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Slowly rotating spin-1 Bose-Einstein condensates are studied through a variational approach based upon
lowest Landau level calculus. The author finds that in a gas with ferromagnetic interactions, such as87Rb,
angular momentum is predominantly carried by clusters of two different types of skyrmion textures in the
spin-vector order parameter. Conversely, in a gas with antiferromagnetic interactions, such as23Na, angular
momentum is carried byp disclinations in the nematic order parameter which arises from spin fluctuations. For
experimentally relevant parameters, the cores of thesep disclinations are ferromagnetic, and can be imaged
with polarized light.
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One of the most remarkable features of recent experi-
ments on quantum degenerate alkali-metal atoms has been
the observation of quantized vortices in rotating Bose con-
densates ofspin polarized87Rb and23Na [1]. These vortices
are a consequence of the irrotational nature of the superfluid
flow in a scalar condensate(i.e., one without any spin de-
grees of freedom). If these same experiments were conducted
in the absence of a magnetic field, the velocity of these
spin-1 atoms would no longer be constrained to be irrota-
tional; however, the curl of the velocity field would be fixed
by spatial variations in the direction of the atomic spins[2].
The vortices would therefore be replaced by intricate spin
textures. Here we predict the detailed spin patterns which
will be found in such a rotating gas of spin-1 bosons.

Our first understanding of these structures came from Ho
[3] and Machida and Ohmi[4], who independently proposed
that spin textures replace vortices in spinor gases. Subse-
quently several other authors investigated the detailed struc-
ture of these textures in both the slowly rotating[5] and fast
rotating limits [6]. The present work differs from these pre-
vious calculations in two vital ways:(i) it makes use of very
simple variational wave functions from which the essential
physics can be easily extracted, and(ii ) it emphasizes the
rotational properties of the local order parameter(which has
both a vector and a nematic component). The advantage of
this approach, which explicitly considers the order parameter
symmetry, is that it provides a scheme for classifying the
spin textures, illustrates their structure, and most importantly,
suggests a means for experimentally detecting them.

Although lacking our emphasis on symmetry arguments,
similar theoretical techniques have recently appeared in an
excellent preprint by Reijnderset al. [7]. That preprint sur-
veys the properties of rotating spin-1 bosons for all possible
parameters. As such, it is complementary to the more fo-
cused study that we present.

Throughout this paper, we work within the mean-field
lowest Landau-level approximation. This variational ap-
proach, detailed in Sec. III, is quantitatively accurate when
the gas is so dilute that the interaction energy per particle is

small compared to"v, where" is Planck’s constant, andv is
the frequency of the harmonic trap which confines the gas.
Our qualitative predictions, especially those based upon
symmetry arguments, can be applied to denser systems. Ad-
ditionally, we restrict ourselves to the slowly rotating limit
where the angular momentum per particle is on the order of
a few ". In this limit, the angular momentum is carried by a
small number of “elementary” textures, each of which is
analogous to a single vortex. We reserve the discussion of
faster rotation speeds, where a regular lattice of these tex-
tures are found, to a future paper.

This paper is organized into the following topics:(i) a
brief introductory example which illustrates the typical struc-
ture of spin textures;(ii ) a review of the Hamiltonian and
order parameter of a spin-1 gas of neutral Bose atoms;(iii ) a
description of our main theoretical approach;(iv) results; and
(v) broader implications.

I. INTRODUCTION

In this section we discuss the two-component Bose gas in
order to develop intuitive understanding of how internal de-
grees of freedom affect a rotating condensate. Later we will
apply this intuition to the spin-1 gas. In addition to simplic-
ity, the two-component gas has the advantage of extensive
experimental investigations. As a concrete example one can
consider two hyperfine states of87Rb in a magnetic trap, as
produced at JILA[8]. The order parameter here is a two-
component single-particle wave functionC=sc0,c1d, where
c0 and c1 are the macroscopically occupied spatial wave
function of each of the hyperfine states. Using a phase-
imprinting technique, the experimentalists are able to place
one component,c1 into a vortex state, while leavingc0 in
the ground state of the trap[9]. As a simple variational cal-
culation shows[10], this unusual “half-vortex” state is actu-
ally the ground state of the system for some rotation speed,
and in the limit of weak interactions in two dimensions can
be written as

C = Sc0

c1
D = S 1

z/d
De−uzu2/2d2

, s1d

where z=x+ iy is the coordinate in the plane, andd
=Î" /mv is the oscillator length, formed from Planck’s*Electronic address: em256@cornell.edu
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constant", the particle massm, and the frequencyv of the
harmonic trap which is confining the particles. One can
interpret C in terms of a pseudospin with polar angleu
and azimuthal anglef, by writing

C = ÎreixScossu/2de−if/2

sinsu/2deif/2 D , s2d

wherer andx represent the local density and phase, respec-
tively. The pseudospin behavior is then shown in Fig. 1. In
particular, at the center of the cloud, thec1 component van-
ishes, and the pseudospin points “up.” At the edge of the
cloud c0 vanishes, and the pseudospin points “down.” In
between, the pseudo spin rolls from up to down, covering 4p
steradians of the sphere. This texture is often referred to as a
skyrmion in analogy to the work of Skrymif11g. A detailed
analysis of this two-component Bose gas shows that these
skyrmion textures are ubiquitous, and that in the rapidly ro-
tating limit angular momentum is carried by a lattice of skyr-
mions f12,13g, where the geometry of the latticeis sensitive
to the interaction parameters.

This (pseudo)spin-1/2 example teaches us that a rotating
spinor condensate tends to carry angular momentum by
twisting its spinor order parameter. Leanhardtet al. at MIT

[14] recently created the spin-1 and spin-2 analogy of this
texture. Similar structures have been seen in rotating super-
fluid 3He-A [15] and in quantum hall systems[16]. The re-
mainder of this paper predicts the equilibrium spin textures
which will be found in rotating spin-1 condensates.

II. SYMMETRIES OF THE ORDER PARAMETER

In this section we describe the order parameter of a spin-1
Bose gas.

As first discussed by Ho[3] and by Machida and Ohmi
[4], a trapped gas of spin-1 bosons interacting via a pairwise
short-range interaction which is invariant under global spin
rotations has a Hamiltonian of the form

H = o
j
S pj

2

2m
+ Usr jdD +

1

2o
i j

Vij , s3d

Vij = sc0 + c2Si ·Sjddsr i − r jd, s4d

wherei , j running from 1 toN label the particles,pi, r i, and
Si are the momentum, position, and spin operators for each
particle, m is the particle mass,Usrd=mv2r2/2 is the har-
monic trapping potential, andV is the pairwise interaction
which is parametrized by two constantsc0 and c2, which
represent density and spin interactions, respectively. The
most commonly studied alkali atoms haveuc2u / uc0u<0.05
!1. Ferromagneticsc2,0d and antiferromagneticsc2.0d
interactions are, respectively, found in87Rb and23Na f3g.

