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The infinite summations over the complete set of unperturbed atomic states appearing in theNth-order
perturbation theory for multiphoton ionization are performed using the Dalgarno-Lewis method. The relevant
transition matrix elements are written in a closed integral form exhibiting all the analytic properties of the
amplitude as a function of incident photon energy. The cross sections for two- and three-photon ionization for
atomic hydrogen are calculated for both linearly and circularly polarized light with a wide range of photon
energy spectrum including the near resonance, and numerical comparison is made with the values obtained by
different methods.
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I. INTRODUCTION

Since the advent of very high power lasers the evaluation
of multiphoton transition matrix element in atomic system
has very important role to play in atomic physics. When the
Nth-order time-dependent perturbation is applied, a major
difficulty in the evaluation of these matrix elements is the
infinite summation over the complete set of intermediate
states, which includes discrete as well as continuum states.
Different procedures[1–12] are used to perform this inter-
mediate sum, but in general none of them can be efficiently
used for the entire range of wavelengths of the incident pho-
tons.

Here we have outlined a simple and efficient alternate
analytical method for obtaining a closed-form expression for
the two-photon and three-photon radiative transition matrix
elements(bound-free) from the hydrogenic ground state and
calculated the corresponding cross sections for the entire
range of photon spectrum. We have performed the interme-
diate sum exactly using the Dalgarno-Lewis procedure[8]
and obtained a set of inhomogeneous second-order coupled
differential equations. The integral representation of solu-
tions to these equations for two- and three-photon transitions
is obtained and its analytical properties are studied. Finally
the numerical results for two- and three-photon cross sec-
tions essentially covering the range of the available numeri-
cal results are presented.

II. TWO- AND THREE-PHOTON SCATTERING
CROSS SECTIONS

Following the perturbation theory and using the nonrela-
tivistic dipole approximation, the differential cross section
for N-photon[13,14] ionization in atomic units is given by

dssNd

dV
=

a

2p
S I

2I0
DN−1

uM fg
sNdu2a0

2vk, s1d

where a is the fine-structure constant,a0=5.2917
310−9 cm is the first Bohr radius,I is the field strength

intensity of the radiation field,I0=7.01931016 W/cm2 is
the atomic unit of field strength intensity, andk is the
momentum of the photoelectron ejected in the direction of

the unit vector k̂. For transitions from ground state of
atomic hydrogenk is given as

k = Î2Nv − 1, s2d

and theNth-order transition amplitudeM fg
sNd corresponding

to a transition from the initial ground stateugl to a final state
ufl belonging to the continuum readsf1g

M fg
sNd = o

iN−1¯i1

kf ueW · rWuiN−1l ¯ ki2ueW · rWui1lki1ueW · rWugl
sEiN−1

− Eg − sN − 1dvd ¯ sEi1
− Eg − vd

,

s3d

whereeW is the unit polarization vector for the incident radia-
tion field andeW ·rW is in units of the Bohr radiusa0, and the
energiesEg, Ei, and v are in units ofse2/a0d. The N−1
intermediate state sum is over the complete set of states in-
cluding the continuum.

The infinite summation over the intermediate state in Eq.
(3) can be performed exactly by defining a set ofN operators
Mn with n=0,1, . . . ,N−1 such that

seW · rWdMn−1ugl = sMnH0 − H0Mn + nvMndugl, s4d

where we takeM0 as unit operatorÎ andH0=−¹2/2−1/r the
Hamiltonian for the hydrogen atom in atomic units. Using

Eq. s4d in Eq. s3d and the closure relationoiuilki u= Î the tran-
sition matrix element is reduced to

M fg
sNd = kf useW · rWdMN−1ugl. s5d

Thus the problem of infinite summation is reduced to the
determination of analytic form of the operatorsMn for n
=0,1, . . . ,N−1. The angular separation of the functions
Mnsr d can be performed by expanding it in terms of spherical
harmonics. For simplicity first we consider linearly polarized
light so that eW ·rW=z. Then the angular separation ofMn’s
needed for two- and three-photon transitions can be achieved
by writing*Electronic address: rkrishna@cusat.ac.in
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M1sr d = rc1srdP1scosud, s6d

