures
1 and 2, one can distinguish these textures by the number of
Up to an overall phase, enforcing the reflection symmetrytimes which the planar projection of the spin rotates when

j=m+wn (mod a). (46)

(41) with A=y requiresc,; is real. one circles the originonce/twice for the 4/8w texture.
Higher-order textureénvhere angles greater thaar&re sub-
V. RESULTS tendgd are never found to have continu_ous azimuthal sym-
_ _ metries, and are always more appropriately described as a
A. Azimuthally symmetric textures collection of 4 and 87 skyrmions. At faster rotation speeds,

In the limit of very slow rotation, the angular momentum @ngular momentum is carried by a lattice af 4r 8 skyr-
will be carried by a single “elemental” spin texture, charac-mions Wher.e their quantization axes takes on several differ-
terized by the continuous symmetry in §§9). This struc- ~ €nt orientations. These textures only cover a fufl @nd 87
ture is analogous to a single vortex. At faster rotation speed gt€radians of solid angle when they exist in isolation in an
cluster of these textures will form. Eventually the clustersinfinite system. In a lattice, the skyrmions often touch before
will become regular lattices. In this section the structure ofthey can completely cover the sphere.

the “elemental” spin textures will be explored. The 4 and 8r textures are described by E@®9), with
m=n=1 and m=n=2. In a basis with spin projections
1. Ferromagnetic (1,0,-1), the spinors take the form

The ferromagnetic gas displays two different elemental
textures, both of which are similar to the skyrmion encoun-
tered in the spin-1/2 case. These two textures, illustrated in 1
Figs. 1 and 2, differ by the amount of solid an¢der or 8m)

=1\ = 12212
traced out by the spin vectors as they move from pointing n=m=1)=| az |e’*", (47)
straight up at the center to straight down on the edge, and bZ
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\
(@) | (b) N
FIG. 3. Local vorticityz-V X v, for the 4 (a) and 8 (b) skyr-
mion. Darker shades represent larger vorticity.
1 /
/

2
In=m=2)=|aZ |72, (48)
b7 FIG. 5. Representations ofza disclination in a nematic. Lines
represent the local orientation of the nematic director.

The real coefficientsa and b are given by minimizing

Eq. (20). In the 4ar skyrmion, the velocity field has its greatest curl
at the center of the texture, while for ther&kyrmion the
curl is greatest on a ring of finite radigsee Fig. 3. Accord-

ing to the Mermin-Ho relationshigl5) one can attribute
these two distinct behaviors to the fact that the spins “bend”
fastest in these regions.

The 87 skyrmion can alternatively be interpreted as a
composite of four 4 textures[28,29. This interpretation is
illustrated in Fig. 4, where the spins in Fig. 2 are rotated
around they axis by 90°. There are four points where the
spins are pointing into/out of the page. These points lie on
the outer edge of the ring of maxim3 X v, and can be
taken to be skyrmion cores. Note that their positions are not
unigue, and by globally rotating all of the spins, these points
move around in a ring. This lack of uniqueness is a conse-
quence of the high degree of symmetry of this state. The 8
steradians of solid angle subtended by the texture can be
divided evenly among these smaller skyrmions, allowing us
to attribute 2r steradians to each of them. Two of the sub-
textures, labeledA) and(C), have cores pointing out of the
page, while the other two, label€¢B) and(D) point into the
page. Equidistance between these cores the spins lie in the
x-y plane. When circlindA) or (C) these planar spins rotate
in a positive sense while arouri®) or (D) they rotate in a
negative sense.

The 47 skyrmion has lower energy than the uniformly
polarized state (¢, ¢, -1)=(1,0,0 if and only if
n>2/(1+c,). This is a second ordefcontinuou$ phase
transition. Between the region of stability of ther4nd 8r
skyrmions, a more complicated texture is found. Details of
this intervening state will be given in Sec. V B. A graphical

] _ o comparison of the energies of these states as a functign of
FIG. 4. (Color onling top view and perspective view of anm8  i5 made in Fig. 7.