In a Bose condensate of spin-1 atoms, the order parameter
is the three-component wave functionsc1,c0,c−1d represent-
ing the single-particle state which is macroscopically occu-
pied. The indices1,0,−1represent the spin projection along
the ẑ direction. As pointed out by Machida and Ohmi[4], it
is convenient to introduce a Cartesian representation of this
wave functioncx=sc1−c−1d /Î2,cy= isc1+c−1d /Î2,cz=c0,

so thatcW =scx,cy,czd transforms as a vector under spin ro-
tations. The order parameter is conventionally normalized so

that the density isrsrd=cW †srd ·cW srd. In the remainder of this

paper we will freely move between the CartesianfcW
=scx,cy,czdg and sphericalfsc1,c0,c−1dg representation of
the wave function, depending upon which is most useful. In
general, latin indices(such asa,b) will refer to the Cartesian
components, while greek indices(such asm ,n) refer to the
spherical components. Standard vector notation will be used
when working within the Cartesian representation.

The local expectation value of the spin in the condensate

is kSsrdl=ko jdsr −r jdSjl=cW *srd3cW srd / i. To minimize the
spin interaction term for a ferromagnetic/antiferromagnetic

gas one maximizes/minimizesuSu2= ucW * 3cW u2. Consequently
a ferromagnetic gas prefers an order parameter with the
structure

cW = n + im, s5d

where n and m are real vectors withn'm and unu= umu,
corresponding to the spin with magnitudeuSu2= ucu4 pointing
out of the plane in whichn andm lie. When restricted to this

FIG. 1. Top view and perspective view of a 4p skyrmion. At the
center(edge) the spins point out of(into) the page, while half way
between the center and edge the spins lie in the plane of the page,
rotating once as one circles the center. The spins are located on a
two-dimensional plane, but point in three dimensions.
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maximally polarized sector, the order parameter of the ferro-
magnetic gas can be taken to be the orthogonal triadn ,m ,S,
whose transformational properties are isomorphic to the
group SOs3d. Conversely, in the antiferromagnetic gas, the
order parameter prefers to haveuSu2=0, which gives

cW = eifn, s6d

wheren is a real vector andf is a phase. Thus antiferromag-
netic interactions lead to an order parameter space isomor-
phic toS23Us1d /Z2, whereS2 is the sphere on whichn̂ lies,
Us1d is the symmetry of the phasef, and the quotient with

the two-element discrete groupZ2 represents the fact thatcW

is invariant under simultaneously reversing the direction ofn
and takingf→f+p. Without the phase, the order parameter
space is the groupS2/Z2, which can be identified with the
projective planeRP2. The importance of this projective
structure has been emphasized by Zhouf17g.

A more intuitive approach to understanding the symme-
tries of the spin-1 condensate comes from considering the
moments of the local spin operator. A ferromagnetic interac-
tion favors a maximally polarized state; for example
sc1,c0,c−1d=s1,0,0d, for which the local spin iskSl= ẑ. In
this case one can takekSl, an object which transforms as a
vector, to be the relevant order parameter for discussing spin
textures. Antiferromagnetic interactions favor a minimally
polarized state; for examplesc1,c0,c−1d=s0,1,0d, for
which kSl=0. To find a useful order parameter, one must
consider the fluctuations of the spindSadSb=RekSaSbl
−kSalkSbl [18], which for the s0,1,0d state is dSadSb

=dabs1−dazd, where dab is the Kronecker delta. Conse-
quently, this state has no spin fluctuations in theẑ directions,
and isotropic fluctuations in thex-y plane. Due to the azi-
muthal symmetry, the spin fluctuation tensordSadSb maps
onto itself under rotation byp radians. Equivalently, one can
say that the spin fluctuations represent a nematic order pa-
rameter(meaning that it transforms under rotation as an ar-
row with no head on it).

As a consequence of the disparate types of spin textures
that involve vector and nematic order parameters, gases with
ferromagnetic and antiferromagnetic interactions behave in
quite distinct manners.

A. Local vorticity

We now discuss how the symmetries of the order param-
eter are related to the curl of the velocity field,

vs =
"

2im
sca

* = ca − ca = ca
*d, s7d

where repeated indices are summed over. The key observa-
tion is that unlike a scalar condensate, the spin-1 condensate
can have a velocity field with extended vorticity. This prop-
erty is most simply understood by introducing a tensor

Qab =
ca

*cb

o
c

cc
*cc

, s8d

which carries all information about the local spin order pa-
rameters but no information about the density or phase. By
constructionQ is HermitiansQab=Qba

* d and has trace 1. We
decomposeQ into a sum of irreducible tensor operators,

Qab = Qs0ddab/3 + ieabcQc
s1d/2 + Qab

s2d, s9d

Qs0d = 1, s10d

Qs1d = s= kSl/r, s11d

Qab
s2d = s2/3ddab − skSaSbl + kSbSald/2r2, s12d

whereeabc is the totally antisymmetric unit tensor andr is
the density. The three irreducible components are a constant
scalar Qs0d, a vectorQs1d which represents the local spin
order, and a symmetric traceless tensorQs2d which represents
the local spin fluctuations. The magnitude of these various
components are constrained by the fact thatQ is idempotent
sQ2=Qd, and hence

0 = TrsQ2d − sTrQd s13d

=− 2/3 +Qs1d ·Qs1d/2 + TrfsQs2dd2g. s14d

The last two terms are non-negative scalars which represent
the amount of vector and nematic order. This expression
clearly shows that these are competing order parameters, as
increasing one of them requires reducing the other.

As demonstrated in the Appendix, the vorticity can be
written in terms ofQ as

= 3 vs = i
"

m
Qabs=Qbcd 3 s=Qcad. s15d

In the spin-polarized case 2Qab=dab−sasb+ ieabcsc swith s·s
=1d one recovers the Mermin-Hof22g relationship

= 3 vs =
"

m
eabcsas=sbd 3 s=scd. s16d

In the purelysuniaxiald nematic caseQab=nanb swith n ·n
=1d, one instead finds an irrotational flow,=3vs=0. Note
that Eq.s15d is correct for all spin, not just spin 1.

