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“Cosmological” quasiparticle production in harmonically trapped superfluid gases
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We show that a variety of cosmologically motivated effective quasiparticle space-times can be produced in
harmonically trapped superfluid Bose and Fermi gases. We study the analog of cosmological particle produc-
tion in these effective space-times, induced by trapping potentials and coupling constants possessing an arbi-
trary time dependence. The WKB probabilities for phonon creation from the superfluid vacuum are calculated,
and an experimental procedure to detect quasiparticle production by measuring density-density correlation
functions is proposed.
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[. INTRODUCTION the effective metric tensor related to its covariant compo-
nents by §'g,,=",, and g=det g,, is the determinant of

th In atgrawtattlp?al f'el(;j W'tt.h e>t<_pI||C|t tlmebdepen?tence 'nlthe metric tensor. The actiarl) leads to the “relativistic”
e metric, particles and antiparticles can be simultaneously - "\vave equation

created by quantum fluctuations from the vacuum. By the

uncertainty principle, the time scale of the system’s evolution 1 —

dictates the typical energy of the particles produggd The Do = ?aﬂ(\‘“'_ 9 ¢ 9,2)=0. (2)

process of cosmological particle production, whose A

condensed-matter analog we shall consider here, is potein general, the effects of quantum fluctuations described by

tially relevant in the expanding early universe, in which the quantum version of Eql) are very small and can hardly

phonons experience an acoustic geometry; as a consequenbe,observed because of finite-temperature and dissipation ef-

the expansion of the universe could generate density wavdscts. Therefore atomic superfluids, where both extremely

growing into galaxieg2]. small temperatures and dissipationless flows are possible, at-
Attention has been of late focused on condensed-mattdract growing interest for an emerging research field of “ex-

analogs of the curved space-times familiar from gravity, pri-perimental cosmology.”

marily due to their conceptual simplicity and realizability in  In the following, we study how various curved space-

the laboratory{3—10. Condensed-matter systems lend them-times can be implemented in harmonically trapped superfluid

selves for an exploration of kinematical properties of curvedBose and Fermi gases. As a concrete example, we show how

space-times and, in particular, provide a testbed to study thee Sitter and Friedmann-Robertson-WalkeRW) universes

effects of a well-defined and controlled “trans-Planckian”can be “recreated” in superfluid gases. We analyze the qua-

physics, i.e., atomic many-body physics on a microscopiciparticle production probabilities, leading to a thermal spec-

scale, on low-energy quantum effects such as Hawking ratrum in the WKB approximation, and discuss an experimen-

diation [11] and cosmological particle production. In the tal procedure to observe and characterize the excitations

present paper, we investigate quantum fields propagating goroduced.

effective curved space-times backgrounds, for the case of

harmonically trapped, dilute superfluid gases with possibly

time varying particle interactions. For a perfect, irrotational Il. QUASIPARTICLE METRIC TENSORS IN

liquid, described by Euler and continuity equations, it was HARMONICALLY TRAPPED SUPERFLUIDS

recognized by Unrulil2] that the action of fluctuations of

the velocity potentialb, around a spatially inhomogeneous

and time-dependent background, can be identified with the The hydrodynamic, i.e., long-wavelength action of a

A. Superfluid action

action of a minimally coupled scalar field according to trapped superfluid is generally given by
2 i p
s:f dtd3x2i{— (E -v-V @) + CZ(VQ)Z} S=f dth[pE + E(V )+ elp) + Vg |, ()
K ot

