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Pulse-driven quantum dynamics beyond the impulsive regime
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We review various unitary time-dependent perturbation theories and compare them formally and numeri-
cally. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexpo-
nential character of correction terms and the possibility to optimize the accuracy of a given level of approxi-
mation which is explored in detail here. As an illustration, we consider a two-level system driven by short
pulses beyond the sudden limit.
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[. INTRODUCTION the characteristic duration of the time-dependent interaction
. ~ compared to the characteristic time for the free evolution. We
Short and intense laser pulses allow nowadays to drivg,ye shown that it converges in any regitfem impulsive
atoms and molecules in nonperturbative regimes going frong, aqiahatig in two-level systems. This derivation is based
adiabatic(nanosecond and picosecgnd sudden or impul- on the Kolmogorov-Arnold-MoseiKAM ) technique applied
sive (femtoseconyl Recent examples concern the alignmenti an extended Hilbert spagaé6-2q. In Ref. [15], we pre-

of molecules, which can be achieved du.rlng NANOSECONGanted an improvement of this technique taking advantage of
pulses or after femtosecond pulgé$ Corrections to perfect  goq narameters, connected to secular terms, that are avail-

adiabaticity can be analyzed in terms of superadialjatig able to reduce the error without pri

; . prior knowledge of the exact
a_nd D_aws—Dy_khne—Pechukas tgchmq@_@sB]. On the OPPO-  so|ytion. This optimization enhances the accuracy of the
site side, regimes beyond the impulsive approximation, I.€method in such a way that the first-order approximation

beyond the limiting case of pulses describedsdicks, have ives a satisfactory description up to fairly large values of
not been yet much explored due to a lack of adapted tools oie perturbative parameter.

analy3|s. - . The present paper contains a detailed description of the
It is well known that one can treat periodic perturbanonsmethodS announced in Refl5]. Instead of using an ex-
using extended Hilbert spaces where time is considered as;ga jaq space, we formulate the derivation in a simpler way,

new dynargiial \_/rz?]r_iable, in orrt]jerktlp kr}endergth;a proli)lerr:j auby stating the perturbation iterations directly at the level of
tonomous[9,10). This approach, which can be formulated asyne o\61ution operator in the original Hilbert space. This

Floquet theory{11-13, allows one to eliminate systemati- qopeme allows us to consider and compare in a unified way

cally secular terms.e., terms that grow arbitrary with ime 3405 time-dependent perturbation techniques. In particu-

which would otherwise lead to divergences. Pulse-driven dy, . \wa make the connection with the well-known Magnus

namics as§00|ated with Hamiltonians localized in t|_me re'expansior[Zl], which has been used by Henriksenal. to
quires a different treatment of secular terms. In this case

' h bati v duri finite time i Iconstruct an improved impulsive approximati¢p®2]. We
since the perturbation acts only during a finite time interval,y g4 develop and investigate the accuracy optimization which
the secular terms do not lead to divergences.

Thi b developi ne-d d can be applied to the time-dependent Poincaré—\Von Zeipel,
IS paper contributes to developing a time-dependen,q time-dependent Van Vleck, and the time-dependent KAM
perturbation technique, which is, in particular, suited fo

r .
h :
pulse-driven dynamics, on the basis of R¢fst,15. In Ref. techniques

! . The paper is organized as follows. In Sec. Il we recall the
[14], we constructed a superexponential perturbation theory,, g expansion and outline the time-dependent versions

which preserves the unitarity of the evolution operator alyf the Poincaré—\Von Zeipel, the Van Vieck, and the KAM

each_ orqer, and app"‘?d it beyond the |mpu|§|ve regime b3fechniques. We highlight the free parameters and free opera-

considering an expansion where the perturbative parameter {§ < that may be present in these unitary perturbative meth-
ods. In Sec. Ill we exploit these degrees of freedom to im-
prove the accuracy of a given level of approximation.

*Electronic address: ddaems@ulb.ac.be Section IV is devoted to the application of these techniques
"Electronic address: sguerin@u-bourgogne.fr beyond the impulsive regime and the illustration on a pulse-
*Electronic address: arne.keller@ppm.u-psud.fr driven two-level system. The conclusions are given in Sec. V
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and some details of the calculations are reported in Appertimes. Indeed from Eq1a one deduces the following equa-
dixes A—C. tion for MHl(t;to):

II. UNITARY TIME-DEPENDENT PERTURBATION

4 i
THEORIES M, (E5t0) =Hi(®) + STMy (o), Hy(D)]

We consider the Schrodinger equation 1
Jered = 2 IMi (680, [My (E510) H(OT] + -+

i%UHl('[,to)=H1(t)UHl(t,t0), Untot) =1, (12 o

whereH; (1) is a time-dependent matrix or a time-dependentWe refer to the paper of Magn{ig1] for a derivation of this
operator in a Hilbert spadd. Assuming that one can decom- equation(see also Ref[23]). The matrix or the operator

poseH,(t) according to MHl(t;tO) is obtained by integrating the first term on the
_ right-hand side of Eq(5) and substituting the result into the
Hy(t) = Ho(t) + eVa(V), (1b) next terms of this equation. One then repeats this procedure,

where Hy(t) is such that its propagatdd,, (t,t,) is known Kknown as Picard’s iteration, with the resulting second and
0 1 . - -
and V(1) is localized in time(i.e., vanishes outside a finite SuPsequent terms. This yields the Magnus expansion

interval), we are looking for a unitary perturbative expansion

of the full propagatoty (t,to). This can be achieved by two My, (6 to)
classes of techniques that we outline beldwthe order by t i [t u
order methods, namely, the Magnus expansion, the time- = dqu(u)+5 du dvH;(v),Hy(u)
dependent Poincaré—Von Zeipel technique, and the time- o o o
dependent Van Vleck technique, where aftesteps the re- 1t u v
mainder is of ordee™?; and(ii) the superexponential KAM " a), du t dv t dwHy(w),Hi(v) |,Ha ()
technique where the remainder is of Orar. 1 Ot Ou ° "
. Belgw we V.V'" have to con.5|der.the propagatdp.,l(t,to) _ = du[ dqu(v)[ dWHl(W),Hl(U)H
in the interaction representation with respectgit): 12Jy, to to
UHll(tlt015) = UH0(85t)UHl(titO)UHO(tOlS)v (Za) o (6)

wheres is an arbitrary timg(the standard interaction repre- The number of terms in this expansion grows very rapidly
sentation corresponds to the casd,). This propagator sat- [24]. Notice that this expansion is not limited to perturbation

isfies the Schrédinger equation theory [i.e., to a Hamiltonian of the form of Eql1b)] al-
5 though it is of interest only when the subsequent terms are
iUy (tty:s) = H (t:5)Upyi (t,t0:S), 2b neg_ligible. This wi_II be the case if one i; interested ip ob-
at Hl( 0i9) = Hi(tis) Hl( 0:9) (2b) taining an expression valid for very short times only or in the

presence of another small parameter.
In the framework of perturbation theory, if we were to
H.(t;s) = €Uy (S,)V4(HUy (t,9) (2c)  substitute Eq(1b) into Eq. (6) we would generally obtain
AN Hg\> 1 Ho\to/ - . . . . P .
contributions to a given order iafrom an infinite series of
We will also consider a new representation defined with thegerms of the Magnus expansi¢B5]. This can easily be cir-

and the associated Hamiltonian reads

help of a unitary transformatiom(t;s) according to cumvented by considering E(), the equivalent of Eq.18)
Nt and (1b) in the interaction representation. The Magnus ex-
Un(tto;s) =T (t’S)UHl(t’tO)T(tO’S)’ ©) pansion pertaining to E@2b) allows one to write its solution
in the form

whereH(t;s) is a new Hamiltonian. This expression is remi-
niscent of Eq(2a) althoughT(t;s) need not be a propagator
but a unitary operator which features an arbitrary paranseter
and satisfies the properf¥(t;s)=T(s;t).

