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We show that a variety of cosmologically motivated effective quasiparticle space-times can be produced in
harmonically trapped superfluid Bose and Fermi gases. We study the analog of cosmological particle produc-
tion in these effective space-times, induced by trapping potentials and coupling constants possessing an arbi-
trary time dependence. The WKB probabilities for phonon creation from the superfluid vacuum are calculated,
and an experimental procedure to detect quasiparticle production by measuring density-density correlation
functions is proposed.
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I. INTRODUCTION

In a gravitational field with explicit time dependence in
the metric, particles and antiparticles can be simultaneously
created by quantum fluctuations from the vacuum. By the
uncertainty principle, the time scale of the system’s evolution
dictates the typical energy of the particles produced[1]. The
process of cosmological particle production, whose
condensed-matter analog we shall consider here, is poten-
tially relevant in the expanding early universe, in which
phonons experience an acoustic geometry; as a consequence,
the expansion of the universe could generate density waves
growing into galaxies[2].

Attention has been of late focused on condensed-matter
analogs of the curved space-times familiar from gravity, pri-
marily due to their conceptual simplicity and realizability in
the laboratory[3–10]. Condensed-matter systems lend them-
selves for an exploration of kinematical properties of curved
space-times and, in particular, provide a testbed to study the
effects of a well-defined and controlled “trans-Planckian”
physics, i.e., atomic many-body physics on a microscopic
scale, on low-energy quantum effects such as Hawking ra-
diation [11] and cosmological particle production. In the
present paper, we investigate quantum fields propagating on
effective curved space-times backgrounds, for the case of
harmonically trapped, dilute superfluid gases with possibly
time varying particle interactions. For a perfect, irrotational
liquid, described by Euler and continuity equations, it was
recognized by Unruh[12] that the action of fluctuations of
the velocity potentialF, around a spatially inhomogeneous
and time-dependent background, can be identified with the
action of a minimally coupled scalar field according to

S=E dtd3x
1

2k
F− S ]F

]t
− v · = FD2

+ c2s=Fd2G
;

1

2
E dtd3xÎ− ggmn]mF]nF. s1d

Here,v is the background velocity, 1 /k the compressibility,
andc the speed of sound of the liquid. We use the summa-
tion convention over equal indices, unless indicated other-
wise. The quantities gmn are thecontravariantcomponents of

the effective metric tensor related to its covariant compo-
nents by gbngna=db

a, and g;det gmn is the determinant of
the metric tensor. The actions1d leads to the “relativistic”
scalar wave equation

hF ;
1

Î− g
]msÎ− g gmn ]nFd = 0. s2d

In general, the effects of quantum fluctuations described by
the quantum version of Eq.s1d are very small and can hardly
be observed because of finite-temperature and dissipation ef-
fects. Therefore atomic superfluids, where both extremely
small temperatures and dissipationless flows are possible, at-
tract growing interest for an emerging research field of “ex-
perimental cosmology.”

In the following, we study how various curved space-
times can be implemented in harmonically trapped superfluid
Bose and Fermi gases. As a concrete example, we show how
de Sitter and Friedmann-Robertson-Walker(FRW) universes
can be “recreated” in superfluid gases. We analyze the qua-
siparticle production probabilities, leading to a thermal spec-
trum in the WKB approximation, and discuss an experimen-
tal procedure to observe and characterize the excitations
produced.

II. QUASIPARTICLE METRIC TENSORS IN
HARMONICALLY TRAPPED SUPERFLUIDS

A. Superfluid action

The hydrodynamic, i.e., long-wavelength action of a
trapped superfluid is generally given by

S=E dtd3xFr
]f

]t
+

r

2
s=fd2 + esrd + VtraprG , s3d

where the external harmonic potentialVtrapsx ,td= 1
2fvx

2stdx2

+vy
2stdy2+vz

2stdz2g is characterized by the three frequen-
ciesvi, i =x,y,z. The trapping frequencies are assumed to
be time dependent in an arbitrary mannerfwe can also
conceive of makingvi

