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Nonresonant multiphoton ionization in atomic hydrogen
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The infinite summations over the complete set of unperturbed atomic states appearing\ih-threler
perturbation theory for multiphoton ionization are performed using the Dalgarno-Lewis method. The relevant
transition matrix elements are written in a closed integral form exhibiting all the analytic properties of the
amplitude as a function of incident photon energy. The cross sections for two- and three-photon ionization for
atomic hydrogen are calculated for both linearly and circularly polarized light with a wide range of photon
energy spectrum including the near resonance, and numerical comparison is made with the values obtained by
different methods.
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[. INTRODUCTION intensity of the radiation field|,=7.019x 10'® W/cn? is
. _the atomic unit of field strength intensity, andis the

) . ) . . Thomentum of the photoelectron ejected in the direction of
of multiphoton transition matrix element in atomic system

has very important role to play in atomic physics. When thethe qnit vectork. For transitions from ground state of
Nth-order time-dependent perturbation is applied, a majoftomic hydrogerk is given as

difficulty in the evaluation of these matrix elements is the K= \?PNw—1 @)
infinite summation over the complete set of intermediate T VeReT S
states, which includes discrete as well as continuum stategnq theNth-order transition amplitudaA;N) corresponding

Different procedure§1-12 are used to perform this inter- . . 9 )
mediate sum, but in general none of them can be efficientif0 & ransition from the initial ground stai) to a final state

used for the entire range of wavelengths of the incident pho f) belonging to the continuum readis]

tons. - .
. . - fle-rlin-p - - T of
Here we have outlined a simple and efficient alternate M{Y'= 3 (flé - flin-v - diglé-Tlindale - fl ,
analytical method for obtaining a closed-form expression for iner iy (Eiyy "Eg=(N=Dw) - (Ej, ~Eg~ )
the two-photon and three-photon radiative transition matrix (3)

elementgbound-fre¢ from the hydrogenic ground state and

calculated the corresponding cross sections for the entir¢heree is the unit polarization vector for the incident radia-
range of photon spectrum. We have performed the intermeion field ande-r is in units of the Bohr radius,, and the
diate sum exactly using the Dalgarno-Lewis procedi#le energiesE,, E;, and w are in units of(e?/ap). The N-1

and obtained a set of inhomogeneous second-order coupléatermediate state sum is over the complete set of states in-
differential equations. The integral representation of solu<luding the continuum.

tions to these equations for two- and three-photon transitions The infinite summation over the intermediate state in Eq.
is obtained and its analytical properties are studied. Finally3) can be performed exactly by defining a set\bbperators

the numerical results for two- and three-photon cross sedM,, with n=0,1,... N-1 such that

tions essentially covering the range of the available numeri- .

cal results are presented. (€:NMpa|@) = (MpHo — HoMy + noMp)lg),  (4)

where we takéVly as unit operato? andHy,=-V?/2-1/r the

Hamiltonian for the hydrogen atom in atomic units. Using

Eq. (4) in Eq. (3) and the closure relatiol|i){i|=I the tran-
Following the perturbation theory and using the nonrela=ijtion matrix element is reduced to

tivistic dipole approximation, the differential cross section

II. TWO- AND THREE-PHOTON SCATTERING
CROSS SECTIONS

for N-photon[13,14 ionization in atomic units is given by Mg'g) =(f|(€ - NMy_1|0). (5)
do™ _ a1 N_1|M(N)|2 2.k (1  Thus the problem of infinite summation is reduced to the
dQ 27\ 2l, fg [ @K, determination of analytic form of the operatoks, for n

) , =0,1,...N-1. The angular separation of the functions
wher% a is the fine-structure constanta,=5.2917  \ (v) can be performed by expanding it in terms of spherical
X 10 cm is the first Bohr radius| is the field strength 5 monics. For simplicity first we consider linearly polarized

light so thate-r=z. Then the angular separation df,'s
needed for two- and three-photon transitions can be achieved
*Electronic address: rkrishna@cusat.ac.in by writing
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— _ 1/
Ml(l’) = I’l/fl(r)Pl(COS 0), (6) K(p,q,)x,s) — <m> )\(S+ )\)p+1D‘(S— )\)q—lhx, (14)