UHil(tltO;S) = eXF{_ ieMHil(t;tO!S)}v (7)

with _eMHil(t;tO,s) given by Eq.(6) wherel—_|1(t) is replaced
by Hi(u;s). By virtue of Eq.(2c), eachH)(u;s) carries a
prefactore. Hence, there is ne-independent term and terms
The solution to Eq(1a) can always be put in the form of of My (t;ty,s) with higher numbers of’(u;s) are now of
an exponential, higherlorders ire. In order to display the explicit dependence
- - ) = on the parametes, we decompose the propagator enterin
Uny(tto) = ™%, My (toito) =0, @) througthil(u;s) according to[)JHO(s,u):FL)JHOF()s%)UHO(t,u) ’
whereMy, (t;to) is self-adjoint to ensure unitarity. The expo- and note that the leftmosty, (s,t) and rightmostJy, (t,s) of
nentMy (t;to) is generally not simply the integral ¢1,(t) each term ofMHil(t;to,s) factor out(while the inner ones
owing to the noncommutativity of the latter for different cancel each othgr

A. Magnus expansion
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* C. Time-dependent Van Vleck technique

My (tito,9) = UHo(S’t)k% MLt Upy(t9).  (8) To provide a general perspective of unitary time-
- dependent perturbation theories we introduce in Appendix B
Returning to the original representation with the help of Eq.a time-dependent version of the Van Vleck technique that is
(2a), Eq.(7) yields more widely used than the preceding method in the station-
ary cas€g28]. It consists in transforming the full propagator
9) into a new effective propagator iteratively through a series of
unitary operations. Our purpose is actually not to introduce
yet another variant of perturbation theory but to emphasize
where use was made of the identity that this time-dependent version of a well-known technique
1_ Apal is (i) comparable to the Poincaré—\Von Zeipel method which
AN =N (10) we show to be closely related to the Magnus expansion, and

By truncating the infinite series of Eq9) to ordern one (i) not as powerful as the KAM technique detailed below
obtains the unitary approximation since it is an order by order perturbatlve method.

©

Un,(t.tg) = ex — 2 EMy(tito) Up,(tto),
k=1

)] n+1
UHl(t’tO) - UHl(t'IO) +O(e™), (11) D. Time-dependent Kolmogorov-Arnold-Moser expansion

with the Magnus expansion The time-dependent KAM technique aims at obtaining a
n superexponential expansion for the propagatq;l(t,to)
U;—?)(t!to) =exp) =i, EM(t:to) UHO(LtO)- (12) thr_ough a series of unitary transformations. It is sometimes
1 el said to be superconvergent. However, superexponential is

] o _more appropriate since the dependence ohthe remainder
We stress that this expression is independent of the arbitraryter py jterations is indeed the exponential of an exponential

time s chose_n in Eq(2) [26]. Each term of the exponential (ezn) while the actual convergence of the algorithm has to be
can be cast into the form . o
examined specifically.

t
M(t;to) = | dulpy (Lu)Vi(w)Uy (u,b), (13 1. First iteration
fo

The first step is to construct a unitary operafg(t) which
transforms the propagatah (t,t;) we are looking for into
the propagatoUHz(t,to) [cf. Eq.(3)]:

whereV,(u) is deduced from Egs2c), (6), and(8). The case
k=1 features the perturbation itself while for the first few
values ofk that we shall use below, dropping the time argu-

ments, one finds TI(t)UHl(tytO)Tl(tO) = UHZ(t,to), (15

[
V,=- E[Ml,vl], (148 whereUy(t,ty) is associated with the sum of an effective
HamiltonianHS(t) which contains all contributions up to or-
der € and a remaindee?V,(t):

1
V3==i[M,,V{]+ =[M,[M,Vq]]. 14b
3= —iMa Vil + LIMU ML VAL (14D) () = HE(D + 500 16
As the new propagator is generated by a sum of Hamilto-
B. Time-dependent Poincaré—\Von Zeipel expansion nians it can be expressed in terms of the propagami(t,to)

The classical Poincaré—\Von Zeipel technique was adaptefi?ind a propagathRz(t,to) by co.nsi.dering the interaction
to quantum mechanics by Scherer to treat both timef€Presentation with respect H(t;ty):
independenf27] and time-depender20] systems. In the _ . , "
time-independent case it was shoy@Y] that this technique Un,(t.to) = UHf(t’tl)URz(t'tO’tl)UHT(tl’tO)' an
coincides with the usual Rayleigh-Schrddinger expansion . o -
We present in Appendix A a time-dependent Poincaré—Vor‘ESy V|"rtu_e of Eq. (2? the propagato_URz(_t,to,_tl) satisfies a
Zeipel technique that has the advantages to be strictly unitarychrodinger equation whose Hamiltonian is
upon truncation at any given order and does not require the o " "
consideration of a so-called extended Hilbert space. This SRt = gUHT(tl’t)VZ(t)UHT(t’tl ' (18)
methog aTounts to mzfdth? ftull p.r&ptf;gathmll(t,t?) |nt.o e|1 Being associated with a Hamiltonian of second ordeg,in
hew eflective propaga el _0) Wi € help ot a SIngle. ;g propagator will be neglected in Ed.7), i.e., replaced by
unitary transformation according to an equation similar toy,o identity
Eq. (3). Moreover, this formulation exhibits free parameters '
available to improve the accuracy of a given step of the
algorithm by a procedyre we describe in Sec. I B. Fina!ly, HS(t) = Ho(t) + eD4(1), (19)
we show that the time-dependent Poincaré—\Von Zeipel
method includes the Magnus expansion as a particular casehich allows one to expreslSHci(t,to) as

The effective Hamiltonian can be decomposed as
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U Hflf(t,to) = Uy, (tt)Up (tto;t) Uy (t1,to), (20)

where Upl(t,to) is the propagator corresponding to the
Hamiltonian + UHO(t,tO)BluHO(tO,t), (29

t
W (t) = f, dUUHO(tyU)[Vl(U) - D1(U§t1)]UHO(Uyt)
ty

ePy(t;ty) = eUy (1, D1 (U (tty). (21)  whereB; is any constant self-adjoint operator. In the present

- I . k h =0.
Thus far the only restriction on the Hamiltonia(t) is work we choose,; =0

: . Substituting Eg. (17) into Eg. (15 and replacing
that it be of ordere. Hence we have the T“?edom to choose 'tUR (t,to;t7) by the identity as discussed above, one obtains
so as to be able to determine explicitly the propagator, 2

Up,(t,to;ty). This will be the case if the KAM approximation
Un. (tto) = UP(t,t) + O(€?), 30
Dy(t) = Upy (640Dt Uy (t,0) = Dytity),  (22) (blo) = Upi (1) + O(€) (30

with D4(t;;t;) arbitrary. In this paper, we consider explicitly with the one-iteration KAM expansion

two possibilities Uit to) = Tl(t)UHi(t,to)TI(to). (32)
Di(t1;ty) =0, (2339 we emphasize the dependence of the following operators on
the arbitrary timeg,, t;, andtj:
Di(t1;ty) = Va(ty). (23b)
. . - . L HI(t) = Hi(t;ty),
The first one is a trivial choice which gives nevertheless a
nontrivial one-iteration KAM expansio(it will be shown in T,(0) = Ta(t;t,,t)

