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Mixed-isotope Bose-Einstein condensates in rubidium
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We consider the ground-state properties of mixed Bose-Einstein condens&fBd @ind®Rb atoms in the
isotropic pancake trap for both signs of the interspecies scattering length. In the case of the repulsive inter-
species interaction, there are the axially symmetric and symmetry-breaking ground states. The threshold for the
symmetry-breaking transition, which is related to appearance of a zero dipole mode, is found numerically. For
attractive interspecies interactions, the two condensates assume symmetric ground states for the numbers of
atoms up to the collapse instability of the mixture.
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[. INTRODUCTION standing interest in obtaining this BEC mixture, which goes
) ) ) o back to Ref.[12], where the feasibility of achieving such
Bose-Einstein condensati¢BEC) in mixtures of trapped  two-species BEC was established. It was suggested that con-
quantum gases has become an exciting field of study. Thgensation of the two isotopes of rubidium can be achieved
first experimental observation of the two-species BECvia the sympathetic cooling of certain hyperfine states which
was realized using two different spin states ®Rb [1].  exhibit low inelastic collision rates. Moreover, the possibility
The two overlapping condensates ©@Rb in the spin states of employing the Feshbach resonance for control over the
|[F=1,m=-1) and|F=2,m=2) were created via nearly loss- scattering length was stressed. The optimal combination was
less sympathetic cooling of the atoms in the statg) by  found to be the mixture of the spin staté®,-2gs and
thermal contact with the atoms in thi, —1) state. Also, the |1,-1)g7 because the scattering lendibtweerthe isotopes
double-condensate system 8Rb in the spin statell ,—1) can be controlled. Sympathetic cooling of tfikb conden-
and|2,1) was created from the single condensate in|the sate by thermal contact with ti#éRb condensate was subse-
~1) state by driving a two-photon transitig@]. In the sub-  duently experimentally demonstrat¢t3]. Up to 16 atoms
sequent evolution after creation, the condensates underwepf the ®Rb isotope were cooled via elastic collisions with a
complex relative motions, preserving the total density pro_larggsrese_rvm(log atoms of *'Rb. The stable condensate of
file. The motions quickly damped out and the condensated!® ~RbP isotope was also created by using the Feshbach
assumed a steady state with a non-negligiahel adjustable resonance to reverse the sign of the scattering length from

overlap region. These experiments started a series of Worlz},egat've to positivd14]. In this way, long-living conden-

i 85Rh i i -
devoted to experimental and theoretical studies of BEC insates with up to 1batoms of**Rb in the spin staté2,-2)
were produced.

mixtures.SFor instance, superpo_sition of the Spi.”of conden- One of the principal advantages of using the rubidium
sates of*™Na led to the observation of weakly miscible and isotopes is that their interspecies and intraspecies scattering
immiscible superfluid$3] and the occurrence of metastable lengths are known with a good precisifit2]; thus theoreti-
stateg4]. An interaction between two condensates of differ-ca| predictions can be compared with the éxperiment. In par-
ent spin states 6f'Rb in the displaced traps was observed inticular the scattering lengths of tHERb isotope and be-
center-of-mass oscillation®]. Successful attempts to cool tween’ the two isotopes are positive, while the scattering
fermion gases to the quantum degeneracy regime by usiqgngth of the®Rb isotope is negative. '
boson-fermion mixtures were also reported. The first such
mixture was achieved by using the two species of Li, th
bosonic’Li and fermionic®Li [6,7]. More recently, experi-
ments on mixtures of different atomic species were per
formed. Both boson-boson and boson-fermion pairs wer
cooled. The two species BEC t# and®’Rb [8] and boson-
fermion mixtures®’Rb-4°K [9,10] and °Na-5Li [11] were
achieved.

A promising combination for obtaining the two-species
BEC potentially rich in new phenomena is the mixture of
two isotopes of rubidium®Rb and®Rb. There is a long-

Efficient interspecies thermalization crucially depends on
€the interspecies scattering length and the overlap region of
the species. It is known that spatial separation may take place
‘depending on the values of the scattering lengths. If all
Qtomic interactions in the mixture are repulsive, the follow-
ing simple criterion for the spatial separation of two BECs in
a box [15] is known: if the mutual repulsion is large
enough—namelyG;,>1G;,G,, (Where Gjj is the interac-
tion coefficienj—the condensates separate to lower the en-
ergy. The symmetry-breaking point of view on the ground
state in the mixture of condensates was developed in Refs.
[16-2Q. For instance, by taking an equal number of atoms in
the two species, the symmetry-preserving versus symmetry-

*Electronic address: valery@ift.unesp.br breaking phase diagram was obtained in R&8]. The exis-
"Electronic address: kamch@isan.troitsk.ru tence of metastable states in the BEC mixtures was argued
*Electronic address: kraenkel@ift.unesp.br also on the basis of the Bogoliubov excitation spectra in Ref.
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[21], where both signs of the interspecies scattering lengtlering lengths. The Gross-Pitaevskii equations for the two-
were consideredfor repulsive intraspecies interactionsn  species BEC have the forfi30]
Ref. [22] two-species condensates with coinciding positive

