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We review various unitary time-dependent perturbation theories and compare them formally and numeri-
cally. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexpo-
nential character of correction terms and the possibility to optimize the accuracy of a given level of approxi-
mation which is explored in detail here. As an illustration, we consider a two-level system driven by short
pulses beyond the sudden limit.
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I. INTRODUCTION

Short and intense laser pulses allow nowadays to drive
atoms and molecules in nonperturbative regimes going from
adiabatic(nanosecond and picosecond) to sudden or impul-
sive (femtosecond). Recent examples concern the alignment
of molecules, which can be achieved during nanosecond
pulses or after femtosecond pulses[1]. Corrections to perfect
adiabaticity can be analyzed in terms of superadiabatic[2–5]
and Davis-Dykhne-Pechukas techniques[6–8]. On the oppo-
site side, regimes beyond the impulsive approximation, i.e.,
beyond the limiting case of pulses described asd kicks, have
not been yet much explored due to a lack of adapted tools of
analysis.

It is well known that one can treat periodic perturbations
using extended Hilbert spaces where time is considered as a
new dynamical variable, in order to render the problem au-
tonomous[9,10]. This approach, which can be formulated as
Floquet theory[11–13], allows one to eliminate systemati-
cally secular terms(i.e., terms that grow arbitrary with time),
which would otherwise lead to divergences. Pulse-driven dy-
namics associated with Hamiltonians localized in time re-
quires a different treatment of secular terms. In this case,
since the perturbation acts only during a finite time interval,
the secular terms do not lead to divergences.

This paper contributes to developing a time-dependent
perturbation technique, which is, in particular, suited for
pulse-driven dynamics, on the basis of Refs.[14,15]. In Ref.
[14], we constructed a superexponential perturbation theory
which preserves the unitarity of the evolution operator at
each order, and applied it beyond the impulsive regime by
considering an expansion where the perturbative parameter is

the characteristic duration of the time-dependent interaction
compared to the characteristic time for the free evolution. We
have shown that it converges in any regime(from impulsive
to adiabatic) in two-level systems. This derivation is based
on the Kolmogorov-Arnold-Moser(KAM ) technique applied
in an extended Hilbert space[16–20]. In Ref. [15], we pre-
sented an improvement of this technique taking advantage of
free parameters, connected to secular terms, that are avail-
able to reduce the error without prior knowledge of the exact
solution. This optimization enhances the accuracy of the
method in such a way that the first-order approximation
gives a satisfactory description up to fairly large values of
the perturbative parameter.

The present paper contains a detailed description of the
methods announced in Ref.[15]. Instead of using an ex-
tended space, we formulate the derivation in a simpler way,
by stating the perturbation iterations directly at the level of
the evolution operator in the original Hilbert space. This
scheme allows us to consider and compare in a unified way
various time-dependent perturbation techniques. In particu-
lar, we make the connection with the well-known Magnus
expansion[21], which has been used by Henriksenet al. to
construct an improved impulsive approximation[22]. We
also develop and investigate the accuracy optimization which
can be applied to the time-dependent Poincaré–Von Zeipel,
the time-dependent Van Vleck, and the time-dependent KAM
techniques.

The paper is organized as follows. In Sec. II we recall the
Magnus expansion and outline the time-dependent versions
of the Poincaré–Von Zeipel, the Van Vleck, and the KAM
techniques. We highlight the free parameters and free opera-
tors that may be present in these unitary perturbative meth-
ods. In Sec. III we exploit these degrees of freedom to im-
prove the accuracy of a given level of approximation.
Section IV is devoted to the application of these techniques
beyond the impulsive regime and the illustration on a pulse-
driven two-level system. The conclusions are given in Sec. V
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and some details of the calculations are reported in Appen-
dixes A–C.

II. UNITARY TIME-DEPENDENT PERTURBATION
THEORIES

We consider the Schrödinger equation

i
]

] t
UH1

st,t0d = H1stdUH1
st,t0d, UH1

st0,t0d = 1, s1ad

whereH1std is a time-dependent matrix or a time-dependent
operator in a Hilbert spaceH. Assuming that one can decom-
poseH1std according to

H1std = H0std + eV1std, s1bd

whereH0std is such that its propagatorUH0
st ,t0d is known

andV1std is localized in timesi.e., vanishes outside a finite
intervald, we are looking for a unitary perturbative expansion
of the full propagatorUH1

st ,t0d. This can be achieved by two
classes of techniques that we outline below:sid the order by
order methods, namely, the Magnus expansion, the time-
dependent Poincaré–Von Zeipel technique, and the time-
dependent Van Vleck technique, where aftern steps the re-
mainder is of orderen+1; andsii d the superexponential KAM
technique where the remainder is of ordere2n

.
Below we will have to consider the propagatorUH1

st ,t0d
in the interaction representation with respect toH0std:

UH1
i st,t0;sd ; UH0

ss,tdUH1
st,t0dUH0

st0,sd, s2ad

wheres is an arbitrary time(the standard interaction repre-
sentation corresponds to the cases= t0). This propagator sat-
isfies the Schrödinger equation

i
]

] t
UH1

i st,t0;sd = H1
i st;sdUH1

i st,t0;sd, s2bd

and the associated Hamiltonian reads

H1
i st;sd ; eUH0

ss,tdV1stdUH0
st,sd. s2cd

We will also consider a new representation defined with the
help of a unitary transformationTst ;sd according to

UHst,t0;sd ; T†st;sdUH1
st,t0dTst0,sd, s3d

whereHst ;sd is a new Hamiltonian. This expression is remi-
niscent of Eq.s2ad althoughTst ;sd need not be a propagator
but a unitary operator which features an arbitrary parameters
and satisfies the propertyT†st ;sd=Tss; td.

A. Magnus expansion

The solution to Eq.(1a) can always be put in the form of
an exponential,

UH1
st,t0d = e−iMH1

st;t0d, MH1
st0;t0d = 0, s4d

whereMH1
st ; t0d is self-adjoint to ensure unitarity. The expo-

nent MH1
st ; t0d is generally not simply the integral ofH1std

owing to the noncommutativity of the latter for different

times. Indeed from Eq.s1ad one deduces the following equa-
tion for MH1

st ; t0d:

]

] t
MH1

st;t0d = H1std +
i

2
fMH1

st;t0d,H1stdg

−
1

12
†MH1

st;t0d,fMH1
st;t0d,H1stdg‡ + ¯ .

s5d

We refer to the paper of Magnusf21g for a derivation of this
equation ssee also Ref.f23gd. The matrix or the operator
MH1

st ; t0d is obtained by integrating the first term on the
right-hand side of Eq.s5d and substituting the result into the
next terms of this equation. One then repeats this procedure,
known as Picard’s iteration, with the resulting second and
subsequent terms. This yields the Magnus expansion

MH1
st;t0d

=E
t0

t

duH1sud +
i

2
E

t0

t

duFE
t0

u

dvH1svd,H1sudG
−

1

4
E

t0

t

duFE
t0

u

dvFE
t0

v

dwH1swd,H1svdG,H1sudG
−

1

12
E

t0

t

duFE
t0

u

dvH1svd,FE
t0

u

dwH1swd,H1sudGG
+ ¯ . s6d

The number of terms in this expansion grows very rapidly
f24g. Notice that this expansion is not limited to perturbation
theory fi.e., to a Hamiltonian of the form of Eq.s1bdg al-
though it is of interest only when the subsequent terms are
negligible. This will be the case if one is interested in ob-
taining an expression valid for very short times only or in the
presence of another small parameter.

