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We present a complete set of analytical and invariant expressions for the steady-state density matrix of atoms
in a resonant radiation field with arbitrary intensity and polarization. The field drives the closed dipole transi-
tion with arbitrary values of the angular momentaJg andJe of the ground and excited state. The steady-state
density matrix is expressed in terms of spherical harmonics of a complex direction given by the field polar-
ization vector. The generalization to the case of broadband radiation is given. We indicate various applications
of these results.
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I. INTRODUCTION

An atomic medium driven by a resonant light field repre-
sents a prototype problem in atomic physics and nonlinear
optics. At low density the effects of the atom-atom interac-
tion are small, and the central remaining problem is specified
by a single atom in a resonant radiation field. As is well
known, the basic processes are the absorption and emission
of photons. The three universal conservation laws(energy,
linear momentum, and angular momentum) correspond to
three different aspects in these processes. The main exchange
of energy between atom and field corresponds to the radia-
tive transition between the atomic energy levels. The mo-
mentum exchange gives rise to recoil of the atom, which is
the basis of the mechanical action of light. The main angular-
momentum exchange arises from the photon spin. Its proper
description requires consideration of the light polarization,
and the degeneracy of atomic energy levels. Obviously, these
processes occur simultaneously, and in a correlated fashion.
The recoil effect is usually small, due to the smallness of the
photon momentums"kd as compared to typical values of the
atom momentumsMv̄d. In contrast, the(spin) angular mo-
mentum of photons" is of the same order of magnitude as
the internal angular momentum of the atomic states.

A large fraction of theoretical studies of atoms in radiation
fields only considers nondegenerate energy eigenstates, with-
out taking into account the magnetic degeneracy of energy
levels. In the sense of the group of space rotations, this ap-
proach corresponds to a scalar model of the atom, which
accounts for exchange of energy and momentum, but not of
angular momentum. This model allows us to understand
many processes arising from the resonant interaction of at-
oms with radiation[1–5]. However, effects of polarization in
combination with the magnetic degeneracy of atomic levels
cannot be ignored in many cases. The problem remains rea-
sonably tractable in the special cases of linear or circular
polarization. In these cases, there is an obvious choice of the
quantization axis, so that the submatrices of the density ma-
trix for the ground and the excited level remain diagonal at
all times. For arbitrary elliptical polarization the situation is
appreciably more complex. There are various experimental

situations where elliptical polarization is quite essential. An
important example is the phenomenon of coherent popula-
tion trapping(CPT) of atoms driven by an elliptically polar-
ized light field[6]. Another example is cooling and trapping
of atoms in light fields with polarization gradients[7], where
the strong correlation between the processes of linear and
angular-momentum exchange can lead to atom temperatures
down to the single-photon recoil energys,10−6 Kd. Here
continuous spatial variations of the polarization are crucial,
which, except for special cases, give rise to elliptical polar-
ization. Models with nondegenerate atomic states can only
describe the Doppler limit of laser coolings,10−3 Kd [5].

A central part of these processes is the resonant interac-
tion of an elliptically polarized light field with a closed
atomic transition between degenerate energy levels. In this
case the light-induced anisotropy of the atomic state is long
lived. This enables one to accumulate information on very
weak couplings, which allows for high-resolution spectros-
copy. As noted above, for many cases one can consider the
recoil effect as a small perturbation of the order of"k/Mv̄
!1. In zeroth order the atom has a constant linear momen-
tum. In this case only the exchange of energy and angular
momentum between atom and field is taken into account, and
the state of the atom is fully described by the density matrix
for the internal states. The remaining field effects(light
shifts, field broadening, change of population, coherence,
etc.) are caused by the stimulated and spontaneous transi-
tions, which are described by the generalized optical Bloch
equations(GOBE) for the internal atomic density matrix.
Depending on the light intensity and interaction time, three
limiting cases can be distinguished. The first case occurs for
short light pulses, when the interaction time is so short that
relaxation processes can be neglected. Then the interaction
of atoms with the field has a coherent character, and it can be
described by the time-dependent Schrödinger equation for
the atomic wave function. Typical effects are coherent tran-
sient processes, such as Rabi oscillations or photon echoes,
which have been thoroughly analyzed[1,8], with or without
inclusion of the magnetic degeneracy of atomic states[9].
The second case occurs when the interaction time is long
compared with the spontaneous lifetime, but still short com-
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pared with the absorption time, which determines the rate of
optical pumping. In this case one can use perturbation theory.
This situation arises for laser beams of low intensity and
small diameter, when time-of-flight effects become impor-
tant. Solutions of the optical Bloch equations corresponding
to this case have been obtained with the use of irreducible-
tensor techniques for arbitrary Zeeman and hyperfine level
structures[10]. Finally, when the interaction time is so long
that perturbation theory becomes inapplicable, one has to
find the steady-state solution of the GOBE. This situation
appears either for slow atoms interacting with light, such as
in optical molasses, or in the case of light beams with high
intensity or large diameter. A common restriction is that only
a closed transition between two degenerate atomic levels is
considered, so that the total population is conserved.

The GOBE are an essential ingredient of the description
of sub-Doppler laser cooling by fields with polarization gra-
dients[11]. We here recall just a few representative cases. In
the semiclassical theory of laser cooling authors concentrated
their efforts on the velocity-dependent steady-state density
matrix. The presented analytical results were, however, re-
stricted to transitions with specific small values of the angu-
lar momenta of the states[12]. Bermanet al. [13] have for-
mulated the GOBE for arbitrary field polarization and
arbitrary atomic energy-level structure, using the irreducible-
tensor representation. They demonstrate that the sub-Doppler
light forces and the subnatural resonances in nonlinear spec-
troscopy are closely related. Similar results have been ob-
tained in Ref.[14], where a general relationship between the
light force and the nonlinear polarizability tensor has been
derived.

For linear or circular polarization, the steady-state solu-
tions of the GOBE have been discussed in various papers
[15–17] for arbitrary values ofJg andJe. For arbitrary polar-
ization, the symmetry is reduced, and the steady state for
arbitraryJg andJe represents a complex mathematical prob-
lem. The number of equations, which is equal to the number
of elements of the density matrix, amounts to 4sJg+Je+1d2.
The steady-state density matrix was found in analytical form
only for transitions involving specific small values of the
angular momentumsJg=0,1/2,1d [18–22]. Recently we
have discussed the steady state of atoms in light fields with
arbitrary polarization, for transitions withJe−Jg=0 [23,24]
or 1 [25]. In these cases, the structure of the solutions looked
remarkably different. An invariant approach to the general
problem, based on the expansion of the density matrix in
bipolar harmonics of complex directions was developed in
Ref. [26]. Nasyrov [27] has suggested an alternative ap-
proach to the steady-state density matrix, using the semiclas-
sical Wigner representation of angular-momentum orienta-
tion. This method seems especially useful at large angular
momentumJ@1. The results are in good qualitative agree-
ment with our exact solution.

In the present paper we give unified exact analytical ex-
pressions for the steady state of atoms driven by light with an
arbitrary polarization, for all possible dipole transitions. Ra-
diative relaxation is included in the description, and the re-
sults are presented in an invariant form. The analysis is based
upon the group-theoretical properties of the transition dipole.
The polarization direction in real space is reflected in the

density matrix for the two subspaces corresponding to the
ground and excited state. The symmetry group for the prob-
lem is the group of rotations SUs2d, which is an important
leading principle for the search of the solution, as well as for
its presentation in invariant form. The general discussion al-
lows us to clarify the similarities in the different cases, which
were not obvious at all in the separate treatments.

The nature of the steady state strongly depends on the
value of Je−Jg. For dipole-allowed transitions, this differ-
ence can be −1, 0, or 1. For the case thatJe=Jg=J we should
moreover distinguish the cases thatJ is integer or half inte-
ger. This leads to four classes of transitions.

(a) TransitionsJg=J→Je=J−1. In this case atoms are
optically pumped into dark states, where they do not couple
to the light field. This is the phenomenon of coherent popu-
lation trapping. These dark states are linear superpositions of
the Zeeman substates of the ground level, defined as eigen-
states of the resonant interaction Hamiltonian with zero ei-
genvalue. Hence, there are no light shifts. For the present
class of transitions, there are two independent dark states,
which span a two-dimensional space. This space depends
only on the polarization, and it is independent of the field
intensity and the detuning. Both the atomic dynamics in the
field and the steady state depend on the initial state.

(b) TransitionsJg=J→Je=J with J integer. In this case a
single dark state exists, and CPT takes place, so that in the
steady state the atom is in this unique pure state. Therefore,
the steady state does not depend on the initial conditions, the
intensity, or the detuning.

(c) TransitionsJg=J→Je=J with J half integer. For this
class no dark state exists, and CPT does not occur. The only
exception is the case of circular polarization, where a single
dark state does occur. The steady state is uniquely defined,
but now it depends both on the polarization, the intensity,
and the detuning. Moreover, it is not a pure state. In fact, it
has the remarkable property that the excited-state submatrix
of the density matrix is fully isotropic, which makes the ana-
lytical expression for the entire density matrix particularly
simple.

(d) TransitionsJg=J→Je=J+1. For this class of transi-
tions the steady-state solution is unique. There is no dark
state. The excited-state submatrix is always anisotropic.