Sec. 11 D 4 to coincide, for the first iteration only, with the
first-order Magnus expansipriThe choice to relat®4(t;t;)

to the perturbation according to E@3b) is also rather natu-
ral as this operator enters the effective Hamiltor(ae shall

Wi (1) = Wy(t;t,t),

discuss the fact that the perturbation is evaluated at an arbi- Va(t) = Valtity,ty),

trary timet, in Sec. Il A). Choosing one of the possibilities

of Eq. (23) implies that the propagator defined in EGO) Ro(t;t]) = Ro(t;ty,t7,t7). (32
reads

As a consequence, the one-iteration KAM expansion de-
Up, (t,to;ty) = €710 <Paltaty), (24)  pends ont; andt;. In Sec. Il B, we shall show how these
_ . ~ parameters can be chosen to improve the accuracy of the
The effective propagator can then be given a conveniendigorithm. In addition, recall that there are two constant op-
form using Eqgs(10), (20), and(22): erators,D4(t;:t;) in Eq. (22) andB; in Eq. (29), that can be
_ ~i(t=to) D1 (toity) — ) freely chosen. Note that with the choice of EB34) there is
Ung(tito) = Up,(Lg)e oo =Upe(titoty). (25 ] dependence of.
We now express the requirement tAatt) defined in Eq.
(15) be such thate?V,(t) contain no terms of order lower o _ _ _
than €2. We first multiply Eq.(1a) from the left by T}(t) and In the first iteration of the KAM algorithm we started with

from the right byT,(to) to deduce employing also E¢L5): the HamiltonianHl(t):Ho(t)+evl(t.) and the known propa-
gatorUHo(t,to). We constructed, with the help @f(t), a new

Hamiltonian H,(t)=HS(t)+€?V,(t) and its propagator
UHZ(t,to). We approximated these operators to first order by
retaining only the effective Hamiltoniad$(t) and its propa-
gatorUHi(t,to), discarding thus the remaindeiV,(t) and the
Ty(t) = e Wi, (27)  related propagatddg,(t,to;t).

To go one step further, unlike standard perturbation theory
which reduces the size of the remainder frefnto €3, the
KAM algorithm takes advantage of the fact that after one
iteration it produces a new perturbatiefV,(t) whose order

9 is the square of that of the original perturbatie’;(t).

Ewl(t) =Vy(t) = Dy(t;t) +i[Wy(D),Ho()],  (28)  Hence by considerinbl,(t) and in particular the perturbation

€V,(t) as the new starting point, a KAM transformation

and defines the remaindefV,(t) as the right-hand side of T,(t) produces a new perturbaticetVs(t) [whose order is
Eq. (26). We stress that to arrive at ER8) we do not indeed(€?)?]. This is the essence of the superexponential
identify terms order by order. Hence this equation is stillcharacter of the KAM algorithm. The fact that the new per-
valid if any of the operators featured contains a further deturbation is of ordek” instead ofe?, as in a standard pertur-
pendence or. The general solution to E¢28) reads bation theory, allows one to anticipate the importance of

2. Second iteration

EV,(t) = THOHL (O T(t) — HE(1) - TI(D)i %n(t). (26)

Writing T,(t) in the exponential form

we then require that all terms of order lower thenin Eq.
(26) vanish identically. This leads to a differential equation
for the self-adjoint operatdw,(t),
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keeping higher-order terms #fV,(t), in particular, terms of HS(t) = HE(t) + €2D,(1), (40)
order €@ which would otherwise be absent if one further it- . . ) .
erates the algorithm. and its propagator accordingly written in the form

The second KAM iteration amounts thus to reproduce the UHg(t,to) - UHfl-‘(t,tz)Upz(t,to;tz)UHg(tzyto)- (41)

first iteration on the newly constructed Hamiltoni&h(t)
=HS(t) + €2V,(1): the effective HamiltoniarHS(t) and propa-  From Eq.(2) one deduces thadp (t,to; t) is associated with
gatorUHci(t,to) now play the role of the previous unperturbed the Hamiltonian

Hamiltonian and propagator, respectively, we replaby €

and increase each subscript by one unit. The perturbation
€V,(1) is given by Eq(26) which we expand using Eq&7)
and(28) and the Hausdorff formul§29,3Q

EP,(t;t,) = EZUHg(tz,t)Dz(t)UH'i(tatz), (42

where UHi(t,to) is given by Eq.(25). The corresponding
Schrédinger equation is straightforwardly integrate®ft)

1 1 1 is taken as
e"Be” =B+ —[A,B]+—[A[AB]]+=[A[A[ABI]]
1' 2' 3' Dz(t) = UHi(t1t21tl)DZ(t21t2)UH§(t21t1tl) = Dz(t,tz),
- (33) (43)
to obtain with D,(ty;t,) arbitrary. Two appealing cases are
i€ e Dy(ty;tp) =0, (449
EV,= 7[W1’V1 +D4] - E[Wli[wlizvl +D4]]
it Da(ty;tp) = Valty). (44b)
- 2_4[W11[W1,[W113V1+ Dalll+ -+ (349 One then obtains
H : . . . . — i(t-tg) €2 ;
We can rewrite this expression in a compact form with the U, (t,to;tp) = €770 P2tz (45)

shorthand notation (A, B) for the k nested commutators

The new effective propagator can be rewritten using(E8g).
[A, ... [A[AB]]--: propag 9En

as
B k=0 — —i(t—to) D4 (toit) ;=i (t=to) €2Do(toit)
ad AB) = 35 UHe(tvtO) = Uy (t,to)e oeP1llol) g o/€ Dallplz
(AB) {[A,ad<'1(A,B)] k=1. 39 2 °
_ _ _ . = UHg(t,to;tl,tz)- (46)
The perturbation we shall start from in the second iteration
of the KAM algorithm thus reads We now come to the definition df,(t) given in Eq.(37)
and require that*V,(t) contain no term of order lower than
F o jkektl 4. InsertingT,(t) into the Schrodinger equation faky (t,ty)
i“e € glz gereq CAURY
eV, = k% ma&(wl'kvl +Dy). (36 one arrives at ’
L . 0
We recall that the presence of a power series donstitutes €V3(t) = THOH(H) To(t) — HE(t) - TZ(I)IETZ(I). (47)

no difficulty for this algorithm. It is on the contrary crucial in
this superexponential technique to keep terms up to the finajje write
order one is interested in. Terms of ordéy for instance, do ,
not appear througk*V,(t) but through the second term in the T,(t) = €W, (48)
series of Eq(34) or Eq.(36) for €2V,(t). . ]

We now proceed to the construction of the second KAMWhereWZ(t) is allowed to depend og (although we do not

. : : : . indicate it explicitly. Substituting into Eq(47) and requir-
iteration as described above. The unitary transformakigr) ing that all teprms %f order Iowegr thae \(/qa(mi7$)h identi?:ally

Is such that leads to the differential equation
Tz(t)UHz(t,to)Tz(to) = Uy, (L), (37) 9 . .
sz(t) = Va(t) = Da(t) +i[Wa(t),Hi(D)]. (49
where the propagatdes(t,to) is associated with the Hamil-
tonian Its general solution reads

— g€ t
H3(t) = Hz(t) + E4V3(t)y (38) Wz(t) — f, dUUHi(t,U)[VZ(U) _ DZ(U;t2)]UH§(urt)
t

and can be expressed as
+ Upe(t,tg) BoUpe(to, t), (50
UH3(t,to) = UHg(t,tE)URs(t,to;t'z')UHg(tZ,to)- (39 ' !
whereB, is any constant self-adjoint operator. Here we shall

