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We consider the ground-state properties of mixed Bose-Einstein condensates of87Rb and85Rb atoms in the
isotropic pancake trap for both signs of the interspecies scattering length. In the case of the repulsive inter-
species interaction, there are the axially symmetric and symmetry-breaking ground states. The threshold for the
symmetry-breaking transition, which is related to appearance of a zero dipole mode, is found numerically. For
attractive interspecies interactions, the two condensates assume symmetric ground states for the numbers of
atoms up to the collapse instability of the mixture.
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I. INTRODUCTION

Bose-Einstein condensation(BEC) in mixtures of trapped
quantum gases has become an exciting field of study. The
first experimental observation of the two-species BEC
was realized using two different spin states of87Rb [1].
The two overlapping condensates of87Rb in the spin states
uF=1,m=−1l and uF=2,m=2l were created via nearly loss-
less sympathetic cooling of the atoms in the stateu2,2l by
thermal contact with the atoms in theu1,−1l state. Also, the
double-condensate system of87Rb in the spin statesu1,−1l
and u2,1l was created from the single condensate in theu1,
−1l state by driving a two-photon transition[2]. In the sub-
sequent evolution after creation, the condensates underwent
complex relative motions, preserving the total density pro-
file. The motions quickly damped out and the condensates
assumed a steady state with a non-negligible(and adjustable)
overlap region. These experiments started a series of works
devoted to experimental and theoretical studies of BEC in
mixtures. For instance, superposition of the spinor conden-
sates of23Na led to the observation of weakly miscible and
immiscible superfluids[3] and the occurrence of metastable
states[4]. An interaction between two condensates of differ-
ent spin states of87Rb in the displaced traps was observed in
center-of-mass oscillations[5]. Successful attempts to cool
fermion gases to the quantum degeneracy regime by using
boson-fermion mixtures were also reported. The first such
mixture was achieved by using the two species of Li, the
bosonic7Li and fermionic 6Li [6,7]. More recently, experi-
ments on mixtures of different atomic species were per-
formed. Both boson-boson and boson-fermion pairs were
cooled. The two species BEC of41K and 87Rb [8] and boson-
fermion mixtures87Rb−40K [9,10] and 23Na–6Li [11] were
achieved.

A promising combination for obtaining the two-species
BEC potentially rich in new phenomena is the mixture of
two isotopes of rubidium:85Rb and87Rb. There is a long-

standing interest in obtaining this BEC mixture, which goes
back to Ref.[12], where the feasibility of achieving such
two-species BEC was established. It was suggested that con-
densation of the two isotopes of rubidium can be achieved
via the sympathetic cooling of certain hyperfine states which
exhibit low inelastic collision rates. Moreover, the possibility
of employing the Feshbach resonance for control over the
scattering length was stressed. The optimal combination was
found to be the mixture of the spin statesu2,−2l85 and
u1,−1l87, because the scattering lengthbetweenthe isotopes
can be controlled. Sympathetic cooling of the85Rb conden-
sate by thermal contact with the87Rb condensate was subse-
quently experimentally demonstrated[13]. Up to 106 atoms
of the 85Rb isotope were cooled via elastic collisions with a
large reservoir(109 atoms) of 87Rb. The stable condensate of
the 85Rb isotope was also created by using the Feshbach
resonance to reverse the sign of the scattering length from
negative to positive[14]. In this way, long-living conden-
sates with up to 104 atoms of85Rb in the spin stateu2,−2l
were produced.

One of the principal advantages of using the rubidium
isotopes is that their interspecies and intraspecies scattering
lengths are known with a good precision[12]; thus theoreti-
cal predictions can be compared with the experiment. In par-
ticular, the scattering lengths of the87Rb isotope and be-
tween the two isotopes are positive, while the scattering
length of the85Rb isotope is negative.

Efficient interspecies thermalization crucially depends on
the interspecies scattering length and the overlap region of
the species. It is known that spatial separation may take place
depending on the values of the scattering lengths. If all
atomic interactions in the mixture are repulsive, the follow-
ing simple criterion for the spatial separation of two BECs in
a box [15] is known: if the mutual repulsion is large
enough—namely,G12.ÎG11G22 (where Gij is the interac-
tion coefficient)—the condensates separate to lower the en-
ergy. The symmetry-breaking point of view on the ground
state in the mixture of condensates was developed in Refs.
[16–20]. For instance, by taking an equal number of atoms in
the two species, the symmetry-preserving versus symmetry-
breaking phase diagram was obtained in Ref.[18]. The exis-
tence of metastable states in the BEC mixtures was argued
also on the basis of the Bogoliubov excitation spectra in Ref.
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[21], where both signs of the interspecies scattering length
were considered(for repulsive intraspecies interactions). In
Ref. [22] two-species condensates with coinciding positive
or negative interspecies scattering lengths and equal numbers
of atoms in the species were considered within a variational
approach. However, the results of the latter work do not ap-
ply to the BEC mixture of the two isotopes of rubidium,
where, first of all, the interspecies scattering lengths have
different signs. Finally, the collapse of a two-component
BEC in the spherically symmetric trap was numerically stud-
ied in Ref.[23], where all possible combinations of the signs
of the atomic interactions for the two species were consid-
ered. It was found that, depending on the interaction coeffi-
cients, either one or both components may experience col-
lapse.