1 i where the external harmonic potentbaéttap(x,t)=%[wﬁ(t)x2
=3 f dtdx\- gg**a,P3,P. (1) +wl()y>+wi(1)Z°] is characterized by the three frequen-
ciesw;, i=X,Y,z The trapping frequencies are assumed to
Here,v is the background velocity, k/the compressibility, be time dependent in an arbitrary manrere can also
andc the speed of sound of the liquid. We use the summaeonceive of makinguiz(t) effectively negative by “turning
tion convention over equal indices, unless indicated otherever” the potential, see Sec. ]llin the above action, the
wise. The quantities4 are thecontravariantcomponents of quantity p plays the role of a response setiffnesscoeffi-
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cient to gradients otp, and equals the total fluid density at trapping frequencies. It is by now a well-established fact that
absolute zero; the equation of state of the superfluid is givetthe hydrodynamic solution for density and velocity of mo-
by the energy density functionak €(p). (Note that we leave tion for such a system may be obtained from a given initial
out an overall minus sign in the definition &) We gener-  solution by a scaling procedure both in the bosdii8-2(q
ally setz=m=1. The action entails the existence of a veloc-as well as in the fermionic cag@l]. Defining the scaled
ity potential ¢, such that the vorticity is zero except on sin- coordinate vectox,=ex;/b;, density and velocity are given
gular lines, and ensures the validity of Euler and continuityby the scaling transformatiorj48]:

equations for the superfluid velocity=V ¢. The identifica- -

tion of ¢ with the phase of a complex “order parameter” p(x,t) O M, (6)
(i.e., the direction of a unit vector in the plane of some ab- 1%

stract spaceleads to the quantization of circulation, because

¢ is then defined only modulo multiples ofr2 Finally, the b

above action implies the conjugateness of phase and density d(x,t) O _'Xi2+7ﬁ(xb,t)- (7)
guantum variablefl5]: i

[p(X), p(x")]=i8(x = x"). (4)  The (dimensionlessscaling volumeV=1l; b; in the density
(6) is dictated by particle conservation.

These properties, taken together, constitute the canonical |ntroducing a new “scaling time” variable by
definition of a superfluid af=0[16,17]. Therefore, Eq(3)
represents the universal action of a simple scalar superfluid dr_[g/g(0)]°
at absolute zero made up of elementary bosonic or fermionic dt = yrt
atoms, independent of a particular microscopic model.

The simplest example for the equation of state is that of ave rewrite the actiort3) in the form
weakly interacting Bose gas, Wiﬂ'BZ%gpz, whereg is the P B
coupling constaqtg:4qu, W|t.h.as the ss-wave scattenng. s:J ded3xb[",3—¢+ BFi(TS)(Vbi¢)2+E(5)
length, characterizing pair collisions of atoms. The scattering it 2

(8

length can be tuned using external magnetic fi¢ld. An-

other example is a two-component Fermi gas with attractive +Vtrap(xb,0)7>} , (9)
interactions between atoms of different hyperfine species

[14]. The ground state of such a gas is superfiiidthe  where ther, dependenscaling factorsare
simplest version, it is the BCS state of a scalar superfluid

with s-wave pairing, and since the interactions are weak, the _ yrt _1ldt
BCS gap is small and the equation of stéi® exponential Fi(r9 = b g/g(0)]# B b_zd_rs
accuracy coincides with that of a free Fermi gas: ' '
=[(372)?/10]p>°. To consider all possible cases which ande(p)=e(p)g=g0): Vbi= 3/ ;. The rescaled densify has
have a power-law density dependence of the equation afo explicit 7, dependencdwhereas it has explicit depen-

(10

state, in a generic way, we write dence on the lab tim®, and coincides with the equilibrium
B » condensate density profile in the scaling coordinate
e(p) =Adp”, ) Where any confusion might arise, we will generally desig-

where A is a numerical constant. That i8=1,y=2 for a  hate scaling variables with a tilde to clearly distinguish them

dilute Bose gas, an@g=0,y=5/3 for noninteracting two- from lab-frame variables. _
component fermions. For the relation10) between the scaling factors abdg