The new effective Hamiltonian can be decomposed as setB, to 0.
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The propagatoty (t,to) we are looking for is obtained t
from Egs.(15) and (37): Wk(t) = f, dUUHE_l(t:u)[Vk(u) - Dk(U;tk)]UHE_l(uvt)'
t

Up, (Lt) = T To(OUy (Lt THI) THt).  (51) (59)
Substituting Eq(39) and neglectindJg (t,to;t;) since it is One héSUHS(t’tO)E Uny(t.to)- T_O cr?ntlnue .the algorithm we
associated with a Hamiltonian of ordet, we find determine the new perturbaticet V,,4(t) in terms of the

operatordi,(t), V,(t), andD,(t;t,) obtained at the preceding
U, (tt) = U (t,tg) + O(e), (52)  step
. . . . * ik(62“_1)k—1
with the two-iteration KAM expansion Vo =2, Wad((wmkvn +D,), (60)
k=1 :

@t 1) = tor \Tt
UHl(t'tO) - Tl(t)Tz(t)UHg(t'tO)TZ(tO)Tl(tO)' 53 with the usual definition of a@\, B) recalled in Eq(35) and
This expansion features two additional arbitrary titeand ~ Where the infinite series can be truncated to a prescribed
t}) and two additional arbitrary operatai®,(t,;t,) andB,] order. This new effective perturbation has exactly the
that can be chosen so as to improve its accuracy. The stru8&Me structure at each iteration which is useful for appli-
ture of the equations and of the operators involved is exactlf@tions, particularly when high-order computations are
the same for the second KAM iteration as for the first one,"€€ded. o _ , /
and will be the same for any iteration. In particular, the ef- At €ach KAM iteration two arbitrary timeg andt, are

fective perturbation determined at each step is always of thifitroduced through Eqs(57) and (59). As a consequence,
form of Eq. (36) since each step is just a renaming of the®N€ has the following dependence on these free parameters:

previous one. This is ir_1 contrast to the order by ord_er meth- Upelt, to) = Upe(t toity, - ),
ods where the determination of that operator requires each n n
time more algebra.
To) = Ta(tity, .o taty, - 8,
3. Summary of the time-dependent KAM algorithm

The propagator of the perturbed Hamiltoniat(t) Wa(D) = Wh(tity, .- bty - ),

=Hy(t) +eV,(t) is approximated aften iterations according , ,
to Vi) = Vi(tity, o ten by - sy (61)

™ N These quantities, together with the choice of Egjrg or
Un, (tto) = Uil (t,to) + O(”), (54)  (57b) for the arbitrary operatoD,(t,;t,), may significantly
affect the accuracy of the-iteration KAM expansion.
with the unitaryn-iteration KAM expansion
4. Comparison with the Magnus expansion
U(tt) = Tof®) -+ T Upelt to) THto) -+ T(to). (55) P o e

H, n 1 . I
n The Magnus and KAM expansions differ in several re-
We recall that the superexponential character of the correPects. First, itis remarkable that the KAM algorithm can be
tion terms stems from the fact that each KAM transformationiMpPlemented in the original representation. In Appendix C
reduces the perturbation to a new effective perturbatiofVe Show that the result obtained for the KAM expansion in

whose order is squared. One defines the interaction representation is identical at any level of ap-
proximation.
UHﬁ(tvtO) = Up,(t.to)exp = i(t - to)eDy(to;ty)] Most important, of course, is the superexponential char-

acter of the KAM expansion which manifests itself as of the
X o X exp - i(t—to)ezn_an(toﬁn)], (56) second iteration. However, the first iteration of these algo-
rithms is generally different, owing to the noncommutativity
with the possibility to choose one of the following for any of the operators involved. Indeed, EG2) gives for the first-
k=1: order Magnus expansion

Dy(t;t) =0, (573 U(t,to) = €Mty (tt), (62)
while the one-iteration KAM expansion of E¢31) reads
Di(tit) = Upe (LtVi(tdUpe (tt). (57D U (1t = MMy 0P )
1
Each KAM transformation reads o g ielt-toID ) g el gty 1)
Til(t) = exd - i Wy (1)), (58) X Uy (o). (63)
where We recall from Eq.(13) that
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t error without prior knowledge of the exact solutiamy the
M (t;to) =f duUy (L, u)Vy(uUy (u,h). (64)  choice of Eq(57) for the operator®,(t;t,) and(ii) the free
o parameters, andt, of Egs.(57b) and(59). There is also a
To compare these expressions we shall cast the product tfird way discussed below(iii) the possibility to consider
the exponentials of Eq63) into a single exponential using another identification of the perturbation and unperturbed
the Campbell-Baker-Hausdorff formufa3,29,31: Hamiltonian.
B C The items(i) and (ii) also apply to the Poincaré—\Von
efe?= e, (653 Zeipel and the Van Vleck techniques, although to a smaller
where extent, as we describe below.

1 1 A. Choice of Dy(t;t,) and correspondence between
C=A+B+ E[A' B]+ 1—2[A‘ B.,[A,B]]+ ---. (65b) resonances and secular terms

Each iteration of the time-dependent Poincaré—\Von
Zeipel, the time-dependent Van Vleck, and the time-

that of.Eq.(cij.?f), "be' EMl(t)'fHe;:%e’l by th.(GSb()j, thﬁse dependent KAM algorithm features an arbitrary operator
expansions diter by terms of ordef. In other words, these n (¢ .¢) |n the preceding section, in addition to the simplest

expansions differ through terms whose order is that of their )= ; )=
remainder, which therefore enables one to recover precise&ahzerz{‘(ti'; t;)n gr’b\il;/;;ugr%?ted the choieg(t; t) =Vidtd,
k .

Fhe same expansion up 1o a given order. To compute explic- The first iteration involves the operat@;(t;t;) which
itly these terms of ordee? and show that they generally do I o :
satisfies the same equation in the three algorithms, namely,

not vanish we apply the Campbell-Baker-Hausdorff formula - S )
twice to reduce the three exponentials of E&P) to a single E_q. (22)..Th|s equ_atlon is actually the general solution to the
differential equation

We note that the exponents of E&3) precisely sum up to

one
Ut tp) = €Mt~ E2KTLDOY,, (tt), [Ho(1),Da(t;ty)] = i%Dl(t;tl). (68)
(66) This latter equation, together with E8) for W;(t), is the
where time-d_ependent ge_neraliz_ation of th_e so-called cohomology
Kiltito ) = (t= Mt Du(6t0] + 1= 0 The tme-ndependent probleme, the praslem of find-

X[Mq(ty;to), Da(t;t)] + [My(t;tg),My(t];t0)].  Ing a transformatiofT, that enables one to simplify the time-
67) independent HamiltonianH, according to TiH;T;=H,

+eD,+€2V,, is recovered when one conveniently choogs

We recall that, according to Eq23), we choose either as time independent. This transformation is sometimes called

D,(t;t;)=0 or Dl(t;tl):UHO(t,tl)Vl(tl)UHO(tl,t). As a con- contact transformatior[33] or level-shift transformation

sequenc,(t;to,ty,t;) is generally nonzero and therefore, at [30]. _ _

this first level of approximation, the KAM and Magnus tech- [N this case all the operators, and in particilarand\W,,

niques differ by terms of ordes®. However, if one chooses are time independent and the standard cohomology equations