In the framework of perturbation theory, if we were to
substitute Eq.(1b) into Eq. (6) we would generally obtain
contributions to a given order ine from an infinite series of
terms of the Magnus expansion[25]. This can easily be cir-
cumvented by considering Eq.(2), the equivalent of Eq.(1a)
and (1b) in the interaction representation. The Magnus ex-
pansion pertaining to Eq.(2b) allows one to write its solution
in the form

UH1
i st,t0;sd = exph− ieMH1

i st;t0,sdj, s7d

with eMH1
i st ; t0,sd given by Eq.s6d whereH1std is replaced

by H1
i su;sd. By virtue of Eq. s2cd, eachH1

i su;sd carries a
prefactore. Hence, there is noe-independent term and terms
of MH1

i st ; t0,sd with higher numbers ofH1
i su;sd are now of

higher orders ine. In order to display the explicit dependence
on the parameters, we decompose the propagator entering
through H1

i su;sd according toUH0
ss,ud=UH0

ss,tdUH0
st ,ud

and note that the leftmostUH0
ss,td and rightmostUH0

st ,sd of
each term ofMH1

i st ; t0,sd factor out swhile the inner ones
cancel each otherd

DAEMS et al. PHYSICAL REVIEW A 69, 033411(2004)

033411-2



eMH1
i st;t0,sd = UH0

ss,tdo
k=1

`

ekMkst;t0dUH0
st,sd. s8d

Returning to the original representation with the help of Eq.
s2ad, Eq. s7d yields

UH1
st,t0d = expH− io

k=1

`

ekMkst;t0dJUH0
st,t0d, s9d

where use was made of the identity

AeBA−1 = eABA−1
. s10d

By truncating the infinite series of Eq.s9d to order n one
obtains the unitary approximation

UH1
st,t0d = UH1

sndst,t0d + Osen+1d, s11d

with the Magnus expansion

UH1

sndst,t0d = expH− io
k=1

n

ekMkst;t0dJUH0
st,t0d. s12d

We stress that this expression is independent of the arbitrary
time s chosen in Eq.s2d f26g. Each term of the exponential
can be cast into the form

Mkst;t0d =E
t0

t

duUH0
st,udVksudUH0

su,td, s13d

whereVksud is deduced from Eqs.s2cd, s6d, ands8d. The case
k=1 features the perturbation itself while for the first few
values ofk that we shall use below, dropping the time argu-
ments, one finds

V2 = −
i

2
fM1,V1g, s14ad

V3 = − ifM2,V1g +
1

6
†M1,fM1,V1g‡. s14bd

B. Time-dependent Poincaré–Von Zeipel expansion

The classical Poincaré–Von Zeipel technique was adapted
to quantum mechanics by Scherer to treat both time-
independent[27] and time-dependent[20] systems. In the
time-independent case it was shown[27] that this technique
coincides with the usual Rayleigh-Schrödinger expansion.
We present in Appendix A a time-dependent Poincaré–Von
Zeipel technique that has the advantages to be strictly unitary
upon truncation at any given order and does not require the
consideration of a so-called extended Hilbert space. This
method amounts to map the full propagatorUH1

st ,t0d into a
new effective propagatorUHest ,t0d with the help of a single
unitary transformation according to an equation similar to
Eq. (3). Moreover, this formulation exhibits free parameters
available to improve the accuracy of a given step of the
algorithm by a procedure we describe in Sec. III B. Finally,
we show that the time-dependent Poincaré–Von Zeipel
method includes the Magnus expansion as a particular case.

C. Time-dependent Van Vleck technique

To provide a general perspective of unitary time-
dependent perturbation theories we introduce in Appendix B
a time-dependent version of the Van Vleck technique that is
more widely used than the preceding method in the station-
ary case[28]. It consists in transforming the full propagator
into a new effective propagator iteratively through a series of
unitary operations. Our purpose is actually not to introduce
yet another variant of perturbation theory but to emphasize
that this time-dependent version of a well-known technique
is (i) comparable to the Poincaré–Von Zeipel method which
we show to be closely related to the Magnus expansion, and
(ii ) not as powerful as the KAM technique detailed below
since it is an order by order perturbative method.

D. Time-dependent Kolmogorov-Arnold-Moser expansion

The time-dependent KAM technique aims at obtaining a
superexponential expansion for the propagatorUH1

st ,t0d
through a series of unitary transformations. It is sometimes
said to be superconvergent. However, superexponential is
more appropriate since the dependence one of the remainder
after n iterations is indeed the exponential of an exponential
se2n

d while the actual convergence of the algorithm has to be
examined specifically.

1. First iteration

The first step is to construct a unitary operatorT1std which
transforms the propagatorUH1

st ,t0d we are looking for into
the propagatorUH2

st ,t0d [cf. Eq. (3)]:

T1
†stdUH1

st,t0dT1st0d = UH2
st,t0d, s15d

whereUH2
st ,t0d is associated with the sum of an effective

HamiltonianH1
estd which contains all contributions up to or-

der e and a remaindere2V2std:

H2std ; H1
estd + e2V2std. s16d

As the new propagator is generated by a sum of Hamilto-
nians it can be expressed in terms of the propagatorUH1

est ,t0d
and a propagatorUR2

st ,t0d by considering the interaction
representation with respect toH1

est ; t1d:

UH2
st,t0d = UH1

est,t19dUR2
st,t0;t19dUH1

est19,t0d. s17d

By virtue of Eq. s2d the propagatorUR2
st ,t0; t19d satisfies a

Schrödinger equation whose Hamiltonian is

e2R2st;t19d ; e2UH1
est19,tdV2stdUH1

est,t19d. s18d

Being associated with a Hamiltonian of second order ine,
this propagator will be neglected in Eq.s17d, i.e., replaced by
the identity.

The effective Hamiltonian can be decomposed as

H1
estd ; H0std + eD1std, s19d

which allows one to expressUH1
est ,t0d as
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UH1
est,t0d = UH0

st,t1dUP1
st,t0;t1dUH0

st1,t0d, s20d

where UP1
st ,t0d is the propagator corresponding to the

Hamiltonian

eP1st;t1d ; eUH0
st1,tdD1stdUH0

st,t1d. s21d

Thus far the only restriction on the HamiltonianeD1std is
that it be of ordere. Hence we have the freedom to choose it
so as to be able to determine explicitly the propagator
UP1

st ,t0; t1d. This will be the case if

D1std ; UH0
st,t1dD1st1;t1dUH0

st1,td ; D1st;t1d, s22d

with D1st1; t1d arbitrary. In this paper, we consider explicitly
two possibilities

D1st1;t1d ; 0, s23ad

D1st1;t1d ; V1st1d. s23bd

The first one is a trivial choice which gives nevertheless a
nontrivial one-iteration KAM expansion(it will be shown in
Sec. II D 4 to coincide, for the first iteration only, with the
first-order Magnus expansion). The choice to relateD1st1; t1d
to the perturbation according to Eq.(23b) is also rather natu-
ral as this operator enters the effective Hamiltonian(we shall
discuss the fact that the perturbation is evaluated at an arbi-
trary time t1 in Sec. III A). Choosing one of the possibilities
of Eq. (23) implies that the propagator defined in Eq.(20)
reads

UP1
st,t0;t1d = e−ist−t0deD1st1;t1d. s24d

The effective propagator can then be given a convenient
form using Eqs.s10d, s20d, ands22d:

UH1
est,t0d = UH0

st,t0de−ist−t0deD1st0;t1d;UH1
est,t0;t1d. s25d

We now express the requirement thatT1std defined in Eq.
(15) be such thate2V2std contain no terms of order lower
thane2. We first multiply Eq.(1a) from the left byT1

†std and
from the right byT1st0d to deduce employing also Eq.(15):

e2V2std = T1
†stdH1stdT1std − H1

estd − T1
†stdi

]

] t
T1std. s26d

Writing T1std in the exponential form

T1std ; e−ieW1std, s27d

we then require that all terms of order lower thane2 in Eq.
s26d vanish identically. This leads to a differential equation
for the self-adjoint operatorW1std,

]

] t
W1std = V1std − D1st;t1d + ifW1std,H0stdg, s28d

and defines the remaindere2V2std as the right-hand side of
Eq. s26d. We stress that to arrive at Eq.s28d we do not
identify terms order by order. Hence this equation is still
valid if any of the operators featured contains a further de-
pendence one. The general solution to Eq.s28d reads

W1std =E
t18

t

duUH0
st,udfV1sud − D1su;t1dgUH0

su,td

+ UH0
st,t0dB1UH0

st0,td, s29d

whereB1 is any constant self-adjoint operator. In the present
work we chooseB1=0.