2std effectively negative by “turning
over” the potential, see Sec. IIIg. In the above action, the
quantity r plays the role of a response orstiffnesscoeffi-
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cient to gradients off, and equals the total fluid density at
absolute zero; the equation of state of the superfluid is given
by the energy density functionale=esrd. sNote that we leave
out an overall minus sign in the definition ofS.d We gener-
ally set"=m=1. The action entails the existence of a veloc-
ity potentialf, such that the vorticity is zero except on sin-
gular lines, and ensures the validity of Euler and continuity
equations for the superfluid velocityv= =f. The identifica-
tion of f with the phase of a complex “order parameter”
si.e., the direction of a unit vector in the plane of some ab-
stract spaced leads to the quantization of circulation, because
f is then defined only modulo multiples of 2p. Finally, the
above action implies the conjugateness of phase and density
quantum variablesf15g:

frsxd,fsx8dg = idsx − x8d. s4d

These properties, taken together, constitute the canonical
definition of a superfluid atT=0 f16,17g. Therefore, Eq.s3d
represents the universal action of a simple scalar superfluid
at absolute zero made up of elementary bosonic or fermionic
atoms, independent of a particular microscopic model.

The simplest example for the equation of state is that of a
weakly interacting Bose gas, witheB= 1

2gr2, whereg is the
coupling constant,g=4pas, with as the s-wave scattering
length, characterizing pair collisions of atoms. The scattering
length can be tuned using external magnetic fields[13]. An-
other example is a two-component Fermi gas with attractive
interactions between atoms of different hyperfine species
[14]. The ground state of such a gas is superfluid(in the
simplest version, it is the BCS state of a scalar superfluid
with s-wave pairing), and since the interactions are weak, the
BCS gap is small and the equation of state(to exponential
accuracy) coincides with that of a free Fermi gas:eF
=fs3p2d2/3/10gr5/3. To consider all possible cases which
have a power-law density dependence of the equation of
state, in a generic way, we write

esrd = Agbrg, s5d

where A is a numerical constant. That is,b=1,g=2 for a
dilute Bose gas, andb=0,g=5/3 for noninteracting two-
component fermions.

In our present context, an important quantity characteriz-
ing a superfluid is the so-called “Planckian” energy scale,
EPl, i.e., the frequency beyond which the spectrum of the
excitations above the superfluid ground state ceases to be
phononic and(pseudo) Lorentz invariance is broken. For a
weakly interacting Bose gasEPl,gr, of the order of the
mean interparticle interaction. In a BCS superfluid,EPl is
determined by the BCS gap:EPl,r2/3 expf−1/sugur1/3dg. The
complete analogy with a quantum field theory on afixed
curved space-time background given by Eq.(1) only exists if
all time scalest0, describing the evolution of the superfluid,
are much larger than the “Planck time”:t0@1/EPl.

B. Scaling transformation for Bose and Fermi superfluids

Our approach in the following is based on the so-called
scaling transformation[18–21] to describe the expansion and
contraction of the gas under time-dependent variations of the

trapping frequencies. It is by now a well-established fact that
the hydrodynamic solution for density and velocity of mo-
tion for such a system may be obtained from a given initial
solution by a scaling procedure both in the bosonic[18–20]
as well as in the fermionic case[21]. Defining the scaled
coordinate vectorxb=eixi /bi, density and velocity are given
by the scaling transformations[18]:

rsx,td ⇒
r̃sxbd

V , s6d

fsx,td ⇒
ḃi

2bi
xi

2 + f̃sxb,td. s7d

The sdimensionlessd scaling volumeV=pi bi in the density
s6d is dictated by particle conservation.