skyrmion. This is the same texture as Fig. 2, except all spins have

been rotated b_y 90° about tIﬁeaxis._This texture can be interpreted 2. Antiferromagnetic
as a composite of four # skyrmions, whose cores have been . ) o )
marked with circles, and labeled by lettais) through (D). The The antiferromagnetic gas, with its nematic order param-

spins in(A) and(C) point out of the page and the planar projections €ter, supports a much different set of textures than the ferro-
of the spins wrap the equator of the order-parameter sphere in Bagnetic gas. In particular, one finds that angular momentum
positive sense, whiléB) and (D) point into the page and the pro- IS predominantly carried byr disclinations, which as illus-

jected spins wrap the equator in a negative sense. trated in Fig. 5 are objects around which the nematic director
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rotates by 180 degredqsr radiang. There is no consistent p \

way to define the direction of the director at the center of the
7 disclination, and one therefore calls these textures “topo-
logical” meaning that there is a loss of continuity at the core. t
The topological nature of this excitation makes it very simi- [ //////////' v B
lar to a vortex, for which there is no way to define the phase
of the order parameter at the center. In the case of a vortex, " \\\\\\\\\\\\\\\\~~
this lack of Contlnu_lty causes the denS|.ty to vanish at the FIG. 6. Structure of the nematic ring textu). Horizontal
core. For the experimentally relevant spin-1 gases, the den- . )
o S A . —‘axes represent distance from the center of trap alongxthgis,
sity interaction is much stronger than the spin interaction

ditis f ble to fill th ith f tical measured in units of the trap length. The top panel shows the den-
32@3 Etoi\llsora eton € core with ferromagneticaly or- sity p. At each position in the middle panel, an arrow is drawn

. . o which represents the direction and strength of the local spin. At
Thus, angular momentum is carried by disclinations  gach position in the bottom panel, a rod points in the direction of

with ferromagnetic cores. The spins in the core align perpengme nematic directon, corresponding to the largest eigenvalue of
dicular to the plane in which the nematic directors lie. In theg(, The lengths of these directors are scaled by the total density, so
fast rotating limit, one finds a square lattice of theselis-  that their lengths are related to the amount of local nematic order.
clinations with their cores aligned in an antiferromagneticTo construct the full three-dimensional spin texture, one rotates this
checkerboard pattern. picture around the origin, so that the spins near the center look like
The 7 disclination is described by Eq39) with n=m the skyrmion in Fig. 1, and the nematic order away from the center
=1/2. In abasis with spin projectiongl,0,—1), the spinors  forms a crown texture.
take the form

1 i

9]

B. Composite textures

1 At higher rotation speeds, angular momentum is not car-
n=m=1/2)=| 0 |, (49) ried by single “elemental” textures, but rather by a small
collection of these objects. At very fast rotation speeds one
bz expects to find a regular lattice. We study these more com-
plicated objects by minimizing Eq20), sequentially con-
where the real numbdris given by minimizing Eq(20) the  straining the wave function to have the symmetries in Egs.
7 disclination has a lower energy than the uniform nematia39) through(42).

state (¢, o, -1)=(0,1,0 if and only if »>2-2y2c, Our numerical results are summarized in Figs. 7 through
+0(c,). This is a first orderdiscontinuous phase transi- 11. Figure 7 shows the energy of states with various symme-
tion. try properties. The data is scaled so as to bring out the im-

We find one other azimuthally symmetric texture in the portant features. There are two parts to the scalibpe? is
gas with antiferromagnetic interactions. This state has thelotted rather than jusf because in the fast rotating limit
same mathematical structure as E47), except that here one expects’s "2 This dependence is made apparent by
b>0, while in the ferromagnetic case<0. As sketched in noting how various terms in the energy scale with the total
Fig. 6, this texture consists of a nearly uniform nematic ringsize of the cloudj,>(r? andl,%1/(r?. Minimizing with
with a ferromagnetic core. The spins in the ferromagnetioespect to(r?) then gives€«= 52 (2) We subtractgz from
core bend like the skyrmion in Fig. 1. The nematic ring has€?, where is an emperically determined constant. Remov-
its directors canted slightly from theaxis, forming a crown-  ing this linear term makes the differences in the curves easier
shaped texture. We do not find any composite textures whicto see. We us@=-1.7125(-1.8084 for the ferromagnetic
include this structure. (antiferromagneticdata.