Substituting Eq. (17) into Eq. (15) and replacing
UR2

st ,t0; t19d by the identity as discussed above, one obtains
the KAM approximation

UH1
st,t0d = UH1

s1dst,t0d + Ose2d, s30d

with the one-iteration KAM expansion

UH1

s1dst,t0d = T1stdUH1
est,t0dT1

†st0d. s31d

We emphasize the dependence of the following operators on
the arbitrary timest1, t18, andt19:

H1
estd ; H1

est;t1d,

T1std ; T1st;t1,t18d,

W1std ; W1st;t1,t18d,

V2std ; V2st;t1,t18d,

R2st;t19d ; R2st;t1,t18,t19d. s32d

As a consequence, the one-iteration KAM expansion de-
pends ont1 and t18. In Sec. III B, we shall show how these
parameters can be chosen to improve the accuracy of the
algorithm. In addition, recall that there are two constant op-
erators,D1st1; t1d in Eq. (22) andB1 in Eq. (29), that can be
freely chosen. Note that with the choice of Eq.(23a) there is
no dependence ont1.

2. Second iteration

In the first iteration of the KAM algorithm we started with
the HamiltonianH1std=H0std+eV1std and the known propa-
gatorUH0

st ,t0d. We constructed, with the help ofT1std, a new
Hamiltonian H2std=H1

estd+e2V2std and its propagator
UH2

st ,t0d. We approximated these operators to first order by
retaining only the effective HamiltonianH1

estd and its propa-
gatorUH1

est ,t0d, discarding thus the remaindere2V2std and the
related propagatorUR2

st ,t0; t19d.
To go one step further, unlike standard perturbation theory

which reduces the size of the remainder frome2 to e3, the
KAM algorithm takes advantage of the fact that after one
iteration it produces a new perturbatione2V2std whose order
is the square of that of the original perturbationeV1std.
Hence by consideringH2std and in particular the perturbation
e2V2std as the new starting point, a KAM transformation
T2std produces a new perturbatione4V3std [whose order is
indeed se2d2]. This is the essence of the superexponential
character of the KAM algorithm. The fact that the new per-
turbation is of ordere4 instead ofe3, as in a standard pertur-
bation theory, allows one to anticipate the importance of
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keeping higher-order terms ine2V2std, in particular, terms of
order e3 which would otherwise be absent if one further it-
erates the algorithm.

The second KAM iteration amounts thus to reproduce the
first iteration on the newly constructed HamiltonianH2std
=H1

estd+e2V2std: the effective HamiltonianH1
estd and propa-

gatorUH1
est ,t0d now play the role of the previous unperturbed

Hamiltonian and propagator, respectively, we replacee by e2

and increase each subscript by one unit. The perturbation
e2V2std is given by Eq.(26) which we expand using Eqs.(27)
and (28) and the Hausdorff formula[29,30]

eABe−A = B +
1

1!
fA,Bg +

1

2!
†A,fA,Bg‡ +

1

3!
fA,†A,fA,Bg‡g

+ ¯ s33d

to obtain

e2V2 =
ie2

2
fW1,V1 + D1g −

e3

6
†W1,fW1,2V1 + D1g‡

−
ie4

24
fW1,†W1,fW1,3V1 + D1g‡g + ¯ . s34d

We can rewrite this expression in a compact form with the
shorthand notation adksA,Bd for the k nested commutators
fA, . . . ,[A,fA,Bg]¯g:

adksA,Bd ; HB k = 0

fA,adk−1sA,Bdg k ù 1.
s35d

The perturbation we shall start from in the second iteration
of the KAM algorithm thus reads

e2V2 = o
k=1

`
ikek+1

sk + 1d!
adksW1,kV1 + D1d. s36d

We recall that the presence of a power series ine constitutes
no difficulty for this algorithm. It is on the contrary crucial in
this superexponential technique to keep terms up to the final
order one is interested in. Terms of ordere3, for instance, do
not appear throughe4V3std but through the second term in the
series of Eq.s34d or Eq. s36d for e2V2std.

We now proceed to the construction of the second KAM
iteration as described above. The unitary transformationT2std
is such that

T2
†stdUH2

st,t0dT2st0d = UH3
st,t0d, s37d

where the propagatorUH3
st ,t0d is associated with the Hamil-

tonian

H3std ; H2
estd + e4V3std, s38d

and can be expressed as

UH3
st,t0d = UH2

est,t29dUR3
st,t0;t29dUH2

est29,t0d. s39d

The new effective Hamiltonian can be decomposed as

H2
estd ; H1

estd + e2D2std, s40d

and its propagator accordingly written in the form

UH2
est,t0d = UH1

est,t2dUP2
st,t0;t2dUH1

est2,t0d. s41d

From Eq.s2d one deduces thatUP2
st ,t0; t2d is associated with

the Hamiltonian

e2P2st;t2d ; e2UH1
est2,tdD2stdUH1

est,t2d, s42d

where UH1
est ,t0d is given by Eq.s25d. The corresponding

Schrödinger equation is straightforwardly integrated ifD2std
is taken as

D2std ; UH1
est,t2;t1dD2st2;t2dUH1

est2,t;t1d ; D2st;t2d,

s43d

with D2st2; t2d arbitrary. Two appealing cases are

D2st2;t2d ; 0, s44ad

D2st2;t2d ; V2st2d. s44bd

One then obtains

UP2
st,t0;t2d = e−ist−t0de2D2st2;t2d. s45d

The new effective propagator can be rewritten using Eq.s43d
as

UH2
est,t0d ; UH0

st,t0de−ist−t0deD1st0;t1de−ist−t0de2D2st0;t2d

; UH2
est,t0;t1,t2d. s46d

We now come to the definition ofT2std given in Eq.(37)
and require thate4V3std contain no term of order lower than
e4. InsertingT2std into the Schrödinger equation forUH3

st ,t0d
one arrives at

e4V3std = T2
†stdH2stdT2std − H2

estd − T2
†stdi

]

] t
T2std. s47d

We write

T2std ; e−ie2W2std, s48d

whereW2std is allowed to depend one salthough we do not
indicate it explicitlyd. Substituting into Eq.s47d and requir-
ing that all terms of order lower thane4 vanish identically
leads to the differential equation

]

] t
W2std = V2std − D2std + ifW2std,H1

estdg. s49d

Its general solution reads

W2std =E
t28

t

duUH1
est,udfV2sud − D2su;t2dgUH1

esu,td

+ UH1
est,t0dB2UH1

est0,td, s50d

whereB2 is any constant self-adjoint operator. Here we shall
setB2 to 0.
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The propagatorUH1
st ,t0d we are looking for is obtained

from Eqs.(15) and (37):

UH1
st,t0d = T1stdT2stdUH3

st,t0dT2
†st0dT1

†st0d. s51d

Substituting Eq.s39d and neglectingUR3
st ,t0; t29d since it is

associated with a Hamiltonian of ordere4, we find

UH1
st,t0d = UH1

s2dst,t0d + Ose4d, s52d

with the two-iteration KAM expansion

UH1

s2dst,t0d = T1stdT2stdUH2
est,t0dT2

†st0dT1
†st0d. s53d

This expansion features two additional arbitrary timesst2 and
t28d and two additional arbitrary operatorsfD2st2; t2d andB2g
that can be chosen so as to improve its accuracy. The struc-
ture of the equations and of the operators involved is exactly
the same for the second KAM iteration as for the first one,
and will be the same for any iteration. In particular, the ef-
fective perturbation determined at each step is always of the
form of Eq. s36d since each step is just a renaming of the
previous one. This is in contrast to the order by order meth-
ods where the determination of that operator requires each
time more algebra.