In our present context, an important quantity characterizfo hold true, we must impose the following equations of
ing a superfluid is the so-called “Planckian” energy scalemotion for the scaling parametelog
Ep, i.e., the frequency beyond which the spectrum of the [9/g(0) P
excitations above the superfluid ground state ceases to be 'bi +wi2(t)bi :gg—lo (11)
phononic andpseudg Lorentz invariance is broken. For a V7

weakly interacting Bose gaEp~gp, of the order of the . I .
mean interparticle interaction. In a BCS superflulg}, is '_I'hey need to be solved with the initial conditiobs=1 and

determined by the BCS gaBp~ p*® exr{—l/(|g|p1’3)]. The Dbi=0. Note that here no summation convention is used in the
complete analogy with a quantum field theory orfixed second term on the left-hand side. For a sufficiently large
curved space-time background given by Exj.only exists if cloud, the stationary background solution can be found from
all ime scaled,, describing the evolution of the superfluid, theé Thomas-Fermi density profile. It is given by using that

are much larger than the “Planck timey> 1/Ep,. -d¢/drs=p equals the initial chemical potential, and
B. Scaling transformation for Bose and Fermi superfluids %; = = ViragXp, 0). (12

Our approach in the following is based on the so-called
scaling transformatiofil8—21 to describe the expansion and The part of the action quadratic in the fluctuations is ob-
contraction of the gas under time-dependent variations of theined to be
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dr? +r2dQ?|.

1
1-f4(r)
(13 (17)

o The metric in the above form facilitates comparison with
where p=p-py and 8¢=¢p+u7,. The rescaled bulk com- metric tensors in spherically symmetric space-times written
pressional modulus(inverse compressibilily k=d%/d’p  in their standard form. E.g., if?(r)=2M/r is chosen, this
does not depend on the timg and is identical t@(0) in the  line element is conformally equivalent to the Schwarzschild
bosonic case. After integrating out the density fluctuationsmetric, the asymptotically flat vacuum solution of the Ein-
we obtain the effective action for the rescaled phase variablstein equations around a spherically symmetric body with

total massM [27].

~ P ~ 1
SER J drsd3xb{5ﬁia¢+BFi<vbi5¢>2+—7<552 , ds?= 2| - [1 - 12(r) Ik +
7 2 2 K

_ 1 J ~\? _ ~

S(z)zdesdBXbT{—<—5¢) +C2Fi(vbi5¢)2],
2K I7s Ill. CREATING de SITTER AND FRIEDMANN-

(14) ROBERTSON-WALKER UNIVERSES

o ) The equation of state for Bose superfluids contains the
where the squared scaling speed of sotfwkp(x,). Using  interatomic interaction. Therefore, by varying this interac-
the identification with a minimally coupled scalar field, tion, possibly together with the trapping frequencies, expand-
analogous to the one performed in the second line of Bg.  ing clouds of Bose atoms allow for the simulation of a large
the line element in the scaling variables reads set of cosmological space-times. We begin by discussing the

so-called de Sitter universe, which is a solution of the
T vacuum Einstein equations characterized by the line element
d&?= T;V'FXFyFZ[—EZdrﬁ +FdE . (15  [27,28