In related theoretical studies of boson-fermion mixtures
[24–29] all possible signs of the boson and boson-fermion
s-wave scattering lengths were considered(due to the strong
s-wave scattering between bosons and fermions, thep-wave
contribution to the interspecies interaction is neglected; see
Refs. [26,29]). This reflects the fact that in experiments on
boson-fermion mixtures various combinations of signs are
possible; for instance, the two-isotope mixture of lithium of
Ref. [6] had attractive boson and repulsive boson-fermion
interactions, while in Ref.[7] the same species were used in
different angular momentum states with repulsive atomic in-
teractions. Though the governing equations for the boson-
fermion mixture are different from those for the two-boson
BEC, the predicted effects, such as the phase separation
[24,27,29] and collapse[28,29], have similar features. In
Ref. [29] a comprehensive analysis of the properties of
boson-fermion mixtures for all possible signs of the boson
and boson-fermions-wave scattering lengths is given. We
will make connections to the results of the latter work in the
following sections.

In the present paper we study two-species BEC in a pan-
cake trap for the numbers of atoms below the collapse insta-
bility. Our main goal is to understand the ground state of the
two-species BEC mixture comprised of85Rb and87Rb iso-
topes, with the atoms being in the optimal spin states
u2,−2l85 andu1,−1l87. We consider both attractive and repul-
sive interspecies interactions for fixed(default) intraspecies
interactions with scattering lengths −412.5 a.u.s−21.8 nmd
for u2,−2l85 and 107.5 a.u.s5.7 nmd for u1,−1l87—the aver-
ages of those given in Ref.[12]. In Sec. II we introduce the
two-dimensional model describing the two-species BEC
mixture in a pancake trap(i.e., the trap with a strong con-
finement in one direction) and discuss the domain of its ap-
plicability. Then, we present the numerically found ground
states in the BEC mixture of the two isotopes of rubidium for
the repulsive as well as attractive interspecies interactions,
Secs. III A and III B, respectively. The concluding Sec. IV
contains a brief summary of the results. The detailed deriva-
tion of the two-dimensional model is placed in Appendix A,
while details of the stability analysis of the axially symmetric
ground states are given in Appendix B.

II. TWO-DIMENSIONAL MODEL
FOR THE PANCAKE TRAP

We consider a two-species BEC mixture in the isotropic
pancake trap for arbitrary intraspecies and interspecies scat-

tering lengths. The Gross-Pitaevskii equations for the two-
species BEC have the form[30]

i"]tC1 = −
"2

2m1
¹2C1 + V1srdC1 + sG11uC1u2 + G12uC2u2dC1,

s1ad

i"]tC2 = −
"2

2m2
¹2C2 + V2srdC2 + sG22uC2u2 + G12uC1u2dC2,

s1bd

whereC1sr ,td and C2sr ,td are the order parameters of the
two species, while the interaction coefficients are given as
G11=4p"2a1/m1, G22=4p"2a2/m2, and G12=2p"2a12/M,
with a1, a2, and a12 being the intraspecies and interspecies
scattering lengths, respectively. HereM denotes the reduced
mass:M =m1m2/ sm1+m2d. In our case, for the two isotopes
of rubidium, we can neglect the mass difference between the
isotopes and takem=m1=m2. We consider the parabolic pan-
cake trap

Vj =
mv j ,z

2

2
z2 +

mv j ,'
2

2
r'

2 , j = 1,2, s2d

with strong confinement in thez direction: g;vz/v'@1
fby a simple phase transformation the possible difference of
the zero-point energies for the two species in the trap can be
scaled away from systems1dg. The difference in the magnetic
trap frequencies felt by the two species is caused by the
difference of the Lande magnetic factors for the two isotopes
f30g: gsu2,−2l85d=−1/6 andgsu1,−1l87d=−1/4. The corre-
sponding magnetic moments measured in the Bohr mag-
netons are given as follows:m85=gsu2,−2l85dm85=1/3 and
m85=gsu1,−1l87dm87=1/4. Hence, the ratio of the squared
trap frequencies isv87

2 /v85
2 =m87/m85=3/4, wherev85 and

v87 stand for the frequencies experienced by the respec-
tive isotopes. From now on, the indices 1 and 2 will cor-
respond to the isotopes85Rb and87Rb, respectively.

For not too large numbers of atoms the three-dimensional
system(1) can be reduced to a system of two-dimensional
equations in the pancake coordinatesr'=sx,yd, while the
order parameter in thez direction is fixed and given by the
Gaussian. Indeed, the motion in thez direction is quantized
under the condition that the energy contribution from the
nonlinearity be much less than the difference between the
energy levels of the trap:

uGj1uN1

d1,zd1,'
2 ! "v1,z,

uGj2uN2

d2,zd2,'
2 ! "v2,z, j = 1,2. s3d

Here we have estimated the order parameter asuC ju2
,Nj / sdj ,zdj ,'

2 d, j =1,2,with the introduction of the effective
sizes of the condensates in the pancake planesdj ,'d and in
the z direction sdj ,zd. Under conditions3d, the z sizes of the
condensates are given by the trap size:dj ,z=aj ,z, with aj ,z
being the respective oscillator length in thez direction fsee
formula s4dg, whereas their sizes in the pancake plane must
be determined from the solution to the resulting two-
dimensional systemfsystems6d belowg. We will reformulate
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condition s3d in a more convenient form below. More de-
tailed analysis of the two-dimensionals2Dd approximation is
placed in Appendix A.