3. Summary of the time-dependent KAM algorithm

The propagator of the perturbed HamiltonianH1std
=H0std+eV1std is approximated aftern iterations according
to

UH1
st,t0d = UH1

sndst,t0d + Ose2n
d, s54d

with the unitaryn-iteration KAM expansion

UH1

sndst,t0d = T1std ¯ TnstdUHn
est,t0dTn

†st0d ¯ T1
†st0d. s55d

We recall that the superexponential character of the correc-
tion terms stems from the fact that each KAM transformation
reduces the perturbation to a new effective perturbation
whose order is squared. One defines

UHn
est,t0d ; UH0

st,t0dexpf− ist − t0deD1st0;t1dg

3 ¯ 3 expf− ist − t0de2n−1
Dnst0;tndg, s56d

with the possibility to choose one of the following for any
kù1:

Dkst;tkd ; 0, s57ad

Dkst;tkd ; UHk−1
e st,tkdVkstkdUHk−1

e stk,td. s57bd

Each KAM transformation reads

Tkstd ; expf− ie2k−1
Wkstdg, s58d

where

Wkstd ; E
tk8

t

duUHk−1
e st,udfVksud − Dksu;tkdgUHk−1

e su,td.

s59d

One hasUH0
est ,t0d;UH0

st ,t0d. To continue the algorithm we

determine the new perturbatione2n
Vn+1std in terms of the

operatorsWnstd, Vnstd, andDnst ; tnd obtained at the preceding
step

Vn+1 ; o
k=1

`
ikse2n−1

dk−1

sk + 1d!
adksWn,kVn + Dnd, s60d

with the usual definition of adsA,Bd recalled in Eq.s35d and
where the infinite series can be truncated to a prescribed
order. This new effective perturbation has exactly the
same structure at each iteration which is useful for appli-
cations, particularly when high-order computations are
needed.

At each KAM iteration two arbitrary timestk and tk8 are
introduced through Eqs.(57) and (59). As a consequence,
one has the following dependence on these free parameters:

UHn
est,t0d ; UHn

est,t0;t1, . . . ,tnd,

Tnstd ; Tnst;t1, . . . ,tn,t18, . . . ,tn8d,

Wnstd ; Wnst;t1, . . . ,tn,t18, . . . ,tn8d,

Vnstd ; Vnst;t1, . . . ,tn−1,t18, . . . ,tn−18 d. s61d

These quantities, together with the choice of Eq.(57a) or
(57b) for the arbitrary operatorDnstn; tnd, may significantly
affect the accuracy of then-iteration KAM expansion.

4. Comparison with the Magnus expansion

The Magnus and KAM expansions differ in several re-
spects. First, it is remarkable that the KAM algorithm can be
implemented in the original representation. In Appendix C
we show that the result obtained for the KAM expansion in
the interaction representation is identical at any level of ap-
proximation.

Most important, of course, is the superexponential char-
acter of the KAM expansion which manifests itself as of the
second iteration. However, the first iteration of these algo-
rithms is generally different, owing to the noncommutativity
of the operators involved. Indeed, Eq.(12) gives for the first-
order Magnus expansion

UH1

s1dst,t0d = e−ieM1st;t0dUH0
st,t0d, s62d

while the one-iteration KAM expansion of Eq.s31d reads

UH1

s1dst,t0d = e−iehM1st;t0d−M1st18;t0d+st18−tdD1st;t1dj

3 e−iest−t0dD1st;t1de−iehM1st18;t0d+st0−t18dD1st;t1dj

3 UH0
st,t0d. s63d

We recall from Eq.s13d that
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M1st;t0d =E
t0

t

duUH0
st,udV1sudUH0

su,td. s64d

To compare these expressions we shall cast the product of
the exponentials of Eq.s63d into a single exponential using
the Campbell-Baker-Hausdorff formulaf23,29,31g:

eAeB = eC, s65ad

where

C = A + B +
1

2
fA,Bg +

1

12
†A − B,fA,Bg‡ + ¯ . s65bd

We note that the exponents of Eq.s63d precisely sum up to
that of Eq. s62d, i.e., eM1std. Hence, by Eq.s65bd, these
expansions differ by terms of ordere2. In other words, these
expansions differ through terms whose order is that of their
remainder, which therefore enables one to recover precisely
the same expansion up to a given order. To compute explic-
itly these terms of ordere2 and show that they generally do
not vanish we apply the Campbell-Baker-Hausdorff formula
twice to reduce the three exponentials of Eq.s63d to a single
one

UH1

s1dst,t0d = e−ieM1st;t0d−se2/2dK1st;t0,t1,t18d+Ose3dUH0
st,t0d,

s66d

where

K1st;t0,t1,t18d ; st − t18dfM1st;t0d,D1st;t1dg + st0 − td

3fM1st18;t0d,D1st;t1dg + fM1st;t0d,M1st18;t0dg.

s67d

We recall that, according to Eq.s23d, we choose either
D1st ; t1d=0 or D1st ; t1d=UH0

st ,t1dV1st1dUH0
st1,td. As a con-

sequenceK1st ; t0,t1,t18d is generally nonzero and therefore, at
this first level of approximation, the KAM and Magnus tech-
niques differ by terms of ordere2. However, if one chooses
D1st ; t1d=0 together witht18= t0, then the one-iteration KAM
expansion and the first-order Magnus expansion coincide
sthis will no longer be true for the next levels of approxima-
tiond.

Note that for the KAM algorithm, as we discuss in the
following section, the choice ofD1st ; t1d with an arbitraryt1
allows one to enhance the convergence precisely by acting
on these higher-order terms[we emphasize that these terms
appear here as higher-order ones because of the use of the
Campbell-Baker-Hausdorff formula; but at the level of Eq.
(63), each exponent is indeed of ordere].

For higher orders and iterations however the KAM algo-
rithm is a priori expected to perform far better owing to both
the superexponential character and the possibility to enhance
the accuracy.

III. IMPROVING THE ACCURACY

The formulation of the time-dependent KAM technique
presented in Sec. II D reveals the existence of several de-
grees of freedom which are at our disposal to reduce the

error without prior knowledge of the exact solution:(i) the
choice of Eq.(57) for the operatorsDkst ; tkd and(ii ) the free
parameterstk and tk8 of Eqs. (57b) and (59). There is also a
third way discussed below:(iii ) the possibility to consider
another identification of the perturbation and unperturbed
Hamiltonian.

The items (i) and (ii ) also apply to the Poincaré–Von
Zeipel and the Van Vleck techniques, although to a smaller
extent, as we describe below.

A. Choice of Dk„t ; tk… and correspondence between
resonances and secular terms

Each iteration of the time-dependent Poincaré–Von
Zeipel, the time-dependent Van Vleck, and the time-
dependent KAM algorithm features an arbitrary operator
Dkstk; tkd. In the preceding section, in addition to the simplest
caseDkstk; tkd=0, we suggested the choiceDkstk; tkd=Vkstkd,
wheretk is an arbitrary time.