-1
_ _ _ _ dszz—cz(l—ér2>d72+ (1—ér2> dr? +r2dQ?,
The line element takes a particularly simple form for an iso- 3 3
tropic superfluid Fermi gas, wherg=5/3 andthus all F; (18)
=1, leading tad7,/dt=b"2. We note that even for this simple
case, the metric defined by E(L5) is not trivial, sincer, ~ With A being the cosmological constast energy density of
andt are different, and botf and % depend on the radial the vacuum. Up to the conformal factotg, the metric(17)
scaling coordinate,. We will see below that in the case that coincides with the de Sitter metrid8), provided we require
F.=1 the scaling transformation is exact, and that thereforéhatv?/c?=Ar?/3 and that the speed of sound is a constant
no quasiparticle creation occurs in thealing variable basis  In space and time. The speed of sound in the center of the
i.e., there is no mixing of negative and positive frequencycloud is time independent if
parts in the timerg (Quasiparticle creation can take place with 2~ 3
reference to the lab-frame where the time coordinatg is ¢*=1T"= const g(1)/g(0) = b*(D). (19
though, and a lab detector will still see that quasiparticles ar€lose to the center of the condensatés, in addition, prac-
“created). tically spatially independent. Using E(), we find thatA
Identifying 6¢ with &, and going back from scaling co- =const provided becexd\t], with A=cyA/3. This expo-
ordinates to laboratory-frame variables, we recover the acential expansion of the cloud ca@symptotically be
tion (1), with o=(b;/byr;e, and the line element, which is of achieved if we turn over the potentlazl, making |t2expel the
Painlevé-Gullstrand type, reafi24,25 particles rather than trapping them“(t— o)==\ The
de Sitter horizon, where, =c, is stationary and situated at
r,=c(0)/\, which is well inside the expanding cloud pro-
d< = E[_ (c? - v?)d - 2v,dxdt + dXiz], (16) vided A\ > wy, Wherewy is the initial trap frequency.
K The experimental sequence leading to “condensate infla-
tion” is schematically depicted in Fig. 1. We assume that the

where c?=«p is the squared instantaneous speed of sound@XPeriment can be done with one trappkev-field seeking

We now assume that space is spherically symmetric,di.e., @nd one untrappechigh-field seekinghyperfine component
has a radial componeni, only, thatv,/c=f(r) holds, and of the same atomic species. We start from a sufficiently large
furthermore that=c(t) is a function of time only. We first Bose-Emsteln—_condensed CIO[.Jd "?‘t smaffectively zerg
apply the transformationydt=c(t)dt, wherec, is some con- temperature with all atoms being in the trapped state._Th_en,
stant(initial) sound speed, connecting the laboratory time we transfer all the atoms to the untrapped state, by flipping

) S . . the sign of the trapping potential. At the same time, we ramp
to the time variabld. This results in the line elememts’ up the interaction strength, according to conditia), using

=(c/ K)[-c3(1-fA)d t2- 2fcdtdz+dr?+r2dQ?]. We then em- 4 suitable Feshbach resonarit8]. As a result of the simul-
ploy a second transformatiogydr=cydi+fdr/(1-f?) [26], taneous action of the inverted parabolic potential and the
to bring the metric into the form increasing interaction energy, the gas cloud experiences a
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Fetll? body losses are strongly suppressed by Fermi stat{sis

IV. COSMOLOGICAL PARTICLE
PRODUCTION ANALOG

Now we turn to describe the evolution of quantum fluc-
tuations, on top of the classicéinean-field hydrodynamic
solutions described above. The equation of motion for the
phase fluctuations can be obtained after variation of the ac-
tion (14),

FIG. 1. Exponential expansion of a two-component Bose- P o~ 4 ~
Einstein condensate with effective s 1/2, tocreate a de Sitter a_Tzé‘ﬁ - KVbi(fFi(Ts)Vbié‘ﬁ) =0. (22)
quasiparticle universe close to its center. The trapping potential is s
inverted by applying a radio frequendyf) pulse, which transfers Phrased in curved space-time language, the above equation is
the atoms to their untrapped hyperfine state. the minimally coupled massless scalar wave equatiodpor
analogous to Eq2), with the metric(15).

rapid exponential expansion, representing the analog of cos- Consider for simplicity the isotropic case

mological inflation.
In fact, Eq.(19) defines a broad class of Bose superfluid p37-5

effective space-times. In the present case of isotropic expan- Fi=F= 9O F (23

sion with b;=b, we havet=7, and, in scaling variables, we 99

obtain up to a conformal factor a Friedmann-Robertson-The solution for the full quantum field reads

Walker metric:

2= c 2042 4 W22 1 n2e 24 )2 Sp=2, ~K Go(Xp)[Bnxn + &hxn], (24)
d —E[—cdt+bdrb+brbd9]. (20) ~\ Ve,

