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Steady state of atoms in a resonant field with elliptical polarization
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We present a complete set of analytical and invariant expressions for the steady-state density matrix of atoms
in a resonant radiation field with arbitrary intensity and polarization. The field drives the closed dipole transi-
tion with arbitrary values of the angular momewtaand Je of the ground and excited state. The steady-state
density matrix is expressed in terms of spherical harmonics of a complex direction given by the field polar-
ization vector. The generalization to the case of broadband radiation is given. We indicate various applications
of these results.
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[. INTRODUCTION situations where elliptical polarization is quite essential. An
important example is the phenomenon of coherent popula-
An atomic medium driven by a resonant light field repre-tion trapping(CPT) of atoms driven by an elliptically polar-
sents a prototype problem in atomic physics and nonlineaized light field[6]. Another example is cooling and trapping
optics. At low density the effects of the atom-atom interac-of atoms in light fields with polarization gradieritg], where
tion are small, and the central remaining problem is specifiethe strong correlation between the processes of linear and
by a single atom in a resonant radiation field. As is wellangular-momentum exchange can lead to atom temperatures
known, the basic processes are the absorption and emissidown to the single-photon recoil energy-10° K). Here
of photons. The three universal conservation lgesergy, continuous spatial variations of the polarization are crucial,
linear momentum, and angular momenjuoorrespond to  which, except for special cases, give rise to elliptical polar-
three different aspects in these processes. The main exchangation. Models with nondegenerate atomic states can only
of energy between atom and field corresponds to the radiatescribe the Doppler limit of laser coolirig-107 K) [5].
tive transition between the atomic energy levels. The mo- A central part of these processes is the resonant interac-
mentum exchange gives rise to recoil of the atom, which ision of an elliptically polarized light field with a closed
the basis of the mechanical action of light. The main angularatomic transition between degenerate energy levels. In this
momentum exchange arises from the photon spin. Its prop&fase the light-induced anisotropy of the atomic state is long
description requires consideration of the light polarization,jived. This enables one to accumulate information on very
and the degeneracy of atomic energy levels. Obviously, thesgeak couplings, which allows for high-resolution spectros-
processes occur simultaneously, and in a correlated fashiogepy. As noted above, for many cases one can consider the
The recoil effect is usually small, due to the smallness of theecoil effect as a small perturbation of the orderfid Mv
photon momentuniik) as compared to typical values of the <1. In zeroth order the atom has a constant linear momen-
atom momentun{Mv). In contrast, thgspin) angular mo-  tum. In this case only the exchange of energy and angular
mentum of photong is of the same order of magnitude as momentum between atom and field is taken into account, and
the internal angular momentum of the atomic states. the state of the atom is fully described by the density matrix
A large fraction of theoretical studies of atoms in radiationfor the internal states. The remaining field effeclight
fields only considers nondegenerate energy eigenstates, witbhifts, field broadening, change of population, coherence,
out taking into account the magnetic degeneracy of energgtc) are caused by the stimulated and spontaneous transi-
levels. In the sense of the group of space rotations, this agions, which are described by the generalized optical Bloch
proach corresponds to a scalar model of the atom, whickquations(GOBE) for the internal atomic density matrix.
accounts for exchange of energy and momentum, but not dbepending on the light intensity and interaction time, three
angular momentum. This model allows us to understandimiting cases can be distinguished. The first case occurs for
many processes arising from the resonant interaction of ashort light pulses, when the interaction time is so short that
oms with radiatior{1-5]. However, effects of polarization in relaxation processes can be neglected. Then the interaction
combination with the magnetic degeneracy of atomic levelof atoms with the field has a coherent character, and it can be
cannot be ignored in many cases. The problem remains reaescribed by the time-dependent Schrodinger equation for
sonably tractable in the special cases of linear or circulathe atomic wave function. Typical effects are coherent tran-
polarization. In these cases, there is an obvious choice of thsient processes, such as Rabi oscillations or photon echoes,
guantization axis, so that the submatrices of the density mawhich have been thoroughly analyzgd8], with or without
trix for the ground and the excited level remain diagonal atinclusion of the magnetic degeneracy of atomic stafis
all times. For arbitrary elliptical polarization the situation is The second case occurs when the interaction time is long
appreciably more complex. There are various experimentalompared with the spontaneous lifetime, but still short com-
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pared with the absorption time, which determines the rate oflensity matrix for the two subspaces corresponding to the
optical pumping. In this case one can use perturbation theorground and excited state. The symmetry group for the prob-
This situation arises for laser beams of low intensity andem is the group of rotations SB), which is an important
small diameter, when time-of-flight effects become impor-leading principle for the search of the solution, as well as for
tant. Solutions of the optical Bloch equations correspondingdts presentation in invariant form. The general discussion al-
to this case have been obtained with the use of irreducibldews us to clarify the similarities in the different cases, which
tensor techniques for arbitrary Zeeman and hyperfine levelere not obvious at all in the separate treatments.
structureq10]. Finally, when the interaction time is so long  The nature of the steady state strongly depends on the
that perturbation theory becomes inapplicable, one has toalue of J.-J,. For dipole-allowed transitions, this differ-
find the steady-state solution of the GOBE. This situationence can be 1 0, or 1. For the case thatJ,=J we should
appears either for slow atoms interacting with light, such asnoreover distinguish the cases tlais mteger or half inte-
in optical molasses, or in the case of light beams with highger. This leads to four classes of transitions.
intensity or large diameter. A common restriction is that only  (a) TransitionsJy;=J— J,=J-1. In this case atoms are
a closed transition between two degenerate atomic levels isptically pumped |nto dark states, where they do not couple
considered, so that the total population is conserved. to the light field. This is the phenomenon of coherent popu-

The GOBE are an essential ingredient of the descriptiortation trapping. These dark states are linear superpositions of
of sub-Doppler laser cooling by fields with polarization gra-the Zeeman substates of the ground level, defined as eigen-
dients[11]. We here recall just a few representative cases. Irstates of the resonant interaction Hamiltonian with zero ei-
the semiclassical theory of laser cooling authors concentrategenvalue. Hence, there are no light shifts. For the present
their efforts on the velocity-dependent steady-state densitglass of transitions, there are two independent dark states,
matrix. The presented analytical results were, however, rewhich span a two-dimensional space. This space depends
stricted to transitions with specific small values of the angu-only on the polarization, and it is independent of the field
lar momenta of the statg42]. Bermanet al. [13] have for-  intensity and the detuning. Both the atomic dynamics in the
mulated the GOBE for arbitrary field polarization and field and the steady state depend on the initial state.
arbitrary atomic energy-level structure, using the irreducible- (b) TransitionsJy=J— J.=J with J integer. In this case a
tensor representation. They demonstrate that the sub-Dopplsingle dark state eX|sts and CPT takes place, so that in the
light forces and the subnatural resonances in nonlinear spesteady state the atom is in this unique pure state. Therefore,
troscopy are closely related. Similar results have been olthe steady state does not depend on the initial conditions, the
tained in Ref[14], where a general relationship between theintensity, or the detuning.
light force and the nonlinear polarizability tensor has been (c) TransitionsJ;=J— J,=J with J half integer. For this
derived. class no dark state exists, and CPT does not occur. The only

For linear or circular polarization, the steady-state solu-exception is the case of circular polarization, where a single
tions of the GOBE have been discussed in various papergark state does occur. The steady state is uniquely defined,
[15-17 for arbitrary values ofly andJ,. For arbitrary polar-  but now it depends both on the polarization, the intensity,
ization, the symmetry is reduced, and the steady state faind the detuning. Moreover, it is not a pure state. In fact, it
arbitrary Jy and J. represents a complex mathematical prob-has the remarkable property that the excited-state submatrix
lem. The number of equations, which is equal to the numbebf the density matrix is fully isotropic, which makes the ana-
of elements of the density matrix, amounts @@ J.+1)2.  lIytical expression for the entire density matrix particularly
The steady-state density matrix was found in analytical formsimple.
only for transitions involving specific small values of the  (d) TransitionsJy=J— J.=J+1. For this class of transi-
angular momentum(J,=0,1/2,1) [18-22. Recently we tions the steady-state solution is unique. There is no dark
have discussed the steady state of atoms in light fields witktate. The excited-state submatrix is always anisotropic.
arbitrary polarization, for transitions with,—J,=0 [23,24 Only in the casegc) and(d) does a steady-state excitation
or 1[25]. In these cases, the structure of the solutions looke@xist. In both cases, the anisotropy of the excited state and of
remarkably different. An invariant approach to the generathe optical coherences depends only on the polarization of
problem, based on the expansion of the density matrix irthe driving field. The intensity and the detuning enter only as
bipolar harmonics of complex directions was developed inan overall multiplicative factor. Moreover, in both cases we
Ref. [26]. Nasyrov [27] has suggested an alternative ap-find that the submatrices both for the excited and the ground
proach to the steady-state density matrix, using the semiclastate are even functions of the detuning. In the céaeand
sical Wigner representation of angular-momentum orienta¢b) only the ground state is populated in the steady state, and
tion. This method seems especially useful at large angulahe excited-state submatrix and the optical coherences van-
momentumJ> 1. The results are in good qualitative agree-ish. The occurrence of dark states and velocity-selective CPT
ment with our exact solution. allows us to reach cooling below the recoil linit8], and it