In a more geometric language, the superfluid velocity is
the phase one-form associated withc, its curl is the phase
two-form, andQ is the operator which projects ontoc. The
relationship(15) between the projector and the phase two-
form, is generally valid, and shows up in other contexts[19].

In addition to the division ofQ into irreducible spherical
tensors, there are other approaches to isolating the relevant
order. For instance, Snoek, and Zhou[20], find it convenient
to work with the tensor Mab=ca

†cb−s1/3ddaboccc
†cc

=nsQab
s1d+Qab

s2dd (in various places, they use the notationQ̂ or
O2 for this order parameter). Imambekovet al. [21] directly
describe the nematic order in terms of fluctuations in the spin
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(cf. Sec. II), defining Wab=kSaSbl−dabkS2l (Imambekovet
al. use the symbolQab). Below, when discussing visualiza-
tion, I will work with the matrix Qab

ssd=sQab+Qbad /2
=s1/3ddab+Qab

s2d. All of these various order parameters are
useful in different settings, and the reader should be alert to
which one is being used by a given author.

B. Visualization

The ferromagnetic gas has a vector order parameterkSl
which is visualized by drawing a vector at each point in
space(as in Fig. 1). The antiferromagnetic gas has a more
complicated order parameter. In the strongly antiferromag-
netic limit, the order parameter has the form of Eq.(6), and
one can visualize the order by plotting a rod aligned along
the directionn̂ at each point in space. In general, the order
parameter deviates from Eq.(6), and it is more convenient to
describe the order in terms ofQs2d or Qab

ssd=sQab+Qbad /2
=s1/3ddab+Qab

s2d. The tensorQssd is simpler to work with than
Qs2d as it is positive semidefinite(meaning that all eigenval-
ues are greater or equal to zero). The sum of these eigenval-
ues, equal to the trace ofQssd, is unity. In the case wherec is
given by Eq.(6), thenQssd has a single nonzero eigenvalue
whose eigenvector points in then̂ direction. In the general
case, one can definen̂ to coincide with the direction of the
largest eigenvector ofQssd.

GenericallyQssd has three distinct eigenvalues, and there-
fore describes abiaxial nematic, which cannot be repre-
sented solely in terms ofn̂. For a more complete picture of
the local nematic order, one replaces the rods by ellipsoids
whose three principle axes coincide with the eigenvectors of
Qssd. The length of the principle axes are taken to be propor-
tional to the eigenvalues. These ellipsoids are easily con-
structed by treatingQssd as a linear transformation to a
sphere. Starting from a sphereS, the resulting ellipsoid is
defined as the set of points satisfyingra8=Qab

ssdrb, for r PS. In
the uniaxial limit,Qab

ssd=Qab=nanb, two of the ellipsoid’s axes
have length zero, and this degenerate ellipsoid becomes a rod
pointing in the directionn̂. In the ferromagnetic limit 2Qab

ssd

=dab−sasb, the ellipsoid becomes a disc, whose normal is the
spin vectors.

In both the ferromagnetic and antiferromagnetic gas, the
spins and directors point in three dimensional space. Due to
this intrinsic three dimensionality, it is impossible to faith-
fully represent the spin textures on a two-dimensional sheet
of paper. Consequently, in this paper we only provide
sketches of the simplest textures. Animated representations
of the more complicated structures can be found in the
EPAPS archive[23].

For simplicity, wherever possible we attempt to describe
the nematic textures solely in terms ofn̂.

III. LOWEST LANDAU-LEVEL CALCULUS

In this section we present a calculational scheme for
studying Eq.(3). Our approximations are motivated by the
limit where interactions are weak compared to the trapping
potential. Weak interactions are naturally reached under fast

rotation, as in the rotating frame the centrifugal force effec-
tively reduces the trap strength, causing the cloud to spread
out over a larger area, reducing the density and hence the
interactions. Although motivated by this ultradilute limit, our
approach gives an effective approximation to the properties
of a system with much stronger interactions. For example,
both static[24] and dynamic[25] properties of vortex lattices
in a scalar condensate have been very successfully modeled
by this method.

In the rotating frame the Hamiltonian is shifted toH8
=H−V ·L , where the vectorV points along the axis of ro-
tation with modulus given by the rate of rotation, andL is
the angular momentum vector of the system. We restrict our-
selves to two dimensions(taken to be thex-y plane), and
rotate aboutẑ axis. This dimensional restriction is consistent
with the weakly interacting limit, where only a single mode
of the trapping potential is occupied in theẑ direction. To
extend this method to describe the more general(three-
dimensional) situation, one can use a Thomas-Fermi approxi-
mation as in Ref.[26].

In the absence of interactions, the eigenstates of the two-
dimensional single particle HamiltonianHsp8 =p2/2m
+mv2r2/2−Vsrxpy−rypxd have energies Enm="v+"sv
+Vdn+"sv−Vdm, and angular momentumLnm="sn−md
with n,m=0,1, . . . . If theinteraction energy per particle is
sufficiently small compared to"sv+Vd then one can build
up the quantum state from the “lowest Landau level”(LLL ),
made up of the states withn=0. Here we restrict our analysis
to the mean-field level, where one single-particle state is
macroscopically occupied. The most general single-particle
state in the LLL can be written as

cmsx,yd = o
j

cjm
zj

Îp j !
e−uzu2/2, s17d

wherez=sx+ iyd /d is the coordinate in the plane in complex
notation, scaled by the oscillator lengthd=Î" /mv. The co-
efficients cjm can also be expressed in Cartesian notation
cj =scjx ,cjy ,cjzd. We normalize this wave function so that

E dx dy cW * · cW = o
j

cj
* ·cj = 1. s18d

Substituting this ansatz into Eq.s3d, and neglecting the zero-
point energy, the scaled energy per particle in the rotating
frame becomes

E =
kH − VLzl
N"sv − Vd

s19d

=
1

"sv − Vd
E dx dyS=cW * · = cW

2m
+

mv2r2

2
scW * · cW d

− "V„cW *sx]y − y]xdcW … +
c0N

2
scW * · cW d2 +

c2N

2
ucW * 3 cW u2D

=o
j
Fs j + 1dcj

* ·cj +
h

2
fs1 + c̄2dsTr dj

* ·djd − c̄2uTr dj u2gG ,

s20d
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sdjdst = 2−jo
k
S j

k
D1/2

scj−kdssckdt, h =
Nc0

2psv − Vd
.

s21d

Here “Tr” signifies taking the trace of a matrix. The sim-
plicity of these equations illustrate the utility of the Car-
tesian representation ofc. In the LLL, the system is pa-
rametrized by two dimensionless couplings;h, which
measures the ratio between the interaction strength and
the level spacing, andc̄2=c2/c0, the relative strength of
spin and density interactions. Largerh corresponds to
faster rotation. If one rotates at speeds whereV.v, the
centrifugal force becomes stronger than the trapping force
and the system becomes unstable. This centrifugal limit
coincides withh→`. One can experimentally tuneh be-
tween 0 and +̀ .