M2sr d = c0srd + r2c2srdP2scosud, s7d

wherePls d are Legendre polynomials of orderl. Now sub-
stituting Eqs. s6d and s7d in Eq. s4d and by taking ugl
=exp s−rd /Îp we get the following differential equations
for the unknown radial functionsc1, c0, andc2:

r
d2

dr2c1srd + s4 − 2rd
d

dr
c1srd + s2vr − 2dc1srd = 2r , s8d

r
d2

dr2c2srd + s6 − 2rd
d

dr
c2srd + s4vr − 4dc2srd =

4

3
rc1srd,

s9d

r
d2

dr2c0srd + s2 − 2rd
d

dr
c0srd + 4vrc0srd =

2

3
r3c1srd.

s10d

It is straightforward to see from Eq.(5) that the infinite
summation over the intermediate states are reduced to the
determination of the solutions for the above inhomogeneous
differential equations. From Eqs.(9) and(10) it is clear that
the evaluation of three-photon transition amplitude requires
the knowledge of the two-photon transition amplitude. This
is also clear from the Eq.(4) that the appearance of
sN−1dth-order transition amplitude as inhomogeneous term
for the determination of theNth-order transition amplitude is
a general feature of this method.

By using the method of Laplace transform[15] for the
solution of differential equation we can obtain the solutions
to the above differential equations as

c1srd =
1

v
−

1

2v3Fs1,1,l1,1,rd, s11d

c0srd =
2

3v2H r2

4
+

1

4v2s1 − 2l1d −
3

8v
J −

1

3l1v4

3Fs0,0,l2,1,rd −
1

6v4Hr2 +
l1

v
r −

1

v
S1 +

1

l1
DJ

3Fs1,1,l1,1,rd −
1

3v4S1 +
1

l1
DE

l1

1

dt
Ks1,1,l1,td
Ks1,1,l2,td

3H 1 − 2v

vs1 + l1d
−

t

v
−

2

t + l1
+

2

st + l1d2J
3Fs0,0,l2,t,rd, s12d

c2srd =
1

3v2 −
1

3v4Fs1,1,l1,1,rd

+
2

3v4E
l1

1

dt
Ks1,1,l1,tdt
Ks3,3,l2,td

Fs2,2,l2,t,rd, s13d

where

Ksp,q,l,sd = S1 − l

1 + l
D1/l

ss+ ldp+1/lss− ldq−1/l, s14d

and

Fsp,q,l,t,rd =E
l

1

ds e−rss−1dKsp,q,l,sd, s15d

wherep,q, andl in general can be complex numbers, and
l1=Î1−2v and l0=l2=Î1−4v. If the limits of the inte-
gration are complex numbers, the contour of integration in
the complex plane should not encounter any singularities
of the integrand in Eq.s15d. It is also useful to note that
the above integrals are defined only for Resq−1/ld.−1.
But it is easy to analytically continue this definition for
Resq−1/ld,−1. This is done by writing ss−ldq−1/l

=] /]shss−ldq+1−1/lj / sq+1−1/ld in Eq. s15d and perform-
ing a partial integration. Thus we obtain

Fsp,q,l,t,rd =
1

q + 1 −
1

l

He−rst−1dKsp,q + 1,l,td

+ rFsp,q + 1,l,t,rd − Sp +
1

l
D

3Fsp − 1,q + 1,l,t,rdJ . s16d

This is an important recurrence relation which is used to
study the analytic properties of the transition amplitudef16g.