According to the above form of the metric, the quantity whereV is the initial Thomas-Fermi volume of the cloud, the
plays the role of the scaling parameter not only in ouroperators, (éﬁ) annihilate(create phonon excitations in the
condensed-matter context, but can be interpreted equaliypitial vacuum state, and the mode functigpssatisfy

well as the scale factor in the expansion of the universe, with

2
H=Db/b the Hubble parameter. As demonstrated above, ex- d_X”
ponential growth ofb, with constantH, corresponds to ex- d7§
ponential inflation[22]. The present setup also allows for the The initial conditionsy,(ms— —~)=exf-ie,r.] are selected
simulation of power-law inflatioi22,23, with b(t)_octﬁ. The  g,ch that Eq(24), att— —, describes the phase fluctua-
“Hubble parameterH changes for all exponentginversely  (jons in a static trapped superfluid in its ground state. In
proportional to timet, Hec1/t, and the exponeni=1/2cor-  guantum-field-theory(QFT) language this ensures that a

responds to a “radiation dominated” universe, while the exyaporatory frame detector does not detect quasiparticles at
ponent §=2/3 corresponds to a “matter dominated” uni- t_, o Hereafter we define the “scaling vacuum” to be

verse. An isotropically trapped expanding superfluid gas thug, e guantum state annihilated by the operatiyswhere
models an isotropic expanding universe. Generically, we cagyy choice of the initial conditions guarantees that the
model anisotropic universes with EQLS), with scaling fac- jpjtial superfluid vacuum and the scaling vacuum coincide
tors which are different in different spatial directions. at t—s —oo.

While this experiment is feasible in principle, increasing  The case when alF,;=1 is remarkably special: In this
the interaction dramatically increases three-body losses gs;se Eq(25) does not depend on the superfluid evolution,
well, whose total rate scales likgp?. This complication can  anq thus the quantum state of the excitations remains un-
be avoided, by switching to effectively lower-dimensional changed. As we have seen above, this indeed happens in the
systems; e.g., a 1+1D analeghere 1+1D stands for spa- ase of an isotropic Fermi superfluid. Another example is a
tially and temporally one-dimensionabf a de Sitter uni-  2p jsotropic dilute Bose gas with constant particle interac-
verse can be achieved for quasi-1D excitations in a linearlyjon 119, In these cases the scaling transformation is exact,
expanding elongated Bose condensate, without changing thgyih for the condensate and the excitations. In the language
interaction [29]. Another possibility is to use superfluid of QFT this amounts to the fact that there is no particle
Fermi gases. We have, in the isotropic cab&1, d7s  production in the scaling basis, since the scaling solution is

+F(79€xn = 0. (25

—dt/p2 i itten i ; )
=dt/b%, and the metric may be written in the form constructed from eigenfunctions of tiiexactly conserved
T scaling transformation operatby (in other words the scaling
C i =202 p24:2 1 p2:204()2 . e .
ds’= E[_C dt* + godry + BrpdQ7], (21)  vacuum is protected by an exact scaling invariance which

forbids frequency mixing The fact that no excitations are
where we defined a scale factBr=b?. Performing experi- produced in the scaling basis does not mean that a lab detec-
ments in superfluid Fermi gases has the advantage that thretor does not detect quasiparticles. The transformation from
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the laboratory time to the scaling timer, time is nontrivial ~ and thereforeN,=|8,/> can be interpreted as the number of
and thus the phase of the functiogsis a complicated func- scaling basis quasiparticles created.
tion of the laboratory time. In other words, the phase field In the WKB approximation the amplitudes are connected
given by Eq.(24), if coupled to a detector of the type con- in a simple way:
sidered in Ref[29], gives a nonzero response. This indeter-
minacy of the vacuum state finds its counterpart in the Bn=exil- &/2Tolan, (29)
Unruh-Davies effect in flat space-tinj&,31] and its curved  where the inverse temperature is given by the integral
space-time generalization, the Gibbons-Hawking effagj.