The first iteration involves the operatorD1st ; t1d which
satisfies the same equation in the three algorithms, namely,
Eq. (22). This equation is actually the general solution to the
differential equation

fH0std,D1st;t1dg = i
]

] t
D1st;t1d. s68d

This latter equation, together with Eq.s28d for W1std, is the
time-dependent generalization of the so-called cohomology
equationsf32g considered in the stationary case.

The time-independent problem, i.e., the problem of find-
ing a transformationT1 that enables one to simplify the time-
independent HamiltonianH1 according to T1

†H1T1=H0
+eD1+e2V2, is recovered when one conveniently choosesT1
as time independent. This transformation is sometimes called
contact transformation[33] or level-shift transformation
[30].

In this case all the operators, and in particularD1 andW1,
are time independent and the standard cohomology equations
are recovered:

fH0,D1g = 0, s69ad

V1 − D1 + ifW1,H0g = 0. s69bd

Their solutions can be determined using the following key
property f32g: W1 exists if and only if PH0

sD1−V1d=0,
wherePH0

is the projector in the kernel of the application
A° fA,H0g sfor an operatorA acting on the same Hilbert
space asH0d. The projectorPH0

applied on an operatorA
captures thus all the partB of A which commutes withH0:
fB,H0g=0. The unique solutionD1 allowing W1 to exist and
satisfying Eq.s68d is thus

D1 = PH0
V1 ; lim

T→`

1

T
E

0

T

e−itH0V1e
itH0. s70d

The resonancesare associated with terms ofV1 which com-
mute withH0. Application of Eq.s70d can be interpreted as
an averagingof V1 with respect toH0 which allows one to
extract resonances.
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For the time-dependent problem, the general solution to
Eq. (28) is given by Eq.(29). Defining the average

P−V1 ; lim
t→`

1

t
E

t−t

t

dsUH0
st,sdV1ssdUH0

ss,td, s71d

one can show the following property: ifW1std is bounded for
negative infinite times, thenP−sV1−D1d=0. This is satisfied
by D1=P−V1, the only solution compatible with Eq.s68d and
the projectorP−. This means that the averagingD1=P−V1
allows one to remove secular terms at negative infinite times.
We remark that this definition of the average, Eq.s71d, can
in fact be recovered from the formal calculation of the aver-
agePK0

V1 of Eq. s70d with respect toK0=−si ] /]td+H0 in an
extended space, which includes time as a coordinatef14,20g.
This gives the precise correspondence between the reso-
nances of stationary problems and the secular terms of time-
independent problems.

In Ref. [14] it was shown for perturbations that are local-
ized in time, in a finite but possibly large intervalti ø tø tf,
that Eq.(71) reduces to

P−V1 = UH0
st,tidV1stidUH0

sti,td. s72d

This is a particular solution to Eq.s68d corresponding to the
choicet1; ti in Eqs. s22d and s23bd. An alternate definition
of the average

P+V1 ; lim
t→`

1

t
E

t

t+t

dsUH0
st,sdV1ssdUH0

ss,td s73d

gives a different result

P+V1 = UH0
st,tfdV1stfdUH0

stf,td, s74d

and allows one to remove secular terms at positive infinite
times. Generally one cannot remove simultaneously the
secular terms at negative and positive large times. This
shows a conceptual difference between stationary resonances
and secular terms associated with perturbations localized in
time. Furthermore, it suggests that combining both defini-
tions in a nontrivial way gives a new secular term that could
improve the convergence of the algorithm. This is achieved
by the general solution to Eqs.s68d ands22d, written with the
perturbation evaluated at a free timet1 as the arbitrary op-
eratorfcf. Eq. s23bdg:

D1st;t1d ; UH0
st,t1dV1st1dUH0

st1,td. s75d

The free t1 can then be chosen as we describe below to
minimize the remainder obtained at the first iteration of the
perturbative algorithm.

The next iterations also offer the possibility to choose for
Dkst ; tkd, in particular 0 orUHk−1

e st ,tkdVkstkdUHk−1
e stk,td, simi-

lar to Eq. (75). Note however that for the Poincaré–Von
Zeipel and the Van Vleck techniques, the choice correspond-
ing to Vkstkd can only be made once(for an arbitrary value of
k). As explained in Appendixes A and B, respectively, this is
due to the order by order character of these techniques.

B. Enhancing the convergence

After one iteration of the KAM algorithm one deduces
from Eqs. (15) and (17) an exact expression for the full
propagator

UH1
st,t0d = T1st;t1,t18dUH1

est,t19;t1dUR2
st,t0;t1,t18,t19d

3 UH1
est19,t0;t1dT1

†st0;t1,t18d, s76d

where t1, t18, and t19 are arbitrary timesfcf. Eq. s32dg. The
propagatorUR2

st ,t0; t1,t18 ,t19d of the Hamiltonian given in Eq.
s18d is associated with a second-order generator

UR2
st,t0;t1,t18,t19d ; e−ie2G2st;t0,t1,t18,t19d. s77d

To obtain the one-iteration KAM expansionUH1

s1dst ,t0d we
neglected this propagator, replacing it by the identity in the
above product. Obviously, the closerUR2

st ,t0; t1,t18 ,t19d is to
the identity, the smaller the correction terms are, i.e., the
more accurate the approximation is. We can improve this
accuracy if we can make that propagator closer to the iden-
tity, or equivalently, its generator closer to zero. The distance
is defined through the normiAi=maxici=1iAci with c in the
Hilbert space of the problem. For a Hermitian matrix, this
norm is the largest absolute value of its eigenvalues.

We calculate this generatore2G2st ; t0,t1,t18 ,t19d by solving
the Schrödinger equation with the Hamiltonian of Eq.(18) in
the form of an exponential using Eq.(66). This is a time-
dependent problem with a zero unperturbed Hamiltonian and
whose perturbation ise2UH1

est19 ,t ; t1dV2st ; t1,t18dUH1
est ,t19 ; t1d.

Hence, we evaluate the lowest-order contribution to
G2st ; t0,t1,t18 ,t19d as

G2
s2dst;t0,t1,t18d ; E

t0

t

duUH1
est0,u;t1dV2su;t1,t18d

3 UH1
esu,t0;t1d, s78d

where we sett19= t0 fits precise value is not relevant since the
one-iteration KAM expansionUH1

s1dst ,t0; t1,t18d is independent

of the parametert19g. It is this operatorG2
s2dst ; t0,t1,t18d that

has to remain small for the algorithm to convergef34g. Hav-
ing the arbitrary timest1 and t18 at our disposal, we can ac-
tually enhance the convergence of the algorithm by minimiz-
ing the norm of this matrix with respect to these free
parameters.

Similarly, then-iteration KAM expansion of Eq.(55) can
be optimized by minimizing the norm of the following op-
erator with respect to one or several of the free parameters
t1, . . . ,tn,t18 , . . . ,tn8:

Gn+1
sn+1dstd ; E

t0

t

duUHn
est0,udVn+1sudUHn

esu,t0d

; Gn+1
sn+1dst;t1, . . . ,tn,t18, . . . ,tn8d. s79d

The dependence ofUHn
est ,t0d andVn+1std on these parameters

is given in Eq.s61d.

DAEMS et al. PHYSICAL REVIEW A 69, 033411(2004)

033411-8



It turns out, as will be illustrated in Sec. IV B, that modi-
fying the parameterstk and/ortk8 can improve the accuracy by
more than one order of magnitude already fork=1.