Only in the cases(c) and(d) does a steady-state excitation
exist. In both cases, the anisotropy of the excited state and of
the optical coherences depends only on the polarization of
the driving field. The intensity and the detuning enter only as
an overall multiplicative factor. Moreover, in both cases we
find that the submatrices both for the excited and the ground
state are even functions of the detuning. In the cases(a) and
(b) only the ground state is populated in the steady state, and
the excited-state submatrix and the optical coherences van-
ish. The occurrence of dark states and velocity-selective CPT
allows us to reach cooling below the recoil limit[28], and it
has been studied by many authors[29]. In the case ofJg=1
an invariant form of the dark states in an elegant vector no-
tation has been used for the analysis of CPT in 2D(two
dimensions) and 3D [30]. Here we extend an invariant ap-
proach to all the dark transitions.

The remainder of the paper is organized as follows. First
we discuss the general structure of the generalized optical
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Bloch equations(Sec. II), which leads in Sec. III to the defi-
nition of a natural basis of states that depend only on the
light polarization. We separately discuss the cases with(Sec.
IV ) or without (Sec. V) dark states. In the latter case, we
discuss the effect of optical pumping on the degree of exci-
tation and the ac Stark shift in Sec. VI. The generalization to
the situation of broadband radiation is given in Sec. VII.

II. FORMULATION OF THE PROBLEM

We consider a closed atomic transitionJg→Je with a tran-
sition frequencyv0 of an atom at a given position. In the
present paper we will not consider the translational motion of
the atom. This corresponds either to the case of very slow
atoms or to the case of a traveling plane wave, where the
atomic motion at a given velocity leads only to a Doppler
frequency shift. The transition is driven by a monochromatic
radiation field with frequencyv and arbitrary polarizatione.
The time-dependent electric-field vector at the position of the
atom is given by

E = E0e exps− ivtd + c.c., s1d

where the polarization vector is

e= o
q=0,±1

eqeq
* = o

q=0,±1
s− 1dqe−qeq. s2d

Here E0 is the complex field amplitude,eq=e·eq is the co-
variant spherical component of the polarization vectore, and
the spherical basis vectors of polarization are defined by
he0=ez;e±1= 7 sex± ieyd /Î2j. Notice thateq

* =s−1dqe−q. The
vectore is normalized, so thate* ·e=1 and without loss of
generality we assume that its real and imaginary parts are
orthogonal, which implies that Imse·ed=0. Then the two
vectors Ree and Ime are the axes of the polarization
ellipse.

It is always possible to use a coordinate frame where only
two of the componentseq are nonzero. There are two possi-
bilities. The conventional choice is that theOzaxis is chosen
normal to the polarization plane. In this coordinate system
the vectore is the sum of the two opposite circular unit
vectorse±1. If the Ox axis is directed along the major semi-
axis of the polarization ellipse[see Fig. 1(a)], e is written as

e= ex cos« + iey sin « = − e+1sins« + p/4d

+ e−1 coss« + p/4d,

where the ellipticity angle« can take the values −p /4ø«
øp /4. Obviously,utan «u is equal to the ratio of the minor
semiaxis to the major semiaxis and the sign of« deter-
mines the helicity.

Another choice is called the natural coordinate frame,
which was introduced in Ref.[31]. When we represent the
polarization ellipse as the intersection of a cylinder with a
plane, the natural frameOx8y8z8 is specified by the require-
ment that the axisOz8 is the axis of the cylinder, while the
axis Oy8 coincides with the axisOy. The minor semiaxis of
the ellipse coincides with the radius of the cylinder[Fig.
2(a)]. Then the polarizatione is the superposition of a linear
component alongOz8, and one circular component. The two

frames are connected by a rotation along the axisOy over an
angleu obeying the relation

cosu = utan «u.

In the natural frame, the polarization vector is specified as

e= e08Îcoss2«d − e±18 Î2 sins«d, s3d

where the helicity of the spherical unit vectore±18 corre-
sponds to the sign of«. In general there are two possible
choices for the cylinder, corresponding to opposite signs of
the rotation angleu. Notice that when the polarizatione is
represented in terms of the Stokes vector as a point on the
Poincaré sphere, the angleu determines the polar angle of
this point f32g.

The quantum kinetic equation for the density matrixr̂ of
the internal state of the atom in the external field(1) has the
form

]

] t
r̂ = −

i

"
fĤ0,r̂g −

i

"
f− d̂ ·Estd,r̂g − Ĝhr̂j. s4d

HereĤ0 is the Hamiltonian describing the energy of the two

resonant levels of the free atom andd̂ is the dipole operator
connecting the two levels. The radiative relaxation is de-

scribed by the operatorĜhr̂j. All operators are represented as
matrices on the Zeeman basis of the ground and excited lev-
els, with stateshuJg,mglj andhuJe,melj. The density matrixr̂

FIG. 1. Conventional coordinate frame for the representation of
elliptical polarization.(a) The polarization ellipse lies in thexy
plane, with the major axis in thex direction.(b) Transition scheme
with the z axis as quantization axis.
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can be separated in four matrix blocks, where the matrices
r̂gg and r̂ee are the submatrices for the ground and excited
states, and the off-diagonal blocksr̂eg and r̂ge describe the
optical coherences. In the rotating-wave approximation the
time dependence of the kinetic equation can be removed by
introducing the transformed optical coherences as

r̂eg= exps− ivtdr̂̄eg, r̂ge= expsivtdr̂̄ge. s5d

The resulting system of GOBE can be expressed in the di-

mensionless dipole operatorD̂, which couples the ground
state to the excited state. It is specified by the definition of its
spherical components as

D̂q ; D̂ ·eq = o
smd

uJe,melCJgmg1q
Jeme kJg,mgu, s6d

so that their matrix elements are equal to the Clebsch-Gordan
coefficientsCJgmg1q

Jeme . Stimulated transitions are described by

the operatorV̂, which is the component of the vector operator

D̂ in the polarization direction:

V̂ = D̂ ·e. s7d

Then the GOBE take the form

S ]

] t
+

g

2
− idDr̂̄eg= iVfV̂r̂gg − r̂eeV̂g, s8d

S ]

] t
+

g

2
+ idDr̂̄ge= iV*fV̂†r̂ee− r̂ggV̂

†g, s9d

S ]

] t
+ gDr̂ee= ifVV̂r̂̄ge− V* r̂̄egV̂

†g, s10d

]

] t
r̂gg − g o

q=0,±1
D̂q

†r̂eeD̂q = ifV*V̂†r̂̄eg− Vr̂̄geV̂g, s11d

with the normalization

Trhr̂ggj + Trhr̂eej = 1. s12d

Hered=v−veg is the detuning,veg=sEe−Egd /" is the tran-
sition frequency,g is the radiation relaxation rate, andV
=E0kJeidiJgl /" is the generalized Rabi frequency, expressed
in the complex field amplitudeE0 and the reduced dipole
matrix elementkJeidiJgl that determines the strength of the
transition. The summation in Eq.s11d, which describes the
feeding of the ground state by spontaneous decay, runs over
the three possible independent polarizationshe0,e±1j of spon-
taneous emission. Conservation of the total population of the
closed transition is ensured by the relation

o
q=0,±1

D̂qD̂q
† = P̂e. s13d

When acting on an isotropic excited state, this feeding term
is proportional to

o
q=0,±1

D̂q
†D̂q =

2Je + 1

2Jg + 1
P̂g. s14d

We introducedP̂g and P̂e as the projectors on the ground
state and the excited state. The dynamical equationss8d–s11d
represent the generalized optical Bloch equations, which de-
scribe transient processes as generalized damped Rabi oscil-
lations, optical nutation, free induction decay, etc., as well as
optical-pumping effects, that lead to an anisotropic distribu-
tion of atoms over the magnetic sublevels.

Equations for the steady state are obtained by setting all
time derivatives to zero in Eqs.(8)–(11), which gives a set of
linear equations for the density-matrix elements. By using
Eqs. (8) and (9), the steady-state optical coherences can be
directly expressed in the population submatricesr̂ee and r̂gg
as

r̂̄eg=
− iV

g/2 − id
fV̂r̂gg − r̂eeV̂g,

r̂̄ge=
− iV*

g/2 + id
fV̂†r̂ee− r̂ggV̂

†g. s15d

After substitution in Eqs.s10d and s11d, this leads to closed
equations for the population submatrices in the form

gr̂ee= − sgS/2dhV̂V̂†,r̂eej + gSV̂r̂ggV̂
† + idSfV̂V̂†,r̂eeg,

s16d

− g o
q=0,±1

D̂q
†r̂eeD̂q = − sgS/2dhV̂†V̂,r̂ggj + gSV̂†r̂eeV̂

− idSfV̂†V̂,r̂ggg, s17d

whereh,j and f,g indicate an anticommutator and a commu-
tator, respectively, and where

S=
uVu2

g2/4 + d2 s18d

is the saturation parameter, which is proportional to the light
intensity and to the global oscillator strength of the transi-
tion. The left-hand sides of Eqs.s16d ands17d describe spon-
taneous processes, i.e., the radiative damping of the excited
level and the spontaneous transfer of population and Zeeman
coherence from the excited to the ground level. The terms on
the right-hand sides that are proportional to the optical-
pumping rategS represent light-induced lossswith the minus
signd and gainswith the plus signd of the levels. The com-
mutator terms on the right-hand sides, proportional todS,
describe the ac Stark effect. They contain the light-shift op-
erators in the ground and excited level

Êg = dSV̂†V̂, Êe = − dSV̂V̂†, s19d

which play the role of an effective Hamiltonian for the two
levels.