In this paper we find the ground state as a function ofh
andc̄2 by minimizing Eq.(20) with respect to the parameters
cj using a conjugate gradient method. We truncate the al-
lowed values ofj to be j =1,2, . . . ,J. Convergence is en-
sured by taking several values ofJ, ranging from 2 to 128,
and finding that for sufficiently largeJ the energy saturates.
Although this variational approach is much simpler than di-
rectly minimizing the Gross-Pitaevskii equation, it is still a
nontrivial numerical task. Sincecj is a three-component
complex object, one has the equivalent of 6J real variational
parameters. Symmetries can be used to reduce the number of
independent parameters. All our results use the approximate
physical value,c̄2= ±0.05 [27]. For a discussion of other
values ofc̄2, see Ref.[7].

Not surprisingly, the energy landscape is quite compli-
cated with many metastable local minima. Computationally,
this large degree of metastability makes finding the absolute
ground state quite difficult. In Sec. IV we show how symme-
tries can be used to help find these minima. This symmetry
approach is augmented by a brute-force search strategy
where we run our minimization routines from a very large
number of initial conditions, and select out the lowest energy
minima found. Experimentally, the presence of so many local
minima implies that the state found in the laboratory will
depend strongly upon the method of preparation. Moreover,
one would expect to see domain structures where different
parts of the sample exhibit different phases.

A more general ansatz

Although all the numerical calculations presented here in-
volve Eq. (20), it should be noted that by introducing an
extra variational parameter, one can greatly extend the realm
of validity of the LLL approximation. The resulting equa-
tions are not much more complicated than Eq.(20).

The extended LLL ansatz scales the lengths in Eq.(17) by
a new variational parametern so thatz=n1/2sx+ Iyd /d. Ne-
glecting zero point motion, the energy per particle is

kH8l
N"

= Fv

2
Sn +

1

n
D − VGI1 + sv − Vd

h

2
nI2, s22d

I1 = o
j

s j + 1dcj
* ·cj , s23d

I2 = o
j

fs1 + c̄2dsTr dj
* ·djd − c̄2uTr dj u2g. s24d

Minimizing with respect ton with hcjj fixed yields

H8 = I1"FvÎ1 + h
I2

I1

v − V

v
− VG , s25d

n−2 = 1 +
h

2

I2

I1

v − V

v
. s26d

In the limit l=hfsv−Vd /vgfI2/ I1g!1 one recovers Eq.
s20d. One can minimize Eq.s25d by the methods already
discussed. Note that instead of depending upon only two
experimental inputsh and c̄2, the minima in the extended
LLL ansatz also depends on the dimensionless ratio
sv−Vd /v.

IV. SYMMETRIES OF THE SPIN TEXTURES

A. Symmetries

Given the complexity of the energy landscape, an unre-
stricted minimization of Eq.(20) is a daunting task. The
large number of variational parameters makes the computa-
tion expensive, and the large number of metastable minima
means that an exhaustive search is needed to find the abso-
lute minimum. Moreover, a classification scheme is needed
to describe the minimal configurations once they are found.
We solve all of these problems by studying the possible sym-
metries of the spin textures. In Sec. IV B, we discuss how
these symmetries can be used to detect the textures. This
strategy was inspired by discussions with Dan Rokhsar, who,
with Dan Butts, used similar techniques in understanding
vortex lattices in scalar condensates[24].

Our Hamiltonian(3) is separately invariant under each of
the following operations:(i) rotating spatial coordinates
about the origin by an arbitrary angleu,

csrad → Rabsudcsrbd, s27d

Rsud = S cosu sin u

− sin u cosu
D; s28d

sii d rotating all spins by arbitrary Euler anglesf, u, andx,

cm → Rmnsu,f,xdcn, s29d

Rsu,f,xd = e−ixSze−iuSxe−ifSz, s30d

whereSx,Sy,Sz, are the operators for the spin components;
siii d simultaneously reflecting spatial coordinates across the
line perpendicular to the unit vectorn̂, and applying the time
reversal operatorswhich takescm→c−m

* d,

cmsr d → c−m
* sR̄n̂r d, s31d
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R̄n̂r = r − 2n̂ · r ; s32d

sivd reflecting the spin across the plane perpendicular to the
unit vectorn̂,

cW → R̄n̂cW , s33d

R̄n̂cW = cW − 2n̂ · cW ; s34d

and svd a global gauge transformation by an arbitrary phase
x,

cm → eixcm. s35d

Although the Hamiltonian is invariant under each of these
transformations, the mean-field wave function is not. We will
classify spin textures by the way in which they break these
symmetries.

B. Scalar

To see how these symmetries manifest in spin textures, it
is helpful to first consider a scalar condensate[24], for which
only symmetries(i), (iii ), and(v) are relevant. In the lowest
Landau-level approximation, the nonrotating scalar ground
state iscsrd=e−ur u2, which is invariant under(i) and(iii ), but
not (v), i.e., the only broken symmetry in the nonrotating
condensate is the gauge symmetry.

At appropriate rotation speeds the ground state contains a
single vortex, and(in the lowest Landau level) the order
parameter becomesc=ze−ur u2/2, where, as usual,z=x+ iy.
This single vortex state is no longer invariant under any of
the transformations,(i), (iii ), or (v). However, it is invariant
under appropriate combinations. For example, rotating the
spatial coordinate by any angleu transformsz→eiuz, and
can therefore be undone by a global gauge transformation
(36) with x=u. This is an example of a continuous symme-
try, as for eachu there is a combined spatial rotation and
gauge transformation which leaves the state invariant. This
symmetry is not restricted to the lowest Landau-level ap-
proximation, and it should be clear that any condensate with
a single vortex at the center will have this symmetry, ex-
pressed as

c„Rsudr … = eimucsr d, s36d

wherem is a fixed integer which gives the number of quanta
of circulation which are concentrated in the vortex core. An
ordinary vortex hasm= ±1.