In the present paper we give unified exact analytical exhas been studied by many auth¢29]. In the case ofly=1
pressions for the steady state of atoms driven by light with amn invariant form of the dark states in an elegant vector no-
arbitrary polarization, for all possible dipole transitions. Ra-tation has been used for the analysis of CPT in @®o
diative relaxation is included in the description, and the re-dimension$ and 3D[30]. Here we extend an invariant ap-
sults are presented in an invariant form. The analysis is basqatoach to all the dark transitions.
upon the group-theoretical properties of the transition dipole. The remainder of the paper is organized as follows. First
The polarization direction in real space is reflected in thewe discuss the general structure of the generalized optical
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Bloch equationgSec. 1), which leads in Sec. Ill to the defi- A a)
nition of a natural basis of states that depend only on the

light polarization. We separately discuss the cases (@tt.

IV) or without (Sec. V) dark states. In the latter case, we €
discuss the effect of optical pumping on the degree of exci-

tation and the ac Stark shift in Sec. VI. The generalization to

the situation of broadband radiation is given in Sec. VII. y

Il. FORMULATION OF THE PROBLEM

We consider a closed atomic transitidy+— J, with a tran- €
sition frequencyw, of an atom at a given position. In the
present paper we will not consider the translational motion of
the atom. This corresponds either to the case of very slow b)
atoms or to the case of a traveling plane wave, where the
atomic motion at a given velocity leads only to a Doppler
frequency shift. The transition is driven by a monochromatic J’P
radiation field with frequencw and arbitrary polarizatioe. -
The time-dependent electric-field vector at the position of the
atom is given by

E = Epge exp—iwt) +c.C., (1)
where the polarization vector is .o
. J p—-1 0 pu+1 p+2
e= X egy= X (- 1% g8 2) 8
q=0,+1 q=0,+1

FIG. 1. Conventional coordinate frame for the representation of
Here E, is the complex field amplitudeeq:e-eq is the co- elliptical polarization.(a) The polarization ellipse lies in thgy
variant spherical component of the polarization veetaand  plane, with the major axis in the direction. (b) Transition scheme
the spherical basis vectors of polarization are defined byvith thez axis as quantization axis.

{eo=6, 6,1 = T (ctigy)/\2}. Notice thate;=(-1)%_q. The

vectore is normalized, so thag -e=1 and without loss of frames are connected by a rotation along the @sgisver an
generality we assume that its real and imaginary parts arangle # obeying the relation

orthogonal, which implies that Ife-e)=0. Then the two

vectors Ree and Ime are the axes of the polarization cos ¢ =|tans|.

e”'p$e- : . In the natural frame, the polarization vector is specified as
It is always possible to use a coordinate frame where only

two of the components, are nonzero. There are two possi- o= e{)\x’—cos(Zs) _ 841\5 sine), 3)

bilities. The conventional choice is that tlz axis is chosen
normal to the polarization plane. In this coordinate systenihere the helicity of the spherical unit vectef; corre-
the vectore is the sum of the two opposite circular unit sponds to the sign of. In general there are two possible
vectorse,;. If the Ox axis is directed along the major semi- choices for the cylinder, corresponding to opposite signs of
axis of the polarization ellipsgsee Fig. 18)], e is written as  the rotation angled. Notice that when the polarizatios is
represented in terms of the Stokes vector as a point on the
Poincaré sphere, the angledetermines the polar angle of
+e_, code + 7/4), this point[32].

The quantum kinetic equation for the density mafiiof
the internal state of the atom in the external figlg has the
form

€=€, CoSe +ig, sine = —e,Sin(e + 7/4)

where the ellipticity angles can take the valuesm/4<e
< m/4. Obviously,|tane| is equal to the ratio of the minor
semiaxis to the major semiaxis and the signsofleter-
mines the helicity. R i~ 0 - A

Another choice is called the natural coordinate frame, 5p=—%[Ho,p]—%[—d -E(),p] - T'{p}. (4)
which was introduced in Ref31]. When we represent the

polarization ellipse as the, |,nt,e_rsect|or.1.of a cylinder V\.”th aHereI:|Q is the Hamiltonian describing the energy of the two
plane, the natural fram@x’y’z" is specified by the require-

ment that the axi©z is the axis of the cylinder, while the resonant levels of the free atom adds the dipole operator
axis Oy’ coincides with the axi©y. The minor semiaxis of connecting the two levels. The radiative relaxation is de-
the ellipse coincides with the radius of the cylind&ig.  scribed by the operatdi{p}. All operators are represented as
2(a)]. Then the polarizatioe is the superposition of a linear matrices on the Zeeman basis of the ground and excited lev-
component alon®z', and one circular component. The two els, with stateg|J, ug)} and{|Je, ue)}. The density matrixp
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can be separated in four matrix blocks, where the matrices
Pgg @nd pe are the submatrices for the ground and excited
states, and the off-diagonal blockgy and p,. describe the

optical coherences. In the rotating-wave approximation th&ye introducedil.. and 1. as the projectors on the ground

Fime dependence of the kinetic .equation can be removed byiate and the exgited staie. The dynamical equat@reL1)

introducing the transformed optical coherences as represent the generalized optical Bloch equations, which de-
R P A scribe transient processes as generalized damped Rabi oscil-
Peg= EXH~iwt)peg  Pge= EXHiwl)pge- (5)  Jations, optical nutation, free induction decay, etc., as well as

The resulting system of GOBE can be expressed in the dI<_)ptical-pumping effects, that lead to an anisotropic distribu-

ol ol S which | h tion of atoms over the magnetic sublevels.
mensionless dipole operat@, which couples the ground g4 ations for the steady state are obtained by setting all

state to the excited state. Itis specified by the definition of its; e derivatives to zero in Eqe8)—(11), which gives a set of
spherical components as linear equations for the density-matrix elements. By using
Egs.(8) and(9), the steady-state optical coherences can be

~pn 2).+1 ~
> D/Dg=——1I

. 14
4=0,+1 e 2)y+1 ’ (19

S5 —=N.a = J
Dy=D-g& ‘% |Jevﬂe>CJZZZlq<J9’MQ|’ (6)  directly expressed in the population submatripgsand Pgg
a as
so that their matrix elements are equal to the Clebsch-Gordan i
- J . .. . = - ~ N ~
coefﬂmentsCﬁ:lq. Stimulated transitions are described by Peg= wz——ié[Vpgg_peeV]’

the operatof/, which is the component of the vector operator
D in the polarization direction:

~ -iQ" - -

- fa Ot
Pge— /2 +i5[v Pee™ PggV 1. (15)
After substitution in Eqs(10) and(11), this leads to closed
equations for the population submatrices in the form

V=D e. 7)
Then the GOBE take the form

14 B N -0 A ST I U TS S
(E ¥ % - Ia)peg: iQ[Vpgg = peeV], (8) Yhee= ~ (YSI2{W, ped + YSWQQVT +10G W' pedl,
(16)
T T T ae a an aA A
(a_t + E + | (S)pge: iQ [VTpee— pggVT], (9) -y E Dgpequ - _ (,ygz){VTV,pgg} + ’yS\ipeeV
g=0,+1
<i+ ) =i[OVpre— O PV (10) 05V V.. 0
gt ¥)Pee” Pge™ 2% Peg? where{,} and[,] indicate an anticommutator and a commu-
tator, respectively, and where
S BluDy= i[OV o= OheV], (1) 2
&tpgg Y - gPeeq Peg PgeV 1, S=—— (18)
q=0,1 Y04+ &
with the normalization is the saturation parameter, which is proportional to the light
A . intensity and to the global oscillator strength of the transi-
Tr{pggt + Tr{ped = 1. (12)  tion. The left-hand sides of Eqgl6) and(17) describe spon-