D.(t;t,) =0 together witht; =t,, then the one-iteration KAM are recovered:

expansion and the first-order Magnus expansion coincide [Ho,D,]=0 (699
(this will no longer be true for the next levels of approxima- 0=t ’
tion). V; - Dy +i[Wy,Ho] = 0. (69b)

Note that for the KAM algorithm, as we discuss in the
following section, the choice dD4(t;t;) with an arbitraryt;  Their solutions can be determined using the following key
allows one to enhance the convergence precisely by actingroperty [32]: W, exists if and only ifHHO(Dl—Vl):O,
on these higher-order ternfiere emphasize that these terms whereIl,, is the projector in the kernel of the application
appear here as higher-order ones because of the use of tﬂe»[A,Hg] (for an operatorA acting on the same Hilbert
Campbell-Baker-Hausdorff formula; but at the level of Ed- space aH,). The projectorll,, applied on an operatoh
(63), each exponent is indeed of ordr captures thus all the pa of A which commutes witfHo:

For higher orders and iterations however the KAM algo-[B'Ho]:o_ The unique solutio®; allowing W, to exist and
rithm is a priori expected to perform far better owing to both satisfying Eq.(68) is thus
ce '

the superexponential character and the possibility to enhan

the accuracy. 1 (T
Dl = HHOV1 = |im _l__

T—oo

e—itH OvleitHO. (70)
0

Ill. IMPROVING THE ACCURACY . . .
Theresonancesire associated with terms vf which com-

The formulation of the time-dependent KAM technique mute withH,. Application of Eq.(70) can be interpreted as
presented in Sec. Il D reveals the existence of several dexn averagingof V,; with respect toH, which allows one to
grees of freedom which are at our disposal to reduce thextract resonances.
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For thetime-dependent problenthe general solution to B. Enhancing the convergence

Eq.(28) is given by Eq,(29). Defining the average After one iteration of the KAM algorithm one deduces

t from Egs. (15 and (17) an exact expression for the full

t-7

1
H_Vl = |lim-

77— T

= . ! e . . v
one can show the following property:\it;(t) is bounded for UHl(t’tO) Tl(t'tl'tl)UHl(t'tl'tl)URz(t’to'tl’tl'tl
negative infinite times, thehl_(V,-D;)=0. This is satisfied X UHi(t,j/_rtO;tl)TI(tO;tlrt;/L)i (76)
by D,=I1_V;, the only solution compatible with E¢68) and
the projectorIl_. This means that the averagimy=I1_V;  wheret,, t;, andt] are arbitrary timegcf. Eq. (32)]. The
allows one to remove secular terms at negative infinite timespropagatouURz(t,to;tl,ti,t{) of the Hamiltonian given in Eq.
We remark that this definition of the average, Eg@l), can  (18) is associated with a second-order generator
in fact be recovered from the formal calculation of the aver-
agelly V; of Eq.(70) with respect tcKo=~(i 3/ dt) +Ho in an Ug.(tto;t, thth) = e 1€Ga(ttoty b t]) (77)
extended space, which includes time as a coordiriate2(. z
This gives the precise correspondence between the resgg obtain the one-iteration KAM expansidu(Hl)(t,to) we

1

T‘%”Ces 8f siatlor;)?ry problems and the secular terms of t'm‘?'l'eglected this propagator, replacing it by the identity in the
Independent problems. . above product. Obviously, the closek (t,tg;t;,t7,t]) is to
. In_Ref. [14] it WQS.ShOW” for p_erturbatlo_ns that are local- the identity, the smaller the correcticz)n terms are, i.e., the
ized in time, in a finite but possibly large intervait=<ty, more accur’ate the approximation is. We can imp’rove’ this
that Eq.(71) reduces to accuracy if we can make that propagator closer to the iden-
1.V, = Uy (£,6)V;(t)Uy, (1), 72 tity, or equivalently, its generator closer to zero. The distance
1% Ung(GEVA(H) U (8,1 (72 is defined through the nortfi|=ma=y|Ay with ¢ in the

This is a particular solution to E¢68) corresponding to the Hilbert space of the problem. For a Hermitian matrix, this

choicet,=t; in Egs.(22) and(23b). An alternate definition NOrm is the largest absolute value of its eigenvalues.
of the average We calculate this generatefG,(t;ty,t,t;,t]) by solving

the Schrddinger equation with the Hamiltonian of ELB) in
o1 (v the form of an exponential using E@6). This is a time-
I,V = lim ;f dsUy (t,9)Va(s)Up (st)  (73)  dependent problem with a zero unperturbed Hamiltonian and
e whose perturbation ig?Upe(t], t;ty)Va(t; ty, 1) Upe(t, 1 ty).
gives a different result Hence, we evaluate the lowest-order contribution to
Ga(t;tg,t1,t7,t]) as

ILV; = Uy (6t Va(t) Uy (t, 1), (74) .
(2)(t- " — . . ’
and allows one to remove secular terms at positive infinite G (Lo tuty) = ftodUUHi(to’u’tl)VZ(u'tl’tl)
times. Generally one cannot remove simultaneously the
secular terms at negative and positive large times. This X Upe(U,to; ty), (78)

shows a conceptual difference between stationary resonances : . . . .

and secular terms associated with perturbations localized iwhere we set]=t, [its precise \(/f)llue is not relevant since the
time. Furthermore, it suggests that combining both defini-one-iteration KAM expansionJHl(t,to;tl,ti) is independent
tions in a nontrivial way gives a new secular term that couldof the parametet}]. It is this operatorG(22>(t;t0,tl,t1) that

improve the convergence of the algorithm. This is achieveghss to remain small for the algorithm to convefgd]. Hav-
by the general solution to Eg&68) and(22), written with the ing the arbitrary times, andt; at our disposal, we can ac-

perturbation evaluated at a free timeas the arbitrary op-  ,aly enhance the convergence of the algorithm by minimiz-

erator[cf. Eq.(23b)]; ing the norm of this matrix with respect to these free
L parameters.
Da(tit) = UHo(t’tl)Vl(tl) UHo(tl’t)' (75) Similarly, then-iteration KAM expansion of Eq(55) can

be optimized by minimizing the norm of the following op-

The freet; can then be chosen as we describe below Q. 546y with respect to one or several of the free parameters
minimize the remainder obtained at the first iteration of thet1 tt] £
yeeeatna g,

perturbative algorithm. B

The next iterations also offer the possibility to choose for t
Dy(t;t), in particular 0 oUpe_(t,5)Vi(t)Upe_(t,1), simi- Gt = f duUpe(to, U) Vi1 (W) Upe(u, to)
lar to Eq. (75). Note however that for the Poincaré—\Von o
Zeipel and the Van Vleck techniques, the choice correspond- =GV (tity, ...t th, ... ). (79

ing to V,(t,) can only be made ongéor an arbitrary value of
k). As explained in Appendixes A and B, respectively, this isThe dependence af,e(t,to) andVy.4(t) on these parameters
due to the order by order character of these techniques. s given in Eq.(61).
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It turns out, as will be illustrated in Sec. IV B, that modi- sionless operatord, V(t), andU(t,t,) through
fying the parameterg and/ort, can improve the accuracy by

more than one order of magnitude already Kerl. t=t,
C. KAM expansion with another identification of the H=%oH,
unperturbed Hamiltonian 5
The perturbed Hamiltonian can be written as V() = ;V(t),
H(t)=H(t)+ €D (t;t,)+€Vi(t)—eD (t;ty),
U(t,tg) = U(t 1), (84)

= Hyt:n) + eVi(tty), (80)
where w is some characteristic frequency Bf In dimen-
where Dl(t;tl)EUHO(t!tl)Vl(tl)UHo(tlit) with tl arbi- sionless units EC(83) becomes
trary [cf. Egs. (22) and (23b)]. The propagator associated
with Hy(t;t;) can always be determined since by E¢k9) iiU(t,to) ={V(t) + eHIU(L,ty), (85)
and(25) one has at

Hy(tit) = HS(t L), (813 where we define audden parametes= wr.