C. KAM expansion with another identification of the
unperturbed Hamiltonian

The perturbed Hamiltonian can be written as

s80d

where D1st ; t1d;UH0
st ,t1dV1st1dUH0

st1,td with t1 arbi-
trary fcf. Eqs. s22d and s23bdg. The propagator associated
with H08st ; t1d can always be determined since by Eqs.s19d
and s25d one has

H08st;t1d = H1
est;t1d, s81ad

UH08
st,t0;t1d = UH1

est,t0;t1d. s81bd

We now apply the KAM algorithm exactly as summarized
in Sec. II D 3, i.e., with the same definitions for all the op-
erators involved in the expansion, but with the identification
of Eq. (80). This decomposition has the property that
V18st1; t1d=0 which implies by Eq.(23b) thatD18st ; t1d=0. The
free parametert1 is therefore introduced here through Eq.
(81b). One arrives at a KAM expansion which is still of the
form of Eq.(55) but may significantly differ from that result-
ing from the conventional decomposition.

We emphasize that the possibility to consider the identifi-
cation of Eq.(80) as a new starting point for a perturbative
treatment is specific to the KAM technique which is not an
order by order method, contrary to the Magnus, the
Poincaré–Von Zeipel, and the Van Vleck algorithms.

IV. BEYOND THE SUDDEN APPROXIMATION

A. Preliminaries

We consider a system described by the HamiltonianH
(autonomous or not). It is perturbed by a time-dependent
HamiltonianVstd whose characteristic duration ist. This lat-
ter quantity is the time during which the interaction differs
significantly from zero, and not the full duration of the inter-
action, which may be large but finite. Here we definet as
twice the full width at half maximum, having in mind a
perturbation which presents a time-dependent envelope. We
assume that the perturbationVstd satisfies

fVstd,Vst0dg = 0 ∀ t,t0, s82d

which is realized in many situations of physical interest. The
propagator of the perturbed system evolves according to the
Schrödinger equation

i"
]

] t
Ust,t0d = hH + VstdjUst,t0d, s83d

with Ust0,t0d=1, the identity operator on the appropriate Hil-
bert spaceH. We define a dimensionless timet and dimen-

sionless operatorsH, Vstd, andUst ,t0d through

t ; tt,

H ; "vH,

Vstd ;
"

t
Vstd,

Ust,t0d ; Ust,t0d, s84d

where v is some characteristic frequency ofH. In dimen-
sionless units Eq.(83) becomes

i
]

] t
Ust,t0d = hVstd + eHjUst,t0d, s85d

where we define asudden parametere;vt.
The sudden or impulsive regime corresponds to the limit

e→0. Our aim is to obtain a perturbative expansion for the
evolution operatorUst ,t0d of the perturbed Hamiltonian
Vstd+eH beyond the sudden regime. To this aim we identify
the original perturbationVstd as the unperturbed Hamiltonian
H0std and the original unperturbed HamiltonianH as the per-
turbationV1:

H0std ; Vstd, s86ad

V1 ; H. s86bd

Note that we need only consider a finite interval of time as
Vstd is localized in time. By virtue of Eq.(82), the propaga-
tor for e=0 reads

UH0
st,t0d = expH− iE

t0

t

VsudduJ . s87d

We shall follow this approach below and consider the vari-
ous perturbative schemes described in Sec. II in the case of
two-level systems driven by short pulses.

B. Illustration on pulse-driven two-level systems

Our purpose is to compare the various algorithms and
investigate the convergence enhancement as well as to show
that the unitary time-dependent KAM theory is well suited to
study regimes beyond the impulsive or sudden limit.

In the notations of the preliminaries, we takeH="vs3
andVstd=s" /tdVstds1, whereVstd is a pulse shape function
andsk are the Pauli matrices,

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D .

Hence, the operators defined in Eq.s86d are hereH0std
=Vstds1 andV1=s3. The Schrödinger equation reads

i
]

] t
UH1

st,t0d = fVstds1 + es3gUH1
st,t0d, s88d

with UH1
st0,t0d=1C2. For e=0 its solution is
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UH0
st,t0d ; e−iAstds1, s89d

where Astd;et0
t Vsuddu. The pulse areaA;As`d is a di-

mensionless parameter that can be fixed independently of the
sudden parameteres;vtd that we take here as the perturba-
tive parameter. This allows us, in particular, to treat large
nonperturbative areas for short pulse durations.

The Magnus expansionUH1

sndst ,t0d is given by Eqs.(12),
(13), and(14a).

The KAM expansion is obtained from Eqs.(55)–(60). We
distinguish three types of KAM expansions, reflecting the
choices discussed in Secs. II D, III A, and III C.

(1) Type A: each iteration k involves the operator
Dkstk; tkd=0 [cf. Eq. (57a)].

(2) Type B: Dkstk; tkd=Vkstkd for all k [cf. Eq. (57b)].
(3) Type C: the unperturbed Hamiltonian is defined as

H08st ; t1d=H0std+eUH0
st ,t1dV1st1dUH0

st1,td [cf. Eq. (80)].
For the type-A n-iteration expansion one hasn free times

UH1

sndst,t0d = UH1

sndst,t0;t18, . . . ,tn8d,

while for the typesB andC one has 2n such parameters

UH1

sndst,t0d = UH1

sndst,t0;t1, . . . ,tn,t18, . . . ,tn8d.

In the case of two-level systems, the infinite series of Eq.
(60) for the new effective KAM perturbationVn+1std can be
cast into the form[14]

Vn+1 = fWn,anVn + bnDng + en†Wn,fWn,cnVn + dnDng‡,
s90d

where

an ; i
cosenln + enln sin enln − 1

en
2ln

2 , bn ; i
1 − cosenln

en
2ln

2 ,

cn ;
enln cosenln − sin enln

en
3ln

3 , dn ; cn + ibn, s91d

with en;e2n−1
andlnstd;Î−detWnstd.

For givene and A, the errorDn at the end of the pulse
between the numerical solution of the Schrödinger equation
and the result obtained aftern iterations is defined as

Dn ; iUH1
stf,tid − UH1

sndstf,tidi. s92d

We also define the errordn in the transition probability from
the lower stateu−l to the upper stateu+l:

dn ; uk+ uUH1

sndstf,tidu−lu2 − uk+ uUH1
stf,tidu−lu2. s93d

We consider the following dimensionless pulse shape be-
tween the dimensionless timeti =0 andtf =1:

Vstd = H2A sin2 sptd for 0 ø t ø 1

0 elsewhere.
s94d

Figure 1 displays the common logarithm of the errorD1
and the errord1 as a function of the pulse areaA for the
Magnus expansion and the three types of one-iteration KAM

expansions in the caset1= t18=0 ande=0.5. The errorsD1 and
d1 globally decrease whenA increases. This is expected on
the basis of Eqs.(88) and (94) as the relative importance of
the perturbation then decreases. One also observes marked
oscillations in D1 and d1 with a pseudoperiod ofp. This
stems from the form of the unperturbed propagator[cf. Eq.
(89)] and the fact that it always appears twice, in particular in
the operatorG2

s2dst ; t0d of Eq. (78) which controls the error
after one iteration.

Let us recall that the one-iteration KAM expansion of
type A coincides with the first-order Magnus expansion for
t18=0. It is seen, by both measures of the error, that each of
the KAM expansions can perform better than the other ones
on some intervals ofA. Hence, in order to establish a fair
comparison, we shall consider the particular valueA=1
where the first-order Magnus expansion and the one-iteration
KAM expansion of typeB yield essentially the same errorD1
for e=0.5. This remains true for all values ofe up to 2 as can
be seen from Fig. 2, which depicts the errorsD1 andd1 as a
function of e for A=1.