The amplitude for continuum transitions can be calculated
by taking the final-state wave function to be

ufl = 4po
lm

i lRklsrdYlmsr̂dYlm
* sk̂d, s17d

where Ylms d are the well-known spherical harmonics. The
radial part of hydrogen atom wave function for an attractive
Coulomb potential can be taken as

Rklsrd = epg/2Gsl + 1 − igd
Gs2l + 2d

s2rkdl

3eikrFsl + 1 − ig,2l + 2,− 2ikrd, s18d

with Fs d as the usual confluent hypergeometric functions.
Now substituting Eq.(17) in Eq. (5) and after performing

the angular integration we obtain

Ms2d = D0
s2dY00sk̂d + D2

s2dY20sk̂d, s19d

Ms3d = D3
s3dY30sk̂d + D1

s3dY10sk̂d, s20d

whereMs2d andMs3d are, respectively, the two- and three-
photon transition amplitudes and

D0
s2d =

8p

3
E dre−rRk0

* srdr4c1, s21d
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D2
s2d =

16p

3Î5
E drRk2

* srdr4c1e
−r , s22d

D3
s3d = i

24p

5Î7
E drRk3

* srdr5c2e
−r , s23d

D1
s3d = − i

8p

Î3
E drRk1

* srdHr3c0 +
2

5
r5c2Je−r . s24d

It is useful to note that the form of the amplitudes is consis-
tent with the well-known selection rules for multiphoton
transitions. Using Eqs.s11d–s13d the radial integrals in Eqs.
s21d–s24d can be easily done using the standard integralsf17g

E
0

`

dre−srr2l+1FSl + 1 +
i

k
,2l + 2,2ikrD

= Gs2l + 2d
ssi/kd−l−1

ss− 2ikdsi/kd+l+1 . s25d

These integrals can be put in a neat form using the following
notations:

Iklss,kd =E
0

`

drRklsrde−rsrk, s26d

Iklsp,q,l,t,kd =E
0

`

dr Rklsrde−rrkFsp,q,l,t,rd

=E
l

t

ds Ksp,q,l,sdIklss,kd. s27d

With this we get the integrals in Eqs.s21d–s24d as

E
0

`

dr Rklsrde−rr5c2srd

=
1

3v2Ikls1,5d −
1

3v4Ikls1,1,l1,1,5d

+
2

3v4E
l1

1

dt
Ks1,1,l1,tdt
Ks3,3,l2,td

Ikls2,2,l2,t,5d, s28d

E
0

`
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=
1

6v2Ikls1,5d +
2

3v2H 1

4v2s1 − 2l1d −
3

8v
JIkls1,3d

−
1

3l1v4Ikls0,0,l2,1,3d −
1

6v4HIkls1,1,l1,1,5d

+
l1

v
Ikls1,1,l1,1,4d−

1

v
S1 +

1

l1
DIkls1,1,l1,1,3dJ

−
1

3v4S1 +
1

l1
DE

l1

1

dt
Ks1,1,l1,td
Ks1,1,l2,td

H 1 − 2v

vs1 + l1d
−

t

v

−
2

t + l1
+

2

st + l1d2JIkls0,0,l2,t,3d. s29d

Substituting Eqs.s19d and s20d in Eq. s1d and integrating
over the emitted electron direction we obtain

sL
s2d

I
=

a

4pI0
a0

2huD0
s2du2 + uD2

s2du2jvk, s30d

sL
s3d

I2 =
a

8p
Sa0

I0
D2

huD3
s3du2 + uD1

s3du2jvk, s31d

where sL
s2d and sL

s3d are, respectively, the two- and three-
photon cross sections for linear polarization. Using the

TABLE I. Three-photon scattering cross section per unit squared
intensityss3d / I2 scm6/W2d for both linear and circular polarization
vs wavelength above one-photon ionization thresholdv.1/2.

sL
s3d / I2 sC

s3d / I2

l sÅd Klar-Maqa Present Klar-Maqa Present

20 5.596s−66d 2.470s−66d
100 1.959s−59d 9.254s−60d
200 1.16s−56d 1.169s−56d 6.38s−57d 6.417s−57d
300 4.799s−55d 3.023s−55d
400 6.60s−54d 6.632s−54d 4.72s−54d 4.744s−54d
500 5.065s−53d 4.078s−53d
600 2.65s−52d 2.667s−52d 2.39s−52d 2.398s−52d
700 1.089s−51d 1.085s−51d
800 3.68s−51d 3.702s−51d 4.04s−51d 4.065s−51d
900 1.972s−50d 1.317s−50d
aKlarsfeld and Maquet[23].

