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Two-color interference stabilization of atoms
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The effect of interference stabilization is shown to exist in a system of two atomic levels coupled by a strong
two-color laser field, the two frequencies of which are close to a two-photon Raman-type resonance between
the chosen levels, with open channels of one-photon ionization from both of them. We suggest an experiment,
in which a rather significantup to 90% suppression of ionization can take place and which demonstrates
explicitly the interference origin of stabilization. Specific calculations are made for H and He atoms and
optimal parameters of a two-color field are found. The physics of the effect and its relation with such well-
known phenomena as light induced continuum structure and population trapping in a three-level system are
discussed.
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I. INTRODUCTION is that all the components of the teng@y are approximately

A. Interference stabilization equal to each other

Interference stabilization of Rydberg atoms, or strong- Fi(”"”)zl“. 3
field suppression of photoionization, is knoyh?2] to be a ) o ! . .
phenomenon related to the coherent repopulation of level&Nis assumption is pretty well fulfilled for high atomic Ry-
neighboring the initially populated one. Such a repopulatiorfl2€rg levelsn,n’>1|n-n’|<n (see explanations in Ref.
arises owing to Raman-type transitions via the continuuni2)- It should be noted also that for Rydberg levels their ac
and in the case of a single-color field it can be efficient onlﬁtark shift, as well as the shift of the ionization threshold are

. : 5
if the field is strong enough. Specifically, the strong-field€dual approximately to the ponderomotive enetgydo
criterion for the effect of interference stabilization is formu- @nd identical to each other, and this common shift does not

lated qualitatively as the requirement for the ionization width@ff€ct either the dynamics of photoionization from Rydberg

Ff“) of the initially populated atomic levek, to be larger Iev_(?Ls or_thel eff[ect OJ |Intt_erferﬁ_n(r:]etﬁtab|]L|rza';|or;._ terf
than the spacing between neighboring levels € simplest model, in whic € efiect of Interterence

stabilization exists, is the model of two close atomic levels

ri(m > |E,— Enad, (1) E; and E, connected with each other by the Raman-type

transitions via the continuum, for which the conditiofi3

where n is the principal quantum number. The ionization and(3) are fulfilled and the ac Stark shift has the same fea-
width is determined here as the rate of ionization calculatedures as described above for Rydberg levels and, actually, can
with the help of the Fermi golden rule. However, repopula-be ignored. In both two-level and multilevel systems there
tion of neighboring Rydberg levels is provided, actually, byare several different theoretical approaches one can use to
the off-diagonal terms of the tensor of ionization widths solve the problems of strong-field photoionization and stabi-
™" In the approximation of adiabatic elimination of the lization. One of them is based on the use of quasienergy or
continuum(which includes, in particular, the well-known ro- “dressed-state” analysis. The total wave function of an
tating wave approximatiof2]) this tensor is determined as a atomic electron in a light field can be expanded in a series of
direct generalization of the Fermi golden rule expression fothe field-free atomic eigenfunctions

"
| W= C,(t)i, + (continuun. (4)

rM™= Zedn|dExEdn)| 2 .y o
2 E=E, o In the approximation of adiabatic elimination of the con-
tinuum equations for the coefficient§,(t) are stationary,

where gy and w are the laser field-strength amplitude and and in the simplest case of the two-level system they have
frequency,d is the projection of the atomic dipole moment the form

upon the direction of light polarizatiol, is the energy of the

atomic electron in the continuum, and atomic units are used
throughout the paper if not indicated differently. So, the next
crucial assumption in the theory of interference stabilization

1C1(D) = EaCalt) = = T [C1(0) + (0]

g i

iCy(t) — ECo(t) == EF [Ca(t) + Cy(D)], 5
*Electronic address: fedorov@ran.gpi.ru
"Electronic address: nickel@aha.ru where the approximatio(8) is assumed to be fulfilled.
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FIG. 1. The functions Ify.(T")] (6).

As Eqs.(5) are stationary, they have solutions of the form
Cyxexp—iyt), wherey is a complex quasienergy. When
this exponential dependence bis substituted into Eqg5),
they turn into a set of two algebraic homogeneous equations,
which has a nonzero solution if its determinant turns zero.
This is the condition from which the two quasienergies of the
field-driven two-level system have to be found, and the result FIG. 2. A scheme of two atomic levels under the conditions of a
is given by Raman-type resonance in a two-color field.