In Fig. 2 we also present the one-iteration KAM expan-
sion of type B that is optimized by choosingt1=0.5,t18
=0.22. We see that the errorD1 is reduced(with respect to
the comparable Magnus and nonoptimized type-B KAM ex-
pansions) by more than one order of magnitude up to values
of e equal to unity. The errord1 on the transition probability
is also considerably reduced. Notice that the values ofd1 for

FIG. 1. Comparison of the first-order Magnus expansion(dots),
the one-iteration type-B KAM expansion(solid line), and the one-
iteration type-C KAM expansion (dashed line) for e=0.5 andt1
= t18=0: (a) common logarithm of the errorD1 and(b) error d1 as a
function of A. The one-iteration type-A KAM expansion coincides
in the caset18=0 with the first-order Magnus expansion. All quanti-
ties are dimensionless.
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the Magnus and nonoptimized type-B KAM expansions dif-
fer while the values ofD1 are indistinguishable. For compari-
son, we also consider the(nonunitary) Dyson expansion
[23]. Recall that it is obtained by repeated use of the integral
form of the Schrödinger equation in the interaction represen-
tation with respect toH0std:

UH1
i st,t0;t0d = 1 − iE

t0

t

duH1
i su;t0dUH1

i su,t0;t0d

= 1 − iE
t0

t

duH1
i su;t0dF1 − iE

t0

u

dvH1
i sv;t0dG

+ ¯ , s95d

where H1
i st ; t0d, given by Eq.s2cd, contains a prefactore.

One then returns to the original representation with Eq.s2ad.
For the value ofA considered in Fig. 2, the Dyson expansion
yields the largest errorD1 whereas its error on the transition
probability is rather small.

In Fig. 3 we plot the contours ofg2 defined as the largest
absolute value of the eigenvalues of the Hermitian matrix
G2

s2dstf ; ti ,t1,t18d given by Eq.(78). This quantity which con-
trols the error after one iteration is represented as a function
of t1 andt18 for the KAM expansion of typeB. By minimizing
g2, which is the norm of this matrix, with respect to the free
parameterst1 andt18, one reduces the error without having to

determine the exact solution. Notice thatst1=0,t18=0d is a
local maximum ofg2 whereasst1=0.5,t18=0.5d is a saddle
point. The pointst1=0.5,t18<0.22d corresponds to a mini-
mum. The symmetry of Fig. 3 results from the pulse of Eq.
(94) being symmetric.

Figure 4 displays the errorD1 and the eigenvalueg2 as a
function of t18 for the three types of one-iteration KAM ex-
pansions in the caseA=1, e=0.5. The value oft1 is chosen
so that the optimum can be reached:t1=0.5 for the typeB
and t1=0.7 for the type C(recall that the typeA features no
t1). One sees that the error can be reduced by more than one
order of magnitude for the typeB or C, and about half an
order of magnitude for the typeA after a single KAM itera-
tion. It is also seen that the eigenvalueg2 is a very accurate
estimation of the errorD1, which enables one to locate the
optimal values of the free parameters. Note that the first-
order Magnus expansion corresponds to the particular value
t18=0 (i.e., the nonoptimized case) of the one-iteration type-A
KAM expansion.

We now turn to the next level of approximation for the
Magnus expansion and the KAM expansion of typeB. Recall
that the first-order and one-iteration expansions of these
schemes yield comparable errorsD1 for A=1. Figure 5
shows that the(nonoptimized) two-iteration KAM expansion
performs better than the second-order Magnus expansion by
one to two orders of magnitude forD2. The errord2 on the
transition probability is also much smaller for the KAM ex-
pansion.

It is worth noting from the comparisons of Figs. 2 and 5
that the errorD1 for the optimized one-iteration KAM expan-
sion is comparable to the errorD2 for the nonoptimized two-
iteration KAM expansion of typeB. This conclusion is not
restricted to the typeB and can be understood on the basis of
the Campbell-Baker-Hausdorff formula as discussed in
Sec. II D 4.

FIG. 2. Comparison of the first-order Magnus expansion(dots),
the first-order Dyson expansion(circles), the one-iteration type-B
KAM expansion witht1= t18=0 (solid line), and the optimized one-
iteration type-B KAM expansion with t1=0.5, t18=0.22 (dash-dot
line) for A=1: (a) common logarithm of the errorD1 and (b) error
d1 as a function ofe. All quantities are dimensionless.

FIG. 3. Contours of the eigenvalueg2 for the KAM expansion
of typeB as a function oft1 andt18, for A=1 ande=0.5. The values
closer to 0 appear darker. All quantities are dimensionless.
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If one optimizes the type-B KAM expansion by choosing
t1=0.5, t18=0.22 (as determined above from Fig. 3) and t2
=0.66, t28=0.8, one gains another one to two orders of mag-
nitude onD2.

From Fig. 5 one also deduces that the Dyson approach is
not applicable in this context as the second order performs
worse than the first order by both measures of the error.
Notice that the transition probability predicted by the Dyson
technique diverges, as is well known, by lack of unitarity. In
other words, the Dyson expansion does not allow one to
refine the results of Fig. 2.

The two-iteration KAM expansion involves the operator
V2std which is given by Eq.(34) or (36) as an infinite series
of commutators. For two-level systems, this series can be
computed explicitly and results in Eq.(90) with n=1. It is
remarkable that the coefficienta1, b1, c1, and d1 are well
defined for all values ofe, even larger than unity. In Fig. 5
we consider the cases whereV2std is truncated to two com-
mutators[i.e., the termk=1 of ordere0 and the termk=2 of
order e in Eq. (36)], and four commutatorssk=1, . . . ,4d.
Note that this amounts to approximate the coefficients of Eq.
(91) by polynomials (of order, respectively, 2 and 4) in
el1std. The case of two commutators performs better than the
second-order Magnus expansion which is not surprising as it
contains all the terms of ordere3. However, it performs
worse than the KAM expansion with the infinite series by up

to one order of magnitude. The case of four commutators is
very close to the exact two-iteration KAM expansion for
values ofe up to unity. The convergence with the number of
commutators involved is indeed very fast. It has to be re-
marked that including commutators of higher orders in a
well-defined manner as in the KAM algorithm is the main
difference with the Magnus expansion(or any order by order
expansion) and necessary to achieve superexponentiality.
From a practical point of view the inclusion of more than one
commutator is both convenient and highly profitable.

The fact that for the KAM expansion the order of the
remainder be the exponential of an exponentialse2n

d implies
that the accuracy is increased in a dramatic way with the
numbern of iterations. In addition, the accuracy of a given
n-iteration KAM expansion can still be enhanced, as illus-
trated here, and allows one to get closer to the next iteration
of the algorithm by including through the simple variation of
the parameterstn andtn8 more appropriate higher-order terms.

V. CONCLUSIONS

We have formulated perturbation theory in operator form
[30] for time-dependent problems localized in time directly
in the original Hilbert space by unitarily transforming the
evolution operator.

FIG. 4. Comparison of the one-iteration type-A KAM expansion
(dots), the one-iteration type-B KAM expansion witht1=0.5 (solid
line), and the one-iteration type-C KAM expansion with t1=0.7
(dash-dot line) for A=1 ande=0.5: (a) common logarithm of the
errorD1 and(b) eigenvalueg2 as a function oft18. All quantities are
dimensionless.

FIG. 5. Comparison of the second-order Magnus expansion
(dots), the second-order Dyson expansion(circles), the two-
iteration type-B KAM expansionst1= t18= t2= t28=0d with the infinite
series of commutators(solid line), two commutators(dashed line),
four commutators (squares), and the optimized st1=0.5,t18
=0.22,t2=0.66,t28=0.8d two-iteration type-B KAM expansion
(dash-dot line) for A=1: (a) common logarithm of the errorD2 and
(b) error d1 as a function ofe. All quantities are dimensionless.
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We have compared formally and numerically various uni-
tary perturbative schemes. The superiority of the KAM tech-
nique over the Magnus expansion, as well as the other meth-
ods, has been established owing to its superexponential
character and the accuracy optimization. We have also shown
that the Magnus expansion is recovered as a special case of
the time-dependent Poincaré–Von Zeipel expansion(whose
time-independent version coincides with the Rayleigh-
Schrödinger expansion[27]).