. . . K 2
or negative interspecies scattering lengths and equal numbe - " + + 2 2
of atoms in the species were considered within a variationa[%tq,1 2m1V Wi+ VAW + G+ Gud W)W,
approach. However, the results of the latter work do not ap- (1a)

ply to the BEC mixture of the two isotopes of rubidium,

where, first of all, the interspecies scattering lengths have 52

different signs. Finally, the collapse of a two-component . __n 2 2
BEC in the spherically symmetric trap was numerically stud- V2= 2m2V Vot Vo)Wt (G Wl + God 1) ¥,
ied in Ref.[23], where all possible combinations of the signs (1b)
of the atomic interactions for the two species were consid-

e_red. It was found that, depending on the interacti(_)n coeffiwhere Ww,(r,t) and W,(r,t) are the order parameters of the
cients, either one or both components may experience colwo species, while the interaction coefficients are given as
lapse' i i . i G].l: 47Tﬁ2a1/ my, 622: 477'ﬁ2a2/ my, and G12: 27Tﬁ2a.12/M,

In related thgorethal studies of boson-fermion mixturesyith a,, a,, anday, being the intraspecies and interspecies
[24-29 all possible signs of the boson and boson-fermiongcaitering lengths, respectively. Havedenotes the reduced
s-wave scattering lengths were conside(dde to the strong <o\ =mym,/(m,+my). In our case, for the two isotopes
swave scattering between bosons and fermionsptiave 8f rubidium, we can neglect the mass difference between the

contribution to the interspecies interaction is neglected; se i d takE=m. = m. W der th boli
Refs.[26,29). This reflects the fact that in experiments on;;kgptfspan aKe=m; =M. YVe consider the parabolic pan-

boson-fermion mixtures various combinations of signs ar

possible; for instance, the two-isotope mixture of lithium of Mw? Mw?
Ref. [6] had attractive boson and repulsive boson-fermion VE Moy —o2 =12, )
interactions, while in Ref{7] the same species were used in 2 2

different angular momentum states with repulsive atomic inwjith strong confinement in the direction: y=w,/w, >1

teractions. Though the governing equations for the bosorfyy g simple phase transformation the possible difference of
fermion mixture are different from those for the t\No—bosor)the zero-point energies for the two species in the trap can be
BEC, the predicted effects, such as the phase separatiqiajeq away from systef)]. The difference in the magnetic

[24,27,29 and collapse[28,29, have similar features. In trap frequencies felt by the two species is caused by the

Ref. [29] a comprehensive analysi_s of _the properties Ofdifference of the Lande magnetic factors for the two isotopes
boson-fermion mixtures for all possible signs of the boso

and boson-fermiors-wave scattering lengths is given. Wert30]' 0(2,~2)9)=-1/6 andg(|1,~Dg;)=-1/4. The corre-
will make connections to the results of the latter work in theSPONding magnetic moments measured in the Bohr mag-
following sections. netons are given as foIIow;uBS:g(|2,—2}_85)mgs:1/3 and

In the present paper we study two-species BEC in a parsss=9(/1,~Dg)mg;=1/4. Hence, the ratio of the squared
cake trap for the numbers of atoms below the collapse instarap frequencies i3,/ was= ugs/ ugs=3/4, where wgs and
bility. Our main goal is to understand the ground state of thawg; stand for the frequencies experienced by the respec-
two-species BEC mixture comprised $Rb and®’Rb iso- tive isotopes. From now on, the indices 1 and 2 will cor-
topes, with the atoms being in the optimal spin stategespond to the isotop€SRb and®'Rb, respectively.
|2,-2g5 and|1,-1)s;. We consider both attractive and repul-  For not too large numbers of atoms the three-dimensional
sive interspecies interactions for fix¢defaul) intraspecies system(1) can be reduced to a system of two-dimensional
interactions with Scattering |engthS -412.5 aﬂ218 nn) equations in the pancake Coordinatqsz()(,y), while the
for [2,-2)g5 and 107.5 a.u(5.7 nm for |1, -1)g7—the aver-  orger parameter in the direction is fixed and given by the
ages of those given in Ref12]. In Sec. Il we introduce the  Gayssjan. Indeed, the motion in thairection is quantized
two-dimensional model describing the two-species BECnder the condition that the energy contribution from the

mixture in a pancake trag.e., the trap with a strong con- ponjinearity be much less than the difference between the
finement in one directignand discuss the domain of its ap- energy levels of the trap:

plicability. Then, we present the numerically found ground
states in the BEC mixture of the two isotopes of rubidium for IGj1INy
the repulsive as well as attractive interspecies interactions, d, zdh
Secs. Il A and Il B, respectively. The concluding Sec. IV o
contains a brief summary of the results. The detailed derivaHere we have estimated the order parameter|Hg?
tion of the two-dimensional model is placed in Appendix A, ~ Nj/(dj,zdjz'i), j=1,2,with the introduction of the effective
while details of the stability analysis of the axially symmetric sizes of the condensates in the pancake plane) and in
ground states are given in Appendix B. the z direction (d; ). Under condition(3), the z sizes of the
condensates are given by the trap sidg;=a;,, with a;,
Il. TWO-DIMENSIONAL MODEL being the respective oscillator length in thelirection[see
FOR THE PANCAKE TRAP formula (4)], whereas their sizes in the pancake plane must
We consider a two-species BEC mixture in the isotropicbe determined from the solution to the resulting two-
pancake trap for arbitrary intraspecies and interspecies scafimensional systerfsystem(6) below]. We will reformulate

|Gj2IN,
d2,zd§,1_

<hwy <hw,, j=1,2. (3
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condition (3) in a more convenient form below. More de- solution to systeng6), will remain invariant under variation

tailed analysis of the two-dimension@D) approximation is  of the trap size. Thus, a different trap siagwill result in a

placed in Appendix A. similar solution but for an appropriately scaled numbers of
Under condition(3) the order paramete¥; is approxi-  atoms. We will return to this point below.