Introducing a new “scaling time” variable by

dts

dt
=

fg/gs0dgb

Vg−1 , s8d

we rewrite the actions3d in the form

S=E dtsd
3xbFr̃

]

]ts
f̃ +

r̃

2
Fistsds=bif̃d2 + ẽsr̃d

+ Vtrapsxb,0dr̃G , s9d

where thets dependentscaling factorsare

Fistsd =
Vg−1

bi
2fg/gs0dgb

=
1

bi
2

dt

dts
, s10d

andẽsr̃d=esr̃dug=gs0d; =bi;] /]xbi. The rescaled densityr̃ has
no explicit ts dependenceswhereas it has explicit depen-
dence on the lab timetd, and coincides with the equilibrium
condensate density profile in the scaling coordinatexb.
Where any confusion might arise, we will generally desig-
nate scaling variables with a tilde to clearly distinguish them
from lab-frame variables.

For the relation(10) between the scaling factors andbi ,g
to hold true, we must impose the following equations of
motion for the scaling parametersbi:

b̈i + vi
2stdbi =

fg/gs0dgbv0
2

Vg−1bi
. s11d

They need to be solved with the initial conditionsbi =1 and

ḃi =0. Note that here no summation convention is used in the
second term on the left-hand side. For a sufficiently large
cloud, the stationary background solution can be found from
the Thomas-Fermi density profile. It is given by using that
−df̃ /dts=m equals the initial chemical potential, and

dẽ

dr̃
= m − Vtrapsxb,0d. s12d

The part of the action quadratic in the fluctuations is ob-
tained to be
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Ss2d =E dtsd
3xbFdr̃

]

]ts
df̃ +

r̃

2
Fis=bidf̃d2 +

1

2
k̃dr̃2G ,

s13d

where dr̃= r̃− r̃0 and df̃=f̃+mts. The rescaled bulk com-
pressional modulussinverse compressibilityd k̃=d2ẽ /d2r̃
does not depend on the timets, and is identical togs0d in the
bosonic case. After integrating out the density fluctuations,
we obtain the effective action for the rescaled phase variable

S̄s2d =E dtsd
3xb

1

2k̃
F− S ]

]ts
df̃D2

+ c̃2Fis=bidf̃d2G ,

s14d

where the squared scaling speed of soundc̃2= k̃r̃sxbd. Using
the identification with a minimally coupled scalar field,
analogous to the one performed in the second line of Eq.s1d,
the line element in the scaling variables reads

ds2 =
c̃

k̃
ÎFxFyFzf− c̃2dts

2 + Fi
−1dxbi

2 g. s15d

The line element takes a particularly simple form for an iso-
tropic superfluid Fermi gas, whereg=5/3 andthus all Fi
=1, leading todts/dt=b−2. We note that even for this simple
case, the metric defined by Eq.s15d is not trivial, sincets
and t are different, and bothc̃ and k̃ depend on the radial
scaling coordinaterb. We will see below that in the case that
Fi =1 the scaling transformation is exact, and that therefore
no quasiparticle creation occurs in thescaling variable basis,
i.e., there is no mixing of negative and positive frequency
parts in the timets squasiparticle creation can take place with
reference to the lab-frame where the time coordinate ist,
though, and a lab detector will still see that quasiparticles are
“created”d.

Identifying df̃ with F, and going back from scaling co-
ordinates to laboratory-frame variables, we recover the ac-

tion (1), with v=sḃi /bidr iei, and the line element, which is of
Painlevé-Gullstrand type, reads[24,25]

ds2 =
c

k
f− sc2 − v2ddt2 − 2vidxidt + dxi

2g, s16d

wherec2=kr is the squared instantaneous speed of sound.
We now assume that space is spherically symmetric, i.e.,v
has a radial componentvr only, that vr /c= fsrd holds, and
furthermore thatc=cstd is a function of time only. We first
apply the transformationc0dt̃=cstddt, wherec0 is some con-
stantsinitiald sound speed, connecting the laboratory timet
to the time variablet̃. This results in the line elementds2

=sc/kdf−c0
2s1− f2dd t̃2−2fc0dtdz+dr2+r2dV2g. We then em-

ploy a second transformationc0dt=c0dt̃+ fdr / s1− f2d f26g,
to bring the metric into the form

ds2 =
c

k
F− f1 − f2srdgc0

2dt2 +
1

1 − f2srd
dr2 + r2dV2G .

s17d

The metric in the above form facilitates comparison with
metric tensors in spherically symmetric space-times written
in their standard form. E.g., iff2srd=2M / r is chosen, this
line element is conformally equivalent to the Schwarzschild
metric, the asymptotically flat vacuum solution of the Ein-
stein equations around a spherically symmetric body with
total massM f27g.