0.4

0.2

1941

0.5

0.3

10 20 30 i 40 50 60 70

FIG. 7. Scaled energiegas a funtion of rotation speed, parametrizedzpglefined in Eq(21). Larger » corresponds to faster rotation.
Top/bottom panels show ferromagnetic/antiferromagnetic interactionogathr 0.05c,. Each curve represents a state of different symmetry,
as described in the text and Figs. 10 and 11. More detailed images of these states can be found in the EPARZ3arEhigrgy scalings

(top,E:SZ—lJlZEn; bottom, £=£2-1.8084;) are chosen to aid in comparing these different curves.
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The curves in Fig. 7 are labeled by the lettgk3 through 4
(S) and can be described as follows: L
Ferromagnetic stategA) The uniformly polarized state.
(B) The 4m-skyrmion statejn=1,m=1) described in Sec.

V A 1. (C) A texture with a single reflection plane consisting 1

of two elementary structures: ardskyrmion near the origin, o

and a second object at whose center the ferromagnetic order T

vanishes, to be replace by nematic ordéb) The 0 o 5 =
8m-skyrmion statgn=2,m=2) described in Sec. V A 1(E) i

Similar to (C), except the 4 skyrmion is replace by an FIG. 8. Angular momentum per particleand spin polarization

one.(F) A texture with two reflection symmetries and a dis- per particleo=|/d? S(r)| of ferromagnetic spin textures as a func-
crete rotation symmetrgwith a=2,n=m=1). Two 8 skyr-  tion of rotation speed, parametrized by Both are measured in
mions with their axes canted with respect to one-another lignits of#. Note the discontinuities when the ground-state symmetry
on one axis, while twoveakly nematic regions, where the changes.

ferromagnetic order is reduced, lie on the otli€i. A texture

with two reflection symmetries and a discrete rotation syms;jngle reflection plangR) A distorted square lattice, consist-
metry (with a=4,n=1,m=0). At the center lies & nematic j,q"of 12 disclinations. Contains one reflection plaf®.A
region. Four 8r skyrmions with canted axes form a square gisiorted square lattice of 14 disclinations. Contains two re-
surrounding the centefG’)As with (G), but the square is  fiection planes, and a discrete rotation symmey2,n
distorted into a rhombus, resulting in a lower symmey =2,m=2).

=2,n=1,m=1). (H) Atexture with four reflection axes anda  Three.dimensional animated representations of these
discrete rotation symmetria=4,n=1,m=1). There are four siates are stored on the EPAPS archiza.
87 skyrmions, symmetrically situated with their axes nearly  From these data one can calculate several observables in-
lying in a.plane. ) ) cluding: the angular momentum and the degree of spin po-
~Nematic states(l) The uniform nematic stat¢J) The = |arization as a function of. These results are shown in Figs.
disclation with ferromagnetic core described in Sec. VA 2.3 and 9. The angular momentum is measurable through col-
(K) A nematic ring with a ferromagnetic core described injective mode experimen{80], while spin polarization could
Sec. VA 2.(L) Four 7 disclinations forming a square. The pe measured through magnetic susceptability. In Figs. 10 and

feromagnetic cores are aligned antiferromagnetiqally. Thig1, we show spatial distributions of the densityvorticity
state has two reflection planes, and a fourfold rotational syms. v x v, spin density|S?, and nematic ordeQ(z)fo) for
L) 1 a

metry (a=4,n=2,m=2). (L') As with (L), but the square is aach of these textures. ab
slightly deformed into a rhombus, and the perfect antiferro-
magnetic alignment of the cores is slightly distorted. The

rotational symmetry is reducg@é=2,n=1,m=1). (M) Five V1. DISCUSSION

7 disclinations form a regular pentagon. The ferromagnetic

order at the cores lies completely in the/ plane. Contains A. Alternative classification of skyrmions

a reflection plane and a five fold rotational symmetsy The division of a given texture into elemental skyrmions