mated as a product of the Gaussian wave function inzthe  Let us now reformulate conditiog8) in a form more con-

direction and a wave function describing the transversevenient for verification. Scaling the sizes of the condensates

shape: in the pancake plane by the respective trap length,
i 2 =Rja,, we obtain the equivalent conditions in the form of
Wy =e i (2 Oy(r LY, the bounds on the numbers of atoms:
z ho\Y2 R a, & R a, a
f= 77'1’4a 12 exp( . a,= . (4 N; < y—min N, < y—=min
' 22,) 3\, @ ar " \Jay Tagd ) an™" \Jay| Tayd )
The Gaussian is the ground-state wave function of the linear (8)

part of the right-hand sidRHS) in system(1) which corre-  \yhere a, denotes botra, , and 8, since they have close
spongs to 2quan§urg motion in the direction: H;, ) es, andy> 1(y= wZ/wL_aL/az) The sizesR; andR, of
=-hl(2m)d,+mo; 272, with Hj,f(2)=(hw;/2)i(2).  he two condensates must be determined from the solution of
Substitution of expressio@) in system(1), multiplication of system (6). For instance, for the pancake trap with

the equation forV; by f;(2) and integration ovez results in 1 um, using the values of the scattering lengths from
the approximate two-dimensional systésee also EqYA3)  gec. | for the®Rb-£’Rb mixture, we obtain the following
and(A4) in Appendix AJ. To write it down in a form conve- pounds: N <102sz j=1,2. Theactual bounds on the
nient for numerical calculations, let us introduce the dimeny, mbers Of atoms are thus determined by the trap aniso-

sionless variables tropy v. For example, ify=100 (i.e., a, =10a,), we have
r 5o\U2 0, N;<10°R?.
p=—, a = ( ) , T=—t, ¢Y=a,d, There is the critical number of atomsl,, such that the
a, M, 2 85Rb condensate, in the absence of the other isotope, is un-

_ stable with respect to collapse fblgs>N.. By settingg;»
=12 (5) =0 in the two-dimensional syste(8), we obtain the follow-
ing expression for the critical number 8Rb atoms neces-

Here we have defined the frequenay, as wi_(wli sary for collaps€in the absence of the other isotgpe

+w2 )12, wherew; |, j=1,2, are thdrap frequencies in the
pancakg plane exper!enced by the two isotopes. Then the ~ 27T|0 \/7_7.'0 a, a,
dimensionless approximate 2D system reads r— =K

gl 242 |ay] ]

iorgn = = V2 gy + Nip%yn + (Gl al* + Gud vl v, (68)

9)

wherex,p=1.167. In thederivation of formula(9) we have

. R 2 5 2 2 used the well-known condition for collapse in the critical
i0ri, = = VL i + Nop® i + (Goal Y2l * + 912 ¥|) 1, nonlinear Schrédinger equatioffior details consult Ref.
(6b) [31]) and that the number of particleNy, in the so-called
Townes soliton iNy=27ly, wherel;=1.862.

wherep=|p], It is important to notice that both the upper bouigl on
4\«"’%&1 4\"Era2 8\“"77a12 the admissible _numbers of atoms and the threshol_d number
g11= , Opp= v 012= T o for collapse(9) in the 8Rb condensate are proportional to
az Az (ap,+a3,) the trap size in the direction. Thus, taking a bigger pancake
trap (with the samey) will relax the bounds on the numbers
wy | wy | of atoms. The threshold for collapse in the mixture of the two
A= I Ap= w, (7) isotopes of rubidium also depends on the number of atoms of