The description of a quantum field state in terms of par- = lf = }
. ' . . . . =Im VF drg |, (30)
ticles and antiparticles is based upon the separation of posi- To c
tive and negative frequency parts. As we confine ourselves to
a measurement involving the laboratory time variablthis ~andC is the contour in the complexs plane enclosing the
distinction is only possible if the asymptotic phase ypf ~ closest to the real axis singular point of the functiéfry)
functions is large and sufficiently quickly increases as d33l- Together with Eq(28), this gives
function oft. Using a WKB approximation to the solutions

, 1
of Eg. (25), we find N =|8 [Pz ——F———, 31
q ( 5) n |Bﬂ| eXF{Gn/TO] _ 1 ( )
t
Iimj \s"Fdd—?‘dtaé 0. (26) i.e., adiabatic evolution of trapped gases leads to “cosmo-
t—oo

logical” quasiparticle creation with thermal occupation num-

The latter condition can be also called a “Trans-PlanckiarP€'s in the scaling basis. The temperatgeiepends on the
safety condition”(TP condition, since if fulfilled it implies ~ details of the scaling evolutiofsee the specific example in
that an experiment in a lab-frame probing an energy scal&d: (37) below]. _ _
E,<Ep does not require information about solutions of INterestingly, the evolution of the scaling parameters
Eq. (25) with €,=Ep. For isotropic expansion of a 3D and therefore.the nontrivial Ime eleme(mS)_, can be gener-
Bose gas, Eq.(26) is equivalent to divergence of _ated alr_eady in a _no_nexpandl_ng cloud with t|me-dependgnt
Jdtg2/b%2 and is quite restrictive: For the FRW analogy interactiong(t). A ;lmllar expenmept has peen suggested in
discussed above avoiding the divergence implies, accord3ef- [34], where time-dependent interactions were used to
ing to Eq.(19), thatb should not grow faster than linearly. Simulate FRW cosmologies and quantum quasiparticle pro-
The TP condition(26) is based upon the WKB approxi- duction. The difference to our approach is due to the fact that
mation condition for Eq(25), leading to the requirement the authors of Ref.34] consider a trap with very steep walls
F(rd = (e,7)72 for large 7, (here= means “grows faster (effectively a hard-walled containgrso that the density of
than”). Substituting the latter condition into E¢26) we _the cloud does not chang_e, and the superfluid velocity van-
find that the marginal WKB case corresponds to a loga/Shes everywhere at all times. In our setup, we are able to
rithmically divergent integral in Eq(26). Thus the mar- induce cosmological quasm_aruclg production in a harmom'—
ginal TP case corresponds to the marginal WKB case anf2!lY trapped gas, by changing simultaneously the harmonic
vice versa. trapping and the interaction. The simplest case we can con-
Equation (25) is formally equivalent to scattering of a Sider is to leave alb=1, such as in a stationary Bose con-
nonrelativistic particle with energy, by a potentialeZ1 densate. We then create cosmological quasiparticles just by

—-F(79)]. The initial conditions correspond to a single particle changingg (using Feshbach resonances, cf., e.g., Refl),

L S . . ; and accordingly change the trap frequendgs w (in the
per unit time incident on the potential barrier. Time depen-, ! .
dence of the scaling factors leads to scattering of the particleI otropic casg Following Egs.(8), (10), and(1D), we have

from the incoming wave and at;—« the WKB solution the simple relations
reads (1) _g _drg_ 1

(32)

1 ( p[ f r} p[ _D wi g0 dt F)
= —al an exp —ie, [ drgVF | + B, ex ieJdT\’F ,
T pE " ’ ) " ° The metric associated with such a thermal quasiparticle uni-