TABLE II. Three-photon scattering cross section per unit
squared intensityss3d / I2 scm6/W2d for both linear and circular po-
larization when two-photon ionization is energetically allowed
s1/4,v,1/2d.

sL
s3d / I2 sC

s3d / I2

l sÅd Karulea Klarb Present Klarb Present

1000 1.484s−48d
1100 3.430s−50d 5.472s−50d
1200 5.55s−48d 5.55s−48d 6.121s−48d 4.67s−48d 5.234s−48d
1300 1.168s−48d 2.379s−48d
1400 1.01s−48d 1.00s−48d 1.007s−48d 2.39s−48d 2.402s−48d
1500 1.35s−48d 1.355s−48d 3.370s−48d
1600 2.02s−48d 2.03s−48d 2.024s−48d 5.07s−48d 5.056s−48d
1700 3.09s−48d 3.104s−48d 7.663s−48d
1800 4.74s−48d 4.67s−48d 4.761s−48d 1.13s−47d 1.151s−47d
aKarule [19].
bKlarsfeld and Maquet[23].
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Clebsh-Gordan algebra we can similarly write the cross sec-
tions for circular polarization as

sC
s2d

I
=

a

4pI0
a0

23

2
uD2

s2du2vk, s32d

sC
s3d

I2 =
a

8p
Sa0

I0
D25

2
uD3

s3du2vk. s33d

The closed-form expressions in Eqs.s30d–s33d for scattering
cross section are more elegant than the expressions obtained
by other methods.

III. NUMERICAL RESULTS AND DISCUSSION

We have calculated the two- and three-photon cross sec-
tions for values of photon energy both below and above

threshold ionization. This is achieved by performing the in-
tegrals in Eqs.(27)–(29) numerically and substituting it in
Eqs. (21)–(24) and finally using Eqs.(30)–(33). In the case
of three-photon ionization many authors dealt with only the
problem of above threshold ionization, and there is no single
formulation for a wide energy range. But we are able to
perform a detailed numerical calculation for a wide range of
incident wavelengths of physical interest using this method.
The scattering cross section for three-photon transitions in-
cluding the near-resonance contribution for both linear and
circular polarization are given in Tables I–III and our results
are in excellent agreement with those previously obtained by
other authors through different methods.

The closed integral form of the solution in Eqs.(11)–(13)
is very convenient for numerical computation. This form is
also very useful to separate out the resonance singularities
present in the original perturbation-theory result given by Eq.
(3). By repeatedly using the recurrence relation given by Eq.

TABLE III. Three-photon scattering cross section per unit squared intensityss3d / I2 scm6/W2d for both linear and circular polarization
when three-photon ionization is energetically possible.