the 8'Rb isotope. However, we have found numerically that
Using the relationw3/ w3=3/4 for therubidium isotopes in  this dependence is very wegke correction does not exceed
the spin statef2, —2)gs and|1,-1)g;, we obtain\i=8/7 and 5 % for the numbers of atoms used below and the fixed de-
)\§=6/7. fault scattering lengths therefore, the threshold given by
The pancake trap sizes in the experiments on BEC havEg. (9) can be taken as a good approximation. For example,
different values. To set a reference for discussion, in thdor the pancake trap with,=10 um, used above, the thresh-
calculations below we assume tlesize of the trap to be old for collapse isN.=535.
10 um; i.e., we set, ,=10 ,um(aZ,Z:2.031’4a11:0.84i1,2). Finally, let us comment on the validity of the approximate
This results in the following values for the interaction coef- 2D system for a description of the collapse instability in the
ficients in the mixture of the two isotopes of rubidiugy; ~ mixture. First of all, one may point out that the threshold
=-0.0219,9,,=0.0068, andy,,=0.012. For a different trap value for collapse of the mixture in the pancake trap deter-
size the interaction coefficients will change. However, themined from the full three-dimensional systdit) may turn
quantitiesgy1N4, goN,, 912N, andg;,N;, computed from a out to be lower than that predicted by the two-dimensional
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approximation, as is true, for instance, for the single-speciesotopes. Stationary solutions are sought for in the usual
condensate of°Rb. Indeed, in the latter case, the exde., form
3D) threshold can be written ad.=«(y)a,/|a,| [32]. Using _ _
the numerically found values of(y) from Ref. [32], we Yr=e""1TUq(p), Yo =€ 2TUy(p), (10)
conclude thatx(y) < kyp for any y>1; i.e., this inequality i , , ,
holds for any pancake trap. Ag—, the function x(y) where uq and_,uz are dimensionless chem_lcal potentials for
slowly tends tox,p. For example, for the trap witfa, the two species. We h_a\_/e_use_zd the g_rad|ent method for the
=10 um andy=100 we have«(100=1.1[32], which gives ~COnstrained energy minimization to find,(p) and Ux(p)
95 % (506 atoms of the threshold given by formuléd). minimizing the energy functional,

Nevertheless, in the pancake trap, the instability which is
solely due to the three-dimensionality is weak if the condi- :J 2 2 240 203201 122 \2| 1 |2
tions given by Eq(8) are satisfied and the numbers of atoms £ d p{WL%' Vg2l p Ol + Aol

are not much greater than the corresponding instability
threshold. This conclusion follows from the general discus- + g_ll|¢1|4+ 9_22|¢2|4+ 912|¢1¢2|2}, (11)
sion of the 2D approximation, which is placed in Appendix 2 2

A. Here we note also that the instability rate due to the 3D . ) )

effects decreases with increase of the trap anisotsojsjnce ~ for fixed numbers of atomsN,=/d plyal> and N,

it enters the RHS’s of the conditions in E&)]. Therefore, in =[dplypl?.

a sufficiently anisotropic pancake trap, the 3D collapse insta-

bility below the threshold of the 2D collapse does not have A Ground states for repulsive interspecies interaction

enough time to develop on the time scale set by the two- . o .

dimensional systert6) and, hence, its effect on the solutions __ L€t us start with considering the BEC mixture®Rb and

can be neglected. In fact, the time necessary for such a wedlRb atoms with the repulsive interspecies interaction. First

instability to develop may exceed the lifetime of the conden-of all, we have found the axially symmetric ground states via

sates in the mixture. the energy minimization restricted to the space of the axially
It is, however, thedynamicsof a collapsing condensate in symmetric functions. It is important to know if the symmet-

the pancake trap that cannot be treated in the framework afc states are stable. The stability analysis can be based on

the two-dimensional approximation and requires the full 3Dthe method of Refs[33,34, whose adaptation to our prob-

analysis due to violation of at least one of the two conditiondem is described in Appendix B. We have found that the

(8). Thus we will not discuss such dynamics. For more de-axially symmetric ground state of the mixture suffers from

tails on the two-species collapse in BEC’s consult, for in-the dipole-mode symmetry-breaking instability for a suffi-

stance, Ref[23] and on the collapse in boson-fermion mix- ciently large number of atoms in ti§&Rb condensate and not

tures consult Ref428,29. too large numbers of atoms in tH&Rb condensatéNgs

In the case of the two-species BEC $Rb and®Rb <500). The s L - -
X : - ; S . ymmetry breaking instability was previously
there is a stable state in the mixture, predicted by the 2Qy 0 sqeq for the case of BEC mixtures in Rgt6~20. The
system(6) for numbers of atoms slightly lower than the col-

lapse instability(see the next sectignwhich violates the novetltty htgre I'fs n t.h(?[ factt_that 'Sne.oftthe co?r:jensates thas
applicability conditions(8) for modest pancake trapsy ~ n attractive atomic interaction. For instance, the separation