=5,n=2,m=0). (M’) As with (M), but the perfect fivefold is not unique, as is illustrated by the two ways of thinking
symmetry is slightly distorted with the pentagon of disclina-about the 8 skyrmion in Sec. V A 1. Above we chose to
tions stretched along one axis. This state only has a singldiscuss composite textures in terms of the spin behavior at
reflection plane and no rotational symmeii) Dominated the density maxim&which is analogous to looking at ther8

by two stripes of threew disclinations organized into a skyrmion from the angle in Fig.)2 This is a natural tax-
(nearly square lattice, this texture has a full reflection planeonomy scheme in that it reduces the total number of skyrmi-
and a partial reflection plar@cross which the spatial but not ons which need to be considered, at the cost of introducing
spin degrees of freedom are reflegtg®) Eight 7 disclina- 8« skyrmions. It is enlightening to also describe the texture
tions: one at the center, surrounded by seven others. Tha terms of the spin behavior at the density minigaaalo-
central core points in th& direction, while the surrounding

cores are canted slightly in thez-direction from thex-y 4
plane. Contains one reflection plane and a sevenfold rota- I
tional symmetry(a=7,n=3,m=-3). (P) Nine 7 disclina-

tions forming a square lattice with their ferromagnetic cores =
aligned antiferromagnetically. This state contains two refec-

[

—

tion planes and a fourfold rotation symmetig=4,n o

=1/2,m=1/2). (P") As with (P), but the square lattice is VV_.v- —

deformed towards having a tear-drop shaped set of eight dis- 0 0_ — 35 " 70

clinations surrounding the central one. This state only has a

single reflection plane and no rotational symmetr{€y. A FIG. 9. Angular momentum per particleand spin polarization

pattern of ten disclinations; two central disclinations sur-per particles of nematic spin textures as a function of rotation
rounded by a distorted oval of eight others. This state has speed, parametrized by
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FIG. 10. Spatial structure of spin textures in a gas with ferro- ‘
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magnetic interactions. From left to right, the columns represent den- Q
sity p, vorticity -V xv, spin density|S? and nematic order

6;2[}6{)2:&@2@;2—,)2/6. Darker shades corresponds to larger

magnitudes. Although not universally trueg@)-skyrmions tend ’...'
to show up as blackwhite) dots in column 2 and whitéblack) dots R '.‘.'
in column 3.

gous to the view of the 8 skyrmion in Fig. 4 in terms of
four smaller textures The advantage of this latter viewpoint S
is illustrated by considering textu(él). At the local minima
of the density, the spin points into or out of the page in a . ) ) . )
manner suggestive of two interpenetrating square lattices. FIG. 1_1. _Spatlal _structur_e of spin textgres in a gas with antifer-
The textures around each minima can be described d9magnetic interactions. With the exception of texture K, all black
Mermin-Ho skyrmiongor merong [22] where at the center ;jots in the third cqumt_QWhlc_h also coincide with \{vhl'[_e dqts in the
the spin points in the &direction, and then rolls over to lie ourth colump can be identified as the cores sfdisclinations.
in the plane. In the vicinity of each texture the spins trace out
21 steradians, covering half of a sphere. and a nematic regionF) Three skyrmions lie along the
Under this interpretation the following states have newaxis.(G) Four skyrmions form a square and a nematic region
descriptions(D) Four skyrmions form a square. Two of their Sits at the center(G’) As (G) but the skyrmions form a
guantization axes point into the page, two out of the pagerectangle(H) Two interpenetrating square skyrmion lattices
(E) Along thex axis the density has three minima, and therewith four 4z skyrmions pointing into the page and five
are correspondingly three elemental textures, two skyrmiongyointing out.
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1 0 -1 fine structure but small compared to the fine structure, inter-
. acts with the spin textures in a simple manner. At these fre-
quencies, the ferromagnetic regions aptically active
(a) : : - _ meaning that circularly polarized light aligned with the spins
. travels at a different speed than the opposite circular polar-
ization. Consequently, the polarization axis of linearly polar-
ized light rotates when it passes through a ferromagnetic re-

0 -L gion. The angle of rotation is proportional to the projection

1 .
. q - ' of the ferromagnetic order along the light propagation direc-
(b) ‘ . -

tion. No such rotation occurs when the light passes through a
nematic region.

Using this effect, one can envisage an experimental setup
where the sample is imaged with polarized light, but with a
crossed polarizer in front of the detector. Only light which

FIG. 12. Densitiegys|?, |¢o/2 and|y,? of the three compo- has its polarization axis rotated by passing through a ferro-
nents of texturgH), as seen from two different quantization axes. magnetic region will reach the detector. Thus, one could di-
Darker shades represent higher densiyuses the natural quanti- rectly image the ferromagnetic cores of thedisclinations
zation axis where the skyrmion axes are aligned withztirec- ~ found in the antiferromagnetic gas.
tion, while (b) uses an arbitrary axis.