sL
s3d / I2 sC

s3d / I2

lsÅd Karulea Laplab Gaoc Present Karulea Laplab Gaoc Present

1900 1.186s−46d 1.172s−46d 1.17s−46d 1.65s−45d 2.479s−46d 2.459s−46d 2.454s−46d
2000 5.58s−48d 5.581s−48d 5.429s−48d 5.423s−48d 1.37s−47d 1.365s−47d 1.326s−47d 1.324s−47d
2100 2.58s−47d 2.542s−47d 2.541s−47d 2.539s−47d 5.85s−47d 5.771s−47d 5.776s−47d 5.772s−47d
2200 1.59s−47d 1.593s−47d 1.589s−47d 1.588s−47d 3.95s−47d 3.957s−47d 3.945s–47d 3.943s−47d
2300 2.60s−47d 2.650s−47d 2.641s−47d 2.640s−47d 3.84s−47d 3.853s−47d 3.840s−47d 3.839s−47d
2400 6.42s−46d 7.125s−46d 7.057s−46d 7.056s−46d 3.92s−47d 3.935s−47d 3.917s−47d 3.917s−47d
2500 3.03s−46d 2.980s−46d 2.948s−46d 2.948s−46d 3.97s−47d 3.998s−47d 3.972s−47d 3.972s−47d
2600 1.01s−46d 1.008s−46d 1.002s−46d 1.002s−46d 3.91s−47d 3.947s−47d 3.906s−47d 3.906s−47d
2700 6.74s−47d 6.705s−47d 3.65s−47d 3.641s−47d
aKarule [21].
bLaplancheet al. [22].
cGao and Starace[7].

TABLE IV. Three-photon scattering cross section per unit intensityss2d / I for both linear and circular
polarization when two-photon ionization is energetically possible.

sL
s2d / I sC

s2d / I

lsÅd Karulea Gaob Chan-Tanc Present Laplached Present

1100 4.00s−33d 4.024s−34d 4.013s−34d 4.001s−34d 4.284s−34d 4.241s−34d
1200 6.42s−32d 6.441s−32d 6.303s−32d 6.422s−32d 7.725s−32d 7.731s−32d
1300 1.27s−32d 1.276s−32d 1.276s−32d 1.274s−32d 1.879s−32d 1.874s−32d
1400 8.45s−33d 8.451s−33d 8.450s−33d 8.446s−33d 1.270s−32d 1.266s−32d
1500 8.337s−33d 1.252s−32d
1600 9.15s−33d 9.153s−33d 9.154s−33d 9.151s−33d 1.358s−32d 1.353s−32d
1700 1.03s−32d 1.025s−32d 1.025s−32d 1.024s−32d 1.498s−32d 1.493s−32d
1800 1.143s−32d 1.636s−32d
aKarule [20].
bGao and Starace[7].
cChan and Tang[24].
dLaplancheet al. [22].
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(16) all the singularities will now appear as simple poles in
the expression for the transition amplitude[16]. It is very
important to note that we always take the analytic expres-
sions in Eqs.(11)–(13) with proper use of Eq.(16) as solu-
tion to Eqs.(8)–(10), irrespective of the value of the incident
photon energyv. Thus for the case of above one-photon
ionization thresholdsv.1/2d bothl1 andl2 become purely
imaginary and above two-photon thresholds1/2.v.1/4d
only l2 is purely imaginary. If the integration limit becomes
imaginary, we can make appropriate linear transformation of
the integration variable to transform the limit of integration
to be real. Thus the amplitude for transition to continuum
states is analytic continuation of the solutions obtained for
the bound to bound transition[18].

It may be seen that our data agree quite well with the
available results of Klarsfeld and Maquet[23], where they
have used Pade-Sturmian method for the determination of
the matrix element, but near the vicinity of threshold their
method fails. For the case of the above two-photon ioniza-
tion threshold numerical values at selected wavelengths are
compared and are given in Table II. Here a comparison is
also made with the available values of Karule[19] for linear
polarization, where analytical continuation of the Sturmian
expansion of the Coulomb Green’s function is used for the

above threshold ionization calculation. Results compared
here show good agreement with these values. Most of the
available data is for the range of wavelengths from
1824.472 Å to 2736.708 Å, which corresponds to below
threshold ionization. In this case also our results are in good
agreement with the results obtained by various methods
[7,11,21,22] for both linear and circular polarization.

As a verification of the method of analytic continuation of
the amplitude we have used the auxiliary operatorM1 in Eq.
(6) to evaluate the two-photon transition amplitude. With the
same analytic solution to the amplitude with proper value of
l1 we have obtained cross sections for both below and above
transitions. The additional results along with the results al-
ready published[13] are given in Table IV. Atl=1200 Å we
get the same results6.42310−32d published by Chang and
Poe[25], where they have used the same implicit summation
technique.
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