III. CREATING de SITTER AND FRIEDMANN-
ROBERTSON-WALKER UNIVERSES

The equation of state for Bose superfluids contains the
interatomic interaction. Therefore, by varying this interac-
tion, possibly together with the trapping frequencies, expand-
ing clouds of Bose atoms allow for the simulation of a large
set of cosmological space-times. We begin by discussing the
so-called de Sitter universe, which is a solution of the
vacuum Einstein equations characterized by the line element
[27,28]

ds2 = − c2S1 −
L

3
r2Ddt2 + S1 −

L

3
r2D−1

dr2 + r2dV2,

s18d

with L being the cosmological constant; energy density of
the vacuum. Up to the conformal factorc/g, the metrics17d
coincides with the de Sitter metrics18d, provided we require
that vr

2/c2=Lr2/3 and that the speed of sound is a constant
in space and time. The speed of sound in the center of the
cloud is time independent if

c2 = c̃2 = const⇔ gstd/gs0d = b3std. s19d

Close to the center of the condensate,c is, in addition, prac-
tically spatially independent. Using Eq.s7d, we find thatL
=const provided b~expfltg, with l=cÎL /3. This expo-
nential expansion of the cloud cansasymptoticallyd be
achieved if we turn over the potential, making it expel the
particles rather than trapping them:v2st→`d=−l2. The
de Sitter horizon, wherevr =c, is stationary and situated at
rh=cs0d /l, which is well inside the expanding cloud pro-
vided l@v0, wherev0 is the initial trap frequency.

The experimental sequence leading to “condensate infla-
tion” is schematically depicted in Fig. 1. We assume that the
experiment can be done with one trapped(low-field seeking)
and one untrapped(high-field seeking) hyperfine component
of the same atomic species. We start from a sufficiently large
Bose-Einstein-condensed cloud at small(effectively zero)
temperature with all atoms being in the trapped state. Then,
we transfer all the atoms to the untrapped state, by flipping
the sign of the trapping potential. At the same time, we ramp
up the interaction strength, according to condition(19), using
a suitable Feshbach resonance[13]. As a result of the simul-
taneous action of the inverted parabolic potential and the
increasing interaction energy, the gas cloud experiences a
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rapid exponential expansion, representing the analog of cos-
mological inflation.

In fact, Eq.(19) defines a broad class of Bose superfluid
effective space-times. In the present case of isotropic expan-
sion with bi =b, we havet=ts and, in scaling variables, we
obtain up to a conformal factor a Friedmann-Robertson-
Walker metric:

ds2 =
c

kb3f− c2dt2 + b2drb
2 + b2rb

2dV2g. s20d

According to the above form of the metric, the quantityb
plays the role of the scaling parameter not only in our
condensed-matter context, but can be interpreted equally
well as the scale factor in the expansion of the universe, with

H; ḃ/b the Hubble parameter. As demonstrated above, ex-
ponential growth ofb, with constantH, corresponds to ex-
ponential inflationf22g. The present setup also allows for the
simulation of power-law inflationf22,23g, with bstd~ td. The
“Hubble parameter”H changes for all exponentsg inversely
proportional to timet, H~1/t, and the exponentd=1/2 cor-
responds to a “radiation dominated” universe, while the ex-
ponent d=2/3 corresponds to a “matter dominated” uni-
verse. An isotropically trapped expanding superfluid gas thus
models an isotropic expanding universe. Generically, we can
model anisotropic universes with Eq.s15d, with scaling fac-
tors which are different in different spatial directions.