The steady-state solution of the GOBE corresponds to the
limit t→`, with t the interaction time. In practice this means
that t is larger than the largest relaxation time in the internal
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degrees of freedom. In the case of a degenerate ground state
at low saturation this largest time is of the order ofsgSd−1,
which is the inverse of the rate of optical orientation in the
ground state. For large saturationsS.1 the largest relaxation
time is the excited-state lifetimeg−1. Thus, the conditions for
the steady-state regime can be written as

minhgt,gStj @ 1. s20d

III. NATURAL BASIS OF STATES

A. Commutation of density matrix and light-shift operators

In the special case of linear or circular polarization, the
Zeeman substatesuJg,mgl and uJe,mel constitute an obvious
natural basis of substates to express the density matrix. For
linear polarization, one chooses the quantization axis parallel
to the polarization direction, so that the polarization vectore
is equal to the spherical unit vectoreq with q=0. For circular
polarization, the polarization vectore is equal to the spheri-
cal unit vectoreq with q= ±1, provided that the quantization
axis is chosen normal to the polarization plane. In both cases,

the operatorV̂ couples each substateuJg,mgl to a single ex-
cited stateuJe,mel, whereme=mg (linear polarization) or me
=mg±1 (circular polarization). In this case it can be easily
checked from Eqs.(8)–(11) that the equations for the popu-
lations do not mix with those for the Zeeman coherences.
Also, Eqs.(16) and(17) show that the steady-state solutions
r̂ee andr̂gg are diagonal on the basis of the Zeeman substates

uJ,ml. Since also the light-shift operatorsÊg andÊe are diag-
onal on the Zeeman substates, this implies that the steady-
state density matricesr̂gg and r̂ee commute with the light-

shift operatorsÊg and Êe, so that for linear or circular
polarization we find

fr̂gg,Êgg = 0, fr̂ee,Êeg = 0. s21d

Moreover, when all Zeeman coherences are zero initially at
t= t0, they remain zero for all later timest. t0.

One might be tempted to believe that also for arbitrary
elliptical polarization a basis of states can be chosen for
which populations and coherences do not mix. However, this
is not true. It has been shown in Ref.[33] that spontaneous

decay can create coherence between eigenstates ofÊg, even
if they do not exist initially. In general the time-dependent
solutionsr̂gg and r̂ee for arbitrary polarization will not com-
mute with the light-shift operators at all times.

Nevertheless, in this paper we shall prove that for the
steady-state solutions for all classes of transitions the com-
mutation rules(21) are valid for arbitrary elliptical polariza-
tion and for all classes of transitions. The proof is rather
different for the various classes, so that it is most convenient
to give the proof while discussing the expression for the
steady state for each class separately. An immediate conse-
quence of the commutation rules(21) is that the steady-state
density matrix is diagonal in the eigenstates of the light-shift
operators. This implies also that the last terms in Eqs.(16)
and (17) vanish, so that the steady-state population subma-

trices depend on the detuningd and the spontaneous-decay
rateg only through the saturation parameterS.

B. Eigenbasis of light-shift operators

We are interested in the eigenstates of the operatorsV̂†V̂

and V̂V̂†. The corresponding eigenvalues are real and non-
negative, so that we can write

V̂†V̂usgdil = li
2usgdil, V̂V̂†used jl = l j

2used jl, s22d

with li real, and with eigenstatesusgdil in the ground and
used jl in the excited level. For given values ofJe andJg, the
eigenstates and eigenvalues are fully determined by the po-
larization of the driving field, and they do not depend on the
detuning or the intensity. The statesused jl andusgdil form the
natural bases for the excited and the ground level. The op-

eratorsÊg and Êe are diagonal with diagonal elementsdSli
2

and −dSl j
2. Operating with the coupling matricesV̂ and V̂†

on the first equations22d shows thatV̂usgdil is eigenstate of

V̂V̂† with eigenvalueli
2. Hence we may assume thatV̂usgdil

is proportional tousedil. A proper choice of the phases of the
eigenstatesusedil then leads to the expression

V̂ = o
i

liusedilksgdi u. s23d

Hence each nonzero value ofli corresponds to a pair of

statesusgdil and usedil that are coupled byV̂ andV̂†. In addi-

tion, the operatorV̂†V̂ or V̂V̂† may have eigenvalues zero.
The corresponding eigenstates are unaffected by the radia-
tion field, and they do not contribute to the coupling operator
s23d.

If the commutation rules(21) are true, the steady-state
density matricesr̂gg andr̂ee are diagonal on these bases. The
diagonal elementspi

sgd and p j
sed are the stationary popula-

tions. Taking the diagonal elements of Eqs.(16) and(17), we
obtain the relations

gpi
sed = − gSli

2pi
sed + gSli

2pi
sgd, s24d

− go
j

Wi jp j
sed = − gSli

2pi
sgd + gSli

2pi
sed, s25d

for the steady-state populations, with

Wi j = o
q=0,±1

uksed j uD̂qusgdilu2,

the probabilities of the spontaneous transitionsj → i. These
transition probabilities are normalized asoiWi j =1 for all j .

As is seen from Eq.s24d, if Êe has an eigenvalue equal to
zero, then the corresponding eigenstateused jl is not popu-

lated. Conversely, if one or more eigenvaluesli
2 of Êg are

equal to zero, then a steady state exists where only the cor-
responding eigenstatesusgdil of the ground level are popu-
lated. Forl j Þ0 it follows from Eq.s24d that the populations
of the ground- and excited-level substates are related by the
equation
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p j
sgd = S1 +

1

Sl j
2Dp j

sed. s26d

From Eq.s25d, it then follows that one can deduce a closed
system of equations for the excited-state populations in the
form

o
j

Wi jp j
sed = pi

sed. s27d

These relationss27d uniquely determine the populationspi
sed,

apart from normalization. This implies that the steady-state
density matrix of the excited levelr̂ee depends on the inten-
sity and the detuning only through a normalization constant,
which is a function of the saturation parameterS. Moreover,
they show that the distribution over the excited-level sub-
states can be considered as a stationary point of the radiative
relaxation operator, in the sense that such a distribution is
invariant under spontaneous decay to the ground levelf34g.

C. Condition for diagonal steady state

The conjecture of the commutation relations(21) can be
formulated in an invariant form. It is sufficient to assume the

existence of two Hermitian operatorsÊ andĜ, with Ê acting

on the excited states andĜ on the ground states, and obeying
the identities

ÊV̂ = V̂Ĝ, o
q=0,±1

D̂q
†ÊD̂q = Ĝ. s28d

From the first identitys28d it follows that the operatorsÊ and

Ĝ have an identical diagonal matrix form on the natural

bases. From this identity and its Hermitian conjugateV̂†Ê

=ĜV̂† one obtains the commutation rules

fÊ,V̂V̂†g = 0, fĜ,V̂†V̂g = 0. s29d

Starting from the relationss28d, while using Eqs.s16d and
s17d, one easily derives that the steady-state submatricesr̂ee
and r̂gg are determined by the relations

r̂ee= bSÊ, V̂†V̂r̂gg = bs1 + SV̂†V̂dĜ, s30d

with b a normalization constant. These relations are just the
operator expression of Eq.s26d. From Eqs.s29d and s30d it
follows immediately that the commutation ruless21d hold,
and that the density matrix is diagonal on the natural basis.
Therefore, the problem of finding expressions for the steady-

state density matrix is now reduced to finding operatorsÊ

and Ĝ that obey the relationss28d. These operators can be
assumed to depend only on the polarization vectore, and not

on the intensity or the detuning. When operatorsÊ and Ĝ
obeying s28d are found, the steady-state density matrix is
determined by Eq.s30d, and it is indeed diagonal in the natu-
ral basis.

IV. DARK STATES

As recalled in the Introduction, dipole transitions can be
classified into two classes depending on the occurrence of

CPT. For the first group, where CPT occurs, one or more of

the eigenvalues of the ground-state light-shift operatorÊg
vanish, so that this operator cannot be inverted. During the
optical-pumping process atoms are accumulated in the corre-
sponding eigenstates, which are termed dark states, since
they do not interact with the light field. Then the trivial so-

lution Ê=Ĝ=0 of the system(28) still determines a normal-
izable steady-state solution of the relations(30) obeying

r̂ee=0 andV̂†V̂r̂gg=0. The ground-state density matrixr̂gg is
composed of the ground-level dark statesuCsNCdl, which
obey the equation

V̂uCsNCd = 0. s31d

In order to specify the dark states in an invariant manner, we
view state vectors as tensors. A state vectoruCl in the
ground level is considered as a tensorCJg

of the rankJg,
with scovariantd componentsCJg−mg

specified by the expan-
sion

uCl = o
mg

s− 1d−mgCJg−mg
uJg,mgl.