. . . taneous processes, i.e., the radiative damping of the excited
Here 5=w—weq is the detuningwey=(Ee—Ey)/% is the tran- o6 and the spontaneous transfer of population and Zeeman
sition frequency,y is the radiation relaxation rate, ad  c,perence from the excited to the ground level. The terms on
=Eo(Je|dJg)/7 is the generalized Rabi frequency, expresseqne right-hand sides that are proportional to the optical-
in the complex field amplitudds, and the reduced dipole ,ymping rateyS represent light-induced logwith the minus
matrix elementJdd|Jy) that determines the strength of the gjgr) and gain(with the plus sigh of the levels. The com-
transition. The summation in Eq11), which describes the mutator terms on the right-hand sides, proportionals®
feeding of the ground state by spontaneous decay, runs ovglescribe the ac Stark effect. They contain the light-shift op-
the three possible independent polarizatifgse.} of spon-  erators in the ground and excited level

taneous emission. Conservation of the total population of the

closed transition is ensured by the relation ég: SSVIV, f,‘e: ~ SSWT, (19
5 AT =T which play the role of an effective Hamiltonian for the two
S p.Of =1 (13) hich play the role of ffective Hamiltonian for th
goxr 0T levels.

The steady-state solution of the GOBE corresponds to the
When acting on an isotropic excited state, this feeding terntimit t— oo, with t the interaction time. In practice this means
is proportional to thatt is larger than the largest relaxation time in the internal
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degrees of freedom. In the case of a degenerate ground stdteees depend on the detuninfjand the spontaneous-decay

at low saturation this largest time is of the order(¢B)™1, rate y only through the saturation parameter

which is the inverse of the rate of optical orientation in the

ground state. For large saturatid®s 1 the largest relaxation B. Eigenbasis of light-shift operators

time is the excited-state lifetimg . Thus, the conditions for o

the steady-state regime can be written as We are interested in the eigenstates of the operatbvs

and W', The corresponding eigenvalues are real and non-

min{yt, yS§ > 1. (200 negative, so that we can write

Vi@ = (@i), W@ = @), (22

_ _ _ _ _ with \; real, and with eigenstatéég)i) in the ground and
A. Commutation of density matrix and light-shift operators |(e)j) in the excited level. For given values &f and Jg the

In the special case of linear or circular polarization, the€igenstates and eigenvalues are fully determined by the po-
Zeeman substatédy, ug) and |J,, ue) constitute an obvious Iar|zat'|on of the.dnvmg field, and they do not erend on the
natural basis of substates to express the density matrix. Féletuning or the intensity. The stat¢g)j) and|(g)i) form the
linear polarization, one chooses the quantization axis parallélatural bases for the excited and the ground level. The op-
to the polarization direction, so that the polarization veetor erators&, and &, are diagonal with diagonal elemerka)\iz

is equal to the spherical unit vectey with q=0. For circular 5 _(39\]2 Operating with the coupling matricés and V'

olarization, the polarization vecteris equal to the spheri- . . .
gal unit vectore, vF\)/ith g==1, provided thqat the quanti[;ation on the first equatiori22) shows thatv|(g)i) is eigenstate of

axis is chosen normal to the polarization plane. In both cased/V' with eigenvaluer?. Hence we may assume théf(g)i)

the operatof(/ couples each substaligy, ;) to a single ex- is_ proportional_ td(e)i). A proper choice of t_he phases of the
cited statelJ,, ie), Where =, (linear polarization or s, eigenstate§(e)i) then leads to the expression

=pugt1 (circular polarization In this case it can be easily - i ,

checked from Eqs(8)«(11) that the equations for the popu- V= 2 Nil(@)iX(9)il. (23
lations do not mix with those for the Zeeman coherences. '

Also, Egs.(16) and(17) show that the steady-state solutions Hence each nonzero value &f corresponds to a pair of
pee@Ndpgyq are diagonal on the basis of}he Zegman substate§ates4(g)i> and|(e)i) that are coupled b)}’ andV'. In addi-
|3, ). Since also the light-shift operatafg and£, are diag-  tign, the operatol'V or W' may have eigenvalues zero.
onal on the Zeeman substates, this implies that the steady,o corresponding eigenstates are unaffected by the radia-

state density matricefyg and pee commute with the light-  ion field, and they do not contribute to the coupling operator
shift operators&y and &, so that for linear or circular (23).

Ill. NATURAL BASIS OF STATES

polarization we find If the commutation ruleg21) are true, the steady-state
density matriceg,q andpee are diagonal on these bases. The
[PggEl =0, [Peafel =0. (21)  diagonal eIementSTi(g) and 7® are the stationary popula-

) . s j
tions. Taking the diagonal elements of E¢6) and(17), we
Moreover, when all Zeeman coherences are zero initially agbtain the relations

t=to, they remain zero for all later times>t,. ©_ _ 2 (o) 2 (9
One might be tempted to believe that also for arbitrary YIC =T YNy (24)
elliptical polarization a basis of states can be chosen for
U |

which populations and coherences do not mix. However, this -y Wy = - yS)\izwi(g) + yS}\izq-ri(e), (25)
is not true. It has been shown in R¢B3] that spontaneous j
decay can create coherence between eigenstai€g efen  for the steady-state populations, with
if they do not exist initially. In general the time-dependent R
solutionspgg and pe for arbitrary polarization will not com- W = > ((e)j|Dgl (@)D,
mute with the light-shift operators at all times. q=0,%1
Nevertheless, in this paper we shall prove that for th
steady-state solutions for all classes of transitions the co

mutation ruleq21) are valid for arbitrary elliptical polariza- . Lo~ .
tion and for all classes of transitions. The proof is rather™S IS Seen from Eq(24), if & has an eigenvalue equal to

different for the various classes, so that it is most convenierf€/0: then the corresponding eigensti®;) is not popu-

to give the proof while discussing the expression for thelated. Conversely, if one or more eigenvalu«s,?sof &y are
steady state for each class separately. An immediate consequal to zero, then a steady state exists where only the cor-
quence of the commutation rulél) is that the steady-state responding eigenstateq)i) of the ground level are popu-
density matrix is diagonal in the eigenstates of the light-shiftated. For\; # 0 it follows from Eq.(24) that the populations
operators. This implies also that the last terms in Efj§)  of the ground- and excited-level substates are related by the
and (17) vanish, so that the steady-state population submaequation

&he probabilities of the spontaneous transitignsi. These
Mransition probabilities are normalized agV; =1 for all j.
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1
,n.(g): <1+§

) © CPT. For the first group, where CPT occurs, one or more of
| aa
]

I (26) the eigenvalues of the ground-state light-shift operéi@r
) vanish, so that this operator cannot be inverted. During the
From Eq.(25), it then follows that one can deduce a closedgptical-pumping process atoms are accumulated in the corre-
system of equations for the excited-state populations in thgponding eigenstates, which are termed dark states, since
form they do not interact with the light field. Then the trivial so-
Wem® = 27 !ution E=G=0 of the systgmj28) still deterr_nines a normal-

; i @7 izable steady-state solution of the relatiof8)) obeying
Pee=0 andV'Vpy,=0. The ground-state density maty, is
composed of the ground-level dark stai@ds™N®), which
%bey the equation

These relation§27) uniquely determine the populatiomée),
apart from normalization. This implies that the steady-stat
density matrix of the excited levél.. depends on the inten-
sity and the detuning only through a normalization constant,
which is a function of the saturation parame&iMoreover,

they show that the distribution over the excited-level sub-n order to specify the dark states in an invariant manner, we
states can be considered as a stationary point of the radiatiVgew state vectors as tensors. A state vedth in the
relaxation operator, in the sense that such a distribution iground level is considered as a tensbj of the rank Jy,
invariant under spontaneous decay to the ground 84l with (covariani componentslfjg_#g specified by the expan-

sion

V| wNO = . (30)

C. Condition for diagonal steady state

The conjecture of the commutation relatiof2l) can be |\p>:2 (= 1) oWy _, |3q0 o) -
A ) . . . g 1glv 9 g
formulated in an invariant form. It is sufficient to assume the g

existence 9f two Herm|tJan operatdEsandG, with E actlng' Using the Wigner-Eckart theorem, we express the matrix el-
on the excited states a@&lon the ground states, and obeying ements of the left-hand side of E@1) as
the identities