Under condition(3) the order parameterC j is approxi-
mated as a product of the Gaussian wave function in thez
direction and a wave function describing the transverse
shape:

C j = e−iv j ,zt/2f jszdF jsr',td,

f j ; p−1/4aj ,z
−1/2 expS−

z2

2aj ,z
2 D, aj ,z ; S "

mv j ,z
D1/2

. s4d

The Gaussian is the ground-state wave function of the linear
part of the right-hand side(RHS) in system(1) which corre-
sponds to quantum motion in thez direction: Hj ,z
;−"2/ s2md]z

2+mv j ,z
2 z2/2, with Hj ,z f jszd=s"v j ,z/2df jszd.

Substitution of expression(4) in system(1), multiplication of
the equation forC j by f jszd and integration overz results in
the approximate two-dimensional system[see also Eqs.(A3)
and(A4) in Appendix A]. To write it down in a form conve-
nient for numerical calculations, let us introduce the dimen-
sionless variables

r =
r'

a'

, a' ; S "

mv'

D1/2

, T =
v'

2
t, c j = a'F j ,

j = 1,2. s5d

Here we have defined the frequencyv' as v'
2 =sv1,'

2

+v2,'
2 d /2, wherev j ,', j =1,2, are thetrap frequencies in the

pancake plane experienced by the two isotopes. Then the
dimensionless approximate 2D system reads

i]Tc1 = − ¹'
2 c1 + l1

2r2c1 + sg11uc1u2 + g12uc2u2dc1, s6ad

i]Tc2 = − ¹'
2 c2 + l2

2r2c2 + sg22uc2u2 + g12uc1u2dc2,

s6bd

wherer= uru,

g11 =
4Î2pa1

a1,z
, g22 =

4Î2pa2

a2,z
, g12 =

8Îpa12

sa1,z
2 + a2,z

2 d1/2,

l1 =
v1,'

v'

, l2 =
v2,'

v'

. s7d

Using the relationv2
2/v1

2=3/4 for therubidium isotopes in
the spin statesu2,−2l85 and u1,−1l87, we obtainl1

2=8/7 and
l2

2=6/7.
The pancake trap sizes in the experiments on BEC have

different values. To set a reference for discussion, in the
calculations below we assume thez size of the trap to be
10 mm; i.e., we seta1,z=10 mmsa2,z=2.03−1/4a1,z=0.84a1,zd.
This results in the following values for the interaction coef-
ficients in the mixture of the two isotopes of rubidium:g11
=−0.0219,g22=0.0068, andg12=0.012. For a different trap
size the interaction coefficients will change. However, the
quantitiesg11N1, g22N2, g12N2, andg12N1, computed from a

solution to system(6), will remain invariant under variation
of the trap size. Thus, a different trap sizeaz will result in a
similar solution but for an appropriately scaled numbers of
atoms. We will return to this point below.

Let us now reformulate condition(3) in a form more con-
venient for verification. Scaling the sizes of the condensates
in the pancake plane by the respective trap length,dj ,'
=Rja', we obtain the equivalent conditions in the form of
the bounds on the numbers of atoms:

N1 ! g
R1

2

4p
min S az

ua1u
,

az

ua12u
D, N2 ! g

R2
2

4p
min S az

ua2u
,

az

ua12u
D ,

s8d

where az denotes botha1,z and a2,z, since they have close
values, andg@1sg=vz/v'=a'

2 /az
2d. The sizesR1 andR2 of

the two condensates must be determined from the solution of
system s6d. For instance, for the pancake trap withaz
=10 mm, using the values of the scattering lengths from
Sec. I for the85Rb-87Rb mixture, we obtain the following
bounds: Nj !102gRj

2, j =1,2. The actual bounds on the
numbers of atoms are thus determined by the trap aniso-
tropy g. For example, ifg=100 si.e., a'=10azd, we have
Nj !104Rj

2.
There is the critical number of atoms,Nc, such that the

85Rb condensate, in the absence of the other isotope, is un-
stable with respect to collapse forN85.Nc. By settingg12
=0 in the two-dimensional system(6), we obtain the follow-
ing expression for the critical number of85Rb atoms neces-
sary for collapse(in the absence of the other isotope):

Nc =
2pI0

ug11u
=

ÎpI0

2Î2

a1,z

ua1u
= k2D

a1,z

ua1u
, s9d

wherek2D=1.167. In thederivation of formulas9d we have
used the well-known condition for collapse in the critical
nonlinear Schrödinger equationsfor details consult Ref.
f31gd and that the number of particles,N0, in the so-called
Townes soliton isN0=2pI0, whereI0=1.862.