<100 due to sharp contraction of tféRb condensate. The cntengﬂRef.[lﬂ_ for a BEC ”_"Xt“r_e in the box—i.e.,
sharp decrease of tf€Rb condensate siz&,, predicted by 912> 0110,,—l0Ses its meaning since in our cazagy,<0
system(6), requires a large trap anisotropy for the 2D and, a priori, it is not evident that the isotopes would sepa-
system to sustain its validity. Therefore, for the current exFate at all. ,
perimental traps, the very existence of such exotic states re- 1he axially symmetric ground states on the threshold of
quires a full 3D analysis and thus is beyond the 2D approxithe symmetry-breaking instability for various numbers of at-
mation adopted in the present paper. We will not discuss suc@ms are shown in Fig. 1. It should be stressed that there are
states either. three types oftableaxially symmetric states in the system
Therefore, for the current experimental pancake traps, thtéor smaller numbers of atoms, which correspg@aehd are
applicability of the approximate 2D syste(®) is limited by  similar) to the threshold states shown in Fig.(i):when the
the threshold of formation of the contracted states irftR  isotopes are strongly mixedhe two condensates have bell-
condensate. In the next section we discuss the ground statssaped form, the dotted lingsii) when the®Rb isotope is
in the mixture for the allowed numbers of atoms and theiron the surface of’Rb (|¢4| has a local minimum at the
deformations due to the instabilities predicted by the 2D syseenter, the solid lingsand(iii ) when the®’Rb isotope is on
tem, such as the symmetry-breaking transition. Such instathe surface of°Rb isotope(|i,| has a local minimum at the
bilites are much stronger than those due to threecenter, the dashed lings
dimensional effects and, consequently, are observed on a The threshold of the symmetry-breaking instability
much shorter time scal@onsult also Appendix A strongly depends on the numbers of atoms and corresponds
to appearance of a zero dipole magaehich pertains to the
lll. GROUND STATES IN THE MIXTURE OF TWO orbital operatorA44; consult Appendix B. From the ener-
ISOTOPES OF RUBIDIUM getic point of view, the separation takes place when the en-
Now we turn to the numerical solution of systg) to  ergy gain due to the intraspecies interaction in the strongly
find possible ground states in the BEC mixture of the twomixed state is higher than the kinetic ene(gyantum pres-
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FIG. 1. The three types of the axially symmetric state in the X

mixture of 8Rb and 8’Rb isotopes on the threshold of the

symmetry-breaking instability. The one-particle wave functions are FIG. 3. The symmetry-breaking ground state for a not too large
shown(scaled for better visibility as is indicated on thexis). The ~ number of8’Rb atoms. For each of the two condensates, the equi-
numbers of atoms are as follows. Solid liné¢s=100 andNg7 distant level curves ranging from the maximum of the order param-
=17412. Dotted linesNgs=300 andNg;=2042. Dashed lines\gs eter to a half of its value are shown.

=450 andNg;=894.

is not a general property of the mutually repulsive mixtures
sure at the interface between the separated condensates. ThEattractive and repulsive species. For instance, in a related
corresponding symmetry-breaking diagram, found numeristudy of the boson-fermion mixtures, it was noted that
cally, is given in Fig. 2. though the collapse in the mutually repulsive boson-fermion

Though all three types of axially symmetric ground statesmixture with attractive boson interactions only concerns the
discussed above suffer from the symmetry-breaking inStab”boson Species, it can be Strong|y affected by the fermion
ity with increase of the number of atoms of tPRRb isotope  number of atomg29]. However, for such an effect to be
(for sufficiently large number of atoms of t#éRb isotopg,  pronounced, the interspeciesvave scattering length must
the symmetry-restored statéfsund to the right of the phase pe significantly larger than the absolute value of the boson
separation curve in Fig.)2which result from a further in-  scattering length.
crease of the number &PRb atoms, are of typéiii )—i.e., Thus, right before the collapse instability the size of the
when the®’Rb isotope is on the surface of tfigRb isotope.  85Rp condensate first decreases to a fraction of the trap size

In the reduced 2D systeli®), with a further increase of a,. However, depending on the trap anisotrop’ysuch a
the number of®*Rb atoms the symmetry-restored state ofstate may violate the first of the two applicability conditions
type (iii) is immediately followed by a sharp contraction of (8) for the 2D approximation. For example, our estimates
the ®Rb condensate and the subsequent collapstlgat show that an accurate description of this effect requires a full
~535. The collapse instability is due to appearance of th@p analysis for pancake traps with< 100. For observations
axially symmetric unstable modg.e., the unstable linear of this effect, much more anisotropic pancake traps are re-
mode with orbital numbet=0; see Appendix B The col-  quired, which are not used in the current experiments. Thus
lapse threshold value dfgs only slightly decreases with an we will not discuss the effect any further. There is also an
increase of the number 8fRb atoms. This is due to the very implication of the validity of a part of Fig. 2 for the current
favorable set of default scattering Iengths of the system angancake traps: the 2D approxima’[ion for the pancake trap
with y=<100 is not valid for a description of the symmetric
ground states to the right of the separation curve except for a
narrow strip immediately after iwith the width equal to a
dozen of atoms on thMgs axis).

The symmetry-breaking ground states are illustrated in
Figs. 3 and 4, where we show the contour lines of the order
parametergranging from the maximum to half of its value at
a constant stepfor 8°Rb (solid lineg and 8’Rb (dashed
lines). We have found that it is thE°Rb condensate that is
expelled from the center of the trap in the symmetry-
5 breaking states. It is seen that for comparable numbers of
0 100 200 300 400 500 atoms of the two species it is tféRb condensate that suffers

N85 the strongest deformation from the bell-shaped form, while
for Ng;> Ngs the 8Rb condensate is strongly deformed. Here

FIG. 2. The symmetric vs asymmetric ground-state diagramWe note that the asymmetric ground state of the mixture is
The interaction coefficients arg;,=-0.0219, g,,=0.0068, and degenerate, as it possesses the rotational zero mode. In other
01,=0.012 (computed for default values of the scattering lengthswords, the maximum of the order parameter 8Rb can
anda, ;=10 um). The logarithmic(base 10 scale is used for the have an arbitrary position angle on the surface of &fitb
87Rb axis. condensate.