Ma(r) = (1) + rPyn(r)Py(cos 6), 7

whereP;() are Legendre polynomials of orderNow sub-
stituting Egs. (6) and (7) in Eq. (4) and by taking|g)
=exp(-r)/Vm we get the following differential equations
for the unknown radial functiongs, ¢, and ¢»:
P q whergg,g, and\ in general can be complex numbers, and
=y (r) + (4= 2)— g (1) + (2 = 2y (r) = 2r, (8) )\1:}:’1—2(» and A\g=\,=V1-4w. If the limits Of. the int(_a- .
dr dr gration are complex numbers, the contour of integration in
the complex plane should not encounter any singularities
d? d 4 of the integrand in Eq(15). It is also useful to note that
r@‘/’z(r) +(6- 2r)a¢//2(r) + (4ot = 4)yo(r) = §r¢1(f), the above integrals are defined only for(Rel1/\)>-1.
But it is easy to analytically continue this definition for
(9 Re(g-1/A\)<-1. This is done by writing(s—\)3" A
=9/ 9s{(s—N\) ¥ "™ /(g+1-1/\) in Eq. (15) and perform-
ing a partial integration. Thus we obtain

and

1
d(p,g,\,tr) = f ds e"¢VK(p,q,\,9), (15)
A

d_2 + 2_24- E +4 —g 3
rdrzdfo(r) ( )drdfo(r) ol o(r) = 3’ n(r).

1
(10) O(p,g,\,tr) = —1{e‘f“‘1>K(p,q +1,\,1)

It is straightforward to see from E@5) that the infinite q+1 N
summation over the intermediate states are reduced to the
determination of the solutions for the above inhomogeneous
differential equations. From Eg&9) and(10) it is clear that
the evaluation of three-photon transition amplitude requires
the knowledge of the two-photon transition amplitude. This Xd(p-1,q+ 1,)\,'”)}_ (16)
is also clear from the Eq(4) that the appearance of
(N-1)th-order transition amplitude as inhomogeneous ter
for the determination of thilth-order transition amplitude is
a general feature of this method.

By using the method of Laplace transforfh5] for the
solution of differential equation we can obtain the solutions
to the above differential equations as

1
+ro(p,q+1Atr) - <p+ X)

mI'his is an important recurrence relation which is used to
study the analytic properties of the transition amplit{itig].

The amplitude for continuum transitions can be calculated
by taking the final-state wave function to be

£ = 473 IR0 Yim(F) Vi), (an
1 1 Im
(n) == - ——=P(L,1A,10), (1) _ _
0 20 where Y|,() are the well-known spherical harmonics. The
radial part of hydrogen atom wave function for an attractive
2 )2 1 3 1 Coulomb potential can be taken as
boN=531 7+ 7 21-2A) - (- y
3w 4 4w 8w 3N .
1, 11 Ry(r) = eI LTI
(r) =
><<I>(0,0,)\2,1,r)-p{r2+—1r——(1+)\—>} r@+2)
@ @ @ 1 XEE( +1-iy,2 +2,-2kr),  (18)
1 1\ (K@, 1,0
XD(L1,1hq,1,r) - 307 1 o d K10 with F() as the usual confluent hypergeometric functions.
oM e Now substituting Eq(17) in Eq. (5) and after performing
1-20  t 2 . 2 the angular integration we obtain
o(l+N) @ t+h; (t+N)? BB (D B
MY =Dy Yoo(K) + D5 Yoo(K), 19
XP(0,0 Az t,1), (12) 0 Yoo(k) + D37 Y20(k) (19)
11 M =DV (k) + DY, (k), (20)
Po(r) = 37 Fq)(l,l)\l, 1.r)
W o where M@ and M© are, respectively, the two- and three-
2 (Y K1, Dt hoton transition amplitudes and
+— dtMQD(Z,Z,Az,U), ay " i
3(1) A K(3|31)\21t)
' p@ =27 J dre"Ro(r)réy (22)
where °© "3 0 b
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TABLE I. Three-photon scattering cross section per uni
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tsquared TABLE II. Three-photon scattering cross section per unit

intensity o®/12 (cmP/W?) for both linear and circular polarization squared intensity®/12 (cm®/W?) for both linear and circular po-

vs wavelength above one-photon ionization threshole1/2.

larization when two-photon ionization is energetically allowed

(1/4<w<1/2).