(Jor 11 (d - ) WNO)

EV=VG, X D/ED,=G. (28)
=01 = dldI3g 2 Cieteyo(— 1) (- DT
From the first identity(28) it follows that the operatoré and g
G have an identical diagonal matrix form on the natural = (Jdld9g) (- 1)_%{9@\[’5':0}%—#9'

bases. From this identity and its Hermitian conjugsi& where {---®---} denotes the standard definition of an

=GV one obtains the commutation rules irreducible-tensor produgBs], (J¢|d|Jy) is the reduced ma-
TN TR trix element of the dipole moment operator, and as before
= N/ = ' '
[EvW1]=0, [GVV]=0. (29 €,=€-€, is the covariant spherical component of the polar-
Starting from the relation§28), while using Eqs(16) and  ization vectore. The invariant expression of Eq31) in
(17), one easily derives that the steady-state submatfiges terms of a tensor product of radk reads
and p,, are determined by the relations
Pyg y fe® qu':O}Je =0, (32
Pee=BSE  V'Vpy,=B(1+SVV)G, (30) .
. ° o % ) ) with the normalization conditio(r‘lf(JNC) -\P(JNC)):l.
with 8 a normalization constant. These relations are just the 9 9
operator expression of EqR6). From Eqs.(29) and (30) it N -
follows immediately that the commutation ruléa1) hold, A. Transitions Jg=J—Je=J with integer J
and that the density matrix is diagonal on the natural basis. For transitions with integer values 9f=J.=J there is a
Therefore, the problem of finding expressions for the steadysingle dark state for any polarizati¢é]. In order to write an
stateA density matrix is now reduced to finding operatérs explicit and invariant form of\p(JNC) in this case, we intro-
and G that obey the relation&28). These operators can be duce thel-fold tensor product of the vecte [36,37,
assumed to depend only on the polarization veet@nd not B 33
on the intensity or the detuning. When operatirand G feh={{lewe, el ek, (33
obeying (28) are found, the steady-state density matrix iSyhich are proportional to the spherical harmonics of a com-
determined by Eq30), and it is indeed diagonal in the natu- plex directionn,y(e) (Appendix A. Notice that the three
ral basis. componentge},, in the case. =1 coincide with the spherical
components of thépossibly complexvectore.
V- DARK STATES The Clebsch-Gordan expansioh3) for a product of two
As recalled in the Introduction, dipole transitions can bespherical harmonics with the same argument leads to the
classified into two classes depending on the occurrence aésult
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‘o \/L!J!(ZK— Dl (e-e)-HK

{{el. ® {e}i = Closwo KI(2L — 1)1 (2 — D1 {elk.

(34)

It follows from the symmetry of the Clebsch-Gordan coeffi-
cients thatC{Q,,=0 if L+J-K is odd. Then choosing =1
and K=J we obtain{e®{e};};=0, so that the single dark
state as defined by E§32) can be specified in tensor form
as

Wi = Me),. (35)
The normalization constant follows from the equality
(e-e*)>
e/

(36) b)

as an example of the sum rule for spherical harmotieb. Bl 2 J2 1
Here P,(x) is the standard notation for Legendre polynomi- coe
als. This leads to the expression

~ |: Jl 5 ( 1 >:|—1/2
N= m(ee) P, (e—e) . (37)
%

In general, the algebraic and transformational properties of eoe —
the dark statel'“ are the same as for spherical harmonics.  —/  —A41 =2 2
The steady-state density matrix

(23— 1!

({e};-{ehy) =

(e i e)J/Z(e* i e*)J/ZPJ(

FIG. 2. Natural coordinate frame for the representation of ellip-

ﬁgg= |\I}(NC)><\I;(NC)| (38) tical polarlgathn.(a) Pplarlzatlon vectpr IS the sup,)e,rposmon of cir-
cular polarization defined by the cylindén the x'y’ plane, and
obviously commutes with the light-shift operatbgr. linear polarization along the axis of the cylindef axis). (b) Tran-

In the special case ng:Je:]_, which is the prototype sition scheme with the’ axis as quantization axis.
case of CPT28,30, the dark state is specified by

|q,(NC)> - E (- 1)qe_q|1,Mg =q). (39)

0=0,#1

e ¥, =0. (40)

In this case there is a two-dimensional dark subspace,
It is well known that the state4,q) with angular momentum SPanned by two independent dark stdt@ls The scheme of -
1 have the same transformation properties as the threlgght-lnd_uce_d transitions in t_h_e natural coordinate frame is
spherical unit vectorg,, so that any state vector can be sh_ow_n in Fig. 2b). It is explicitly seen that the dark state
represented by a Cartesian vector. When the state coupled $§incides with the outermost Zeeman substatg=J). The

an excited state with angular momentum 1 by the oper@é,tor Othue;| l'?ne?r:g flgﬁfeggfﬁécﬁsékwiﬁt;éssgféi:jménﬁg dg?alo—
the vector representing the excited state is represented by {HRUSY ' y :

vector that is the cross product of the ground-state vector antde n';'é‘:’fa‘;vz)fornesslg% rntk}grc?ﬁee Lh:'}i ag?;gﬁgegifégglnvﬁgg};e d
the polarization vector, since the cross product is the onl P y

X : Yvhen we notice that the outermost Zeeman substate is given
way in which a vector can be formed from two vectors. Now , ;
by the tensor{C}; with C the circular component of the

a comparison of Eq39) with Eq. (2) shows that the expan- - . . .

sion coefficients are identical, so that the ste88) has the poIarlzatlo_n vector n the correspondlr)g natural coord_mate

polarization vectoe as its vector representation. This imme- frame. Th|s_v_ect0|C is completely s_pec_:lfled by the require-
ments that it is normal to the polarization vector. Hence, the

diately explains why Eq(31) holds for this stat€39), since ; .
the cross product of a vector with itself vanisH&9]. The solution of Eq.(40) is represented by the tensor

explicit invariant form(35) of the dark states for integer

(NC) _
values ofJy=J=J, generalizes the well-known result fdr Wy ={Chy, (41)
=1.
where
B. Transitions Jg=J—J=J-1 (C'-C)=1, (C-C)=0, (e-C)=0. (42)
For transitions withJ.=J,—1, the CPT condition(32)
takes the form The two independentbut not orthogonalsolutions are
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oo lexlexelltilex ev(e-e 43 (W) =2 (- )W), (3. ng).
Vi-le-eP)(d+le-e) "o
Obviously, any density matrix within this subspace com-

mutes with the light-shift operatdi,. For any value o, this

rk subspace depends only on the polarization veetor
owever, the specific steady-state density matrix in which
an atom will end up can depend upon the initial state as well

and the two corresponding dark states are caﬂfga and

\If(f). These states are normalized and linearly independe
but not orthogonal. We can combine them into two orthogo-H
nal states defined by

YO 4 p@ as on the intensity and the detuning of the light field. This
P = — J ‘1*3 —. (44)  case of a transition withlo=J4—1 is the only case of a
V2[1+ (PP i) dipole-allowed transition in which the steady state is not
unique.

In order to calculate the dot produt¥{""-¥'?) we take
into account the relationship V. NO DARK STATES

A. General form of steady state

(s - (b)) = ———(\(a-a)(b - b))’

(23-1N For a transition without dark states, the steady-state solu-
(a-b) tion is unigue, as has been proved in Rg8]. Then the
XPJ(=> excited level is populated in the steady state. This is the case
V(a-aj(b-b)

when the ground-state light-shift opera&g has no eigen-
=(a-b)’, values zero, so that the operadtV acting within the 2,
+1 states of the ground level can be inverted. When opera-

tors E and G exist that obey the relation®8), the steady
state is obtained from E@30) in the form

which holds if eithera or b is a circular vector. Hence we
obtain

1-le-€

PO @)= (c® . c@ J:(
( J J ) ( ) 1+|ee|

J ~ ~ ~ ~
) . (49) Pee= BSE.  pgg=BL(VIV) 1+ SIG. (49)

. From the commutation rule@9) it follows that the density
Next we turn to the case of half-integer valuesloThen we  matrix is diagonal on the natural basis. The optical coher-

can use the correspondence between circular vectors arghces are directly evaluated from H@5), with the result
spinors. The tensor product of a spinptdefined as a tensor

of rank 1/2 with itself into a tensor of rank 1 is always a = At BL & oin-18
circular vector, so that Peg= (pge) 5+ iy/Z)V(V V)™'G. (50)
{x® x}1=C, (46) The constant8 follows from the normalization condition