The sudden or impulsive regime corresponds to the limit
€—0. Our aim is to obtain a perturbative expansion for the
evolution operatorU(t,ty) of the perturbed Hamiltonian

We now apply the KAM algorithm exactly as summarized V(t) + eH beyond the sudden regime. To this aim we identify
in Sec. Il D 3, i.e., with the same definitions for all the op- the original perturbatioW(t) as the unperturbed Hamiltonian
erators involved in the expansion, but with the identificationHo(t) and the original unperturbed Hamiltoniéhas the per-
of Eq. (80). This decomposition has the property thatturbationV;:
Vi(ty;t1) =0 which implies by Eq(23b) thatD;(t;t;)=0. The

Uy (tto;ty) = Upe(t,to;ty). (81b)

free parametet, is therefore introduced here through Eg. Ho(t) = V(), (869
(81b). One arrives at a KAM expansion which is still of the B

form of Eq.(55) but may significantly differ from that result- Vi=H. (86b)

ing from the conventional decomposition. Note that we need only consider a finite interval of time as

We emphasize that the possibility to consider the identifi/(t) is localized in time. By virtue of Eqi82), the propaga-
cation of Eq.(80) as a new starting point for a perturbative ior for ¢=0 reads

treatment is specific to the KAM technique which is not an
order by order method, contrary to the Magnus, the Un (t10) = .
Poincaré—\Von Zeipel, and the Van Vleck algorithms. Hy(Lifo) = expq —i .

t
V(u)du}. (87)
0
We shall follow this approach below and consider the vari-
IV. BEYOND THE SUDDEN APPROXIMATION ous perturbative schemes described in Sec. Il in the case of
A. Preliminaries two-level systems driven by short pulses.

We consider a system described by the Hamiltorttn

(autonomous or nat It is perturbed by a time-dependent B. lllustration on pulse-driven two-level systems
HamiltonianV(t) whose characteristic durationisThis lat-
ter quantity is the time during which the interaction differs
significantly from zero, and not the full duration of the inter-
action, which may be large but finite. Here we definas . X i -
twice the full width at half maximum, having in mind a study regimes _beyond the |mp_uls_|ve or sudden limit.
perturbation which presents a time-dependent envelope. We In the notations of the prellm_lnarles, we takb:hw‘f:?
assume that the perturbatitfit) satisfies andV(t)=(A/1Q(t)oy, wherefl(t) is a pulse shape function

and oy are the Pauli matrices,
[V(1),V(tg)]=0 Ot,ty, (82

01 0 —i 1 0
which is realized in many situations of physical interest. The 01= (1 O)' 02= (i 0 ) 03= (0 _ 1)-
propagator of the perturbed system evolves according to the
Schrodinger equation Hence, the operators defined in E(6) are hereHg(t)
=Q(t)oy, andV;=03. The Schrddinger equation reads

Our purpose is to compare the various algorithms and
investigate the convergence enhancement as well as to show
that the unitary time-dependent KAM theory is well suited to

i U(ttg) = (H + VOt 1), (83 ;
ot iU, (L10) = [Q0 01 + eo3lUp, (L), (89

with U(ty,tg) =1, the identity operator on the appropriate Hil-

bert spacdl. We define a dimensionless timeand dimen-  with UHl(to,to):lrz- For e=0 its solution is
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Up (tto) = eA07, (89

whereA(t)EﬁO Q(u)du. The pulse ared=A(x) is a di-

mensionless parameter that can be fixed independently of the

sudden parametef=w7) that we take here as the perturba-

tive parameter. This allows us, in particular, to treat large

nonperturbative areas for short pulse durations.

The Magnus expansioug‘i(t,to) is given by Eqgs(12),
(13), and(14a.

The KAM expansion is obtained from Eq&5)—60). We

distinguish three types of KAM expansions, reflecting the

choices discussed in Secs. Il D, Il A, and Il C.
(1) Type A: each iterationk involves the operator
(2) Type B: Dy(ty;t) =Vi(t,) for all k [cf. Eq. (57b)].
(3) Type C: the unperturbed Hamiltonian is defined as
Ho(t;t) =Ho(t) + €Uy (t,t)Vi(t) Uy (1, 1) [cf. Eq. (80)].
For the typeA rriteration expansion one hasfree times

Ut t) = Ut tosty, - 1),
while for the typesB and C one has 8 such parameters

ULt = U (L toity, . bt .. ).

In the case of two-level systems, the infinite series of Eq.

(60) for the new effective KAM perturbatioW,,4(t) can be
cast into the fornj14]

Vi1 = [Wh,anVy + bDp] + €[ Wi, [W,, ¢V, + diDi]l,

(90)
where
5 = icos €M+ €Ny SIN €N, — 1 _ 1 -cose,
= 2 ’ h = —21
CaNs e\
€\ COS €\, — Sin €\
Ch= "5 =, dy=c,+ib,, (91

3y 3
€n7\n

with €,= 2" and\,(t) = \—detW,(1).
For givene and A, the errorA, at the end of the pulse

between the numerical solution of the Schrodinger equation

and the result obtained aftariterations is defined as
Ap = [Up, (t,t) = Ut ). (92)

We also define the erra$, in the transition probability from
the lower staté-) to the upper state+):

8=+ |U|(—?i(tf:ti)|_>|2 = [+ U, () )P

We consider the following dimensionless pulse shape b
tween the dimensionless tinte=0 andt;=1:

Q(t) ={

Figure 1 displays the common logarithm of the erfgr
and the erroré; as a function of the pulse area for the

(93)

2Asir? (wt) for 0<t<1

94
0 elsewhere. (%4)

e
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FIG. 1. Comparison of the first-order Magnus expangiiots),
the one-iteration typ& KAM expansion(solid line), and the one-
iteration type€ KAM expansion(dashed ling for e=0.5 andt;
=t;=0: (a8 common logarithm of the errak; and(b) error 6, as a
function of A. The one-iteration typé& KAM expansion coincides
in the case;=0 with the first-order Magnus expansion. All quanti-
ties are dimensionless.

expansions in the casg=t; =0 ande=0.5. The errord,; and

6, globally decrease wheA increases. This is expected on
the basis of Eq988) and(94) as the relative importance of
the perturbation then decreases. One also observes marked
oscillations inA; and 6; with a pseudoperiod ofr. This
stems from the form of the unperturbed propagédtdr Eq.
(89)] and the fact that it always appears twice, in particular in
the operatorG(22>(t;t0) of Eqg. (78) which controls the error
after one iteration.

Let us recall that the one-iteration KAM expansion of
type A coincides with the first-order Magnus expansion for
t;=0. It is seen, by both measures of the error, that each of
the KAM expansions can perform better than the other ones
on some intervals oA. Hence, in order to establish a fair
comparison, we shall consider the particular valiel
where the first-order Magnus expansion and the one-iteration
KAM expansion of typeB yield essentially the same errag

for e=0.5. This remains true for all values efup to 2 as can

be seen from Fig. 2, which depicts the errdrsand 6, as a
function of e for A=1.