The possibility to enhance the accuracy of a given level of
approximation stems from the free parameters and the free
operators that appear naturally in the formulation presented
here. It allows one to significantly reduce the error with re-
spect to the exact solution without its knowledge by the
minimization of an eigenvalue.

The above considerations, illustrated here on a pulse-
driven two-level system, are straightforwardly applied to
more involved problems(see Ref.[35] for an application to
the orientation and alignment of molecules).
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APPENDIX A: TIME-DEPENDENT POINCARÉ–VON
ZEIPEL EXPANSION

The time-dependent Poincaré–Von Zeipel technique
amounts to constructing a unitary operatorTstd which trans-
forms the propagatorUH1

st ,t0d into a propagatorUHest ,t0d
according to

T†stdUH1
st,t0dTst0d = UHest,t0d, sA1d

whereUHest ,t0d is associated with an effective Hamiltonian
Hestd containing contributions to every order ine,

Hestd ; H0std + o
k=1

`

ekDkst;tkd. sA2d

This propagator can be expressed in terms ofUH0
st ,t0d and

unitary operators related to the partial Hamiltonians
ekDkst ; tkd:

UHest,t0d = UH0
st,t0dexpf− ist − t0deD1st0;t1dg

3 ¯ 3 expf− ist − t0dekDkst0;tkdg ¯ ,

sA3d

provided the operatorDkst ; tkd is defined as

Dkst;tkd ; UHk−1
e st,tkdDkstk;tkdUHk−1

e stk,td. sA4d

HereDkstk; tkd is arbitrary but strictly of ordere0 sin contrast
to the KAM cased and we set

UHn
est,t0d ; UH0

st,t0dexpf− ist − t0deD1st0;t1dg

3 ¯ 3 expf− ist − t0denDnst0;tndg. sA5d

The generator of the Poincaré–Von Zeipel transformation
Tstd is written as a power series ofe-independent operators
Wkstd:

Tstd ; expS− io
k=1

`

ekWkstdD . sA6d

These operators satisfy the differential equations

]

] t
Wkstd = Vkstd − Dkst;tkd + ifWkstd,H0stdg, sA7d

where the expression forVkstd cannot be given in a simple
form for arbitraryk and requires increasing algebra. The situ-
ation is analogous for the Magnus expansion or the Van
Vleck expansion given below, and in contrast to the KAM
expansion where the new effective perturbation has exactly
the same form at each stepfcf. Eq. s60dg. The general solu-
tion to Eq. sA7d readsfup to a termUH0

st ,t0dBkUH0
st0,td

with Bk any constant self-adjoint operatorg

Wkstd =E
tk8

t

duUH0
st,udfVksud − DksudgUH0

su,td, sA8d

wheretk8 is arbitrary. Notice that this expression involves the
unperturbed propagator unlike the KAM analog which fea-
tures an effective propagatorfcf. Eq. s59dg.

For the operatorDkst ; tkd of Eq. (A4) to be strictly of
order e0, we are no longer entitled to choose
UHk−1

e st ,tkdVkstkdUHk−1
e stk,td for any k if that choice has al-

ready been made for a lower value ofk. This choice can only
be made once(for an arbitrary value ofk denotedv) and
implies to takeDkst ; tkd;0 for the other values ofk.

We then construct thenth order unitary approximation to
Tstd,

Tnstd ; expS− io
k=1

n

ekWkstdD , sA9d

and by Eqs.sA1d and sA3d obtain thenth order Poincaré–
Von Zeipel approximation to the propagatorUH1

st ,t0d,

UH1

sndst,t0d = TnstdUH0
st,t0dexpf− ist − t0devDvst0;tvdgTn

†st0d,

sA10d

where v is any integer between 1 andn for which
we have the possibility to choose eitherDvst0; tvd
;UH0

st0,tvdVvstvdUH0
stv ,t0d or Dvst0; tvd;0.

It is interesting to note that Eq.(A10) precisely reduces to
the Magnus expansion if we takeDvst ; tvd;0 andtk8= t0 for
all k. In the general case there are up ton+1 free parameters

Tnstd ; Tnst;tv,t18, . . . ,tn8d,

Wnstd ; Wnst;tv,t18, . . . ,tn8d. sA11d
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APPENDIX B: TIME-DEPENDENT VAN VLECK METHOD
The time-dependent Van Vleck technique is an order by

order method where instead of transforming the original
propagator into a final new propagator in a single step as in
the Poincaré–Von Zeipel algorithm, one achieves this goal
iteratively through a series of transformationsTkstd which
reduce the size of correction terms fromek to ek+1. This
results in thenth order Van Vleck expansion

UH1

sndst,t0d = T1std ¯ TnstdUH0
st,t0d

3expf− ist − t0devDvst0;tvdgTn
†st0d ¯ T1

†st0d,

sB1d

whereDvst0; tvd;UH0
st0,tvdVvstvdUH0

stv ,t0d or Dvst0; tvd;0,
with v an integer between 1 andn. Here we define

Tkstd ; e−iekWkstd, sB2d

with Wkstd constructed as in Eq.sA8d. There are up ton+1
free parameters entering thenth order time-dependent Van
Vleck expansion.

The Van Vleck and Poincaré–Von Zeipel techniques differ
because of the product of exponentials ofWkstd appearing in
Eq. (B1) instead of the single exponential of a sum ofWkstd
in Eq. (A10). As discussed above on the basis of the
Campbell-Baker-Hausdorff formula this means that these al-
gorithms differ at orders higher than the prescribed order.

APPENDIX C: KAM EXPANSION IN THE INTERACTION
REPRESENTATION

In the framework of a perturbation theory, we stressed in
Sec. II A that the Magnus expansion had to be derived in the
interaction representation. In the section above, the KAM
algorithm was applied in the original representation. We
show here that going to the interaction representation, apply-
ing the KAM technique, and coming back to the original
representation yields identically the same expansions as

above despite the truncation at any finite order.
Given an HamiltonianH1std=H0std+eV1std and the propa-

gator UH0
st ,t0d we consider the interaction representation

with respect to H0std. From Eq. (2) one deduces that
H1

i st ;sd=H0
i st ;sd+eV1

i st ;sd with

H0
i st;sd ; 0, sC1ad

V1
i st;sd ; UH0

ss,tdV1stdUH0
st,sd. sC1bd

Furthermore, the unperturbed propagator is trivial:

UH0
i st,t0;sd = 1. sC1cd

It is worth pointing out that Eq.sC1bd suggests thateV1
i st ;sd

is considered small with respect toH0
i st ;sd=0. As a matter of

fact, by virtue of Eq.s2bd, it is with respect toH0
i st ;sd

− i ] /]t thateV1
i st ;sd is considered smallsin a technical sense

we need not specify hered.
Applying the KAM algorithm with the identifications of

Eqs.(C1b) and (C1c) leads to the expansion

UH1
i

sndst,t0;sd = T1st;sd ¯ Tnst;sdUHn
eist,t0;sd

3 Tn
†st0;sd ¯ T1

†st0;sd. sC2d

Returning to the original representation with the help of
Eq. (2a) one obtains a perturbative expansion forUH1

st ,t0d
that coincides exactly with the expansionUH1

sndst ,t0d obtained
directly in this representation:

UH0
st,sdUH1

i
sndst,t0;sdUH0

ss,t0d = UH1

sndst,t0d. sC3d

This stems from the following identities readily derived on
the basis of Eq.s10d and valid for anyk:

UH0
st,sdTkst;sdUH0

ss,td = Tkstd, sC4ad

UH0
st,sdUHk

eist,t0;sdUH0
ss,t0d = UHk

est,t0d. sC4bd
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