While this experiment is feasible in principle, increasing
the interaction dramatically increases three-body losses as
well, whose total rate scales likeg4r2. This complication can
be avoided, by switching to effectively lower-dimensional
systems; e.g., a 1+1D analog(where 1+1D stands for spa-
tially and temporally one-dimensional) of a de Sitter uni-
verse can be achieved for quasi-1D excitations in a linearly
expanding elongated Bose condensate, without changing the
interaction [29]. Another possibility is to use superfluid
Fermi gases. We have, in the isotropic case,F=1, dts
=dt/b2, and the metric may be written in the form

ds2 =
c̃

b2k̃
f− c̃2dt2 + b2drb

2 + b2rb
2dV2g, s21d

where we defined a scale factorb;b2. Performing experi-
ments in superfluid Fermi gases has the advantage that three-

body losses are strongly suppressed by Fermi statisticsf30g.

IV. COSMOLOGICAL PARTICLE
PRODUCTION ANALOG

Now we turn to describe the evolution of quantum fluc-
tuations, on top of the classical(mean-field) hydrodynamic
solutions described above. The equation of motion for the
phase fluctuations can be obtained after variation of the ac-
tion (14),

]2

]ts
2df̃ − k̃=biS c̃2

k̃
Fistsd=bidf̃D = 0. s22d

Phrased in curved space-time language, the above equation is
the minimally coupled massless scalar wave equation fordr̃,
analogous to Eq.s2d, with the metrics15d.

Consider for simplicity the isotropic case,

Fi ; F =
b3g−5

fg/gs0dgb . s23d

The solution for the full quantum field reads

df̃ = o
n
Î k̃

2Ṽen

fnsxbdfânxn + ân
†xn

*g, s24d

whereṼ is the initial Thomas-Fermi volume of the cloud, the
operatorsân sân

†d annihilatescreated phonon excitations in the
initial vacuum state, and the mode functionsxn satisfy

d2

dts
2xn + Fstsden

2xn = 0. s25d

The initial conditionsxnsts→−`d=expf−ientsg are selected
such that Eq.s24d, at t→−`, describes the phase fluctua-
tions in a static trapped superfluid in its ground state. In
quantum-field-theorysQFTd language this ensures that a
laboratory frame detector does not detect quasiparticles at
t→−`. Hereafter we define the “scaling vacuum” to be
the quantum state annihilated by the operatorsân, where
our choice of the initial conditions guarantees that the
initial superfluid vacuum and the scaling vacuum coincide
at t→−`.

The case when allFi ;1 is remarkably special: In this
case Eq.(25) does not depend on the superfluid evolution,
and thus the quantum state of the excitations remains un-
changed. As we have seen above, this indeed happens in the
case of an isotropic Fermi superfluid. Another example is a
2D isotropic dilute Bose gas with constant particle interac-
tion [19]. In these cases the scaling transformation is exact,
both for the condensate and the excitations. In the language
of QFT this amounts to the fact that there is no particle
production in the scaling basis, since the scaling solution is
constructed from eigenfunctions of the(exactly conserved)
scaling transformation operatorFi (in other words the scaling
vacuum is protected by an exact scaling invariance which
forbids frequency mixing). The fact that no excitations are
produced in the scaling basis does not mean that a lab detec-
tor does not detect quasiparticles. The transformation from

FIG. 1. Exponential expansion of a two-component Bose-
Einstein condensate with effective spinF=1/2, tocreate a de Sitter
quasiparticle universe close to its center. The trapping potential is
inverted by applying a radio frequencysrfd pulse, which transfers
the atoms to their untrapped hyperfine state.
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the laboratory timet to the scaling timets time is nontrivial
and thus the phase of the functionsxn is a complicated func-
tion of the laboratory timet. In other words, the phase field
given by Eq.(24), if coupled to a detector of the type con-
sidered in Ref.[29], gives a nonzero response. This indeter-
minacy of the vacuum state finds its counterpart in the
Unruh-Davies effect in flat space-time[1,31] and its curved
space-time generalization, the Gibbons-Hawking effect[32].