(12), and we obtain
with C-C=0. The plane of this circular vector is normal to
the direction of the orientation of the spin vector represented B= 1 (51)
by the spinor. Conversely, any circular vector can be repre- ag+2Sa;’
sented in the forn{46) for some spinory. Now for a given
polarization vectore, the two circular vectorg43) corre-
spond to two spinorg'>? so that

with the invariant expressions for the coefficients

a, = THE} = Tr{G} (52)
™ e x™y=c™, m=1,2. 47 and
i (m) - PN
Since the two dark state®|” (m=1,2) are the outermost ap= TH(VIV)1G}. (53)
Zeeman states in the two natural coordinate frames, they can o o
be expressed in the form These coefficientsey and «; depend on the polarization
only, not on the intensity or the detuning. The steady-state
W = M, (48)  density matrix depends on the intensity and the detuning
only through the value of the saturation param&edefined
where the tensofy}; is constructed from 2spinorsy, in Eq. (18).

a It is noteworthy that the submatrjg of the excited level
=ty xhi® xta - ® Xt is always proportional to the single operatrThis implies

The orthonormalization is specified by Eq84) and(45) for ~ that the steady-state anisotropy of the excited level, such as

both integer and half-integer momenta. its orientation and its alignment, is fully determined by the
In the steady state, the excited submafiix disappears, Polarization alone, independent of the saturation. The

and the ground-state density matfiy, can be an arbitrary ground-level submatrigy is & linear combination of the two

density matrix within the two-dimensional subspace spanneehatricesG and(V'V)™1G. For small values of the saturation

by the two dark states parameter, the steady-state submatrices are
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IA)eez SAE{aOa i’gg = (\A/T\A/)_lé/aOv (54) é = \7\/\7\/Jr, é = \'R/\:X/Jr. (61)

whereas in the limit of strong saturati®—c we obtain With the notation59), and the substitutioa=e,b=€" in Eq.
A R A R (58), we obtain the identities
pee=El2ay, pyg=Gl2a;. (55)

fE a2 22 e
The matrix for the optical coherend&0) depends on the VW=WV, VWI=WV, (62
intensity only through an overall factg(}, that is equal to  which indeed prove the first equati¢@8):

O/ ag in the low-intensity limit, and that approaches zero for L L

strong saturation. EV = WWIV = WWW = VWW' = VG. (63)

The second equatiof29) is easily verified when the summa-
R R tion is performed over three Cartesian polarization veators
In order to find operatorE andG that obey the relations By using the second identit§68), with e substituted fore,
(28) for transitionsJ;=J— J.=J+1, we introduce the opera- ande for b, one finds

tors

B. Transitions Jg=J—J.=J+1

S BlED,= 3 DIWVD,=W X D=6,
0=0,+1 g=0,+1 0=0,+1

L

V@)= X (- DM w(@), (56)
M=-L (64)
which are proportional to the dot product of the sphericalVhere Eq.(13) is used in the last step. As indicated in Sec.
harmonic n,y(a), introduced in Eq.(A1), and the tensor IIl C, this also proves the commutation rul¢®l) for the
Wigner operator steady state in the present class of transitions.
Now that we have identified the operatdsand G with
T = > g ) (= DM (3, ). (57)  the desired properties, the steady-state density matrix is di-
M ,La,ﬂb| are St Jor b4 rectly obtained in the forn49) and (50). We use the first
equation(28), combined with the commutation relati¢g9)

The indicesa andb indicate the levelge or g), anda is a sfé)r &, and we introduce the operator

vector in the complex three-dimensional space. We shall u

the two multiplication rules % = (\“/T\A/)—l\}f\;v, (65)
f/‘i%e)\?%iﬂe) :f/§§+1(e)f/91’e(e), acting on the states of the ground level. This leads to the
(58) expressions
V%I]_e(a)vggﬂ_(b) = ng]i]_(b)vig(a) . 'Bee: BS(’\X’/\VT,
The first equatior(58) holds for any vectoe, and for arbi-
trary value of the angular momenfi and Jg. The second Pyg= ,3(§(§(T+ SWA, (66)

equation(58) is valid for arbitrary complex vectors andb,

provided thatl;=J,+1. These relations follow from the mul-
tiplication properties of the operatos6) as given in Appen- ;)— - (;—QT: pQ wixt
dix C, in particular, Eqs(C3) and(C5). In the notation of eg o S+iyi2
Eq. (56), the coupling operator is given byV

= \,W\A/ig(e) '

Alternatively, the operatof( is defined by the relatioVX

i - - - i =W. The density matrix is indeed diagonal on the natural
In order to identify the operator and G we introduce  pagjs, and the commutation rulél) hold.

the shorthand notations It is illuminating to express the various operators occur-
ring in Eg. (66) in terms of basis vectors. The commutation

V§§+1(e) =W, (/g§+1(e) =W, (59)  rules(29) can be expressed as
In addition toV, we introduce the coupling operator [WW' W =0, [\7\/\7VT,\”/T\A/] =0. (67)
\2/: Ve 923+ 13 V%e(e). (60) The operatorsf/ andW depend on the polarization vecter

From the definition(56) one obtains the relation

Notice that the operatorgv and V are raising operators, Saby 1t _ JogCbay ¢
which map substates of the ground level onto excited states. V@] = (- V@), (68)

Using the relationg58) one can find operator‘é and G conjugates oW andV are equal to the operatoVAy andV
with the propertie$28). They are specified by the definitions with the polarization vector replaced by its complex conju-
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gatee’. Hence, when the polarization vector is takeneas ing eigenvalues are proportional to the Clebsch-Gordan co-

rather thane, the expression$66) and (65) hold with the efficients vﬂoccﬁﬂllg_#. The resulting excited-state
replacements/ — V' and W« W!. The commutation rules populationsx<|C3)75 |? for this special case of linear polar-
analogous to Eq(67) are then ization driving a transitiold— J+1 have been indicated be-

SN " fore in Ref.[15].
WA ] = Vi SAYTT = .~ 2
[WW\VV]=0, [WWWVT]=0. (69) Calculations of matrix elements of the operatdvs W,
The first commutation rulé67) shows that the natural basis and X are given in Appendix B for the natural coordinate
states|(e)j), defined as eigenstates Wi/, are also eigen- frame. However, more physical insight can be obtained by

states OWNT, and the(positive eigenvalues are calletzf, expanding the operatoxjin the form of an invariant super-
with »; positive. In complete analogy to the relati¢h2)  position of the operatorgf,

between the statdég)i) and|(e)j) as coupled by&A/, we no- 3 2

tice that the state§VT|(e)i> are eigenstates of the ground- X = \/—E CLf/EQ(e). (74)
level operatoWW, with the same eigenvalué. Hence, we (€02 +3)iz

denote the normalized eigenstated(@), so thatW can be  In order to find the coefficient€, we use the propert{C2)
expanded as L+l

W= 3w @il (70 VIOV = 2 ELIOVe.

From the second commutation rule in E§9) it follows that

k1 L
the ground-level state€g)i) are eigenstates of the operator ~ E(L,K) = (= 1)2*\3(2L + 1){ 33 3+ 1}CT8 Lo-

W1, which means that they form the natural basis for the (75)
ground level for the polarizatiog. From the second identity

(67) one finds by the same argument that the stﬁVéHg)i) The recurrent equat|onsjor the coefficie@ts follows from

2 2 the defining relatior{/)A(:W,

are eigenstates &%'W. From the first identity(69) it follows

that these states form the natural excited basis for the polar- E(L-1,L)C 1 +E(L+1,L)Cpi1= 8 2341,
izatione", which we indicate a8)i). Hence, the operatoké
|za|2ne which we indicate aK€)i) n perato L=01, ... .2+1.
andW can be explicitly expressed as (76)

\2/:2 Nl @)X @), \"/A'\/: > vl(@iX®i|. (71  Depending on whethel is an integer or a half integer, the
i i odd or even coefficients are equal to zero. In both cases the

nonzero coefficient€, are written as
For symmetry reasons, the valugsand v; must be the same

as in Eqgs.(23) and(70). The operato§( defined in Eq.(65)
can be expanded as

o o [@LrD@I+3 (2I-DI@I+L+ D)
o 3(2J+1) (43 + 1)!