(32 (32
ol o'l

N (A) Klar-Madf Present Klar-Mad Present

0{3)“2 0'533)“2

20 5.596-66) 2.470Q-
100 1.959-59) 9.254
200 1.16-56) 1.169-56) 6.38-57) 6.417-
300 4.799-55) 3.023
400 6.60-54) 6.632-54) 4.7A-54) 4.744-
500 5.06%-53) 4.078
600 2.65-52) 2.661-52 2.39-52) 2.398-
700 1.089-51) 1.085
800 3.68-51) 3.702-51) 4.04-51) 4.065-
900 1.972-50) 1.317

A (A)  Karule  Klar Present Kldt Present

66)
~60) 1000 1.484-48)
57) 1100 3.430-50) 5.472-50)

-55) 1200 5.5%-48) 5.55-48) 6.121-48) 4.67-48) 5.234-48)

54) 1300 1.168-48) 2.379-498)

-53 1400 1.01-48 1.00-48 1.001-48 2.39-48) 2.402-48

52 1500 1.35-48 1.355-48) 3.370-48)

-51) 1600 2.02-48) 2.03-48 2.024-48) 5.01-48) 5.054-48

51) 1700 3.09-48 3.104-48) 7.663-48

-50) 1800 4.74-48) 4.671-48 4.761-48) 1.13-47) 1.151-47)

*Klarsfeld and Maquef23].

16'77 3 _
D(Zz):—rjdrRkZ(r)r“lple r
3V5
24 .
DY = i—:fdrng)(r)rSwZe'r,
5\7

2
DP =i rJdrRkl(r { S + gr5¢2}e‘r
V3

It is useful to note that the form of the amplitudes is consis-

tent with the well-known selection rules for multi

Karule [19].
PKlarsfeld and Maquef23].

22 o
22 f dr Ry(r)e™r3uy(r)
0

1 1
(23 =522 302 la(1,9) = Ikl(l 12,15

2 (Y K(LIA Dt

f KG.30eD oA D T (2,20,,15),  (29)

(24)

J drR(r)e™"r3ys(r)

0
photon

1 2 3
transitions. Using Eq911)—(13) the radial integrals in Egs. =— 602 1(1,5 + {4 —(1 -2 - —} (1,3

(21)—(24) can be easily done using the standard inteddad$

* i
f dre‘srrz"'lF(I +1 +E’2| + 2,2ikr)
0

S(i/k)—I—l

=T+ 2) i

These integrals can be put in a neat form using the following

notations:

l(s,k) = f:drRm(r)e_rsrk

Ik|(p.q,>\.t,k)=Jo dr Ry()erkd(p, g\, t,r)
t
:f ds K(p,g,\,9)1(s,K).
A

With this we get the integrals in Eq&1)—(24) as

1
W o aZu(0,01,,1,3 - {Ikl(l 1),1,9

A 1 1
+ 271,10, 1,4- = 1+ N Ta(1,104,1,3
w

1 1)\ K(l,l,)\l,t) 1-20 t

Sl 1+ = dt -—

3(1) )\1 M K(l,l,)\z,t) (l)(l +)\l) w

2 2

— + ————
t+hg  (E+N)?

(26) Substituting Egs(19) and (20) in Eg. (1) and integrating

over the emitted electron direction we obtain
(2)

(25)

}IH(O,O,)\Z,LB). (29

(o o
S m DR DBk, (30
(3) 2
I _ (D) 1p@2y4 p@)2
=—|\|—= | {D57|°+|D k 1
where o, (2 and o, (3) are, respectively, the two- and three-

photon cross sectlons for linear polarization. Using the
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TABLE lIl. Three-photon scattering cross section per unit squared intea§ityi2 (cmf/W?) for both linear and circular polarization
when three-photon ionization is energetically possible.

0.(3)”2 0_(3)“2
L c
MA) Karule® Lapld’ Gad Present Karule Lapld Gad Present
1900 1.186-46) 1.172-46) 1.17-46) 1.65-45) 2.479-46) 2.459-46) 2.454-46)
2000 5.58-498) 5.581-48) 5.429-48) 5.423-48) 1.37-47) 1.365-47) 1.326-47) 1.324-47)
2100 2.58-47) 2.542-47) 2.541-47) 2.539-47) 5.85-47) 5.771-47) 5.776-47) 5.772-47)
2200 15¢-47)  1.593-47)  1.589-47)  1.588-47)  3.95-47)  3.957-47)  3.945-47)  3.943-47)
2300 2.60-47) 2.650-47) 2.641-47) 2.64Q-47) 3.84-47) 3.853-47) 3.840-47) 3.839-47)
2400 6.42-46) 7.125-46) 7.0571-46) 7.056-46) 3.92-47) 3.935-47) 3.9171-47) 3.9171-47)
2500 3.08-46) 2.980-46) 2.948-46) 2.948-46) 3.91-47) 3.998-47) 3.972-47) 3.973-47)
2600 1.01-46) 1.008-46) 1.002-46) 1.002-46) 3.91(-47) 3.9471-47) 3.906-47) 3.906-47)
2700 6.74-47) 6.705-47) 3.65-47) 3.641-47)

*Karule [21].
bl aplancheet al. [22].
‘Gao and Staracg].