The description of a quantum field state in terms of par-
ticles and antiparticles is based upon the separation of posi-
tive and negative frequency parts. As we confine ourselves to
a measurement involving the laboratory time variablet, this
distinction is only possible if the asymptotic phase ofxn
functions is large and sufficiently quickly increases as a
function of t. Using a WKB approximation to the solutions
of Eq. (25), we find

lim
t→`

Et
ÎF

dts

dt
dt Þ 0. s26d

The latter condition can be also called a “Trans-Planckian
safety condition”sTP conditiond, since if fulfilled it implies
that an experiment in a lab-frame probing an energy scale
E0!EPl does not require information about solutions of
Eq. s25d with en*EPl. For isotropic expansion of a 3D
Bose gas, Eq.s26d is equivalent to divergence of
edtg1/2/b5/2 and is quite restrictive: For the FRW analogy
discussed above avoiding the divergence implies, accord-
ing to Eq.s19d, thatb should not grow faster than linearly.
The TP conditions26d is based upon the WKB approxi-
mation condition for Eq.s25d, leading to the requirement
Fstsd* sentsd−2 for large ts shere * means “grows faster
than”d. Substituting the latter condition into Eq.s26d we
find that the marginal WKB case corresponds to a loga-
rithmically divergent integral in Eq.s26d. Thus the mar-
ginal TP case corresponds to the marginal WKB case and
vice versa.

Equation (25) is formally equivalent to scattering of a
nonrelativistic particle with energyen by a potentialen

2f1
−Fstsdg. The initial conditions correspond to a single particle
per unit time incident on the potential barrier. Time depen-
dence of the scaling factors leads to scattering of the particles
from the incoming wave and atts→` the WKB solution
reads

xn =
1

F1/4San expF− ienE dts
ÎFG + bn expFienE dts

ÎFGD ,

s27d

wherean is the transmission andbn the forward-scattering
amplitude. The coefficientsan and bn are related via the
particle flux conservation condition:

uanu2 − ubnu2 = 1. s28d

In QFT language the latter condition is the Bogoliubov trans-
formation normalization condition for a bosonic field. The
number of particles detected by a scaling time detector at rest
is measured by the absolute squareubnu2 swhich is propor-
tional to the probability that the detector absorbs a quantumd,

and thereforeNn= ubnu2 can be interpreted as the number of
scaling basis quasiparticles created.

In the WKB approximation the amplitudes are connected
in a simple way:

bn = expf− en/2T0gan, s29d

where the inverse temperature is given by the integral

1

T0
= ImFE

C

ÎF dtsG , s30d

and C is the contour in the complexts plane enclosing the
closest to the real axis singular point of the functionFstsd
f33g. Together with Eq.s28d, this gives

Nn = ubnu2 =
1

expfen/T0g − 1
, s31d

i.e., adiabatic evolution of trapped gases leads to “cosmo-
logical” quasiparticle creation with thermal occupation num-
bers in the scaling basis. The temperatureT0 depends on the
details of the scaling evolutionfsee the specific example in
Eq. s37d belowg.

Interestingly, the evolution of the scaling parametersbi,
and therefore the nontrivial line element(15), can be gener-
ated already in a nonexpanding cloud with time-dependent
interactiongstd. A similar experiment has been suggested in
Ref. [34], where time-dependent interactions were used to
simulate FRW cosmologies and quantum quasiparticle pro-
duction. The difference to our approach is due to the fact that
the authors of Ref.[34] consider a trap with very steep walls
(effectively a hard-walled container), so that the density of
the cloud does not change, and the superfluid velocity van-
ishes everywhere at all times. In our setup, we are able to
induce cosmological quasiparticle production in a harmoni-
cally trapped gas, by changing simultaneously the harmonic
trapping and the interaction. The simplest case we can con-
sider is to leave allbi =1, such as in a stationary Bose con-
densate. We then create cosmological quasiparticles just by
changingg (using Feshbach resonances, cf., e.g., Ref.[13]),
and accordingly change the trap frequenciesvi =v (in the
isotropic case). Following Eqs.(8), (10), and (11), we have
the simple relations