Using the Wigner-Eckart theorem, we express the matrix el-
ements of the left-hand side of Eq.s31d as

kJe,meusd̂ ·eduCsNCdl

= kJeidiJgl o
q,mg

CJgmg1q
Jeme s− 1d−qe−qs− 1d−mgCJg−mg

sNCd

= kJeidiJgls− 1d−mehe ^ CJg

sNCdjJe−me
,

where h¯^¯j denotes the standard definition of an
irreducible-tensor productf35g, kJeidiJgl is the reduced ma-
trix element of the dipole moment operator, and as before,
eq=e·eq is the covariant spherical component of the polar-
ization vectore. The invariant expression of Eq.s31d in
terms of a tensor product of rankJe reads

he ^ CJg

sNCdjJe
= 0, s32d

with the normalization conditionsCJg

sNCd* ·CJg

sNCdd=1.

A. Transitions Jg=J\Je=J with integer J

For transitions with integer values ofJg=Je=J there is a
single dark state for any polarization[6]. In order to write an
explicit and invariant form ofCJ

sNCd in this case, we intro-
duce theL-fold tensor product of the vectore [36,37],

hejL = h¯ˆhe ^ ej2 ^ e‰3 ¯ ^ ejL, s33d

which are proportional to the spherical harmonics of a com-
plex directionnLMsed sAppendix Ad. Notice that the three
componentshej1q in the caseL=1 coincide with the spherical
components of thespossibly complexd vectore.

The Clebsch-Gordan expansion(A3) for a product of two
spherical harmonics with the same argument leads to the
result
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ˆhejL ^ hejJ‰K = CL0J0
K0 ÎL!J!s2K − 1d!! se ·edL+J−K

K!s2L − 1d!! s2J − 1d!!
hejK.

s34d

It follows from the symmetry of the Clebsch-Gordan coeffi-
cients thatCL0J0

K0 =0 if L+J−K is odd. Then choosingL=1
and K=J we obtain {e ^ hejJ}J=0, so that the single dark
state as defined by Eq.s32d can be specified in tensor form
as

CJ
sNCd = NhejJ. s35d

The normalization constant follows from the equality

shejJ · he*jJd =
J!

s2J − 1d!!
se ·edJ/2se* ·e*dJ/2PJS se ·e*d

se ·ed D ,

s36d

as an example of the sum rule for spherical harmonicssA4d.
Here PJsxd is the standard notation for Legendre polynomi-
als. This leads to the expression

N = F J!

s2J − 1d!!
se ·edJPJS 1

se ·edDG−1/2

. s37d

In general, the algebraic and transformational properties of
the dark stateCJ

sNCd are the same as for spherical harmonics.
The steady-state density matrix

r̂gg = uCsNCdlkCsNCdu s38d

obviously commutes with the light-shift operator«̂g.
In the special case ofJg=Je=1, which is the prototype

case of CPT[28,30], the dark state is specified by

uCsNCdl = o
q=0,±1

s− 1dqe−qu1,mg = ql. s39d

It is well known that the statesu1,ql with angular momentum
1 have the same transformation properties as the three
spherical unit vectorseq, so that any state vector can be
represented by a Cartesian vector. When the state coupled to

an excited state with angular momentum 1 by the operatorV̂,
the vector representing the excited state is represented by the
vector that is the cross product of the ground-state vector and
the polarization vector, since the cross product is the only
way in which a vector can be formed from two vectors. Now
a comparison of Eq.s39d with Eq. s2d shows that the expan-
sion coefficients are identical, so that the states39d has the
polarization vectore as its vector representation. This imme-
diately explains why Eq.s31d holds for this states39d, since
the cross product of a vector with itself vanishesf30g. The
explicit invariant form s35d of the dark states for integer
values ofJg=J=Je generalizes the well-known result forJ
=1.

B. Transitions Jg=J\Je=J−1

For transitions withJe=Jg−1, the CPT condition(32)
takes the form

he ^ CJ
sNCdjJ−1 = 0. s40d

In this case there is a two-dimensional dark subspace,
spanned by two independent dark statesf6g. The scheme of
light-induced transitions in the natural coordinate frame is
shown in Fig. 2sbd. It is explicitly seen that the dark state
coincides with the outermost Zeeman substateuJ,m=Jl. The
other linearly independent dark state is determined analo-
gously in the frame, connected with the second cylinder.

First we consider the case thatJ is an integer. An invariant
tensorial expression for the dark state is directly obtained
when we notice that the outermost Zeeman substate is given
by the tensorhCjJ with C the circular component of the
polarization vector in the corresponding natural coordinate
frame. This vectorC is completely specified by the require-
ments that it is normal to the polarization vector. Hence, the
solution of Eq.(40) is represented by the tensor

CJ
sNCd = hCjJ, s41d

where

sC* ·Cd = 1, sC ·Cd = 0, se ·Cd = 0. s42d

The two independentsbut not orthogonald solutions are

FIG. 2. Natural coordinate frame for the representation of ellip-
tical polarization.(a) Polarization vector is the superposition of cir-
cular polarization defined by the cylinder(in the x8y8 plane), and
linear polarization along the axis of the cylinder(z8 axis). (b) Tran-
sition scheme with thez8 axis as quantization axis.
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Cs1,2d =
†e3 fe3 e*g‡ ± ife3 e*gÎse ·ed

Îs1 − ue ·eu2ds1 + ue ·eud
, s43d

and the two corresponding dark states are calledCJ
s1d and

CJ
s2d. These states are normalized and linearly independent

but not orthogonal. We can combine them into two orthogo-
nal states defined by

Cs±d =
CJ

s1d ± CJ
s2d

Î2f1 ± sCJ
s1d* · CJ

s2ddg
. s44d

In order to calculate the dot productsCJ
s1d* ·CJ

s2dd we take
into account the relationship

shajJ · hbjJd =
J!

s2J − 1d!!
sÎsa ·adsb ·bddJ

3PJS sa ·bd
Îsa ·adsb ·bd

D
= sa ·bdJ,

which holds if eithera or b is a circular vector. Hence we
obtain

sCJ
s1d* · CJ

s2dd = sCs1d* ·Cs2ddJ = S1 − ue ·eu
1 + ue ·euD

J

. s45d

Next we turn to the case of half-integer values ofJ. Then we
can use the correspondence between circular vectors and
spinors. The tensor product of a spinorx sdefined as a tensor
of rank 1/2d with itself into a tensor of rank 1 is always a
circular vector, so that

hx ^ xj1 = C, s46d

with C ·C=0. The plane of this circular vector is normal to
the direction of the orientation of the spin vector represented
by the spinor. Conversely, any circular vector can be repre-
sented in the forms46d for some spinorx. Now for a given
polarization vectore, the two circular vectorss43d corre-
spond to two spinorsxs1,2d so that

hxsmd
^ xsmdj1 = Csmd, m= 1,2. s47d

Since the two dark statesCJ
smd sm=1,2d are the outermost

Zeeman states in the two natural coordinate frames, they can
be expressed in the form

CJ
smd = hxsmdjJ, s48d

where the tensorhxjJ is constructed from 2J spinorsx,

hxjJ = h¯ˆhx ^ xj1 ^ x‰3/2¯ ^ xjJ.

The orthonormalization is specified by Eqs.s44d ands45d for
both integer and half-integer momenta.

In the steady state, the excited submatrixr̂ee disappears,
and the ground-state density matrixr̂gg can be an arbitrary
density matrix within the two-dimensional subspace spanned
by the two dark states

uC±
sNCdl = o

mg

s− 1d−mgCJg−mg

s±d uJg,mgl.

Obviously, any density matrix within this subspace com-

mutes with the light-shift operatorÊg. For any value ofJ, this
dark subspace depends only on the polarization vectore.
However, the specific steady-state density matrix in which
an atom will end up can depend upon the initial state as well
as on the intensity and the detuning of the light field. This
case of a transition withJe=Jg−1 is the only case of a
dipole-allowed transition in which the steady state is not
unique.

V. NO DARK STATES

A. General form of steady state

For a transition without dark states, the steady-state solu-
tion is unique, as has been proved in Ref.[38]. Then the
excited level is populated in the steady state. This is the case

when the ground-state light-shift operatorÊg has no eigen-

values zero, so that the operatorV̂†V̂ acting within the 2Jg
+1 states of the ground level can be inverted. When opera-

tors Ê and Ĝ exist that obey the relations(28), the steady
state is obtained from Eq.(30) in the form

r̂ee= bSÊ, r̂gg = bfsV̂†V̂d−1 + SgĜ. s49d

From the commutation ruless29d it follows that the density
matrix is diagonal on the natural basis. The optical coher-
ences are directly evaluated from Eq.s15d, with the result

r̂̄eg= sr̂̄ged† =
bV

sd + ig/2d
V̂sV̂†V̂d−1Ĝ. s50d

The constantb follows from the normalization condition
s12d, and we obtain

b =
1

a0 + 2Sa1
, s51d

with the invariant expressions for the coefficients

a1 = TrhÊj = TrhĜj s52d

and

a0 = TrhsV̂†V̂d−1Ĝj. s53d

These coefficientsa0 and a1 depend on the polarization
only, not on the intensity or the detuning. The steady-state
density matrix depends on the intensity and the detuning
only through the value of the saturation parameterS, defined
in Eq. s18d.