10°

Asymmetric
10

N87

10° Symmetric

10
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4N _Z20000 T has the Thomas-Fermi ground state independently of the
& state of the other isotope. Therefore the effect of the cross-

2 interaction termg, 5| #,|? in the equation for th&Rb conden-

’ sate, Eq(6), is now similar to that of an additional potential.
i In the next order of approximation, the order parameteof
>0 \{\\\\\\ the 8’Rb condensate is a sum of the two terms: the back-
‘\§\\e‘\\\: ground Thomas-Fermi shape and the local deformation at the
-2 “~§§§ center of the trap. The latter is determined by the order pa-
N rameter of thé°Rb condensate. It is interesting to note that a

4 similar central density enhancement of the fermion species in

boson-fermion mixtures with attractive interspecies interac-
X tions is predicted in Ref29] (Figs. 1 and 2

FIG. 4. The asymmetric ground state for a very large number of Itsghould be noted that, nOtWIthStandlng the at.trac.tlon in
87Rb atoms. The equidistant level curves are shown with the rangEhe Rb condensate and the gttraqtlve Interspecies interac-
defined as in the previous figure. tion, the ground states shown in I_:lg. 5 are not self-boun_d;
i.e., they are not solitons: relaxation of the trap results in
spreading of the condensates.

Finally, lowering of the interspecies interaction coefficient

Now let us consider the BEC mixture of two isotopes 912 to sufficiently large negative values results in a sharp
when the interspecies interaction is attractive, which can b&ontraction of thé°Rb condensate which is followed by col-
experimentally realized by using the Feshbach resonand@pse instability. This contraction of thetableground state
[12]. It is convenient to measure the interspecies interactio®f the ®°Rb condensate to a fraction of the trap size is due to
coefficientg;, in terms of the interaction coefficieny; of ~ the presence of the other condensate, since the size of a
the #Rb isotope. We have found that the condensates do nétable single species BEC is always on the order of the trap
separate in this case and assume the axially symmetrigZ€.
ground state up to the collapse instability threshold. Such Thus, as in the case of the repulsive interspecies interac-
ground states are illustrated in Fig. 5, where we plot thelions, the collapse instability in the mixture is preceded by a
appropriately scaled one-particle wave functions for the twgsharp decrease of tH€Rb condensate size. Therefore, de-
condensates. Note the local peak at the center oftRe  Pending on the trap anisotropy its description may take us
condensate. The appearance of this peak is easy to und&eyond the 2D approximation adopted in this paper. For
stand, for instance, when the Thomas-Fermi limit applies tdnost of the current pancake trapss 100; thus, the descrip-
the 8’Rb condensatévhich corresponds to the picture in the tion of the ground state in the mixture which is on the border
lower panel of Fig. 5 Indeed, ifNg;> Ngs, then in the zero-  Of the collapse instability requires a full three-dimensional
order approximation one can neglect the contribution fromgnalysis.
the interspecies interaction tergy,¢4|2 in Eq. (6) for the We note, however, that for small values|gf;| the stable
87Rb condensate in the region away from the trap centeSymmetric ground states predicted by the 2D approximation

Thus, in the zero-order approximation, tf&b condensate and illustrated in Fig. 5 can be experimentally observed in
the current pancake traps with~100. In such an experi-

ment, the number dRb atoms should be below the thresh-

B. Ground states for attractive interspecies interaction

-
o

— g | Nes=200 —9,,=0 old valueN.=N.(Ng;) which, for fixedg;,, decreases only by
& ®[N_ =500 — 9,,=059,, . .
N ~ |—g,-0750, a few percent from the value given by formul@ with an
© "\ i f th ber &fRb at
s N increase of the number atoms.
3 £2%
=2 ¢,(/A\\ s
0 o — IV. CONCLUSION
4 -3 2 -1 0 1 2 3 ) ) ]
X We have studied the ground state in the BEC mixture of
O T — e two isotopes of rubidium in the pancake trap for repulsive
= 8 N < 5000 — g.-04g,, and attractive interspecies interactions and figgfauly in-
S st 7 P bk Pk traspecies interactions.
. 4 /4:‘;\ In the case of repulsion between the two species, there is
23 2 Pld S the symmetry-breaking deformation of the ground state due
0 l==Z >~ to the dipole-mode instability, whose threshold strongly de-
4 3 2 4 )cg 1 2 3 pends on the numbers of atoms of the two isotopes. For

small numbers of atoms—i.e., below the symmetry-breaking

FIG. 5. Stable ground states of the BEC mixture for the attracinStability threshold—the stable axially symmetric ground
tive interspecies interactions. The one-particle wave function$tate has the form of either the strongly mixed state of the

(scaled for better visibility as indicated along thexis) are shown.
In both panels, the solid lines correspond to #Rb isotope and

the dashed lines to th&Rb isotope.