At faster rotation speeds, the condensate will contain a
small cluster of vortices. As an example, one can imagine
two vortices, symmetrically placed atz= 7z0, so that the
order parameter isc=sz−z0dsz+z0de−ur u2/2. No continuous
symmetry exists here. However, there does exist a discrete
symmetry in that this state is invariant under rotating space
by u=p. Similarly, three vortices which form an equilateral
triangle will be invariant under a rotation byu=2p /3. Such
discrete symmetries are generally of the form

c„Rs2p/adr … = e2pim/acsr d, s37d

where a is an integer which, together with the integerm,
describes the symmetry of the cluster of vortices.

The wave function for a cluster of vortices with a reflec-
tion plane will be invariant under a combination of a reflec-
tion across a fixed line, time reversal(complex conjugation),
and a gauge transformation,

csR̄n̂rd* = ± csr d, s38d

where the line of reflection is perpendicular to the unit vector
n̂. We have written the gauge transformation as a multipli-
cation by ±1, as the only consistent phases arex=p ,0.

C. Spin 1

As with vortices in a scalar gas, spin textures in a spinor
condensate are characterized by their properities under dif-
ferent combinations of symmetry operations. The spin de-
grees of freedom only introduce additional symmetries.

At low rotation speeds one expects to find a continuous
symmetry, generically involving the simultaneous rotation of
space, spin, and phase. Without any loss of generality, we
can take the spins to rotate about theẑ axis, in which case the
symmetry is formally described by the statement that there
exists constantsm andn such that for allu,

cm„Rsudr… = eimuRmnsnudcnsrd, s39d

whereRsud represents a spatial rotation about the origin by
an angleu, Rmnsfd represents a spin rotation about theẑ axis
by an anglef, andm,n count the number of times the phase
and spin angles rotate in comparison to the spatial angleu.
Single valuedness of the left-hand side of Eq.s39d constrains
m andn to either both be integers, or both be half-integers.
Further explanation of this constraint will be given in
Sec. IV C 1.

Textures obeying Eq.(39) will be described as the “el-
emental,” “single,” or “azimuthally symmetric” spin tex-
tures. They are the building blocks for all more complicated
structures.

At higher rotation speeds, this continuous symmetry is
replaced with a discrete one. In analogy to the scalar case
(37), the discrete rotational symmetry is of the form

cm„Rs2p/adr… = eim2p/aRmnsn2p/adcnsrd, s40d

where a is a fixed integer describing the geometry of the
texture.

In addition to rotational symmetries, the state may have
reflection symmetries. The most general form of reflection
symmetry which we consider consists of simultaneously per-
forming transformations(iii ), (iv), and(v), namely, reflecting
the spatial coordinates across a line, time reversal, reflecting
the spins across a plane, and multiplying by the factor ±1. By
globally rotating our spins, we can always assume that the
spin and spatial reflection planes coincide. Mathematically
this symmetry can be expressed as
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fc−msR̄n̂rdg* = ± sR̄n̂dmncnsrd, s41d

wheren̂ is the normal to the reflection plane,R̄n̂ is the spatial

reflection andsR̄n̂dmn is the spin reflection. One can also
consider the case where no spin reflection is performed

fc−msR̄n̂rdg* = ± cnsrd. s42d

We will refer to Eq.s41d as a reflection and Eq.s42d as a
partial reflection.

1. Implications

Enforcing the various possible symmetries described in
Eqs. (39)–(42), greatly reduces the number of parameters
which must be minimized. Given the explicit form of the
rotation operators

Rsudz= e−iuz, s43d

Rmnsud = dmne
ium, s44d

and the lowest Landau-level ansatzcm=o j cm jz
je−uzu2/2, the

continuous symmetrys39d, restrictscm j to be zero unless

j = m+ nn. s45d

Sincen=1,0,−1,this requires any nontrivial texture to have
m,n both be integers, or both be half-integers. At most three
cm j’s are nonzero. By combining an overall spin rotation, a
spatial rotation, and a gauge transformation, these three pa-
rameters can be taken to be real. Using the normalization
constrainto j ,mucm ju2=1, one is left with only twosreald varia-
tional parameters.

The discrete symmetries similarly reduce the number of
parameters. For example, the discrete rotation symmetry in
Eq. (40) forcescm j =0 unless

j ; m+ nn smod ad. s46d

Up to an overall phase, enforcing the reflection symmetry
s41d with n̂= ŷ requirescm j is real.

V. RESULTS

A. Azimuthally symmetric textures

In the limit of very slow rotation, the angular momentum
will be carried by a single “elemental” spin texture, charac-
terized by the continuous symmetry in Eq.(39). This struc-
ture is analogous to a single vortex. At faster rotation speed a
cluster of these textures will form. Eventually the clusters
will become regular lattices. In this section the structure of
the “elemental” spin textures will be explored.

1. Ferromagnetic

The ferromagnetic gas displays two different elemental
textures, both of which are similar to the skyrmion encoun-
tered in the spin-1/2 case. These two textures, illustrated in
Figs. 1 and 2, differ by the amount of solid angle(4p or 8p)
traced out by the spin vectors as they move from pointing
straight up at the center to straight down on the edge, and

will therefore be referred to as 4p or 8p skyrmions. If one
looks down from above, as shown in the top panels of figures
1 and 2, one can distinguish these textures by the number of
times which the planar projection of the spin rotates when
one circles the origin(once/twice for the 4p /8p texture).
Higher-order textures(where angles greater than 8p are sub-
tended) are never found to have continuous azimuthal sym-
metries, and are always more appropriately described as a
collection of 4p and 8p skyrmions. At faster rotation speeds,
angular momentum is carried by a lattice of 4p or 8p skyr-
mions where their quantization axes takes on several differ-
ent orientations. These textures only cover a full 4p and 8p
steradians of solid angle when they exist in isolation in an
infinite system. In a lattice, the skyrmions often touch before
they can completely cover the sphere.

The 4p and 8p textures are described by Eq.(39), with
m=n=1 and m=n=2. In a basis with spin projections
(1,0,21), the spinors take the form

un = m= 1l = 1 1

az

bz22e−uzu2/2, s47d

FIG. 2. Top view and perspective view of an 8p skyrmion. This
texture differs from Fig. 1 in that the planar projection of the spins
rotates twice as one circles the origin.
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un = m= 2l = 1 1

az2

bz42e−uzu2/2. s48d

The real coefficientsa and b are given by minimizing
Eq. s20d. In the 4p skyrmion, the velocity field has its greatest curl

at the center of the texture, while for the 8p skyrmion the
curl is greatest on a ring of finite radius(see Fig. 3). Accord-
ing to the Mermin-Ho relationship(15) one can attribute
these two distinct behaviors to the fact that the spins “bend”
fastest in these regions.