It is noteworthy that the submatrixr̂ee of the excited level

is always proportional to the single operatorÊ. This implies
that the steady-state anisotropy of the excited level, such as
its orientation and its alignment, is fully determined by the
polarization alone, independent of the saturation. The
ground-level submatrixr̂gg is a linear combination of the two

matricesĜ andsV̂†V̂d−1Ĝ. For small values of the saturation
parameter, the steady-state submatrices are
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r̂ee= SÊ/a0, r̂gg = sV̂†V̂d−1Ĝ/a0, s54d

whereas in the limit of strong saturationS→` we obtain

r̂ee= Ê/2a1, r̂gg = Ĝ/2a1. s55d

The matrix for the optical coherences50d depends on the
intensity only through an overall factorbV, that is equal to
V /a0 in the low-intensity limit, and that approaches zero for
strong saturation.

B. Transitions Jg=J\Je=J+1

In order to find operatorsÊ andĜ that obey the relations
(28) for transitionsJg=J→Je=J+1, we introduce the opera-
tors

V̂L
absad = o

M=−L

L

s− 1dMT̂LM
ab nL−Msad, s56d

which are proportional to the dot product of the spherical
harmonic nLMsad, introduced in Eq.sA1d, and the tensor
Wigner operator

T̂LM
ab = o

ma,mb

uJa,mals− 1dJb−mbCJamaJb−mb

LM kJb,mbu. s57d

The indicesa and b indicate the levelsse or gd, anda is a
vector in the complex three-dimensional space. We shall use
the two multiplication rules

V̂1
egsedV̂2J+1

ge sed = V̂2J+1
eg sedV̂1

gesed,

s58d
V̂1

gesadV̂2J+1
eg sbd = V̂2J+1

ge sbdV̂1
egsad.

The first equation(58) holds for any vectore, and for arbi-
trary value of the angular momentaJe and Jg. The second
equation(58) is valid for arbitrary complex vectorsa andb,
provided thatJe=Jg+1. These relations follow from the mul-
tiplication properties of the operators(56) as given in Appen-
dix C, in particular, Eqs.(C3) and (C5). In the notation of

Eq. (56), the coupling operator is given byV̂

=Îse·eds2Je+1d /3V̂1
egsed.

In order to identify the operatorsÊ and Ĝ we introduce
the shorthand notations

V̂2J+1
eg sed = Ŵ, V̂2J+1

ge sed = W̃
ˆ

, s59d

In addition toV̂, we introduce the coupling operator

Ṽ
ˆ

= Îse ·eds2Je + 1d/3 V̂1
gesed. s60d

Notice that the operatorsŴ and V̂ are raising operators,
which map substates of the ground level onto excited states.

The operatorsW̃
ˆ

and Ṽ
ˆ

are lowering operators.

Using the relations(58) one can find operatorsÊ and Ĝ
with the properties(28). They are specified by the definitions

Ê = ŴŴ†, Ĝ = W̃
ˆ

W̃
ˆ †. s61d

With the notations59d, and the substitutiona=e,b=e* in Eq.
s58d, we obtain the identities

V̂W̃
ˆ

= ŴṼ
ˆ
, Ṽ

ˆ
W̃
ˆ † = Ŵ†V̂, s62d

which indeed prove the first equations28d:

ÊV̂ = ŴŴ†V̂ = ŴṼ
ˆ
W̃
ˆ † = V̂W̃

ˆ
W̃
ˆ † = V̂Ĝ. s63d

The second equations28d is easily verified when the summa-
tion is performed over three Cartesian polarization vectorsei.
By using the second identitys58d, with ei substituted fore,
ande for b, one finds

o
q=0,±1

D̂q
†ÊD̂q = o

q=0,±1
D̂q

†ŴŴ†D̂q = W̃
ˆ o

q=0,±1
D̂qD̂q

†W̃
ˆ † = Ĝ,

s64d

where Eq.s13d is used in the last step. As indicated in Sec.
III C, this also proves the commutation ruless21d for the
steady state in the present class of transitions.

Now that we have identified the operatorsÊ and Ĝ with
the desired properties, the steady-state density matrix is di-
rectly obtained in the form(49) and (50). We use the first
equation(28), combined with the commutation relation(29)
for Ĝ, and we introduce the operator

X̂ = sV̂†V̂d−1V̂†Ŵ, s65d

acting on the states of the ground level. This leads to the
expressions

r̂ee= bSŴŴ†,

r̂gg = bsX̂X̂† + SW̃
ˆ

W̃
ˆ †d, s66d

r̂̄eg= sr̂̄ged† =
bV

d + ig/2
ŴX̂†.

Alternatively, the operatorX̂ is defined by the relationV̂X̂

=Ŵ. The density matrix is indeed diagonal on the natural
basis, and the commutation rules(21) hold.

It is illuminating to express the various operators occur-
ring in Eq. (66) in terms of basis vectors. The commutation
rules (29) can be expressed as

fŴŴ†,V̂V̂†g = 0, fW̃ˆ W̃
ˆ †,V̂†V̂g = 0. s67d

The operatorsV̂ andŴ depend on the polarization vectore.
From the definitions56d one obtains the relation

fV̂L
absadg† = s− 1dJa−JbV̂L

basa*d, s68d

which shows that, apart from a minus sign, the Hermitian

conjugates ofW̃
ˆ

and Ṽ
ˆ

are equal to the operatorsŴ and V̂
with the polarization vector replaced by its complex conju-
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gatee* . Hence, when the polarization vector is taken ase*

rather thane, the expressionss66d and s65d hold with the

replacementsV̂↔ Ṽ
ˆ † and Ŵ↔W̃

ˆ †. The commutation rules
analogous to Eq.s67d are then

fW̃ˆ †W̃
ˆ

,Ṽ
ˆ †Ṽ

ˆ g = 0, fŴ†Ŵ,Ṽ
ˆ
Ṽ
ˆ †g = 0. s69d

The first commutation rules67d shows that the natural basis

statesused jl, defined as eigenstates ofV̂V̂†, are also eigen-

states ofŴŴ†, and thespositived eigenvalues are calledn j
2,

with n j positive. In complete analogy to the relations22d
between the statesusgdil and used jl as coupled byV̂, we no-

tice that the statesŴ†u sedil are eigenstates of the ground-

level operatorŴ†Ŵ, with the same eigenvalueni
2. Hence, we

denote the normalized eigenstates asusg̃dil, so thatŴ can be
expanded as

Ŵ= o
i

niusedilksg̃di u. s70d

From the second commutation rule in Eq.s69d it follows that
the ground-level statesusg̃dil are eigenstates of the operator

Ṽ
ˆ
Ṽ
ˆ †, which means that they form the natural basis for the

ground level for the polarizatione* . From the second identity

s67d one finds by the same argument that the statesW̃
ˆ †u sgdil

are eigenstates ofW̃
ˆ †W̃

ˆ
. From the first identitys69d it follows

that these states form the natural excited basis for the polar-

izatione* , which we indicate asusẽdil. Hence, the operatorsṼ
ˆ

andW̃
ˆ

can be explicitly expressed as

Ṽ
ˆ

= o
i

liusg̃dilksẽdi u, W̃
ˆ

= o
i

niusgdilksẽdi u. s71d

For symmetry reasons, the valuesli andni must be the same

as in Eqs.s23d ands70d. The operatorX̂ defined in Eq.s65d
can be expanded as

X̂ = o
i

sni/lidusgdilksg̃di u. s72d

The steady-state populations of the natural basis states fol-
low from the expressionss66d, with the result

pi
sed = bni

2S, pi
sgd = bni

2sli
−2 + Sd. s73d

The relationss26d determine the ratio between the population
of an excited state of the natural basis set and the corre-
sponding ground state. The populations of different excited
states of the natural basis set are proportional to the eigen-
valuesni

2.
In the special case of linear polarization, the polarization

vectorse ande* are identical. When we take the quantization
axis in the polarization direction, the natural basis of states
coincide with the Zeeman statesuJg,ml which is only

coupled to the excited stateuJe,ml. The operatorŴ is pro-

portional to the spherical tensorT̂2J+10
eg , and the correspond-

ing eigenvalues are proportional to the Clebsch-Gordan co-
efficients nm~CJ+1mJ−m

2J+10 . The resulting excited-state

populations~uCJ+1mJ−m
2J+10 u2 for this special case of linear polar-

ization driving a transitionJ→J+1 have been indicated be-
fore in Ref.[15].

Calculations of matrix elements of the operatorsŴ, W̃
ˆ

,

and X̂ are given in Appendix B for the natural coordinate
frame. However, more physical insight can be obtained by

expanding the operatorsX̂ in the form of an invariant super-

position of the operatorsV̂L
gg,

X̂ =Î 3

se ·eds2J + 3d oL=0

2J

CLV̂L
ggsed. s74d

In order to find the coefficientsCL we use the propertysC2d

V̂1
egsedV̂L

ggsed = o
K=L−1

L+1

EsL,KdV̂K
egsed,

EsL,Kd = s− 1d2J+LÎ3s2L + 1dHK 1 L

J J J + 1
JC10 L0

K0 .

s75d

The recurrent equations for the coefficientsCL follows from

the defining relationV̂X̂=Ŵ,

EsL − 1,LdCL−1 + EsL + 1,LdCL+1 = dL,2J+1,

L = 0,1, . . . ,2J + 1.

s76d

Depending on whetherJ is an integer or a half integer, the
odd or even coefficients are equal to zero. In both cases the
nonzero coefficientsCL are written as

CL =Îs2L + 1ds2J + 3d
3s2J + 1d

s2J − Ld!s2J + L + 1d!
s4J + 1d!