(77)

f(:z(vi/)\i)|(g)i><@)i|_ (72) A remarkable peculiarity of the solutiofi77), which be-
[ comes manifest at large angular momentdmis a rapid
ecrease of the coefficien with a decrease of indek.
is fact allows approximate calculations by restricting the
expansion(74) to only a few terms. For example, the ratio

The steady-state populations of the natural basis states f
low from the expression&6), with the result

m® =S m®=pif N7+ S). (73) _
Lo 434142 ~ 202
The relationg26) determine the ratio between the population Corn 4-3
of an excited state of the natural basis set and the corre- _ N
sponding ground state. The populations of different excitedor Jzzis(that corresponds to the cycling transition of e
states of the natural basis set are proportional to the eigefine of **Cs) amounts to about 13.3. As a result, if we use

valuesr?. the approximation

In the special case of linear polarization, the polarization 3
vectorse ande” are identical. When we take the quantization X~ | —————C,Vi%e),
axis in the polarization direction, the natural basis of states (e-e)(23+3)

coincide with the _Zeeman stateS, 1) which IS oY then in calculating quantities as the population or the orien-
coupled to the excited statde, ). The operatoW is pro-  tation of the levels and the average dipole moment, the error
portional to the spherical tens@§$,,,, and the correspond- remains below 1%.
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The normalization constantg; can be found in explicit
form for arbitraryJ. From the sum rule for spherical harmon-
ics (A4) it follows that

the definition(60) of V, the identities62)—(64) remain valid
in the present case. This follows from E¢E3) and(C4) of

Appendix C. With the definitior(65) of the operatoiX, the

_ S proof of Eqs.(66) as well as of the expansiolig0)—(72) can
ay =Tr {(WW'} = P23+1( (e-e) ) (78 pe carried over directly. The main simplification is that in the
) ) ) present case of a transitidj=J— J.=J, the coefficientsy,
Using the expansio(i74), we find are all the same, while the natural basis sti®s$) and|(g)i)
3 23 1 have an identical vector form. Therefore, on the basis of
=Trixxh=——— S 2p <_) 79 Zeeman states of the excited and the ground level, the raising
= Tr XX} (e-e)(2J+3)L2:o (e o (79

operator$7\/ andW have the form of a unit matrix.

The coefficientsay and a4 are simultaneously eveffior J a The matrix elements of the inverse operatdh%)‘l,
half intgge} or odd (for J an intege}. As one expects, the (\7*)‘{ and(\?“?)‘l can be found in a closed analytical form
populations of the levels d_etermmed by the ratioagfand in the natural coordinate frame for all(see Appendix B

@ do not depend on the sign 6¢-e). However, for further applications, it will be convenient to
express(\A/)‘l in an invariant form in terms of the spherical
harmonicsn,y(e) defined in Eqg.(Al). Since the coupling

For a transition between levels with gqual hah(:'megeroperator’\/ is proportional to the operat@b6) with the rank
valuesJ of the angular momenta, the coupling operaf@n | =1 we can write in the present case

the basis of the Zeeman substates is represented by a square

nlatrix. This implies that the concept of the inverse operator R 3 R

(V) *tas corresponding to the inverse matrix can be used, in RERY m[vig(e)]_l-
the sense thatv) *V=II4,V(V) =1l It is nearly trivial to

find operatorsEE andG that obey the condition€8) for this ~ We use the equations

class of transitions. It is immediately obvious that these con- L

ditions are satisfied with the choid%:ﬁe and é:ﬁg, in 9 ~aer o -
view of the identity(14). Then expression&9) and(50) for ViteViie = X ELKVe),
the density matrix take the form

C. Transitions Jg=J—Je=J with J a half integer

K=L-1

Dee= BSIL., —|JK 1 L
Pee= BSlle E(L,K)=(- 1)2J+L+l\;3(2|_ + 1){ 373 3 }CTSLO’
Pag= BLVIV) ™+ 1G] = BLV)HVH ™+ ST, (80) (82)
;? _ (/A)_J' _ BQ WV which is a special case of E¢C2). The operatof\A/ﬁg(e)]‘l is
e (6+iv/2) expanded in the operato¥§(e) according to

The commutation rule®9) are trivially obeyed, so that the
density matrix is diagonal on the natural bases. These expres-
sions have been obtained in REZ3]. Remarkably, Eq(80)
shows that for this class of transitions, the excited-state den-

sity matrix pee is always isotropic at arbitrary field param- |, orger to find the coefficient§, we substitute this expan-
eters. The ground-state density matfiy, consists of two g5 into the identity

parts. The term proportional tch/’r\A/)‘1 is anisotropic, and

2)

[Vs%e)] ™= > C V). (83)
L=0

describes the distribution among Zeeman substates in the Ve [VeYe)] i =11
low-saturation limitS<1. The isotropic part is dominant in ! ! e
the limit of strong saturatio55). While noting thatE(L,L)=0 (sinceCtJ ,=0) one arrives at

In fact, the expression80) can al§o be represented in the the two-term recurrent relation

form (66), in terms of operatorS?v, \7V, andX. In the same
spirit as Eq.(59), for the present class of transitions we in- E(L-1,L)C 1 +E(L+1,L)C =68 oV2I+1,
troduce the operators

\"/gg(e):\;v, \A/ge(e):VV, (81) L=0,1,...,2
where now the rank of the operators takes the minimal value
0. With this definition, we can maintain the expressié8®)  Expressions for the coefficients with odd indices follow from
for the operator& and G, which are indeed isotropic. With the relationg84), with the result

(84)
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L=DI [2L+1)23(23+1)(23+2) (23 + L)1 (2I- L - 1)!
L!! 3 (1-L)N@I+L+ D"

C =(-pnt? (85)

This is a sequence of terms with alternating signs, whictthereby the absorption, depends on the polarization.

slowly grows in absolute value with the indéx It follows This is demonstrated in Fig(& for the class of transi-
from Eg. (84) that the coefficientsC, with even index are tions J—J with J a half integer. This shows that the total
equal to zero. absorption cross section is reduced compared with the case
The normalization coefficien62) is obviously of linear absorption, so that the medium becomes more trans-
. parent due to optical pumping. The reduction is the lowest
a;=Tr{llg =23+ 1. (86)  for linear polarization, and it is complete for circular polar-

o . N1 ization. Moreover, the reduction increases with the value of
The other normalization coefficienty=Tr{(V'V)™"} follows 3 Recall that for CPT transitions,—J—1 andJ— J with J

from the expansiori83), the orthogonality of the Wigner an integer, the stationary excited-state population is obvi-
operators and the sum rule for spherical harmotth4),  oysly zero, and the transparency is complete. The decrease in
with the result absorption indicates that the atoms are pumped to states that
2J are more weakly coupled than average. Roughly speaking,
-3 D CEH(L)_ (87)  this implies that pairs of coupled statg)i) and|(g)i) for
(e-e)(2+1) 13 . (e-e which the total steady-state population is large, tend to have
a relatively small coupling constamf. Since the form(19)
of the light-shift operators shows that the stal@si) and

Qo
This expression contains only even powergef).

VI. EXCITED-STATE POPULATION 1.0r
AND ac STARK SHIFT I

0.8

In this section, we study the polarization dependence of
the total excited-state population. This determines, for ex-
ample, the total fluorescence and thereby also the total ab-g
sorption in an atomic vapor. For unpolarized atoms and in
the low-saturation limit, the total excited-state population is
given by wé“”p°"=(8/3)(2\]e+1)/(2Jg+1), independent of
the polarization. This is the case of linear absorption. We 0.2
now consider as an application of the results of the preceding )
section the total excited-state populatiap=Tr{peg in the

Absorption

0.6

04

Normaliz

steady state. When we calculate the trace of (B§), while 0.0
taking into account normalizatiofi2), we find 2.5
Sallao
=, 88 2.0
7e” 1+ 2Say/ag (88)

where the real functiong;(g) and ag(e) are expressed in
(78) and (79) for the transitionJ— J+1, and by Eqs(86)
and (87) for the transitionJ— J [recall thate-e=cos(2¢)].