Clebsh-Gordan algebra we can similarly write the cross sedhreshold ionization. This is achieved by performing the in-
tions for circular polarization as tegrals in Egqs(27)—(29) numerically and substituting it in
@ Egs.(21)—(24) and finally using Eqs(30)—«33). In the case

oc _ a of three-photon ionization many authors dealt with only the

| 4l problem of above threshold ionization, and there is no single

formulation for a wide energy range. But we are able to

e 25 perform a detailed numerical calculation for a wide range of

=< - i(a—°> —|D(33)|2wk. (33 incident wavelengths of physical interest using this method.

12 8m\lg/ 2 The scattering cross section for three-photon transitions in-

The closed-form expressions in E80)—33) for scatterin cluding the near-resonance contribution for both linear and
P 9 circular polarization are given in Tables I-Ill and our results

cross section are more elegant than the expressions obtaing in excellent agreement with those previously obtained by
by other methods. other authors through different methods.
The closed integral form of the solution in Eq41)—(13)
IIl. NUMERICAL RESULTS AND DISCUSSION is very convenient for numerical computation. Thig form _ig
also very useful to separate out the resonance singularities
We have calculated the two- and three-photon cross se@resent in the original perturbation-theory result given by Eq.
tions for values of photon energy both below and above&3). By repeatedly using the recurrence relation given by Eq.

3
a§§|D(22)|2wk, (32)

TABLE IV. Three-photon scattering cross section per unit intensi®)/1 for both linear and circular
polarization when two-photon ionization is energetically possible.

O'(LZ)/ I O'(CZ)/ I
MA) Karulé® Gad Chan-Taf Present Laplacte Present
1100 4.00-33 4.024-34) 4.013-34) 4.001-34) 4.284-34) 4.241-34)
1200 6.42-32) 6.441-32 6.303-32) 6.422-32) 7.725-32) 7.731-32)
1300 1.27-32 1.276-32 1.276-32 1.274-32) 1.879-32 1.874-32)
1400 8.45%5-33) 8.451-33) 8.450-33) 8.446-33) 1.270-32 1.266-32)
1500 8.337-33 1.252-32)
1600 9.1%5-33 9.153-33) 9.154-33) 9.151-33) 1.358-32) 1.353-32
1700 1.08-32 1.025-32 1.025-32 1.024-32 1.498-32) 1.493-32
1800 1.148-32 1.636-32)

¥arule [20].

Gao and Staracf].
“Chan and Tang24].
9 aplancheet al. [22].
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(16) all the singularities will now appear as simple poles inabove threshold ionization calculation. Results compared
the expression for the transition amplitu@s]. It is very  here show good agreement with these values. Most of the
ir_nport'ant to note that we always take the analytic expresavailable data is for the range of wavelengths from
sions in Eqs(11)—(13) with proper use of Eq(16) as solu-  1824.472 A to 2736.708 A, which corresponds to below
tion to Eqs.(8)—(10), irrespective of the value of the incident threshold ionization. In this case also our results are in good
photon energyw. Thus for the case of above one-photon agreement with the results obtained by various methods
ionization thresholdw>1/2) both\, and\, become purely 17 11 21 22 for both linear and circular polarization.
imaginary and above two-photon thresh¢ld 2> w>1/4) As a verification of the method of analytic continuation of
only A, is purely imaginary. If the integration limit becomes the amplitude we have used the auxiliary operatgrin Eq.
imaginary, we can make appropriate linear transformation ofg) 1o evaluate the two-photon transition amplitude. With the
the integration variable to transform the limit of integration g5 me analytic solution to the amplitude with proper value of
to be real. Thus the amplitude for transition to continuum, \ve have obtained cross sections for both below and above
states is analytic continuation of the solutions obtained oy 5 sitions. The additional results along with the results al-
the bound to bound transiticr18]. _ _ ready published13] are given in Table IV. Ah=1200 A we

It may be seen that our data agree quite well with theget the same resul6.42x 103 published by Chang and

available results of Klarsfeld and Maqug3], where they o ;
have used Pade-Sturmian method for the determination qFé%i[nZSl;;Nhere they have used the same implicit summation

the matrix element, but near the vicinity of threshold their
method fails. For the case of the above two-photon ioniza-

tion threshold numeri_cal v_alues at selected Waveleng_ths are ACKNOWLEDGMENTS
compared and are given in Table Il. Here a comparison is
also made with the available values of Kar{dé)] for linear The authors would like to thank Professor E. Karule for

polarization, where analytical continuation of the Sturmianproviding unpublished data. The support from UGC through
expansion of the Coulomb Green’s function is used for theDSA-COSIST scheme is also acknowledged.
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