. s77d

A remarkable peculiarity of the solutions77d, which be-
comes manifest at large angular momentumJ, is a rapid
decrease of the coefficientsCL with a decrease of indexL.
This fact allows approximate calculations by restricting the
expansions74d to only a few terms. For example, the ratio

C2J

C2J−2
= s4J + 1dÎ 2J

4J − 3
< 2Î2J

for J=4 sthat corresponds to the cycling transition of theD2
line of 133Csd amounts to about 13.3. As a result, if we use
the approximation

X̂ <Î 3

se ·eds2J + 3d
C2JV̂2J

ggsed,

then in calculating quantities as the population or the orien-
tation of the levels and the average dipole moment, the error
remains below 1%.
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The normalization constantsai can be found in explicit
form for arbitraryJ. From the sum rule for spherical harmon-
ics (A4) it follows that

a1 = Tr hŴŴ†j = P2J+1S 1

se ·edD . s78d

Using the expansions74d, we find

a0 = Tr hX̂X̂†j =
3

se ·eds2J + 3d oL=0

2J

CL
2PLS 1

se ·edD . s79d

The coefficientsa0 anda1 are simultaneously evensfor J a
half integerd or odd sfor J an integerd. As one expects, the
populations of the levels determined by the ratio ofa0 and
a1 do not depend on the sign ofse·ed.

C. Transitions Jg=J\Je=J with J a half integer

For a transition between levels with equal half-integer

valuesJ of the angular momenta, the coupling operatorV̂ on
the basis of the Zeeman substates is represented by a square
matrix. This implies that the concept of the inverse operator

sV̂d−1 as corresponding to the inverse matrix can be used, in

the sense thatsV̂d−1V̂=P̂g,V̂sV̂d−1=P̂e. It is nearly trivial to

find operatorsÊ andĜ that obey the conditions(28) for this
class of transitions. It is immediately obvious that these con-

ditions are satisfied with the choiceÊ=P̂e and Ĝ=P̂g, in
view of the identity(14). Then expressions(49) and(50) for
the density matrix take the form

r̂ee= bSP̂e,

r̂gg = bfsV̂†V̂d−1 + SP̂gg = bfsV̂d−1sV̂†d−1 + SP̂gg, s80d

r̂̄eg= sr̂̄ged† =
bV

sd + ig/2d
sV̂†d−1.

The commutation rules(29) are trivially obeyed, so that the
density matrix is diagonal on the natural bases. These expres-
sions have been obtained in Ref.[23]. Remarkably, Eq.(80)
shows that for this class of transitions, the excited-state den-
sity matrix r̂ee is always isotropic at arbitrary field param-
eters. The ground-state density matrixr̂gg consists of two

parts. The term proportional tosV̂†V̂d−1 is anisotropic, and
describes the distribution among Zeeman substates in the
low-saturation limitS!1. The isotropic part is dominant in
the limit of strong saturation(55).

In fact, the expressions(80) can also be represented in the

form (66), in terms of operatorsŴ, W̃
ˆ

, and X̂. In the same
spirit as Eq.(59), for the present class of transitions we in-
troduce the operators

V̂0
egsed = Ŵ, V̂0

gesed = W̃
ˆ

, s81d

where now the rank of the operators takes the minimal value
0. With this definition, we can maintain the expressionss61d
for the operatorsÊ andĜ, which are indeed isotropic. With

the definitions60d of Ṽ
ˆ
, the identitiess62d–s64d remain valid

in the present case. This follows from Eqs.sC3d andsC4d of

Appendix C. With the definitions65d of the operatorX̂, the
proof of Eqs.s66d as well as of the expansionss70d–s72d can
be carried over directly. The main simplification is that in the
present case of a transitionJg=J→Je=J, the coefficientsni
are all the same, while the natural basis statesusedil andusg̃dil
have an identical vector form. Therefore, on the basis of
Zeeman states of the excited and the ground level, the raising

operatorsŴ andW̃
ˆ

have the form of a unit matrix.

The matrix elements of the inverse operatorssV̂d−1,

sV̂†d−1, andsV̂†V̂d−1 can be found in a closed analytical form
in the natural coordinate frame for allJ (see Appendix B).
However, for further applications, it will be convenient to

expresssV̂d−1 in an invariant form in terms of the spherical
harmonicsnLMsed defined in Eq.(A1). Since the coupling

operatorV̂ is proportional to the operator(56) with the rank
L=1, we can write in the present case

sV̂d−1 =Î 3

se ·eds2J + 1d
fV̂1

egsedg−1.

We use the equations

V̂1
egsedV̂L

gesed = o
K=L−1

L+1

EsL,KdV̂K
eesed,

EsL,Kd = s− 1d2J+L+1Î3s2L + 1dHK 1 L

J J J
JC10 L0

K0 ,

s82d

which is a special case of Eq.(C2). The operatorfV̂1
egsedg−1 is

expanded in the operatorsV̂L
gesed according to

fV̂1
egsedg−1 = o

L=0

2J

CLV̂L
gesed. s83d

In order to find the coefficientsCL we substitute this expan-
sion into the identity

V̂1
egsedfV̂1

egsedg−1 = P̂e.

While noting thatEsL ,Ld=0 ssinceC10L0
L0 =0d one arrives at

the two-term recurrent relation

EsL − 1,LdCL−1 + EsL + 1,LdCL+1 = dL,0
Î2J + 1,

L = 0,1, . . . ,2J .

s84d

Expressions for the coefficients with odd indices follow from
the relations(84), with the result
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CL = s− 1dsL−1d/2sL − 1d!!
L!!

Îs2L + 1d2Js2J + 1ds2J + 2d
3

s2J + Ld!! s2J − L − 1d!!
s2J − Ld!! s2J + L + 1d!!

. s85d

This is a sequence of terms with alternating signs, which
slowly grows in absolute value with the indexL. It follows
from Eq. s84d that the coefficientsCL with even index are
equal to zero.

The normalization coefficient(52) is obviously

a1 = TrhP̂ej = 2J + 1. s86d

The other normalization coefficienta0=TrhsV̂†V̂d−1j follows
from the expansions83d, the orthogonality of the Wigner
operators and the sum rule for spherical harmonicssA4d,
with the result

a0 =
3

se ·eds2J + 1d o
L=1,3,. . .

2J

CL
2PLS 1

se ·edD . s87d

This expression contains only even powers ofse·ed.

VI. EXCITED-STATE POPULATION
AND ac STARK SHIFT

In this section, we study the polarization dependence of
the total excited-state population. This determines, for ex-
ample, the total fluorescence and thereby also the total ab-
sorption in an atomic vapor. For unpolarized atoms and in
the low-saturation limit, the total excited-state population is
given by pe

sunpold=sS/3ds2Je+1d / s2Jg+1d, independent of
the polarization. This is the case of linear absorption. We
now consider as an application of the results of the preceding
section the total excited-state populationpe=Trhr̂eej in the
steady state. When we calculate the trace of Eq.(49), while
taking into account normalization(12), we find

pe =
Sa1/a0

1 + 2Sa1/a0
, s88d

where the real functionsa1s«d and a0s«d are expressed in
s78d and s79d for the transitionJ→J+1, and by Eqs.s86d
and s87d for the transitionJ→J frecall thate·e=coss2«dg.
As is seen from Eq.s88d, the analytical expression for the
total excited-state population is similar as for a two-level
atom with nondegenerate levelsssee, e.g., Ref.f1gd but

with an effective saturation parameterS̃=Sa1/a0, which
depends on the class of transitions and on the light polar-
ization. If the saturation intensityIsat is defined as the
intensity at whichpe=1/4 sat zero detuningd, then we
obtain

Isats«d =
a0s«d
a1s«d

I0, I0 =
2p2

3

"cg

l3 , s89d

where I0 is the usual measure for the saturation intensity.
This shows that now the excited-state population, and

thereby the absorption, depends on the polarization.
This is demonstrated in Fig. 3(a) for the class of transi-

tions J→J with J a half integer. This shows that the total
absorption cross section is reduced compared with the case
of linear absorption, so that the medium becomes more trans-
parent due to optical pumping. The reduction is the lowest
for linear polarization, and it is complete for circular polar-
ization. Moreover, the reduction increases with the value of
J. Recall that for CPT transitions,J→J−1 andJ→J with J
an integer, the stationary excited-state population is obvi-
ously zero, and the transparency is complete. The decrease in
absorption indicates that the atoms are pumped to states that
are more weakly coupled than average. Roughly speaking,
this implies that pairs of coupled statesusedil and usgdil for
which the total steady-state population is large, tend to have
a relatively small coupling constantli

2. Since the form(19)
of the light-shift operators shows that the statesusedil and

FIG. 3. Total absorption at low saturation vs the ellipticity«. (a)
transitionsJ→J with J a half integer;J runs from 1/2 to 9/2(from
top to bottom). (b) transitionsJ→J+1; J=0, 1/2, 1, 2, 3, and 4
(from bottom to top). All curves are normalized to the linear ab-
sorption.
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usgdil are shifted by −dSli
2 anddSli

2, we may also conclude
that this class of transitionsJ→J with J a half integer tends
to pump the atoms to states with lower ac Stark shift.