species(with the order parameters of the two condensates
having bell-shaped forjror the state where one of the con-
densates forms a circular strip on the surface of the other.
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For attractive interspecies interactions, the condensateendH,,, respectively. Application of these projectors to Egs.
assume axially symmetric ground states for all numbers ofAl) and(A2) leads to a system describing the evolution of
atoms where the 2D approximation is valid. For small valueshe projection of the order parameters for the two species on
of the (negative interspecies interaction coefficiely,| the  the respective ground states:
mixture is stable for the numbers 8fRb atoms below the ~ -
critical valueN,=N(Ng;) which is a few percent lower than i10 D1 = (Hy, + Gy Pq|?+ Gy D,2 + A D, + Fy,
the collapse instability threshold for a single-species conden- (A3)
sate of®°Rb (i.e., for g;,=0). There is a sharp peak in the
density of the repulsivé’Rb isotope due to the attractive ~ ~
interspecies interactions—the effect which is similar to the  173®,= (Hy, + g5 + G ®4[* + Ap) D, + T,
enhancement of the fermionic density in boson-fermion mix- (A4)
tures with attractive boson-fermion interactigi2g].

Finally, for pancake traps with anisotropy= 100, the 2D Whereéij :Gij<fi2fj2>, with (F)= [Fdz,
approximation for the attractive as well as repulsive mixture

is violated at the numbers of atoms in tFRRb condensate A;=Gy(f(2f, Re{cpjxifj*}+ |\1rj|2)>
just below the collapse instability in the 2D model due to the ., N
sharp contraction of th€&°Rb condensate. This is quite dis- + Gjyg_j<f]-2(2f3_,- Re{d; ¥y} + |\If3_j|2)>, (A5)

similar to the case of the single-species BEC%b, where d
the collapse sets in at a state which has a size comparable %
the trap size in the pancake plane. Thus, investigation of the _ 22 22
actual ground state of the mixture in such pancake traps at Fy = Gy(fil 1P + Gy o5(f[ Wy W) (AB)

the numbers of atoms close to the collapse instability repp the other hand, the equations describing the evolution of
quires a full three-dimensional analysis and is beyond thene projections of the order parameters on the orthogonal
approach adopted in the present paper. This sets a d'reCt'%rﬂJbspaces are derived by application of the complementary

for future research. projectorsQ;, Q;=1-1I; to the systen{Al) and (A2):
ACKNOWLEDGMENTS ihdW1 = (Hyy+ Hy )W+ QG| W42 Wy + G Wy W 4},
This work was supported by the FAPESP of (A7)
Brazil. A.M.K. would like to thank the Instituto de Fisica R ~ R
Tedrica—UNESP for kind hospitality. i10W5 = (Hpy + Hy )Wy + Qu{ Gy W,|2W, + Gy W4 [2W 5},
(A8)
APPENDIX A: DERIVATION OF THE TWO-DIMENSIONAL ~
APPROXIMATION whereHj,=H;,~Ejo. _ _
Let us estimate the orders of magnitude of the nonlinear
The system(1) can be rewritten in the form terms in Eqs(A3), (A4), (A7), and(A8) under the condition

that the nonlinear terms in systefAl) and (A2) be much
smaller than the characteristic different& ~ % w, between
the eigenvalues of each of the two linear operatéysand
ihd W, = (Hy+ Hy | + G Wyl?+ Gy W )W, (A2)  H,, [i.e., conditions(3) are satisfiel Below we will not

where we have introduced linear operators corresponding tgistinguish between quantities with different indices, since

: : - Il quantities of the same kind are of the same order of mag-
ntum motion along th is and on thex lane in & .
guantu otion along the axis and on thex,y) plane nitude. Introduce a small parameteas the ratio of the non-

ih0W1 = (Hy+ Hy | + Gy Wy?+ Gy W,o|H Wy, (AL)

the trap: linear terms in the systefA3) and (A4) to AE—that is,
h? # n s
H,o=———+Vi(2, H,=-—V2+V, (r,), GO G(f%|d
jz 2mj(922 iz L 2mj 1 JLAVL €= | | — ( >| | ] (A9)
AE AE
j=1,2. Note that(f4) ~ f2 since the integral of? overzis of order 1.

The solution to EqA1) and(A2) can be expanded over the It is the smallness o, supposed in Eq3), that justifies the
eigenfunctions of the linear operatdig, andH,, as follows:  transition to the two—djmensional approximation. Indeed, the
V=W(z,1, yt)+‘i’j(2,u 1), j=1,2, where ¥, order of the correcFioﬂf to the factorized.wave function can
Ee—iEjot/ﬁfj(z)(pj(rL 0, with fi(z) being the normalized be foundl by equating the'orders of the inhomogeneous term
eigenfunction of the ground statel;, f,(2)=Ejo f;(2), while ~ @nd the linear teri,+H  in Eqs.(A7) and(A8), where, as
the second terrr‘ifj is the projection of order parametdr; !N Egs.(A3) and(A4), we have agaii , W ~ eAEW andH
on the subspace orthogonal to the ground state. can be neglected compared whh~ AE. Therefore, we get
We can expand the systefAl) and(A2) in similar way ~ AEV ~GQ{|f®[*f®}~ eAEf® and, hence ~ ef®. From
using the projector$l, andIl, on the ground states ¢f,,  this we obtain estimates for the terms given by E§%) and
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(AB):  A~G(f’fdV)~ G2~ AE  and  F Ly=--V2+ 3 gmU%(p) +2g;U%(p) + \2p2.
~ G(f(fD)?ef D) ~ eGF2D°D ~ DAE. m=1,2
Throwing away the terms of ordef from Eqgs.(A3) and (B3)