The 8p skyrmion can alternatively be interpreted as a
composite of four 4p textures[28,29]. This interpretation is
illustrated in Fig. 4, where the spins in Fig. 2 are rotated
around they axis by 90°. There are four points where the
spins are pointing into/out of the page. These points lie on
the outer edge of the ring of maximal=3v, and can be
taken to be skyrmion cores. Note that their positions are not
unique, and by globally rotating all of the spins, these points
move around in a ring. This lack of uniqueness is a conse-
quence of the high degree of symmetry of this state. The 8p
steradians of solid angle subtended by the texture can be
divided evenly among these smaller skyrmions, allowing us
to attribute 2p steradians to each of them. Two of the sub-
textures, labeled(A) and(C), have cores pointing out of the
page, while the other two, labeled(B) and(D) point into the
page. Equidistance between these cores the spins lie in the
x-y plane. When circling(A) or (C) these planar spins rotate
in a positive sense while around(B) or (D) they rotate in a
negative sense.

The 4p skyrmion has lower energy than the uniformly
polarized state sc1,c0,c−1d=s1,0,0d if and only if
h.2/s1+c2d. This is a second order(continuous) phase
transition. Between the region of stability of the 4p and 8p
skyrmions, a more complicated texture is found. Details of
this intervening state will be given in Sec. V B. A graphical
comparison of the energies of these states as a function ofh
is made in Fig. 7.

2. Antiferromagnetic

The antiferromagnetic gas, with its nematic order param-
eter, supports a much different set of textures than the ferro-
magnetic gas. In particular, one finds that angular momentum
is predominantly carried byp disclinations, which as illus-
trated in Fig. 5 are objects around which the nematic director

FIG. 3. Local vorticityẑ·=3v, for the 4p (a) and 8p (b) skyr-
mion. Darker shades represent larger vorticity.

FIG. 4. (Color online) top view and perspective view of an 8p
skyrmion. This is the same texture as Fig. 2, except all spins have
been rotated by 90° about theŷ axis. This texture can be interpreted
as a composite of four 4p skyrmions, whose cores have been
marked with circles, and labeled by letters(A) through (D). The
spins in(A) and(C) point out of the page and the planar projections
of the spins wrap the equator of the order-parameter sphere in a
positive sense, while(B) and (D) point into the page and the pro-
jected spins wrap the equator in a negative sense.

FIG. 5. Representations of ap disclination in a nematic. Lines
represent the local orientation of the nematic director.

ERICH J. MUELLER PHYSICAL REVIEW A69, 033606(2004)

033606-8



rotates by 180 degrees(p radians). There is no consistent
way to define the direction of the director at the center of the
p disclination, and one therefore calls these textures “topo-
logical” meaning that there is a loss of continuity at the core.
The topological nature of this excitation makes it very simi-
lar to a vortex, for which there is no way to define the phase
of the order parameter at the center. In the case of a vortex,
this lack of continuity causes the density to vanish at the
core. For the experimentally relevant spin-1 gases, the den-
sity interaction is much stronger than the spin interaction,
and it is favorable to fill the core with ferromagneticaly or-
dered atoms.

Thus, angular momentum is carried byp disclinations
with ferromagnetic cores. The spins in the core align perpen-
dicular to the plane in which the nematic directors lie. In the
fast rotating limit, one finds a square lattice of thesep dis-
clinations with their cores aligned in an antiferromagnetic
checkerboard pattern.

The p disclination is described by Eq.(39) with n=m
=1/2. In abasis with spin projections(1,0,21), the spinors
take the form

un = m= 1/2l = 1 1

0

bz
2 , s49d

where the real numberb is given by minimizing Eq.s20d the
p disclination has a lower energy than the uniform nematic
state sc1,c0,c−1d=s0,1,0d if and only if h.2−2Î2c2

+Osc2d. This is a first ordersdiscontinuousd phase transi-
tion.

We find one other azimuthally symmetric texture in the
gas with antiferromagnetic interactions. This state has the
same mathematical structure as Eq.(47), except that here
b.0, while in the ferromagnetic caseb,0. As sketched in
Fig. 6, this texture consists of a nearly uniform nematic ring
with a ferromagnetic core. The spins in the ferromagnetic
core bend like the skyrmion in Fig. 1. The nematic ring has
its directors canted slightly from theẑ axis, forming a crown-
shaped texture. We do not find any composite textures which
include this structure.

B. Composite textures

At higher rotation speeds, angular momentum is not car-
ried by single “elemental” textures, but rather by a small
collection of these objects. At very fast rotation speeds one
expects to find a regular lattice. We study these more com-
plicated objects by minimizing Eq.(20), sequentially con-
straining the wave function to have the symmetries in Eqs.
(39) through(42).

Our numerical results are summarized in Figs. 7 through
11. Figure 7 shows the energy of states with various symme-
try properties. The data is scaled so as to bring out the im-
portant features. There are two parts to the scaling:(1) E2 is
plotted rather than justE because in the fast rotating limit
one expectsE~h1/2. This dependence is made apparent by
noting how various terms in the energy scale with the total
size of the cloud;I2~ kr2l and I4~1/kr2l. Minimizing with
respect tokr2l then givesE~h1/2. (2) We subtractbh from
E2, whereb is an emperically determined constant. Remov-
ing this linear term makes the differences in the curves easier
to see. We useb=−1.7125s−1.8084d for the ferromagnetic
(antiferromagnetic) data.

FIG. 6. Structure of the nematic ring texture(K). Horizontal
axes represent distance from the center of trap along thex axis,
measured in units of the trap length. The top panel shows the den-
sity r. At each position in the middle panel, an arrow is drawn
which represents the direction and strength of the local spin. At
each position in the bottom panel, a rod points in the direction of
the nematic directorn, corresponding to the largest eigenvalue of
Qssd. The lengths of these directors are scaled by the total density, so
that their lengths are related to the amount of local nematic order.
To construct the full three-dimensional spin texture, one rotates this
picture around the origin, so that the spins near the center look like
the skyrmion in Fig. 1, and the nematic order away from the center
forms a crown texture.