In contrast, forJ→J+1 transitions the absorption is en-
hanced by optical pumping. This is shown in Fig. 3(b).
Again, the effect of optical pumping on the total absorption
increases withJ, and it increases also when the polarization
is varied from linear to circular. These results are related to
the recently discussed effect of electromagnetically induced
absorption (EIA) under two-frequency excitation in the
Hanle configuration onJ→J+1 transitions [39]. Indeed,
when the frequencies coincide or the magnetic field is zero,
we have a situation close to the stationary interaction of at-
oms with elliptically polarized light considered here. When
the frequency difference or the Zeeman splitting is suffi-
ciently large, significant ground-state depolarization appears,
and the absorption should be close to the linear absorption of
unpolarized atoms. In this sense, the enhancement of absorp-
tion by optical pumping as illustrated in Fig. 3(b) resembles
EIA. By the same argument as used above, we conclude that
J→J+1 transitions tend to pump the atoms to states with
larger ac Stark shifts. This tendency was found before in
special cases in the context of sub-Doppler laser cooling by
polarization gradients[11].

VII. BROADBAND RADIATION

So far, we discussed the steady-state solutions of the gen-
eralized optical Bloch equations(8)–(11), which describe an
atomic transition driven by monochromatic polarized light.
In this section we point out that the results can be general-
ized to the case of light with a finite bandwidth. Broadband
radiation is described by modeling the electric field as a sta-
tionary stochastic process. The dynamics of an atom in such
a field with central frequencyv is described by the same
Eqs. (8)–(11), where now the Rabi frequencyVstd is a
complex-valued function of time, proportional to the
positive-frequency part of the fluctuating electric field. We
are interested in the steady-state stochastic average of the
submatricesr̂ee and r̂gg. The time-dependent solution of Eq.
(8) is

r̂̄egstd =E
0

`

dt exp fsid − g/2dtgiVst − td

3fV̂sedr̂ggst − td − r̂eest − tdV̂sedg. s90d

When we substitute this expression and its analog for

r̂̄gestd= r̂̄eg
† std into Eqs.s10d and s11d, we arrive at a pair of

stochastic integro-differential equations for the submatrices
r̂eestd andr̂ggstd. The right-hand side of these equations con-
tains the stochastic partsV*stdVst−tdr̂ggst−td,V*stdVst
−tdr̂eest−td and their Hermitian conjugates. Stochastic aver-
aging of these equations leads to a closed set of equations for
the steady-state stochastic averageskr̂eel andkr̂ggl, provided
that the stochastic average of these terms may be factorized
as

kV*stdVst − tdr̂ggst − tdl = kV*stdVst − tdlkr̂ggl, s91d

and similarly for the other terms. When we substitute this
factorized form of the types91d in the equations forr̂ee and
r̂gg, we arrive in the steady state at closed equations for the
stochastic averageskr̂eel and kr̂ggl,

gkr̂eel = − RhV̂V̂†,kr̂eelj + 2RV̂kr̂gglV̂† + iLfV̂V̂†,kr̂eelg,

s92d

− g o
q=0,±1

D̂q
†kr̂eelD̂q = − RhV̂†V̂,kr̂gglj + 2RV̂†kr̂eelV̂

− iLfV̂†V̂,kr̂gglg. s93d

The two real parametersR andL are defined by the equation

R+ iL =E
0

`

dt expfsid − g/2dtgkV*stdVst − tdl. s94d

The quantityR is a measure of the stimulated transition rates,
and L determines the strength of the light shift. When we
substitute this factorized form of the types91d in the equa-
tions for r̂ee and r̂gg.

The factorization(91) is exact in the special case that the
finite bandwidth is due to phase fluctuations only. In that
case we can writeVstd=V expf−icstdg, with a stochastic
phasec. The factorization is then justified since the phase
changecstd−cst−td in the time intervalft−t ,tg can safely
be assumed not to depend on the phasec at times beforet
−t, which determiner̂ggst−td. The phase fluctuations are
then described by the independent-increment model[40],
which has the phase-diffusion model as a special limiting
case. The stochastic average of the field correlation function
then decays exponentially, according to the equality
kV*stdVst−tdl= uVu2exps−mtd, with m the bandwidth(half
width at half maximum) of the Lorentzian profile. In this
case the quantitiesR andL are determined by the equation

R+ iL =
uVu2

m + g/2 − id
. s95d

It is a simple check to notice that Eqs.s92d and s93d reduce
to the corresponding equationss16d and s17d for monochro-
matic light when we substitutem=0. In that case we simply
find R=gS/2 andL=dS.

In the case that the driving light also has intensity fluc-
tuations, the situation is more complex, and the factorization
(91) is not exact. When the fluctuations are sufficiently weak
and sufficiently rapid, we can still assume the factorization
as a reasonable approximation. Therefore, Eqs.(92) and(93)
can be assumed to be valid for broadband radiation in many
situations of practical interest. These equations, which
strongly resemble the corresponding equations(16) and(17)
for monochromatic light, determine the steady-state stochas-
tic average of the density matricesr̂ee andr̂gg. In the preced-
ing sections we have demonstrated that for monochromatic
light and for all allowed values ofJe andJg the steady-state
density matrix obeys the commutations rules(21), so that the
density matrix is diagonal in the eigenstates of the light-shift
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operators. This means that the solutions of(16) and (17) do
not depend at all on the strength of the last terms in these
equations. We conclude that the expressions for the stochas-
tically averaged steady-state solutionskr̂eel and kr̂ggl in the
absence of a dark state coincide with the solutions obtained
in Sec. V for r̂ee and r̂gg, with the simple replacementS
→2R/g. The structure of the dark states follows from the
defining equation(31), so that also the results of Sec. IV are
not modified by the fluctuations of the driving light. The
steady-state polarization properties of the atom are basically
unaffected by the finite bandwidth. The steady-state optical
coherencesr̂eg are best described by the expression for the
stochastic average

kV* r̂egl = siR − LdfV̂sedkr̂ggl − kr̂eelV̂sedg,

which follows immediately from Eq.s90d. An expression
containing r̂ge follows after Hermitian conjugation. Obvi-
ously, these conclusions are valid exclusively when the light
polarization displays no fluctuations.

VIII. DISCUSSION AND CONCLUSIONS

We have given a complete analytical and invariant de-
scription of the steady-state density matrix of a closed atomic
dipole transitionJg→Je driven by a resonant polarized radia-
tion field. This is a long-standing problem in atomic and
optical physics. Solutions have been known for some time in
special cases of polarization and values of the angular mo-
mentaJe andJg of the excited and the ground state. The most
complex class of transitions occurs forJe=Jg+1. In this case,
the excited-state density matrix can be highly anisotropic. It
is remarkable, however, that the anisotropy depends exclu-
sively on the ellipticity of the polarization, and it is unaf-
fected by the frequency detuning of the radiation from reso-
nance, the light intensity, or the spontaneous-decay rate. In
the case thatJe=Jg is half integer, the excited-state density
matrix is fully isotropic in the steady state. In the remaining
classes of transitions(Je=Jg is integer, andJe=Jg−1), the
system has one or two dark states, and the degree of excita-
tion vanishes in the steady state. For these cases, we give
analytical invariant expressions for these dark states for ar-
bitrary elliptical polarization. These results are interesting,
not only from a fundamental point of view as an exact solu-
tion of a quantum-mechanical problem, but also since they
can be used in numerous applications.

As a first example, we mention the problem of nonlinear
propagation of elliptically polarized light in a resonant gas
medium. The steady-state solution allows one to find the
nonlinear susceptibility tensor in analytical form. The Dop-
pler broadening is taken into account by the substitutiond
→d−k ·v in the expressions forr̂eg, and then average over
velocity.

A second case of interest is high-resolution polarization
spectroscopy. The Doppler-free resonances in the scheme of
a strong pump and a weak probe field can be directly evalu-
ated by calculating the linear response to the probe, in a
steady state that is determined by the pump. Nonlinear inter-
ference effects between pump and probe are negligible in

several cases, e.g., when they are counterpropagating.
A third situation of practical importance occurs when cold

atoms are slowly moving through nonuniform radiation
fields, with a position-dependent amplitudeE0sr d and polar-
ization vectoresr d. The steady-state solution discussed in
this paper can be viewed as the zeroth-order approximation
with respect to the atomic velocity. This solution is needed
for an explicit calculation of radiative forces[19,22,38,41]
and geometrical potentials[42,43], which also affect the dy-
namics of atoms in optical lattices.

Generally speaking, in many problems there are factors
not taken into account in our solution, such as finite interac-
tion time, translational motion of atoms, magnetic field, etc.
Very often these factors can be considered as a small pertur-
bation. In all these cases the steady-state solution presented
in this paper constitutes a zeroth-order approximation, and
thereby the first necessary step in the corresponding pertur-
bation treatment.
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APPENDIX A: SPHERICAL HARMONICS
OF A COMPLEX DIRECTION

Throughout the paper we use spherical harmonics that
differ from the standard definition[35] by a multiplicative
factor

nLM =Î 4p

2L + 1
YLM .