It is important to notice that both the upper bound(8) on
the admissible numbers of atoms and the threshold number
for collapse(9) in the 85Rb condensate are proportional to
the trap size in thez direction. Thus, taking a bigger pancake
trap (with the sameg) will relax the bounds on the numbers
of atoms. The threshold for collapse in the mixture of the two
isotopes of rubidium also depends on the number of atoms of
the 87Rb isotope. However, we have found numerically that
this dependence is very weak(the correction does not exceed
5 % for the numbers of atoms used below and the fixed de-
fault scattering lengths); therefore, the threshold given by
Eq. (9) can be taken as a good approximation. For example,
for the pancake trap withaz=10 mm, used above, the thresh-
old for collapse isNc=535.

Finally, let us comment on the validity of the approximate
2D system for a description of the collapse instability in the
mixture. First of all, one may point out that the threshold
value for collapse of the mixture in the pancake trap deter-
mined from the full three-dimensional system(1) may turn
out to be lower than that predicted by the two-dimensional
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approximation, as is true, for instance, for the single-species
condensate of85Rb. Indeed, in the latter case, the exact(i.e.,
3D) threshold can be written asNc=ksgdaz/ ua1u [32]. Using
the numerically found values ofksgd from Ref. [32], we
conclude thatksgd,k2D for any g.1; i.e., this inequality
holds for any pancake trap. Asg→`, the function ksgd
slowly tends tok2D. For example, for the trap withaz
=10 mm andg=100 we haveks100d=1.1 [32], which gives
95 % (506 atoms) of the threshold given by formula(9).

Nevertheless, in the pancake trap, the instability which is
solely due to the three-dimensionality is weak if the condi-
tions given by Eq.(8) are satisfied and the numbers of atoms
are not much greater than the corresponding instability
threshold. This conclusion follows from the general discus-
sion of the 2D approximation, which is placed in Appendix
A. Here we note also that the instability rate due to the 3D
effects decreases with increase of the trap anisotropyg [since
it enters the RHS’s of the conditions in Eq.(8)]. Therefore, in
a sufficiently anisotropic pancake trap, the 3D collapse insta-
bility below the threshold of the 2D collapse does not have
enough time to develop on the time scale set by the two-
dimensional system(6) and, hence, its effect on the solutions
can be neglected. In fact, the time necessary for such a weak
instability to develop may exceed the lifetime of the conden-
sates in the mixture.

It is, however, thedynamicsof a collapsing condensate in
the pancake trap that cannot be treated in the framework of
the two-dimensional approximation and requires the full 3D
analysis due to violation of at least one of the two conditions
(8). Thus we will not discuss such dynamics. For more de-
tails on the two-species collapse in BEC’s consult, for in-
stance, Ref.[23] and on the collapse in boson-fermion mix-
tures consult Refs.[28,29].

In the case of the two-species BEC of85Rb and 87Rb,
there is a stable state in the mixture, predicted by the 2D
system(6) for numbers of atoms slightly lower than the col-
lapse instability(see the next section), which violates the
applicability conditions(8) for modest pancake trapssg
ø100d due to sharp contraction of the85Rb condensate. The
sharp decrease of the85Rb condensate sizeR1, predicted by
system(6), requires a large trap anisotropyg for the 2D
system to sustain its validity. Therefore, for the current ex-
perimental traps, the very existence of such exotic states re-
quires a full 3D analysis and thus is beyond the 2D approxi-
mation adopted in the present paper. We will not discuss such
states either.

Therefore, for the current experimental pancake traps, the
applicability of the approximate 2D system(6) is limited by
the threshold of formation of the contracted states in the85Rb
condensate. In the next section we discuss the ground states
in the mixture for the allowed numbers of atoms and their
deformations due to the instabilities predicted by the 2D sys-
tem, such as the symmetry-breaking transition. Such insta-
bilities are much stronger than those due to three-
dimensional effects and, consequently, are observed on a
much shorter time scale(consult also Appendix A).

III. GROUND STATES IN THE MIXTURE OF TWO
ISOTOPES OF RUBIDIUM

Now we turn to the numerical solution of system(6) to
find possible ground states in the BEC mixture of the two

isotopes. Stationary solutions are sought for in the usual
form

c1 = e−im1TU1srd, c2 = e−im2TU2srd, s10d

wherem1 and m2 are dimensionless chemical potentials for
the two species. We have used the gradient method for the
constrained energy minimization to findU1srd and U2srd
minimizing the energy functional,

E =E d2rHu¹'c1u2 + u¹'c2u2 + r2sl1
2uc1u2 + l2

2uc2u2d

+
g11

2
uc1u4 +

g22

2
uc2u4 + g12uc1c2u2J , s11d

for fixed numbers of atomsN1=ed2ruc1u2 and N2
=ed2ruc2u2.