C. Quantum Hall physics

B. Experimental consequences At even higher rotation speeds, quantum fluctuations are

. . . expected to melt the regular lattices of spin textures. The
In this section we address the questions of how to experigiates produced from this melting are highly nontrivial, with

mentally create and measure these spin texiures. strongly-correlated structures reminiscent of the multilayer
Creation.One should be able to create these spin texture uantum hall effecf32]. Exactly how the textures discussed

by the same techniques used to _create V°”.e>$ lattices in scal Ere are connected with the correlated states are a matter of
condensategl]. These methods include “stirring” the cloud current research

with a detuned laser, rotating an ellipsoidal trap, and cooling
a rotating cloud through the Bose-Einstein condensate phase
transition. Several caveats must be kept in mind howéyer
stray magnetic fields and magnetic-field gradients must be It is useful to compare the structures discussed here with
minimized, and(ii) the large degree if degeneracy in this those which are studied in static trg|33]. The most signifi-
system combined with experimental randomness may lead toant difference is that here we were considering states which
more complicated spin textures than those seen here. In paare ground states of the ener@y the rotating framg Con-
ticular, at fast rotation speeds one would expect to find aversely, textures in a static trap are macroscopically excited
domain structure, where different parts of the clouds contairstates of the system. Given a mechanism for energy relax-
different lattices of skyrmions/disclinations. ation, these excited states will rapidly decay, for example, the
Detection.We propose directly imaging these textures.texture could drift to the edge of the cloud where it can
First, one turns off the atomic trap, allowing the cloud of disappear. In many experiments, these energy relaxation
atoms to expand. If a magnetic field gradient is introducednechanisms are absent, and textures can be observed in a
during the expansion, the different componefts, ¥, _1) static trap[for example, see Refl4]].
will become spatially separated as in a “Stern-Gerlach” ex- Ignoring the stability properties, the other significant dif-
periment. Each of the three components can then be septerence is that the textures in this paper are all two dimen-
rately imaged. This detection method has been used to olsional, while the textures discussed in Rgf3] tend to be
serve skyrmion textures in the pseudospin-1/2 case at JiLAwree dimensional.
[9] and in the spin-1 and spin-2 cases at MIA]. An illus-
trative density profile for the three components of tex{ite ACKNOWLEDGMENTS
is shown in Fig. 12. Note that the Hamiltoni&B) is invari- ] )
ant under a global rotation of all the spins. In principle, this | would like to thank Dan Rokhsar, Kareljan Shoutens,
means that an experiment may create spin textures with @d Michael Berry for respective discussions of the symme-
randomly chosen global orientation. Figuregal2ind 12b) tries of small clusters of vortices in sgalar condensates, Ref.
shows the components of the same spin texture, but with the/] and Sec. Il A. I am indebted to Tin-Lun Ho for his ad-
spins uniformly rotated. The differences between the two figice, support, and critical comments. This work was partially
ures demonstrates how sensitive the component densities a¥dPPorted by NASAGrant Nos. NAG8-1441, NAG8-1765

D. Connection with textures in nonrotating clouds

A second detection scheme makes use of the birefringent
properties of a spinor condensate. As shown in R&t], APPENDIX: LOCAL VORTICITY

light, when detuned from the fundamental transition of the In this appendix we derive E@15), which relates the curl
atoms by a frequency which is large compared to the hyperef the velocity to the spin order parameter. Introducing a
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scaled order parametef.= ./ \n, the superfluid velocity is + bbbV Py X V by (A5)
given by

¥ e T8, (A1) b bbbtV b XV (AG)

_The terms(A3) and (A4) vanish on account of respectively

where repeated indices are summed over. The vorticity '%elng anusymmetnc in the indicés c anda,c. Noting that

thus given by &V pa=V(h o)~ $.V b, one sees that the ternh5) is
3 . antisymmetric in the indices,b, and therefore also van-
V Xvg= E(V(ﬁc X V). (A2)  ishes. Finally, usingt,#,=1, one finds
This expression is related to E@5) by noting that QabV Qe X VQea= -V X Vb, (A7)
QapVQbe X VQca = baobedbaV by X Vebe (A3) which combined with EqA2) yields Eq.(15). Note that this
e result is not dependent on the atoms being spin 1, but is
+ hathp eV Pe X Vg (A4)  completely general.
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