v2std
v0

2 =
gstd
gs0d

=
dts

dt
=

1

Fstd
. s32d

The metric associated with such a thermal quasiparticle uni-
verse created by “shaking the trap” and simultaneously
changing the interaction appropriately reads, from Eq.s15d,

ds2 =
c̃ÎF

gs0d
f− c̃2Fdts

2 + dxi
2g. s33d

Now, defining the scale factor of the BEC quasiparticle uni-
verse by the relation

ascal
2 ;

c̃

gstd/gs0d
, s34d

we have, up to thesirrelevantd factor 1/gs0d,
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ds2 = − ascal
6 dts

2 + ascal
2 dxi

2. s35d

This is the form of the metric employed in Ref.f34g, where
it was used to calculate cosmological quasiparticle produc-
tion, inspired by a model of Parkerf35g. Note that here a
nontrivial scale factor is induced without expanding the
cloud. We see from relationss32d and s34d that the scale
factorascal is in our harmonically trapped case simply pro-
portional to the ratio of initial and instantaneous trapping
frequencies,ascal=Îc̃ v0/vstd.

In Ref. [34], a specific choice of the scale function
ascalstsd was taken for the calculation of the quasiparticle
creation process,

ascal
4 stsd =

ascal,i
4 + ascal,f

4

2
+

ascal,f
4 − ascal,i

4

2
tanhF ts

ts0
G , s36d

where ascal,i and ascal,f are initial and final scale factors,
respectively. In the adiabatic approximation, one obtains a
thermal spectrumf34,35g, with a temperature governed by
the inverse laboratory time scalet0~ts0 on which trapping
frequencies, interaction, and thus the scale factors change:

T0 =
1

4pt0

ascal,i
4 + ascal,f

4

ascal,f
2 ascal,i

2 . s37d

This temperature is, according to Eq.s30d, determined by the
singular points of the tanh function in Eq.s36d. The fact that
the spectrum is thermal is obtained in Ref.f34g for a specific
example with a certain form of the time-dependent interac-
tion. We emphasize here that the thermal spectrum is a ge-
neric feature of adiabatic evolution in harmonically trapped
superfluid gases with temporally varying trapping potential
and interactions.

V. DETECTION BY MEASURING DENSITY-DENSITY
CORRELATIONS

Although the solutions of the hydrodynamic equations are
unique, their interpretation in terms of the number of
phonons in a given mode is subject to all the conceptual
difficulties encountered by the definition of particle states in
curved space-times[1]. In Ref. [29], we have shown that
simply by choosing a specific realization of a quasiparticle
(phonon) detector one can observe thermal quantum “radia-
tion” from a de Sitter horizon(the Gibbons-Hawking effect
[32]) as a purely choice-of-observer related phenomenon,
without energy transport or dissipation taking place inside
the liquid. Below, we confine ourselves to the standard(con-
ventional) laboratory means of particle detection(a CCD
camera detecting individual atoms, rather than phonons), and
concentrate on uniquely defined laboratory-frame observ-
ables, such as the lab-frame density-density correlations dis-
cussed in what follows.

The density-fluctuation operator is given by

dr̃ = o
n
Î 1

2Ṽenk̃

]

]ts
hfnsxbdfânxn + ân

†xn
*gj, s38d

so that the lab-frame density-density correlatorGsx12d
=kdr̃sx1ddr̃sx2dl /V2, averaged over the initial state is, in
the isotropic case,

Gsx12d = o
n

en

2Ṽk̃

ÎF

V2 fnSx1

b
DfnSx2

b
DF1 + 2ubnu2

+ 2ReHanbn
* expF− 2ienE dts

ÎFGJG . s39d

Here the normalization conditions28d is used, andr12
= ux12u= ux1−x2u! ux1u , ux2u.