A. Ground states for repulsive interspecies interaction

Let us start with considering the BEC mixture of85Rb and
87Rb atoms with the repulsive interspecies interaction. First
of all, we have found the axially symmetric ground states via
the energy minimization restricted to the space of the axially
symmetric functions. It is important to know if the symmet-
ric states are stable. The stability analysis can be based on
the method of Refs.[33,34], whose adaptation to our prob-
lem is described in Appendix B. We have found that the
axially symmetric ground state of the mixture suffers from
the dipole-mode symmetry-breaking instability for a suffi-
ciently large number of atoms in the87Rb condensate and not
too large numbers of atoms in the85Rb condensatesN85

ø500d. The symmetry breaking instability was previously
discussed for the case of BEC mixtures in Refs.[16–20]. The
novelty here lies in the fact that one of the condensates has
an attractive atomic interaction. For instance, the separation
criterion of Ref. [15] for a BEC mixture in the box—i.e.,
g12.Îg11g22—loses its meaning since in our caseg11g22,0
and,a priori, it is not evident that the isotopes would sepa-
rate at all.

The axially symmetric ground states on the threshold of
the symmetry-breaking instability for various numbers of at-
oms are shown in Fig. 1. It should be stressed that there are
three types ofstableaxially symmetric states in the system
for smaller numbers of atoms, which correspond(and are
similar) to the threshold states shown in Fig. 1:(i) when the
isotopes are strongly mixed(the two condensates have bell-
shaped form, the dotted lines), (ii ) when the85Rb isotope is
on the surface of87Rb (uc1u has a local minimum at the
center, the solid lines), and(iii ) when the87Rb isotope is on
the surface of85Rb isotope(uc2u has a local minimum at the
center, the dashed lines).

The threshold of the symmetry-breaking instability
strongly depends on the numbers of atoms and corresponds
to appearance of a zero dipole mode(which pertains to the
orbital operatorL11; consult Appendix B). From the ener-
getic point of view, the separation takes place when the en-
ergy gain due to the intraspecies interaction in the strongly
mixed state is higher than the kinetic energy(quantum pres-
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sure) at the interface between the separated condensates. The
corresponding symmetry-breaking diagram, found numeri-
cally, is given in Fig. 2.

Though all three types of axially symmetric ground states
discussed above suffer from the symmetry-breaking instabil-
ity with increase of the number of atoms of the85Rb isotope
(for sufficiently large number of atoms of the87Rb isotope),
the symmetry-restored states(found to the right of the phase
separation curve in Fig. 2), which result from a further in-
crease of the number of85Rb atoms, are of type(iii )—i.e.,
when the87Rb isotope is on the surface of the85Rb isotope.

In the reduced 2D system(6), with a further increase of
the number of85Rb atoms the symmetry-restored state of
type (iii ) is immediately followed by a sharp contraction of
the 85Rb condensate and the subsequent collapse atN85
<535. The collapse instability is due to appearance of the
axially symmetric unstable mode(i.e., the unstable linear
mode with orbital numberl =0; see Appendix B). The col-
lapse threshold value ofN85 only slightly decreases with an
increase of the number of87Rb atoms. This is due to the very
favorable set of default scattering lengths of the system and

is not a general property of the mutually repulsive mixtures
of attractive and repulsive species. For instance, in a related
study of the boson-fermion mixtures, it was noted that
though the collapse in the mutually repulsive boson-fermion
mixture with attractive boson interactions only concerns the
boson species, it can be strongly affected by the fermion
number of atoms[29]. However, for such an effect to be
pronounced, the interspeciess-wave scattering length must
be significantly larger than the absolute value of the boson
scattering length.

Thus, right before the collapse instability the size of the
85Rb condensate first decreases to a fraction of the trap size
a'. However, depending on the trap anisotropyg, such a
state may violate the first of the two applicability conditions
(8) for the 2D approximation. For example, our estimates
show that an accurate description of this effect requires a full
3D analysis for pancake traps withgø100. For observations
of this effect, much more anisotropic pancake traps are re-
quired, which are not used in the current experiments. Thus
we will not discuss the effect any further. There is also an
implication of the validity of a part of Fig. 2 for the current
pancake traps: the 2D approximation for the pancake trap
with gø100 is not valid for a description of the symmetric
ground states to the right of the separation curve except for a
narrow strip immediately after it(with the width equal to a
dozen of atoms on theN85 axis).

The symmetry-breaking ground states are illustrated in
Figs. 3 and 4, where we show the contour lines of the order
parameters(ranging from the maximum to half of its value at
a constant step) for 85Rb (solid lines) and 87Rb (dashed
lines). We have found that it is the85Rb condensate that is
expelled from the center of the trap in the symmetry-
breaking states. It is seen that for comparable numbers of
atoms of the two species it is the87Rb condensate that suffers
the strongest deformation from the bell-shaped form, while
for N87@N85 the 85Rb condensate is strongly deformed. Here
we note that the asymmetric ground state of the mixture is
degenerate, as it possesses the rotational zero mode. In other
words, the maximum of the order parameter of85Rb can
have an arbitrary position angle on the surface of the87Rb
condensate.

FIG. 1. The three types of the axially symmetric state in the
mixture of 85Rb and 87Rb isotopes on the threshold of the
symmetry-breaking instability. The one-particle wave functions are
shown(scaled for better visibility as is indicated on they axis). The
numbers of atoms are as follows. Solid lines:N85=100 andN87

=17412. Dotted lines:N85=300 andN87=2042. Dashed lines:N85

=450 andN87=894.

FIG. 2. The symmetric vs asymmetric ground-state diagram.
The interaction coefficients areg11=−0.0219, g22=0.0068, and
g12=0.012 (computed for default values of the scattering lengths
and a1,z=10 mm). The logarithmic(base 10) scale is used for the
87Rb axis.