For arbitrary complex vectora=a8+ ia9 a spherical harmonic
of the rankL is defined in terms of the tensor constructions
s33d:

nLMsad =
1

aLÎs2L − 1d!!
L!

hajL, sA1d

where a=Îsa·ad. These generalized spherical harmonics
depend only on a direction in the complex three-
dimensional spacef37g, i.e., they do not change under the
transformationa→na with n an arbitrary complex num-
ber. For real vectorssa9=0d the definition sA1d leads to
the standard spherical harmonicsf35g. Starting from Eq.
sA1d, one can derive the well-known formulaf35g

nLMsad = eifMÎsL − Md!
sL + Md!

PL
Mscosud, sA2d

wherePL
Msxd are the associated Legendre functions, and the

complex parametersu and f are expressed in terms of the
spherical components of vectora by
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cosu = a0/a, e2if = − a+1/a−1.

FormulasA2d can be regarded as a suitable analytic continu-
ation of the standard definition of the spherical harmonics
nLMsu ,fd f35g to complex values of the anglesf andu f44g.
The definition sA1d is important since the functionsnLM
obey the same group-theoretical relations as ordinary spheri-
cal harmonicsf44g. In particular, we indicate the Clebsch-
Gordan expansion of the product of two spherical harmonics
of the same argument

nl1m1
sadnl2m2

sad = o
LM

Cl10l20
L0 Cl1m1l2m2

LM nLMsad sA3d

and the sum rule for the dot product of spherical harmonics
of different argumentsf38,37g

„nLsad ·nLsbd… = PLS sa ·bd
ab

D , sA4d

wherePLsxd are the Legendre polynomials.

APPENDIX B: CALCULATING MATRIX ELEMENTS

The matrix elements of operatorsV̂−1, sV̂†V̂d−1, Ŵ, W̃
ˆ

, and

X̂, which are used to write the steady-state density matrixr̂,
can be determined in the natural coordinate frame. To be
specific, we fix the sign in Eq.(3):

e= Îcoss2«de0 − Î2 sins«de+1. sB1d

1. Transitions Jg=J\Je=J with J half integer

In the natural coordinate frame the matrixV̂ is real and
has a lower-triangular form with two nonzero diagonals:

V̂ =1
· 0

· ·

· ·

Vm,m−1 Vmm

· ·

· ·

0 · ·

2 , sB2d

where in accordance with the definitionss7d and sB1d,

Vmm =
m

ÎJsJ + 1d
Îcoss2«d, sB3d

Vm,m−1 = −ÎsJ + mdsJ − m + 1d
JsJ + 1d

sins«d. sB4d

Its inverse matrix also is of the lower-triangular form and

real. The matrix elements ofV̂−1 are calculated by a direct
method:

fV̂−1gmm8 =
s− 1dm−m8

Vm8m8
p

a=m8+1

m Vasa−1d

Vaa

=ÎJsJ + 1d
coss2«d S sins«d

Îcoss2«d
Dm−m8 1

m8

3 p
a=m8+1

m ÎsJ + adsJ − a + 1d
a

. sB5d

The repeated products in Eq.sB5d should be read while using
the conventions

p
a=m+1

m

fa ; 1, p
a=m8+1

m

fa ; 0 if m8 . m.

Since the matrixV̂ is real, sV̂†d−1 is obtained fromV̂−1 by

transposition, i.e.,fsV̂†d−1gmm8=fV̂−1gm8m. Thus, one can eas-

ily write the matrix elements of small,sV̂†V̂d−1:

fsV̂†V̂d−1gmm8 = s− 1dm−m8 o
n=−J

J
1

Vnn
2 S p

a=n+1

m Vasa−1d

Vaa
D

3S p
a8=n+1

m8 Va8sa8−1d

Va8a8
D

=
JsJ + 1d
coss2«d o

n=−J

J S sins«d
Îcoss2«d

Dm+m8−2n 1

n2

3 S p
a=n+1

m ÎsJ + adsJ − a + 1d
a

D
3S p

a8=n+1

m8 ÎsJ + a8dsJ − a8 + 1d
a8

D .

sB6d

2. Transitions Jg=J\Je=J+1

In the natural coordinate frame the components of the
spherical harmonics(A1) of the polarization vectore are
written as

nL−Msed = s− 1dMÎsL + Md!
sL − Md!

1

M! S sin «

Îcoss2«d
DM

, sB7d

if M ù0, andnL−Msed=0 for M ,0. Substituting Eq.sB7d
into the definitions56d, we arrive atsJa=J+1,Jb=J,L=2J
+1d
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Wmm = s− 1dJ−ms2J + 1 +m − md!
sm − md!

Î s2J + 2d!s2Jd!
s4J + 1d!sJ + 1 +md!sJ + 1 −md!sJ + md!sJ − md! S sin «

Îcoss2«d
Dm−m

, sB8d

where m=−J−1,−J, . . . ,J+1, m=−J,−J+1, . . . ,J, and m

−mù0. The matrixW̃
ˆ

can be obtained from Eq.sB8d using

the time-reversal operationW̃mm=s−1dJg−m−Je−mW−m−m.

In order to find matrix elements ofX̂ we decompose it

X̂=ÛŴ using the Moore-Penrose pseudoinverse[45] matrix

Û with respect toV̂, i.e., V̂ÛV̂=V̂. The nonzero elements of

V̂ are given by

Vm,m =ÎsJ + 1 −mdsJ + 1 +md
sJ + 1ds2J + 1d

Îcoss2«d,

Vm,m−1 =ÎsJ + mdsJ + 1 +md
sJ + 1ds2J + 1d

sin «. sB9d

As the pseudoinverse matrix toV̂ we take the matrix with
elements

Umm =Î sJ + 1ds2J + 1d
sJ + 1 +mdsJ + 1 −mdcoss2«d

3S−
sin «

Îcoss2«d
Dm−m

p
n=m+1

m Î J + n

J + 1 −n
, sB10d

for m=−J,−J+1, . . . ,J, supplemented by the zero columns
Um−J−1=0 and UmJ+1=0. The matrix multiplication of Eq.
sB10d by Eq. sB8d yields the final result for the elements

of X̂:

Xmm8 =ÎsJ + 1ds2J + 1d!s2J + 2d!sJ + md!sJ − md!
s4J + 1d!sJ + m8d!sJ − m8d!coss2«d

3S−
sin «

Îcoss2«d
Dm−m8

3 o
m=m8

m

s− 1dJ−m s2J + 1 +m − m8d!
sm − m8d!sJ + 1 +md!sJ + 1 −md!

.

sB11d

APPENDIX C: ALGEBRA OF THE OPERATORS V̂L
ab
„a…

Using the standard Racah algebra[46], one can write a

general expression for products of the operatorsV̂ (56) with
different ranks:

V̂L1

absadV̂L2

bcsbd = o
K

s− 1dJa+Jc+L1+L2PL1,L2HK L1 L2

Jb Jc Ja
J

3shnL1
sad ^ nL2

sbdjK · T̂K
acd, sC1d

where Px,y,. . .=Îs2x+1ds2y+1d¯ is the standard notation
of Ref. f35g. In the special case thatb=a, after using Eq.
sA3d we obtain from Eq.sC1d an analog of the Clebsch-
Gordan expansion:

V̂L1

absadV̂L2

bcsad = o
K

s− 1dJa+Jc+L1+L2PL1,L2
CL10L20

K0

3HK L1 L2

Jb Jc Ja
JV̂K

acsad. sC2d

EquationssC1d andsC2d lead to the following relationships.
(1) For arbitrary ranksL1 andL2, and for arbitrary angular

momentaJa andJb we find

V̂L1

absadV̂L2

basad = V̂L2

absadV̂L1

basad, sC3d

since both sides have the same expansion in the tensor op-

eratorsV̂K
aasad. Here we use the symmetry of Eq.sC2d with

respect to the permutationL1↔L2 at Ja=Jc.
(2) Depending on the class of transition, for arbitrary vec-

tors a andb we find the following.
(a) For transitionsJg=J→Je=J,

V̂1
gesbdV̂0

egsad = V̂0
gesadV̂1

egsbd. sC4d

(b) For transitionsJg=J→Je=J+1,

V̂1
gesadV̂2J+1

eg sbd = V̂2J+1
ge sbdV̂1

egsad. sC5d

(c) For transitionsJg=J→Je=J−1,

V̂1
egsadV̂2J−1

ge sbd = V̂2J−1
eg sbdV̂1

gesad. sC6d

The propertysC4d is obvious, if we recall that in this case the

operatorV̂0
ge is proportional to the unit matrix andV̂1

gesbd
=V̂1

egsbd. To prove the validity of Eq.sC5d it is sufficient to

expand both sides of Eq.sC5d in the operatorsT̂Kq
gg and allow

for the fact that all ranks exceptK=2J are forbidden by the
selection rules contained in the 6j symbols in Eq.sC1d.
Equation sC5d then reduces to the identityhn1sad
^ n2J+1sbdj2J;hn2J+1sbd ^ n1sadj2J, which holds since the
number s2J+1d+1−2J=2 is even. EquationsC6d can be
proved in a similar way.
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