In Fig. 2 we also present the one-iteration KAM expan-
sion of type B that is optimized by choosing;=0.5t;
=0.22. We see that the errdy; is reducedwith respect to
the comparable Magnus and nonoptimized tBKAM ex-
pansiony by more than one order of magnitude up to values
of € equal to unity. The errod; on the transition probability

Magnus expansion and the three types of one-iteration KAMs also considerably reduced. Notice that the values, ¢br

033411-10



PULSE-DRIVEN QUANTUM DYNAMICS BEYOND THE.. PHYSICAL REVIEW A 69, 033411(2004

FIG. 3. Contours of the eigenvalgg for the KAM expansion
of type B as a function of; andt;, for A=1 ande=0.5. The values
closer to 0 appear darker. All quantities are dimensionless.

€
determine the exact solution. Notice that=0,t;=0) is a

the first-order Dyson expansidicircles, the one-iteration typ& qual maXImum ofg, Whe,reas(tlzo'5’t1:0'5) IS a S&ddlg
KAM expansion witht;=t;=0 (solid line), and the optimized one- point. The DOln'E(t1:0-5,t1_z 0.22 corresponds to a mini-
iteration typeB KAM expansion witht;=0.5, t;=0.22 (dash-dot ~MumM. The symmetry of Fig. 3 results from the pulse of Eg.
line) for A=1: (8) common logarithm of the errak, and (b) error ~ (94) being symmetric.

8, as a function ofe. All quantities are dimensionless. Figure 4 f:lisplays the errak, and the eigenvalug, as a
function of t; for the three types of one-iteration KAM ex-

- . ) pansions in the caské=1, e=0.5. The value of, is chosen
the Magnus and nonoptimized ty@eKAM expansions dif- o5 that the optimum can be reacheg=0.5 for the typeB

fer while the values 9A1 are indistinguishable. For compari— andt;=0.7 for the type Qrecall that the type\ features no
son, we also consider theonunitary Dyson expansion ) One sees that the error can be reduced by more than one
[23]. Recall that it is obtained by repeated use of the integrabrder of magnitude for the typB or C, and about half an
form of the Schrodinger equation in the interaction represengrder of magnitude for the typa after a single KAM itera-
tation with respect tdo(t): tion. It is also seen that the eigenvalgeis a very accurate
estimation of the erro;, which enables one to locate the

FIG. 2. Comparison of the first-order Magnus expansutots),

Ui (£t 1) =1 — | td H (Ut U (U tct optimal values of the free parameters. Note that the first-
H'l( loit) =1~ . uH; (uto) Hll(u' 0ito) order Magnus expansion corresponds to the particular value
f . t;=0 (i.e., the nonoptimized capef the one-iteration typé:
—1_i i s i KAM expansion.
=1 IftodUHl(u’tO)[l Ifto del(v’tO)] We now turn to the next level of approximation for the

Magnus expansion and the KAM expansion of t§pdrecall
to (95) that the first-order and one-iteration expansions of these
_ ) ) schemes yield comparable errofg for A=1. Figure 5
where Hy(t;to), given by Eq.(20), contains a prefactoe.  shows that theénonoptimizel two-iteration KAM expansion
One then returns to the original representation with(26).  performs better than the second-order Magnus expansion by
For the value ofA considered in Fig. 2, the Dyson expansion one to two orders of magnitude fax,. The errors, on the
yields the largest errak; whereas its error on the transition transition probability is also much smaller for the KAM ex-
probability is rather small. pansion.

In Fig. 3 we plot the contours af, defined as the largest |t is worth noting from the comparisons of Figs. 2 and 5
absolute value of the eigenvalues of the Hermitian matrixhat the error\, for the optimized one-iteration KAM expan-
G(ZZ)(tf;ti ,t1,t}) given by Eq.(78). This quantity which con- sion is comparable to the erray, for the nonoptimized two-
trols the error after one iteration is represented as a functioiteration KAM expansion of typd3. This conclusion is not
of t; andt; for the KAM expansion of typ®. By minimizing  restricted to the typ8 and can be understood on the basis of
0,, which is the norm of this matrix, with respect to the freethe Campbell-Baker-Hausdorff formula as discussed in
parameters; andt;, one reduces the error without having to Sec. Il D 4.
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FIG. 5. Comparison of the second-order Magnus expansion
FIG. 4. Comparison of the one-iteration typeKAM expansion  (dots, the second-order Dyson expansidnircles, the two-
(dots), the one-iteration typ& KAM expansion witht;=0.5(solid iteration typeB KAM expansion(t;=t; =t,=t;=0) with the infinite
line), and the one-iteration typ8&-KAM expansion witht;=0.7 series of commutatorsolid line), two commutatorgdashed ling
(dash-dot ling for A=1 ande=0.5: (a) common logarithm of the four commutators (squarey and the optimized (t;=0.5t;

error A, and(b) eigenvalueg, as a function ot]. All quantities are ~ =0.221,=0.661;=0.8) two-iteration typeB KAM expansion
dimensionless. (dash-dot ling for A=1: (a) common logarithm of the errak, and

(b) error 8; as a function ofe. All quantities are dimensionless.

If one optimizes the typ& KAM expansion by choosing
t,=0.5, t;=0.22 (as determined above from Fig) andt, to one order of magnitude. The case of four commutators is
=0.66,t,=0.8, one gains another one to two orders of magvery close to the exact two-iteration KAM expansion for
nitude onA,. values ofe up to unity. The convergence with the number of

From Fig. 5 one also deduces that the Dyson approach g&mmutators involved is indeed very fast. It has to be re-
not applicable in this context as the second order performgarked that including commutators of higher orders in a
worse than the first order by both measures of the erroivell-defined manner as in the KAM algorithm is the main
Notice that the transition probability predicted by the Dysondifference with the Magnus expansi¢or any order by order
technique diverges, as is well known, by lack of unitarity. In€xpansion and necessary to achieve superexponentiality.
other words, the Dyson expansion does not allow one td-rom a practical point of view the inclusion of more than one
refine the results of Fig. 2. commutator is both convenient and highly profitable.

The two-iteration KAM expansion involves the operator ~ The fact that for the KAM expansion the order of the
V,(t) which is given by Eq(34) or (36) as an infinite series remainder be the exponential of an exponer(r&érl) implies
of commutators. For two-level systems, this series can beéhat the accuracy is increased in a dramatic way with the
computed explicitly and results in EQ0) with n=1. It is  numbern of iterations. In addition, the accuracy of a given
remarkable that the coefficiert;, b;, c;,, andd; are well n-iteration KAM expansion can still be enhanced, as illus-
defined for all values og, even larger than unity. In Fig. 5 trated here, and allows one to get closer to the next iteration
we consider the cases whevi(t) is truncated to two com-  of the algorithm by including through the simple variation of
mutators[i.e., the termk=1 of ordere® and the termk=2 of  the parameters, andt/ more appropriate higher-order terms.
order € in Eq. (36)], and four commutatorgk=1,...,4.
Note that this amounts to approximate the coefficients of Eq.
(91) by polynomials (of order, respectively, 2 and)4n
e\4(1). The case of two commutators performs better than the We have formulated perturbation theory in operator form
second-order Magnus expansion which is not surprising as [830] for time-dependent problems localized in time directly
contains all the terms of ordes®. However, it performs in the original Hilbert space by unitarily transforming the
worse than the KAM expansion with the infinite series by upevolution operator.