FIG. 3. The symmetry-breaking ground state for a not too large
number of87Rb atoms. For each of the two condensates, the equi-
distant level curves ranging from the maximum of the order param-
eter to a half of its value are shown.
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B. Ground states for attractive interspecies interaction

Now let us consider the BEC mixture of two isotopes
when the interspecies interaction is attractive, which can be
experimentally realized by using the Feshbach resonance
[12]. It is convenient to measure the interspecies interaction
coefficientg12 in terms of the interaction coefficientg11 of
the 85Rb isotope. We have found that the condensates do not
separate in this case and assume the axially symmetric
ground state up to the collapse instability threshold. Such
ground states are illustrated in Fig. 5, where we plot the
appropriately scaled one-particle wave functions for the two
condensates. Note the local peak at the center of the87Rb
condensate. The appearance of this peak is easy to under-
stand, for instance, when the Thomas-Fermi limit applies to
the 87Rb condensate(which corresponds to the picture in the
lower panel of Fig. 5). Indeed, ifN87@N85, then in the zero-
order approximation one can neglect the contribution from
the interspecies interaction termg12uc1u2 in Eq. (6) for the
87Rb condensate in the region away from the trap center.
Thus, in the zero-order approximation, the87Rb condensate

has the Thomas-Fermi ground state independently of the
state of the other isotope. Therefore the effect of the cross-
interaction termg12uc2u2 in the equation for the85Rb conden-
sate, Eq.(6), is now similar to that of an additional potential.
In the next order of approximation, the order parameterc2 of
the 87Rb condensate is a sum of the two terms: the back-
ground Thomas-Fermi shape and the local deformation at the
center of the trap. The latter is determined by the order pa-
rameter of the85Rb condensate. It is interesting to note that a
similar central density enhancement of the fermion species in
boson-fermion mixtures with attractive interspecies interac-
tions is predicted in Ref.[29] (Figs. 1 and 2).

It should be noted that, notwithstanding the attraction in
the 85Rb condensate and the attractive interspecies interac-
tion, the ground states shown in Fig. 5 are not self-bound;
i.e., they are not solitons: relaxation of the trap results in
spreading of the condensates.

Finally, lowering of the interspecies interaction coefficient
g12 to sufficiently large negative values results in a sharp
contraction of the85Rb condensate which is followed by col-
lapse instability. This contraction of thestableground state
of the 85Rb condensate to a fraction of the trap size is due to
the presence of the other condensate, since the size of a
stable single species BEC is always on the order of the trap
size.

Thus, as in the case of the repulsive interspecies interac-
tions, the collapse instability in the mixture is preceded by a
sharp decrease of the85Rb condensate size. Therefore, de-
pending on the trap anisotropyg, its description may take us
beyond the 2D approximation adopted in this paper. For
most of the current pancake trapsgø100; thus, the descrip-
tion of the ground state in the mixture which is on the border
of the collapse instability requires a full three-dimensional
analysis.

We note, however, that for small values ofug12u the stable
symmetric ground states predicted by the 2D approximation
and illustrated in Fig. 5 can be experimentally observed in
the current pancake traps withg,100. In such an experi-
ment, the number of85Rb atoms should be below the thresh-
old valueNc=NcsN87d which, for fixedg12, decreases only by
a few percent from the value given by formula(9) with an
increase of the number of87Rb atoms.

IV. CONCLUSION

We have studied the ground state in the BEC mixture of
two isotopes of rubidium in the pancake trap for repulsive
and attractive interspecies interactions and fixed(default) in-
traspecies interactions.

In the case of repulsion between the two species, there is
the symmetry-breaking deformation of the ground state due
to the dipole-mode instability, whose threshold strongly de-
pends on the numbers of atoms of the two isotopes. For
small numbers of atoms—i.e., below the symmetry-breaking
instability threshold—the stable axially symmetric ground
state has the form of either the strongly mixed state of the
species(with the order parameters of the two condensates
having bell-shaped form) or the state where one of the con-
densates forms a circular strip on the surface of the other.

FIG. 4. The asymmetric ground state for a very large number of
87Rb atoms. The equidistant level curves are shown with the range
defined as in the previous figure.

FIG. 5. Stable ground states of the BEC mixture for the attrac-
tive interspecies interactions. The one-particle wave functions
(scaled for better visibility as indicated along they axis) are shown.
In both panels, the solid lines correspond to the85Rb isotope and
the dashed lines to the87Rb isotope.
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For attractive interspecies interactions, the condensates
assume axially symmetric ground states for all numbers of
atoms where the 2D approximation is valid. For small values
of the (negative) interspecies interaction coefficientug12u the
mixture is stable for the numbers of85Rb atoms below the
critical valueNc=NcsN87d which is a few percent lower than
the collapse instability threshold for a single-species conden-
sate of85Rb (i.e., for g12=0). There is a sharp peak in the
density of the repulsive87Rb isotope due to the attractive
interspecies interactions—the effect which is similar to the
enhancement of the fermionic density in boson-fermion mix-
tures with attractive boson-fermion interactions[29].