FIG. 7. Scaled energiesĒ as a funtion of rotation speed, parametrized byh defined in Eq.(21). Largerh corresponds to faster rotation.
Top/bottom panels show ferromagnetic/antiferromagnetic interaction withc2= 70.05c0. Each curve represents a state of different symmetry,
as described in the text and Figs. 10 and 11. More detailed images of these states can be found in the EPAPS archive[23]. Energy scalings

(top, Ē=E2−1.7125h; bottom, Ē=E2−1.8084h) are chosen to aid in comparing these different curves.
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The curves in Fig. 7 are labeled by the letters(A) through
(S) and can be described as follows:

Ferromagnetic states.(A) The uniformly polarized state.
(B) The 4p-skyrmion stateun=1,m=1l described in Sec.
V A 1. (C) A texture with a single reflection plane consisting
of two elementary structures: a 4p skyrmion near the origin,
and a second object at whose center the ferromagnetic order
vanishes, to be replace by nematic order.(D) The
8p-skyrmion stateun=2,m=2l described in Sec. V A 1.(E)
Similar to (C), except the 4p skyrmion is replace by an 8p
one.(F) A texture with two reflection symmetries and a dis-
crete rotation symmetry(with a=2,n=m=1). Two 8p skyr-
mions with their axes canted with respect to one-another lie
on one axis, while twoweakly nematic regions, where the
ferromagnetic order is reduced, lie on the other.(G) A texture
with two reflection symmetries and a discrete rotation sym-
metry (with a=4,n=1,m=0). At the center lies a nematic
region. Four 8p skyrmions with canted axes form a square
surrounding the center.sG8dAs with (G), but the square is
distorted into a rhombus, resulting in a lower symmetrysa
=2,n=1,m=1d. (H) A texture with four reflection axes and a
discrete rotation symmetrysa=4,n=1,m=1d. There are four
8p skyrmions, symmetrically situated with their axes nearly
lying in a plane.

Nematic states.(I) The uniform nematic state.(J) The p
disclation with ferromagnetic core described in Sec. V A 2.
(K) A nematic ring with a ferromagnetic core described in
Sec. V A 2.(L) Four p disclinations forming a square. The
feromagnetic cores are aligned antiferromagnetically. This
state has two reflection planes, and a fourfold rotational sym-
metry sa=4,n=2,m=2d. sL8d As with (L), but the square is
slightly deformed into a rhombus, and the perfect antiferro-
magnetic alignment of the cores is slightly distorted. The
rotational symmetry is reducedsa=2,n=1,m=1d. (M) Five
p disclinations form a regular pentagon. The ferromagnetic
order at the cores lies completely in thex-y plane. Contains
a reflection plane and a five fold rotational symmetrysa
=5,n=2,m=0d. sM8d As with (M), but the perfect fivefold
symmetry is slightly distorted with the pentagon of disclina-
tions stretched along one axis. This state only has a single
reflection plane and no rotational symmetry.(N) Dominated
by two stripes of threep disclinations organized into a
(nearly) square lattice, this texture has a full reflection plane
and a partial reflection plane(across which the spatial but not
spin degrees of freedom are reflected). (O) Eight p disclina-
tions: one at the center, surrounded by seven others. The
central core points in theẑ direction, while the surrounding
cores are canted slightly in the −ẑ direction from thex-y
plane. Contains one reflection plane and a sevenfold rota-
tional symmetrysa=7,n=3,m=−3d. (P) Nine p disclina-
tions forming a square lattice with their ferromagnetic cores
aligned antiferromagnetically. This state contains two refec-
tion planes and a fourfold rotation symmetrysa=4,n
=1/2,m=1/2d. sP8d As with (P), but the square lattice is
deformed towards having a tear-drop shaped set of eight dis-
clinations surrounding the central one. This state only has a
single reflection plane and no rotational symmetries.(Q) A
pattern of ten disclinations; two central disclinations sur-
rounded by a distorted oval of eight others. This state has a

single reflection plane.(R) A distorted square lattice, consist-
ing of 12 disclinations. Contains one reflection plane.(S) A
distorted square lattice of 14 disclinations. Contains two re-
flection planes, and a discrete rotation symmetrysa=2,n
=2,m=2d.

Three-dimensional animated representations of these
states are stored on the EPAPS archive[23].

From these data one can calculate several observables in-
cluding: the angular momentum and the degree of spin po-
larization as a function ofh. These results are shown in Figs.
8 and 9. The angular momentum is measurable through col-
lective mode experiments[30], while spin polarization could
be measured through magnetic susceptability. In Figs. 10 and
11, we show spatial distributions of the densityr, vorticity
ẑ·= 3v, spin densityuSu2, and nematic orderQab

s2dQba
s2d for

each of these textures.

VI. DISCUSSION

A. Alternative classification of skyrmions

The division of a given texture into elemental skyrmions
is not unique, as is illustrated by the two ways of thinking
about the 8p skyrmion in Sec. V A 1. Above we chose to
discuss composite textures in terms of the spin behavior at
the density maxima(which is analogous to looking at the 8p
skyrmion from the angle in Fig. 2). This is a natural tax-
onomy scheme in that it reduces the total number of skyrmi-
ons which need to be considered, at the cost of introducing
8p skyrmions. It is enlightening to also describe the texture
in terms of the spin behavior at the density minima(analo-

FIG. 8. Angular momentum per particleL and spin polarization
per particles= ued2rSsr du of ferromagnetic spin textures as a func-
tion of rotation speed, parametrized byh. Both are measured in
units of". Note the discontinuities when the ground-state symmetry
changes.

FIG. 9. Angular momentum per particleL and spin polarization
per particles of nematic spin textures as a function of rotation
speed, parametrized byh.
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gous to the view of the 8p skyrmion in Fig. 4 in terms of
four smaller textures). The advantage of this latter viewpoint
is illustrated by considering texture(H). At the local minima
of the density, the spin points into or out of the page in a
manner suggestive of two interpenetrating square lattices.
The textures around each minima can be described as
Mermin-Ho skyrmions(or merons) [22] where at the center
the spin points in the ±ẑ direction, and then rolls over to lie
in the plane. In the vicinity of each texture the spins trace out
2p steradians, covering half of a sphere.

Under this interpretation the following states have new
descriptions.(D) Four skyrmions form a square. Two of their
quantization axes point into the page, two out of the page.
(E) Along thex axis the density has three minima, and there
are correspondingly three elemental textures, two skyrmions,

and a nematic region.(F) Three skyrmions lie along thex
axis.(G) Four skyrmions form a square and a nematic region
sits at the center.sG8d As (G) but the skyrmions form a
rectangle.(H) Two interpenetrating square skyrmion lattices
with four 4p skyrmions pointing into the page and five
pointing out.