(A4) and changing to the dimensionless variables given by
Eq. (5) we arrive at the systen®6). The projection of the

orger paragweterlf{) on thel.\ ortZogonaI SugSpacﬁr’i'f's Of_ eries of one-dimensional eigenvalue problems of similar
order e and can be neglected compared to the factorizeq, , for the orbital projections of the vecto(X,,X,)" and
wave functionf;®;. We conclude that, under conditio(®), (Y1.Y,)T

1 12)

nonlinearity plays a significant role only on the pancake
plane(x,y). o _ 1o = _ il P

Two comments are in order on the two-dimensional ap—x' Zax”(p)el ree. E{)Y“(p)e tee, 1=12,
proximation described above. First, the effects due to the (B4)
three dimensionality of the mixture will be of ordef, the
same order as the terms we have thrown out from the systemwith the orbital operators defined by = AO(VZL—>V§
(A3) and(A4); thus, they will give a significant contribution —2/,2) andA“:Al(Viﬁvi—P/pz), WhereVﬁz ai+p—1ap_
to the dynamics only on the time scale of ordéf, much  However, only a few of these 1D eigenvalue problems need
longer than the time scale of the nonlinear effects in 2Dyg pe considered to decide on the stability of the axial ground
which is of ordere™. Second, a similar 2D approximation state. Indeed, first, as follows from the general criterion for
will be valid for the linearized system which describes thene stability of the ground state in a system of nonlinear
evolution of a small perturbation of the solution. Thus, anyschradinger equationg34], in the two-component system
instability in the mixture which is solely due to its three the axial ground state is unstable if there are at least three
dimensionality will be of ordee? and will not play any role  pegative eigenvalues of the operatoy. For instance, if each
in the time scale we consider. _ _ _of the first three orbital operators;;, I=0,1,2, has aega-

The latter comment concerns, for instance, the instabilityjye eigenvalue, then the ground state is unstable. Second, as
due to collapse in 3D: although the 3D threshold value of thghe orpital operators satisfy the obvious inequality,
number of atoms in the mixture necessary for.collgpse MaY A (understood as the inequality for the mean va]dezs
turn out to be lower than that in the 2D approximation, as '512>I11, it is sufficient to consider just three orbital problems

: : p
true fqr the sm_g_le-spemes co_ndensate b, the corre- arising from Eqs(B2) with orbital number$d=0,1,2.This is
sponding instability ratéproportional to the unstable eigen- the approach we adopted

valug will be O.f ordere* and will not be noticed on the time Finally, we would like to mention that the linear stability
scale we consider. is closely related to the energy minimizatigoonsult also
APPENDIX B: THE LINEAR STABILITY ANALYSIS Refs.[33,34). Indeed, the operatoY, is non-negativ¢it has
two zero modes due to the phase invariance of the system
The linear stability analysis is based on the consideratioii6)]. Thus, from an energetic point of view, a negative eigen-
of evolution of a linear perturbation;=u;(p,T) and u, value of the operatol; corresponds to a negative direction
=u,(p,T) of the stationary statéU,(p),U,(p)). The evolu- in the free energy functional, defined here as the Lagrange-
tion equations for the perturbation are derived by linearizamodified energy functional= £-u;N; - u,N,, evaluated at
tion of the original systenfisystem(6)] about the stationary the axially symmetric statJ,(p), Uz(p)), since the operator
solution. One looks for eigenfrequenciesof the resulting  A; enters the second-order term in the free energy expansion
linear system by setting;=e"“[X;(p) +iY(p)], j=1,2. The ~ with respect to the perturbatian=X;(p) +iY;(p), j=1,2:
appearance of an imaginary eigenfrequency means instabil-
ity. In particular, by writing the perturbed solution as PF= ZJ dzp{(Yl,Yz)Ale) + (Xl,xz)/h(il)}-
y=e U +u(p D] =12,  (BY ’ ’

using this in the systeni6), and keeping only the linear o _
terms inu, and u, we arrive at the following eigenvalue Taking into account that there are two independent con-
problem(consult also Refd.33,34): straints on the numbers of atoms in the two species we con-

clude that only two negative directions may be eliminated by
Yoy oo (X Xy . (Y1 the energy dependence on the numbers of atoms. Therefore,
( )‘ _Iw(X2>’ A1<X2) B 'w( ) for fixed numbers of atoms, the axially symmetric state is
definitely not an energy minimum if there are thi@e more
L 0 negative eigenvalues of the operatby. This explains the

An:< ni ) (B2) physical origin of the above-mentioned sufficient condition
0 Ln for instability. We note also that the dipole-mode instability
Here(j=1,2), (i.e., existence of the unstable orbital mode with the orbital
number =1) simply means the appearance of an asymmetric

LOj:_Mj_Vi+ > gjmuﬁq(p)qu)\j? 2 state .which r_njnimizes the energy—i.e., the symmetry-

m=1,2 breaking transition.

Expansion of the eigenvalue problgi®2) in the Fourier
series with respect to the polar angldeads to an infinite

(B5)
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