Finally, for pancake traps with anisotropygø100, the 2D
approximation for the attractive as well as repulsive mixture
is violated at the numbers of atoms in the85Rb condensate
just below the collapse instability in the 2D model due to the
sharp contraction of the85Rb condensate. This is quite dis-
similar to the case of the single-species BEC of85Rb, where
the collapse sets in at a state which has a size comparable to
the trap size in the pancake plane. Thus, investigation of the
actual ground state of the mixture in such pancake traps at
the numbers of atoms close to the collapse instability re-
quires a full three-dimensional analysis and is beyond the
approach adopted in the present paper. This sets a direction
for future research.
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APPENDIX A: DERIVATION OF THE TWO-DIMENSIONAL
APPROXIMATION

The system(1) can be rewritten in the form

i"]tC1 = sH1z + H1' + G11uC1u2 + G12uC2u2dC1, sA1d

i"]tC2 = sH2z + H2' + G22uC2u2 + G12uC1u2dC2, sA2d

where we have introduced linear operators corresponding to
quantum motion along thez axis and on thesx,yd plane in
the trap:

Hjz = −
"2

2mj

]2

] z2 + Vjzszd, Hj' = −
"2

2mj
¹'

2 + Vj'sr'd,

j = 1,2.

The solution to Eqs.(A1) and(A2) can be expanded over the
eigenfunctions of the linear operatorsH1z andH2z as follows:

C j =C j0sz,r' ,td+Ĉ jsz,r' ,td, j =1,2, where C j0

;e−iEj0t/"f jszdF jsr' ,td, with f jszd being the normalized
eigenfunction of the ground state,Hjz f jszd=Ej0 f jszd, while

the second termĈ j is the projection of order parameterC j
on the subspace orthogonal to the ground state.

We can expand the system(A1) and (A2) in similar way
using the projectorsP1 and P2 on the ground states ofH1z

andH2z, respectively. Application of these projectors to Eqs.
(A1) and (A2) leads to a system describing the evolution of
the projection of the order parameters for the two species on
the respective ground states:

i"]tF1 = sH1' + G̃11uF1u2 + G̃12uF2u2 + D1dF1 + F1,

sA3d

i"]tF2 = sH2' + G̃22uF2u2 + G̃12uF1u2 + D2dF2 + F2,

sA4d

whereG̃ij =Gijkf i
2f j

2l, with kFl;eFdz,

D j = Gjjkf j
2s2f i RehF jĈ j

*j + uĈ ju2dl

+ Gj ,3−jkf j
2s2f3−j Re hF3−jĈ3−j

* j + uĈ3−ju2dl, sA5d

and

F j = Gjjkf juC ju2Ĉ jl + Gj ,3−jkf juC3−ju2Ĉ jl. sA6d

On the other hand, the equations describing the evolution of
the projections of the order parameters on the orthogonal
subspaces are derived by application of the complementary
projectorsQj, Qj ;1−P j to the systemsA1d and sA2d:

i"]tĈ1 = sH̃1z + H1'dĈ1 + Q1hG11uC1u2C1 + G12uC2u2C1j,

sA7d

i"]tĈ2 = sH̃2z + H2'dĈ2 + Q2hG22uC2u2C2 + G12uC1u2C2j,

sA8d

whereH̃jz=Hjz−Ej0.
Let us estimate the orders of magnitude of the nonlinear

terms in Eqs.(A3), (A4), (A7), and(A8) under the condition
that the nonlinear terms in system(A1) and (A2) be much
smaller than the characteristic differenceDE,"vz between
the eigenvalues of each of the two linear operatorsH1z and
H2z [i.e., conditions(3) are satisfied]. Below we will not
distinguish between quantities with different indices, since
all quantities of the same kind are of the same order of mag-
nitude. Introduce a small parametere as the ratio of the non-
linear terms in the system(A3) and (A4) to DE—that is,

e =
G̃uFu2

DE
=

Gkf4luFu2

DE
. sA9d

Note thatkf4l, f2 since the integral off2 overz is of order 1.
It is the smallness ofe, supposed in Eq.s3d, that justifies the
transition to the two-dimensional approximation. Indeed, the

order of the correctionĈ to the factorized wave function can
be found by equating the orders of the inhomogeneous term
and the linear termHz+H' in Eqs.sA7d andsA8d, where, as

in Eqs.sA3d andsA4d, we have againH'Ĉ,eDEĈ andH'

can be neglected compared withHz,DE. Therefore, we get

DEĈ,GQhufFu2fFj,eDEfF and, hence,Ĉ,efF. From
this we obtain estimates for the terms given by Eqs.sA5d and

MIXED-ISOTOPE BOSE-EINSTEIN CONDENSATES IN… PHYSICAL REVIEW A 69, 033601(2004)

033601-7



sA6d: D,Gkf2fFĈl,eGf2F2,e2DE and F
,GkfsfFd2efFl,eGf2F2F,e2FDE.

Throwing away the terms of ordere2 from Eqs.(A3) and
(A4) and changing to the dimensionless variables given by
Eq. (5) we arrive at the system(6). The projection of the

order parameterC j on the orthogonal subspace,Ĉ j, is of
order e and can be neglected compared to the factorized
wave functionf jF j. We conclude that, under conditions(3),
nonlinearity plays a significant role only on the pancake
planesx,yd.