FIG. 10. Spatial structure of spin textures in a gas with ferro-
magnetic interactions. From left to right, the columns represent den-
sity r, vorticity ẑ·=3v, spin density uSu2, and nematic order

Q̄ab
s2dQ̄ba

s2d=r2Qab
s2dQba

s2d−r2/6. Darker shades corresponds to larger
magnitudes. Although not universally true, 4ps8pd-skyrmions tend
to show up as black(white) dots in column 2 and white(black) dots
in column 3.

FIG. 11. Spatial structure of spin textures in a gas with antifer-
romagnetic interactions. With the exception of texture K, all black
dots in the third column(which also coincide with white dots in the
fourth column) can be identified as the cores ofp disclinations.
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B. Experimental consequences

In this section we address the questions of how to experi-
mentally create and measure these spin textures.

Creation.One should be able to create these spin textures
by the same techniques used to create vortex lattices in scalar
condensates[1]. These methods include “stirring” the cloud
with a detuned laser, rotating an ellipsoidal trap, and cooling
a rotating cloud through the Bose-Einstein condensate phase
transition. Several caveats must be kept in mind however(i)
stray magnetic fields and magnetic-field gradients must be
minimized, and(ii ) the large degree if degeneracy in this
system combined with experimental randomness may lead to
more complicated spin textures than those seen here. In par-
ticular, at fast rotation speeds one would expect to find a
domain structure, where different parts of the clouds contain
different lattices of skyrmions/disclinations.

Detection.We propose directly imaging these textures.
First, one turns off the atomic trap, allowing the cloud of
atoms to expand. If a magnetic field gradient is introduced
during the expansion, the different componentssc1,c0,c−1d
will become spatially separated as in a “Stern-Gerlach” ex-
periment. Each of the three components can then be sepa-
rately imaged. This detection method has been used to ob-
serve skyrmion textures in the pseudospin-1/2 case at JILA
[9] and in the spin-1 and spin-2 cases at MIT[14]. An illus-
trative density profile for the three components of texture(H)
is shown in Fig. 12. Note that the Hamiltonian(3) is invari-
ant under a global rotation of all the spins. In principle, this
means that an experiment may create spin textures with a
randomly chosen global orientation. Figures 12(a) and 12(b)
shows the components of the same spin texture, but with the
spins uniformly rotated. The differences between the two fig-
ures demonstrates how sensitive the component densities are
to global spin orientations.

A second detection scheme makes use of the birefringent
properties of a spinor condensate. As shown in Ref.[31],
light, when detuned from the fundamental transition of the
atoms by a frequency which is large compared to the hyper-

fine structure but small compared to the fine structure, inter-
acts with the spin textures in a simple manner. At these fre-
quencies, the ferromagnetic regions areoptically active,
meaning that circularly polarized light aligned with the spins
travels at a different speed than the opposite circular polar-
ization. Consequently, the polarization axis of linearly polar-
ized light rotates when it passes through a ferromagnetic re-
gion. The angle of rotation is proportional to the projection
of the ferromagnetic order along the light propagation direc-
tion. No such rotation occurs when the light passes through a
nematic region.

Using this effect, one can envisage an experimental setup
where the sample is imaged with polarized light, but with a
crossed polarizer in front of the detector. Only light which
has its polarization axis rotated by passing through a ferro-
magnetic region will reach the detector. Thus, one could di-
rectly image the ferromagnetic cores of thep disclinations
found in the antiferromagnetic gas.

C. Quantum Hall physics

At even higher rotation speeds, quantum fluctuations are
expected to melt the regular lattices of spin textures. The
states produced from this melting are highly nontrivial, with
strongly-correlated structures reminiscent of the multilayer
quantum hall effect[32]. Exactly how the textures discussed
here are connected with the correlated states are a matter of
current research.

D. Connection with textures in nonrotating clouds

It is useful to compare the structures discussed here with
those which are studied in static traps[33]. The most signifi-
cant difference is that here we were considering states which
are ground states of the energy(in the rotating frame). Con-
versely, textures in a static trap are macroscopically excited
states of the system. Given a mechanism for energy relax-
ation, these excited states will rapidly decay, for example, the
texture could drift to the edge of the cloud where it can
disappear. In many experiments, these energy relaxation
mechanisms are absent, and textures can be observed in a
static trap[for example, see Ref.[14]].

Ignoring the stability properties, the other significant dif-
ference is that the textures in this paper are all two dimen-
sional, while the textures discussed in Ref.[33] tend to be
three dimensional.

ACKNOWLEDGMENTS

I would like to thank Dan Rokhsar, Kareljan Shoutens,
and Michael Berry for respective discussions of the symme-
tries of small clusters of vortices in scalar condensates, Ref.
[7] and Sec. II A. I am indebted to Tin-Lun Ho for his ad-
vice, support, and critical comments. This work was partially
supported by NASA(Grant Nos. NAG8-1441, NAG8-1765),
and by NSF(Grant Nos. DMR-0109255, DMR-0071630).

APPENDIX: LOCAL VORTICITY
In this appendix we derive Eq.(15), which relates the curl

of the velocity to the spin order parameter. Introducing a

FIG. 12. Densitiesuc1u2, uc0u2, and uc−1u2 of the three compo-
nents of texture(H), as seen from two different quantization axes.
Darker shades represent higher density.(a) uses the natural quanti-
zation axis where the skyrmion axes are aligned with theẑ direc-
tion, while (b) uses an arbitrary axis.
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scaled order parameterfc=cc/În, the superfluid velocity is
given by

vs =
"

2im
sfc

*=fc − fc=fc
*d, sA1d

where repeated indices are summed over. The vorticity is
thus given by

= 3 vs =
"

im
s=fc

* 3 =fcd. sA2d

This expression is related to Eq.s15d by noting that

Qab=Qbc 3 =Qca = fa
*fbfcfa=fb

* 3 =fc
* sA3d

+ fa
*fbfb

*fc
*=fc 3 =fa sA4d

+ fa
*fbfc

*fc=fb
* 3 =fa sA5d

+ fa
*fbfb

*fa=fc 3 =fc
* . sA6d

The termssA3d and sA4d vanish on account of respectively
being antisymmetric in the indicesb,c anda,c. Noting that
fa

*=fa==sfa
*fad−fa=fa

* , one sees that the termsA5d is
antisymmetric in the indicesa,b, and therefore also van-
ishes. Finally, usingfa

*fa=1, one finds

Qab=Qbc 3 =Qca = − =fc
* 3 =fc, sA7d

which combined with Eq.sA2d yields Eq.s15d. Note that this
result is not dependent on the atoms being spin 1, but is
completely general.
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