(27)  verse created by “shaking the trap” and simultaneously

changing the interaction appropriately reads, from @),
where a, is the transmission ang, the forward-scattering

amplitude. The coefficientsy, and B, are related via the _'ﬁ e 2

particle flux conservation condition: ds*= g(O)[ CAFdrg + dx]. (33)
|anf® = 1Ba* = 1. (28)  Now, defining the scale factor of the BEC quasiparticle uni-

In QFT language the latter condition is the Bogoliubov trans—verse by the relation

formation normalization condition for a bosonic field. The ) ¢

number of particles detected by a scaling time detector at rest Ascal= m (34

is measured by the absolute squBg®> (which is propor-
tional to the probability that the detector absorbs a quaptumwe have, up to théirrelevany factor 1/g(0),
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ds’= - a8 d7 + a2 0% (35) 1 9 . At
e $=2 = - Al +aal,  (39)
n 2Vex 97s
This is the form of the metric employed in R¢84], where
it was used to calculate cosmological quasiparticle producsgy that the lab-frame density-density correlatG(x;,)

tion, _in_spired by a mod_el pf ParkéBS_]. Note that h(_are & =(s5(x,)85(x,))/ V2, averaged over the initial state is, in
nontrivial scale factor is induced without expanding thethe isotropic case,

cloud. We see from relation32) and (34) that the scale

factorage, is in our harmonically trapped case simply pro- E
portional to the ratio of initial and instantaneous trapping Gxp) =S —n o (ﬁ) (&)[1 +932
frequenciesag.,=\¢ wo/ w(t). 12 % v V2 %l )Pl ol
In Ref. [34], a specific choice of the scale function
ﬁéﬁﬁnmﬁct;ksen for the calculation of the quasiparticle +2Rﬁ[ anf3, exp[—Zi Endes\"F}H. (39)

4 L 4.4 Here the normalization conditiori28) is used, andrj,
agca(Ts) - Ascal,i ascal,f+ 8scal,f~ Bscal tan}{ﬁ] ’ (36) =X =[X1 =Xy <.|_X1|,|X2|.

2 2 Ts0 The TP condition26) ensures that the cross term propor-
tional toaB” averages to zero at large timeg he term with
1 in the square brackets describes the evolution of the
yacuum fluctuations and the summation owes cut off at

where ag,; and ageq ¢ are initial and final scale factors,
respectively. In the adiabatic approximation, one obtains ) =
thermal spectruni34,35], with a temperature governed by the Planckian energy scale: nfiay ~Ep=pg(0). Accord-

the inverse laboratory time scalgx 7, on which trapping ingly, the corresponding correlation function decays at

frequencies, interaction, and thus the scale factors changBlanckian distances;,/b~C/Ep and is very short range.
Subtracting the vacuum contribution, we obtain the follow-

ing expression for the regularized correlator:

i agcal it aAslcal f (37)

0~ 2 2 -
Aty aca f Ascali VFe, ( Xl) ( X2>
Greg(X12) = % \7sz< &n E &n E N,. (40

This temperature is, according to E§0), determined by the

singular points of the tanh function in E6). The factthat  \ye pote that in QFT the regularization procedure does not
the spectrum is thermal is obtained in Rg4] for a specific  ¢410, in a unique manner from the field theory itself, and

example with a certain form of the time-dependent interac—Can be applied using different assumptions about the high-

tion. We emphasize here that the thermal spectrum is a 9,61y hehavior of the excitations created from the funda-
neric feature of adiabatic evolution in harmonically trapped ,antal “ether.” Here. the spectrutand origin of the TP

superfluid gases with temporally varying trapping potentialg, citations is well known, and hence the above regulariza-
and interactions. tion of two-point correlation functions can always be strictly

justified. This regularization procedure of course is not lim-

ited to density-density correlators only. A similar technique

can be used, for example, to find a regularized energy-
momentum tensor.