Two comments are in order on the two-dimensional ap-
proximation described above. First, the effects due to the
three dimensionality of the mixture will be of ordere2, the
same order as the terms we have thrown out from the system
(A3) and(A4); thus, they will give a significant contribution
to the dynamics only on the time scale of ordere−2, much
longer than the time scale of the nonlinear effects in 2D,
which is of ordere−1. Second, a similar 2D approximation
will be valid for the linearized system which describes the
evolution of a small perturbation of the solution. Thus, any
instability in the mixture which is solely due to its three
dimensionality will be of ordere2 and will not play any role
in the time scale we consider.

The latter comment concerns, for instance, the instability
due to collapse in 3D: although the 3D threshold value of the
number of atoms in the mixture necessary for collapse may
turn out to be lower than that in the 2D approximation, as is
true for the single-species condensate of85Rb, the corre-
sponding instability rate(proportional to the unstable eigen-
value) will be of ordere2 and will not be noticed on the time
scale we consider.

APPENDIX B: THE LINEAR STABILITY ANALYSIS

The linear stability analysis is based on the consideration
of evolution of a linear perturbationu1=u1sr ,Td and u2

=u2sr ,Td of the stationary state(U1srd ,U2srd). The evolu-
tion equations for the perturbation are derived by lineariza-
tion of the original system[system(6)] about the stationary
solution. One looks for eigenfrequenciesv of the resulting
linear system by settinguj =e−ivtfXjsrd+ iYjsrdg, j =1,2. The
appearance of an imaginary eigenfrequency means instabil-
ity. In particular, by writing the perturbed solution as

c j = e−im jTfUjsrd + ujsr,Tdg, j = 1,2, sB1d

using this in the systems6d, and keeping only the linear
terms in u1 and u2 we arrive at the following eigenvalue
problemsconsult also Refs.f33,34gd:

L0SY1

Y2
D = − ivSX1

X2
D, L1SX1

X2
D = ivSY1

Y2
D ,

Ln = SLn1 0

0 Ln2
D . sB2d

Here s j =1,2d,

L0j = − m j − ¹'
2 + o

m=1,2
gjmUm

2 srd + l j
2r2,

L1j = − m j − ¹'
2 + o

m=1,2
gjmUm

2 srd + 2gjjUj
2srd + l j

2r2.

sB3d

Expansion of the eigenvalue problem(B2) in the Fourier
series with respect to the polar angleu leads to an infinite
series of one-dimensional eigenvalue problems of similar
form for the orbital projections of the vectorssX1,X2dT and
sY1,Y2dT,

Xj = o
lù0

Xjlsrdeilu + c.c., Yj = o
lù0

Yjlsrdeilu + c.c., j = 1,2,

sB4d

with the orbital operators defined byL0l =L0s¹'
2 →¹r

2

− l2/r2d andL1l =L1s¹'
2 →¹r

2− l2/r2d, where¹r
2;]r

2+r−1]r.
However, only a few of these 1D eigenvalue problems need
to be considered to decide on the stability of the axial ground
state. Indeed, first, as follows from the general criterion for
the stability of the ground state in a system of nonlinear
Schrödinger equationsf34g, in the two-component system
the axial ground state is unstable if there are at least three
negative eigenvalues of the operatorL1. For instance, if each
of the first three orbital operatorsL1l, l =0,1,2, has anega-
tive eigenvalue, then the ground state is unstable. Second, as
the orbital operators satisfy the obvious inequalityL1l2
ùL1l1

sunderstood as the inequality for the mean valuesd for
l2ù l1, it is sufficient to consider just three orbital problems
arising from Eqs.sB2d with orbital numbersl =0,1,2.This is
the approach we adopted.

Finally, we would like to mention that the linear stability
is closely related to the energy minimization(consult also
Refs.[33,34]). Indeed, the operatorL0 is non-negative[it has
two zero modes due to the phase invariance of the system
(6)]. Thus, from an energetic point of view, a negative eigen-
value of the operatorL1 corresponds to a negative direction
in the free energy functional, defined here as the Lagrange-
modified energy functionalF;E−m1N1−m2N2, evaluated at
the axially symmetric state(U1srd ,U2srd), since the operator
L1 enters the second-order term in the free energy expansion
with respect to the perturbationûj =Xjsrd+ iYjsrd, j =1,2:

d2F = 2E d2rHsY1,Y2dL0SY1

Y2
D + sX1,X2dL1SX1

X2
DJ .

sB5d

Taking into account that there are two independent con-
straints on the numbers of atoms in the two species we con-
clude that only two negative directions may be eliminated by
the energy dependence on the numbers of atoms. Therefore,
for fixed numbers of atoms, the axially symmetric state is
definitely not an energy minimum if there are threesor mored
negative eigenvalues of the operatorL1. This explains the
physical origin of the above-mentioned sufficient condition
for instability. We note also that the dipole-mode instability
si.e., existence of the unstable orbital mode with the orbital
numberl =1d simply means the appearance of an asymmetric
state which minimizes the energy—i.e., the symmetry-
breaking transition.
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