As is seen from Eq(88), the analytical expression for the
total excited-state population is similar as for a two-level
atom with nondegenerate leve(see, e.g., Ref[1]) but 05|

1.5

1.0

Normalized Absorption

with an effective saturation paramet8r Saq/«y, Which b)
depends on the class of transitions and on the light polar- 0.0 ) . ) |
ization. If the saturation intensity., is defined as the e 0 /4
intensity at whichm,=1/4 (at zero detuning then we
obtain e
ap(e) 2m? hey FIG. 3. Total absorption at low saturation vs the ellipticity(a)
lsaf®) = lo, o= 3 )\3’ (89 transitions—J with J a half integer;] runs from 1/2 to 9/2from

a1\ €
1(e) top to bottom. (b) transitionsJ—J+1; J=0, 1/2, 1, 2, 3, and 4

where |, is the usual measure for the saturation intensity(from bottom to top. All curves are normalized to the linear ab-
This shows that now the excited-state population, andorption.
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[(9)i) are shifted by 15SA|2 and §S>\|2 we may glso conclude QOO - Dpgg(t— 1) = Q" OOt - INPge, (92)

that this class of transitions— J with J a half integer tends

to pump the atoms to states with lower ac Stark shift.

In contrast, forJ— J+1 transitions the absorption is en- o /

hanced by optical pumping. This is shown in FighB3 Pgg W€ arrive in thei steady state at closed equations for the

Again, the effect of optical pumping on the total absorptionStochastic averagepee and(pgg),

increases withl, and it increases also when the polarization . TSI S TN

is varied from linear to circular. These results are related to  ¥Pee =~ RIVV',(ped} + 2ZRMpgg) V' +iL[VV',(peo ],

the recently discussed effect of electromagnetically induced (92

absorption (EIA) under two-frequency excitation in the

Hanle configuration onJ]—J+1 transitions[39]. Indeed,

when the frequencies coincide or the magnetic field is zero,

we have a situation close to the stationary interaction of at- L

oms with elliptically polarized light considered here. When - iL[VTV,(f)gg)]. (93

the frequency difference or the Zeeman splitting is suffi- ! )

ciently large, significant ground-state depolarization appears-l,—he two real parametef@ andL are defined by the equation

and the absorption should be close to the linear absorption of foo
R+iL =

and similarly for the other terms. When we substitute this
factorized form of the typ€91) in the equations fop.. and

—y 2 Di(PedDq=~ RIVIV,(pygo)} + 2RV (peaV
g=0,+1

unpolarized atoms. In this sense, the enhancement of absorp- drexd(is- y/2) Q" ()Qt - 7). (94)

tion by optical pumping as illustrated in Fig(l3 resembles

EIA. By the same argument as used above, we conclude thghe quantityR is a measure of the stimulated transition rates,
J—J+1 transitions tend to pump the atoms to states Withhq | getermines the strength of the light shift. When we
larger ac Stark shifts. This tendency was found before inypsiitute this factorized form of the ty§81) in the equa-
special cases in the context of sub-Doppler laser cooling by;ns for pee aNd pyg

polarization gradient§l11]. The factorization91) is exact in the special case that the
finite bandwidth is due to phase fluctuations only. In that
case we can write)(t)=0 exd-iy(t)], with a stochastic
phasey. The factorization is then justified since the phase

So far, we discussed the steady-state solutions of the gefil@ngey(t) —¢(t-r) in the time intervalt-7,t] can safely
eralized optical Bloch equatiori8)—(11), which describe an P& @ssumed not to depend on the phasa times beforet
atomic transition driven by monochromatic polarized light. =7 Which determinepgy(t—7). The phase fluctuations are
In this section we point out that the results can be generathen described by the independent-increment mdde],
ized to the case of light with a finite bandwidth. BroadbandWhich has the phase-diffusion model as a special limiting
radiation is described by modeling the electric field as a stac@se. The stochastic average of the field correlation function
tionary stochastic process. The dynamics of an atom in sucien decays exponentially, according to the equality
a field with central frequencys is described by the same (@ (VQ(t—7)=|Q|%exp(-x7), with u the bandwidth(half
Egs. (8)«(11), where now the Rabi frequencf(t) is a  Width at half maximum of the Lorentzian profile. In this
complex-valued function of time, proportional to the case the quantitieR andL are determined by the equation

0

VIl. BROADBAND RADIATION

positive-frequency part of the fluctuating electric field. We 0

are interested in the steady-state stochastic average of the R+iL=—mm—. (95)
submatrice$e and pyg. The time-dependent solution of Eq. m+yl2-io

(8) is

It is a simple check to notice that Eq®2) and (93) reduce
to the corresponding equatiof6) and(17) for monochro-

ES ” . . matic light when we substitute=0. In that case we simply
peg(t) :f dr exp [(|5_ ’ylZ)T:hQ(t - T) find R= ’)’5/2 andL=6S.
° A A In the case that the driving light also has intensity fluc-
X[V(e);}gg(t - 7) = pedt — DV(©)]. (90) tuations, the situation is more complex, and the factorization

(91) is not exact. When the fluctuations are sufficiently weak

. : : : nd sufficiently rapid, we can still assume the factorization
Y_V hen Lvrv © s_ubshtute this_expression ar_ld Its ana_log fogs a reasonable approximation. Therefore, E2®.and(93)
Pgdl)=ped(t) into Egs.(10) and (11), we arrive at a pair of  can he assumed to be valid for broadband radiation in many
stochastic integro-differential equations for the submatricesji,ations of practical interest. These equations, which
pedt) andpgg(t). The right-hand side of these equations con-grongly resemble the corresponding equatidigs and(17)
tains the stochastic part§)’(t)Q(t-7)pgg(t—7).Q2 (OVQ(  for monochromatic light, determine the steady-state stochas-
~7)pedt=7) and their Hermitian conjugates. Stochastic aver-ic average of the density matricg, andpgg. In the preced-
aging of these equations leads to a closed set of equations figig sections we have demonstrated that for monochromatic
the steady-state stochastic averageg and(pyg), provided light and for all allowed values ol andJ, the steady-state
that the stochastic average of these terms may be factorizetbnsity matrix obeys the commutations rui2$), so that the
as density matrix is diagonal in the eigenstates of the light-shift
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operators. This means that the solutiong18) and(17) do  several cases, e.g., when they are counterpropagating.

not depend at all on the strength of the last terms in these A third situation of practical importance occurs when cold
equations. We conclude that the expressions for the stochagtoms are slowly moving through nonuniform radiation
tically averaged steady-state solutiofige and(py) in the fields, with a position-dependent amplitulig(r) and polar-
absence of a dark state coincide with the solutions obtainei¢ation vectore(r). The steady-state solution discussed in
in Sec. V for pee and pyq with the simple replacemer®  this paper can be viewed as the zeroth-order approximation
— 2R/ . The structure of the dark states follows from the with respect to the atomic velocity. This solution is needed
defining equatiori31), so that also the results of Sec. IV are for an explicit calculation of radiative forcd49,22,38,41

not modified by the fluctuations of the driving light. The and geometrical potentia]d2,43, which also affect the dy-
steady-state polarization properties of the atom are basicallyamics of atoms in optical lattices.

unaffected by the finite bandwidth. The steady-state optical Generally speaking, in many problems there are factors
coherenceg,q are best described by the expression for thenot taken into account in our solution, such as finite interac-

stochastic average tion time, translational motion of atoms, magnetic field, etc.
= _ .~ . Very often these factors can be considered as a small pertur-
(Q peg = (IR=L)[V(E){pgg — (PeeV(E)], bation. In all these cases the steady-state solution presented

in this paper constitutes a zeroth-order approximation, and
thereby the first necessary step in the corresponding pertur-
Pation treatment.

which follows immediately from Eq(90). An expression
containing pye follows after Hermitian conjugation. Obvi-
ously, these conclusions are valid exclusively when the ligh
polarization displays no fluctuations.
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special cases of polarization and values of the angular mo- APPENDIX A: SPHERICAL HARMONICS
mental, andJ, of the excited and the ground state. The most OFE A COMPLEX DIRECTION
complex class of transitions occurs fiy=Jy+ 1. In this case,
the excited-state density matrix can be highly anisotropic. Ity
is remarkable, however, that the anisotropy depends exclt*
sively on the ellipticity of the polarization, and it is unaf-

fected by the frequency detuning of the radiation from reso- F
Nv = L+1™

VIIl. DISCUSSION AND CONCLUSIONS

Throughout the paper we use spherical harmonics that
iffer from the standard definitiofi35] by a multiplicative
actor

nance, the light intensity, or the spontaneous-decay rate. In
the case thaf.=Jy is half integer, the excited-state density

matrix is fully isotropic in the st tate. In the remainin . . . .
a S I 1SOTropIc e steady state € rema gFor arbitrary complex vecta=a’ +ia” a spherical harmonic

classes of transitiongl.=Jy is integer, andle=Jy4—1), the : : . X
system has one or two dark states, and the degree of excit [3t)he rankL is defined in terms of the tensor constructions