Afhough e soutonsof tr Pyrodynamic squatonsar, 10 "2, T2 ST, Coneer & e Bose B,
unique, their interpretation in terms of the number of 9 ' ’

phonons in a given mode is subject to all the conceptuaﬁ0 the center of the gas we can use Wigilane-wav func-

difficulties encountered by the definition of particle states inf'ons.‘ﬁ”’.W't.h engrgleSek—ck, and the regularized Green
curved space-timegl]. In Ref. [29], we have shown that unction is given by

simply by choosing a specific realization of a quasiparticle — .

(phonon detector one can observe thermal quantum “radia- _P" E3 o Lol

tion” from a de Sitter horizorithe Gibbons-Hawking effect Gregr12) = 12 VP9 (0) g( b ) (41)
[32]) as a purely choice-of-observer related phenomenon,

without energy transport or dissipation taking place insidgyhere the function

the liquid. Below, we confine ourselves to the standamh-

V. DETECTION BY MEASURING DENSITY-DENSITY
CORRELATIONS

ventiona) laboratory means of particle detectiga CCD 1 = sin(kr/b)

camera detecting individual atoms, rather than phoyamsl = 2] N, K2dk. (42)

concentrate on uniquely defined laboratory-frame observ- 2mEpJo  tlb

ables, such as the lab-frame density-density correlations dis-

cussed in what follows. The functiong reaches its maximum far;,=0, so that the
The density-fluctuation operator is given by signal to noise ratio is maximally
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G..(0 —— Ty \* ping frequencyw and interaction couplingy are changed
iq;_) ~ \’Pa§(0)<E_O> : (43)  such thaw?(t) = g(t), without expanding the gas. The cosmo-
P P logical scale factor in this case is inversely proportional to
The above discussion shows that even from a small “noisethe trap frequencyag,(t) = 1/ w(t).
signal, one can extract the relevant features of the quantum |f the frequency mixing leading to quasiparticle creation
state of the gas cloudor a more detailed discussion cf. Ref. can be described in the WKB approximation, generally a
[36]). In order to be measurable, the quanti) has to be  thermal distribution is found, where the temperature is deter-
of the order of a few percent. This can in principle bemined by the singular points of the scaling factors given by
achieved by using initially dense clouds with strong interpar£q. (10), in the complex plane of scaling time.
ticle interactions. Finally, we mention that a similar, i.e., We f|na||y stress that, in contrast to a typica| Cosm0|ogica|
velocity-velocity instead of density-density noise correlationcalculation, hydrodynamic fluctuations in a laboratory ex-
function has already been measured in the experiments @feriment always have a well-defined initial state in the lab-
Ref. [37]. frame, with time coordinaté Therefore, ambiguities of the
final quantum state as regards the dependence of its particle
VI. CONCLUSION content on the initial conditions imposed on the “vacuum”
can be ruled out: There exists the preferred lab-frame

In the present investigation, we have derived the genergjacyum, uniquely prescribing the initial particle content of
scaling equations for harmonically trapped superfluid Bosge quantum field.

and Fermi gases, and related these, in particular, to quasipar-
ticle metric tensors of the de Sitter and Friedmann-
Robertson-Walker type, familiar from a cosmological con-
text. The quasiparticle creation in a harmonically trapped P.O.F. was supported by the Austrian Science Foundation
superfluid gas, by changing interaction and trapping simultaFWF and the Russian Foundation for Basic Research, and
neously in an appropriate manner, can therefore be describédlR.F. by the FWF. They both were supported by the ESF
in a general framework, and be interpreted to be analogous terogramme “Cosmology in the Laboratory,” and gratefully
the particle creation occurring during rapid expansion of theacknowledge the hospitality extended to them during the Bil-
cosmos. In particular, it was found that for a readily experi-bao workshop. We thank J. I. Cirac, U. Leonhardt, R. Paren-
mentally available case, the harmonically trapped, dilute sutani. R. Schitzhold, M. Visser, G.E. Volovik, and P. Zoller
perfluid Bose gas, a FRW-type metric can be induced if trapfor helpful correspondence and discussions.
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