The TP condition(26) ensures that the cross term propor-
tional toab* averages to zero at large timest. The term with
1 in the square brackets describes the evolution of the
vacuum fluctuations and the summation overn is cut off at
the Planckian energy scale: maxfeng,EPl= r̃gs0d. Accord-
ingly, the corresponding correlation function decays at
Planckian distancesr12/b, c̃/EPl and is very short range.
Subtracting the vacuum contribution, we obtain the follow-
ing expression for the regularized correlator:

Gregsx12d = o
n

ÎFen

ṼV2k̃
fnSx1

b
DfnSx2

b
DNn. s40d

We note that in QFT the regularization procedure does not
follow in a unique manner from the field theory itself, and
can be applied using different assumptions about the high-
energy behavior of the excitations created from the funda-
mental “ether.” Here, the spectrumsand origind of the TP
excitations is well known, and hence the above regulariza-
tion of two-point correlation functions can always be strictly
justified. This regularization procedure of course is not lim-
ited to density-density correlators only. A similar technique
can be used, for example, to find a regularized energy-
momentum tensor.

To be more specific, consider a large Bose-Einstein-
condensed gas cloud in the Thomas-Fermi limit. Then, close
to the center of the gas we can use WKB(plane-wave) func-
tions fn, with energiesek= c̃k, and the regularized Green
function is given by

Gregsr12d =
r̃2

V2
Îr̃g3s0d GST0r12

c̃b
D , s41d

where the function

G =
1

2p2EPl
2 E

0

` sinskr/bd
r/b

Nkk
2dk. s42d

The functionG reaches its maximum forr12=0, so that the
signal to noise ratio is maximally
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Gregs0d
r2 , Îr̃as

3s0dS T0

EPl
D4

. s43d

The above discussion shows that even from a small “noise”
signal, one can extract the relevant features of the quantum
state of the gas cloudsfor a more detailed discussion cf. Ref.
f36gd. In order to be measurable, the quantitys43d has to be
of the order of a few percent. This can in principle be
achieved by using initially dense clouds with strong interpar-
ticle interactions. Finally, we mention that a similar, i.e.,
velocity-velocity instead of density-density noise correlation
function has already been measured in the experiments of
Ref. f37g.

VI. CONCLUSION

In the present investigation, we have derived the general
scaling equations for harmonically trapped superfluid Bose
and Fermi gases, and related these, in particular, to quasipar-
ticle metric tensors of the de Sitter and Friedmann-
Robertson-Walker type, familiar from a cosmological con-
text. The quasiparticle creation in a harmonically trapped
superfluid gas, by changing interaction and trapping simulta-
neously in an appropriate manner, can therefore be described
in a general framework, and be interpreted to be analogous to
the particle creation occurring during rapid expansion of the
cosmos. In particular, it was found that for a readily experi-
mentally available case, the harmonically trapped, dilute su-
perfluid Bose gas, a FRW-type metric can be induced if trap-

ping frequencyv and interaction couplingg are changed
such thatv2std~gstd, without expanding the gas. The cosmo-
logical scale factor in this case is inversely proportional to
the trap frequency,ascalstd~1/vstd.

If the frequency mixing leading to quasiparticle creation
can be described in the WKB approximation, generally a
thermal distribution is found, where the temperature is deter-
mined by the singular points of the scaling factors given by
Eq. (10), in the complex plane of scaling timets.

We finally stress that, in contrast to a typical cosmological
calculation, hydrodynamic fluctuations in a laboratory ex-
periment always have a well-defined initial state in the lab-
frame, with time coordinatet. Therefore, ambiguities of the
final quantum state as regards the dependence of its particle
content on the initial conditions imposed on the “vacuum”
can be ruled out: There exists the preferred lab-frame
vacuum, uniquely prescribing the initial particle content of
the quantum field.
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