V. CONCLUSIONS
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We have compared formally and numerically various uni- Upe(t,to) = Uy (t,tg)exd — i(t —tg)eD;(ty;ty)]
tary perturbative schemes. The superiority of the KAM tech- : 0 _
nique over the Magnus expansion, as well as the other meth- X X exd-i(t—to)€'Dp(to;ty)].  (A5)

ods, has been established owing to its superexponentlei.]he generator of the Poincaré-Von Zeipel transformation

character and the accuracy o_pt|m|zat|on. We have al_so sho ) is written as a power series @findependent operators
that the Magnus expansion is recovered as a special case (:
k .

the time-dependent Poincaré—\on Zeipel expansgionose

time-independent version coincides with the Rayleigh- o

Schrodinger expansiof27]). T(t) = exp(— i> ka(t)) . (A6)
The possibility to enhance the accuracy of a given level of k=1

approximation stems from the free parameters and the free ) ) ) )

operators that appear naturally in the formulation presented€S€ operators satisfy the differential equations

here. It allows one to significantly reduce the error with re- 9

spect to the exact solution without its knowledge by the —W,(t) = V(1) = Dy(t;t0) + i[ Wi (t),Ho(t) ], (A7)

minimization of an eigenvalue. It

The above considerations, illustrated here on a pulseyhere the expression for,(t) cannot be given in a simple

driven two-level system, are straightforwardly applied 0oy for arbitraryk and requires increasing algebra. The situ-
more involved problemgsee Ref{35] for an application 0 aiion is analogous for the Magnus expansion or the Van

the orientation and alignment of molecules Vleck expansion given below, and in contrast to the KAM
expansion where the new effective perturbation has exactly
ACKNOWLEDGMENTS the same form at each stggf. Eq. (60)]. The general solu-

o tion to Eq. (A7) reads[up to a termUHo(t,to)BkUHo(to,t)
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French Ministry of Research, theonseil Régional de Bour- Wi(t) = f, dUUHo(t’u)[Vk(u) - Dk(u)]UHo(u’t)’ (A8)
gogne and a CGRI-FNRS-CNRS cooperation. t

wheret, is arbitrary. Notice that this expression involves the
APPENDIX A: TIME-DEPENDENT POINCARE—-VON unperturbed propagator unlike the KAM analog which fea-
ZEIPEL EXPANSION tures an effective propagatfef. Eq. (59)].

The time-dependent Poincaré-Von Zeipel technique FOr the operatoDy(t;t) of Eq. (A4) to be strictly of
amounts to constructing a unitary operaldt) which trans-  Order €’ we are no longer entitled to choose
forms the propagatoly, (t,ty) into a propagatotye(t, to) Une (6 ) Vidti)Une (1, 1) for any k if that choice has al-
according to ready been made for a lower valuekofThis choice can only

be made oncéfor an arbitrary value ok denotedv) and
THt)Up. (4,t0) T(ty) = Upelt, to), (A1) implies to takeD,(t;t,) =0 for the other values df.
! We then construct thath order unitary approximation to
where U e(t,to) is associated with an effective Hamiltonian T(t),

HE(t) containing contributions to every order & N
. T, () = exp(— i> eka(t)> , (A9)
HE(D) = Ho(D) + X €D(t;ty). (A2) <
k=1

and by Egs(Al) and (A3) obtain thenth order Poincaré—

This propagator can be expressed in termSJpg(t,to) and Von Zeipel approximation to the propagaldpl(t,to),

unitary operators related to the partial Hamiltonians y®t 1)) =T, (U, (t,to)exd - i(t - to) €D, (t;t,) T (ty)
Eka(t;tk): 1 o’ v\tor by )
(A10)

Uneltto) = Uny(t to)expl = i(t = to) eDa(fo; ty)] where v is any integer between 1 and for which
X oo X ex—i(t—to) €Dyltit)] -, we have the possibility to choose eitheD,(ty;t,)
(Aa) = UHO(tOYtU)VU(tv)UHO(tU !tO) or Dv(toltu) =0.
It is interesting to note that EGA10) precisely reduces to
provided the operatdD,(t;t,) is defined as the Magnus expansion if we tak®,(t;t,)=0 andt;=t, for
all k. In the general case there are umtol free parameters

Dy(t;t) = Upe (41Dt tdUpe (tt). A4 ) )
(10 = Ung (L1006 t0Uke (kD). (A4) PR ——
HereD,(t,;t,) is arbitrary but strictly of ordee® (in contrast , ,

to the KAM cas¢ and we set Wi(t) = Wyttt .. 0ty (A11)
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APPENDIX B: TIME-DEPENDENT VAN VLECK METHOD above despite the truncation at any finite order.

The time-dependent Van Vleck technique is an order by Given an Hamiltonian(t) =Hg(t) + €V4(t) and the propa-
order method where instead of transforming the originalgator Uy, (t,t;) we consider the interaction representation
propagator into a final new propagator in a single step as iith respect toHy(t). From Egq. (2) one deduces that
the Poincaré—\Von Zeipel algorithm, one achieves this goali (t;s)=Hi|(t;s)+€Vi(t;s) with
iteratively through a series of transformatiomgt) which .
reduce the size of correction terms froeh to €1 This Ho(t;s) =0, (Cla
results in thenth order Van Vleck expansion

Uit to) = To(®) -+ T Up (L to)
Xexg — i(t - tg) €D, (to;t,) ITh(ty) -+ Th(to),
(B1)

WhereDv(tO;tv) = UHO(tOvtv)Vv(tv)UHo(tv !tO) or Dv(t01tv) = 0:
with v an integer between 1 armd Here we define

VA(t;9) = Up (S V2D UR (L) (C1b)
Furthermore, the unperturbed propagator is trivial:
UHiO(t,to;s):}l. (Clo

It is worth pointing out that Eq(C1b) suggests thadV(t;s)
is considered small with respectity(t;s)=0. As a matter of
fact, by virtue of Eq.(2b), it is with respect toH(t;s)

T(t) = e_ifkwk(t), (B2) —idlat that eVil(t;S) is considered smalin a technical sense
. . we need not specify here
with Wi(t) constructed as in EA8). There are up tai+1 Applying the KAM algorithm with the identifications of

free parameters entering timth order time-dependent Van Egs.(C1b) and(C1c) leads to the expansion
Vleck expansion.

The Van Vleck and Poincaré—\Von Zeipel techniques differ Ufﬂ)(t,to;s) =T(t;9) - -- Tn(t;S)UHﬁi(t,to;S)
because of the product of exponentials/df(t) appearing in ! : A
Eq. (B1) instead of the single exponential of a sumwif(t) X Tp(to;s) -~ Ty(to;S). (C2

in Eq-b(ﬁlo)l-( AS discéus?fefd ab?veh_on the b:;]\sis hOf thel Returning to the original representation with the help of
Campbell-Baker-Hausdorff formula this means that these alg; 24 one obtains a perturbative expansion 6y, (., t0)

gorithms differ at orders higher than the prescribed order. that coincides exactly with the expansiblrﬂ“i(t,to) obtained

directly in this representation:
APPENDIX C: KAM EXPANSION IN THE INTERACTION

REPRESENTATION Un (LU (Lto; 9 Up (Sito) = Ultt).  (C3)
In the framework of a perturbation theory, we stressed in !
Sec. Il A that the Magnus expansion had to be derived in thd his stems from the following identities readily derived on
interaction representation. In the section above, the KAMhe basis of Eq(10) and valid for anyk:
algorithm was ap_plied in the origlinal representqtion. We Up (4,9 T(t;9)Up (5,0) = T(0), (C4a)
show here that going to the interaction representation, apply- 0 0
ing the KAM technique, and coming back to the original

representation yields identically the same expansions as UHo(t’S)UHEi(t’tO;S)UHO(S’tO):UHﬁ(t’tO)' (C4b)
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