tion vanishes in the steady state. For these cases, we gi
analytical invariant expressions for these dark states for ar- 1 [@l-Du
bitrary elliptical polarization. These results are interesting, Nw(@) = 7 3 |————{a},, (A1)
not only from a fundamental point of view as an exact solu- a L!
tion of a quantum-mechanical problem, but also since they — . . .
can be used in numerous applications. where a=y/(a-a). These _gen_erahz_ed spherical harmonics
As a first example, we mention the problem of nonlineardépend only on a direction in the complex three-
propagation of elliptically polarized light in a resonant gasdimensional spac37], i.e., they do not change under the
medium. The steady-state solution allows one to find thdransformationa— va with » an arbitrary complex num-
nonlinear susceptibility tensor in analytical form. The Dop-Per. For real vectorga”=0) the definition (A1) leads to
pler broadening is taken into account by the substitugon the standard spherical harmonil5]. Starting from Eq.
— &-k-v in the expressions fop,, and then average over (Al), one can derive the well-known formul&5]
velocity.
A second case of interest is high—resoluti'on polarization N_(a) = &M (L=M)! P["(cos 0. (A2)
spectroscopy. The Doppler-free resonances in the scheme of (L+M)!
a strong pump and a weak probe field can be directly evalu-
ated by calculating the linear response to the probe, in whereP}(x) are the associated Legendre functions, and the
steady state that is determined by the pump. Nonlinear intecomplex parameterg and ¢ are expressed in terms of the
ference effects between pump and probe are negligible iapherical components of vectarby

033410-14



STEADY STATE OF ATOMS IN A RESONANT FIELD.. PHYSICAL REVIEW A 69, 033410(2004)

cosf=aja, €’=-a.a,. = CO ] Vet
Formula(A2) can be regarded as a suitable analytic continu- - Virw! a=p'+1 Vaa
ation of the standard definition of the spherical harmonics . !
n_m(6, #) [35] to complex values of the anglesand 6 [44]. _ 20+ 1)( sin(e) ) 1
The definition (A1) is important since the functions,y, cog2¢) \ \cog2s) 7y
obey the same group-theoretical relations as ordinary spheri- b T
cal harmonicg44]. In particular, we indicate the Clebsch- x I1 I+ ) —a+t 1)_ (B5)

Gordan expansion of the product of two spherical harmonics amp'+1
of the same argument

(@n (8= E C|10I I1mllzman,\,,(a) (A3)  The repeated products in E@5) should be read while using

2 .
the conventions

1m1

and the sum rule for the dot product of spherical harmonics

of different argument$38,37] u e
IT f,=1, II f,=0 ifu >upu.
(a . b) a=pu+l a=u'
(n.(a) -n (b)) = PL( , (A4) w
ab
whereP,(x) are the Legendre polynomials. Since the matrixV is real, (V)™ is obtained fromvt by
transposition, i.e.[(V)™],, =[V ], ,. Thus, one can eas-
APPENDIX B: CALCULATING MATRIX ELEMENTS ily write the matrix elements of smally'V)™:

The matrix elements of operatovs?, (VIV)~%, W, W, and

2 . . . ny s J N
X, which are used to write the steady-state density matrix At 1 o 1 Va(a-1)
can be determined in the natural coordinate frame. To be [(V'V) ]w’z(_ 1w E_JV_Z H

=+ Vaa
specific, we fix the sign in Eq23): a=vrl

- < —~ . M, Var a'—
e=\cog2s)ey— 2 sin(e)e,;. (B1) x( 1 A)
a’'=v+l Vuz’a’
J . "2y
1. Transitions Jg=J—J.=J with J half integer _J0+1) ( sin(e) )’”“ 1
_ - cog2¢) —; \ Jcoq2 v
In the natural coordinate frame the mathkis real and $2¢) 1=\ Veod(2e)
has a lower-triangular form with two nonzero diagonals: ( ﬁ VO+a)J-a+ 1))
X

0 a=v+l a
><< “ \f’<J+a'>({—a'+1))_

V= Vv Vv (B2) o'zt ¢

- =1 3
Mot e (B6)
0 2. Transitions Jg=J—Je=J+1
where in accordance with the definitio® and (B1), In the natural coordinate frame the components of the
spherical harmonicg¢Al) of the polarization vectoe are
- K [adom written as
V= 7=—==1c042s), (B3)
e+

EPEPRY /(L+M)!i( sine )M
\/(J+“)(J 2D Gne). (B4) M@= C DTN (v Jcog2s)) B7)

JJ+1)
Its inverse matrix also is of the lower-triangular form andif M=0, andn,__y(e)=0 for M<0. Substituting Eq(B7)
real. The matrix elements of ! are calculated by a direct into the definition(56), we arrive at(J,=J+1,J,=J,L=2]
method: +1)
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V’/COS(ZS) ) ' (E8)

W = (- 1)J_m(za+1+ﬂ—m)!\/ (23+2)!(2))! ( sine
pme (u—m)! @+ A+1+w)! A+ 1 =) I+m!J-m)!
[
where M:—J—l,—J,A...,J+1, m=-J,-J+1,...J, and u

—~m=0. The matrixW can be obtained from E@B8) using
the time-reversal operatid?\/mM:(—l)Jg MWL,

In order to find matrix elements ok we decompose it
X=UwW using the Moore-Penrose pseudoinveiég matrix
U with respect td\/ ie., VUV=V. The nonzero elements of
V are given by

O+1-wQ+1+p) ———

v GrDiry  oosZe),

=

G+pw@+1+p)

v J+1(2I+1)

Hap=17

(B9)

As the pseudoinverse matrix 1 we take the matrix with
elements

y _J (+1(2I+1)
™ N 3+ 1+p)(J+ 1 - p)cod2e)
sine

m-u m J+
Vcog2¢) vepr1 VIT1-

for u=-J3,-J+1, ...
Umn3-1=0 and U,3%,=0. The matrix multiplication of Eq.
(B10) by Eg. (B8) yields the final result for the elements

of X:

(+1)2I+D12I+ 21T+ m)!(I-m)!
4+ D)1 J+m")(JI-m")lcog2¢)

X( sine )m_m/
\coq2¢)

X > (-1)#

p=m’

anY:

2J+1+pu-m')!
(p=mNA+1+w)!(d+1-w!’

(B11)

APPENDIX C: ALGEBRA OF THE OPERATORS Vfb(a)
Using the standard Racah algeldb], one can write a

general expression for products of the operaio($6) with
different ranks:

N - K Ly L
vah(2)VPC(b) = — 1)JatdctLatloqy 1 =2
BEVED) =2 - R A

X ({n (@) @ n o)k - T, (CY)

wherell,, =.(2x+1)(2y+1)--- is the standard notation
of Ref. [35]. In the special case thét=a, after using Eq.

(A3) we obtain from Eq(C1) an analog of the Clebsch-
Gordan expansion:

Vﬁi’(a)\A/Ez(a) = % (- 1)Ja+J°+L1+L2HLl,chEfOLZO

K L Ly~
X b2 a).
Jb Jc Ja
Equations(C1) and(C2) lead to the following relationships.

(1) For arbitrary ranks.; andL,, and for arbitrary angular
momental, and J, we find

(C2

Vi) VPia) = V@)V (a), (C3)
since both sides have the same expansion in the tensor op-
eratorsVid(a). Here we use the symmetry of E(C2) with
respect to the permutatidn — L, at J,=J..

(2) Depending on the class of transition, for arbitrary vec-

J, supplemented by the zero columns torsa andb we find the following.

(@) For transitionsly=J— J.=J,

VE(b)VE¥a) = V(@) V5Xb). (C4)

(b) For transitions)y=J— J.=J+1,
Vge(a)v%ﬂ(b) 2J+1(b)\7ig(a) : (CH

(c) For transitionsly=J— J.=J-1,
VEH@)VE54(b) = V5S.4(b)VE%(a). (C6)

The property(C4) is obvious, if we recall that in this case the
operatorVg® is proportional to the unit matrix an&%b)
=Vi9b). To prove the validity of Eq(C5) it is sufficient to
expand both sides of EQCS) in the operatordgg and allow
for the fact that all ranks except=2J are forbidden by the
selection rules contained in thg &ymbols in Eq.(C1).
Equation (C5 then reduces to the identityn;(a)

® Npy341(b)}o;={ny3.1(b) ® N1(a)},;, which holds since the
number (2J+1)+1-2J=2 is even. EquationC6) can be
proved in a similar way.
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