1 . . . _ .
_Z . [E_FE 2_T12 sponding frequencies and field-strength amplitudes. In a
Vi 2{El+ E;-i I+ V(E;-E)~-T7 6) scheme of Fig. 24 is the Raman-type resonance detuning
From here we see that, indeed, a drastic change in the form A=Ey+ w;—E;~ ws. (7)

of the solutions occurs when the interaction constarte- o
comes larger than the level spacifg—E,. The pointT The frequency of the pump field is assumed to be smaller

=E,-E, is the branching point, below whictat I'<E, then the binding energy of the initially populated lews),
—E,) the root square is real in EG6), whereas above the wg<|_E1|, to exclude a direct photoionization of an atom by
branching point(at T'>E,—E,) it becomes imaginary. The this field. , , .
imaginary parts of the quasienergigs(6) are shown in Fig. Under the action of the pump the first Floquet satellite of
1, and they determine the field-dependent widths of the twdhe levelE; takes the form of an autoionizinglike leveh
quasienergy level§.(eo) =2|Im[ y.(I)]|, whereT'«ce? (2). T2 at the t_)ac_kgrpund_of the contlnuum(zv)wth (tzhz? width
One of the two branches arising Bt> E,—E,[y.(T")] cor- equal to the ionization width of the leveh, I''"=I"" (2)

responds to a narrowing quasienergy level whose widtvith &o substituted byes. Thg probe field ionizes the atom
I'.(eo) falls with a growing field-strength amplitude. This and takes the Floquet satelliig + w, for an almost real au-

corresponds to an increasing lifetime of this quasienerg 0|on|zmgf_|levﬁ(l, which glvesfrls;]a tod_the typical asymmetric
level and to stabilization of an atomic population at this(;no-prme-l e structure of the dispersion curg(w,)

level. ig. 3. . . .
The Fano minimum of the curve;(w;) arises owing to

interference of direct and indirect transitions to the con-
B. Laser-induced continuum structures, autoionizing tinuum (E; — E andE; — E’ — E,— E). But this is not yet a
resonances, dark states, and population trapping stabilization understood as an increasing suppression of ion-
ization with a growing light intensity. An experiment we sug-
gest and discuss below can explicitly demonstrate such an
Qnterference suppression and stabilization of an atom in its

Though rather attractive by its simplicity, an isolated two-
level system obeying the requiremé®j can hardly be eas-
ily found in the usual atomic spectra. This is the reason wh
here we consider another scheme, in which two atomic levels
with significantly different energies and bound-free dipole
matrix elements are connected with each other by Raman-
type transitions via the continuum in a two-color figkig.

2). Such a scheme has been widely discussed in the literature
[3-14 in connection with the phenomenon of the light-
induced continuum structur@ ICS), briefly outlined below.

The process we suggest and investigate, as well as its simi- .

larity and differences with LICS are discussed in Sec. | C. Eto,-E, o,

In LICS, one of the two fields of a two-color light is
assumed to be strorigw,,s,), the pump and the other one FIG. 3. The Fano profile of the dispersion cumgw;) at an
weak[(wy,¢1), the probg wherew; , ande;, are the corre-  autoionizinglike resonance.

w;
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bound states. We will assume that both fields can be equallgtrong field, in addition to ionization broadening and mixing
strong and in this sense the effect we consider can be ref levels, we have to take into account also their shifts and

ferred to as a strong-field LICS. mixing arising owing to the ac Stark effect. Both these ef-
It should be noted that the channel of ionization shown infects can be described in terms of the complex polarizability

Fig. 2 by a dashed lingtaken into account for the first time tensora; j, i,j=1,2,

in Ref.[5]) determines a nonzero height of the Fano curve in

its minimum. As we will see below, this is just the competi- @ i(0) = () :f dEld, E|2< 1 S 1 )

tion of this noninterfering channel of ionization with inter- E-E-w-i6 E-E+o

fering ones that is crucially important for optimization of (8)

stabilization in its dependence on light intensities.
At last, another well-known analogue of LICS is relatedand

to single- and double strong-field resonances at real autoion- 1 1

izing atomic levelg7,15-18. The physics of this phenom- @, = f dEdZEdE1< — + ) ~ ayp,
enon and LICS are close though there are evident differences E-Ei-w-i6 E-Ejtw
concerning mechanisms of level broadening. These differ- (9)

ences make autoionizing resonances not as closely related to ) _ _ i _

the phenomenon under consideration as LICS. The same cdf1€r€ intégration oveE includes summation over interme-
be said about dark states and population trapping in a thrediate discrete states. _ o ,
level systen{19—23. The physics of all these phenomena is 0" the two-color schemgig. 2), similarly to Eq.(4), in
similar though important details are different. In particular, € rotating wave approximation the wave function of an
this concerns intensity-dependent mechanisms of levéitomic electron can be written as

_brogdening and an ir_n_portant role of the noninterfer_ing io_n- W = C,(H)e 1y, + Cy(t)e 2y, + (continuum.  (10)
ization channel specific for the scheme under consideration

and missing in a three-level scheme. In addition, the atomiés well as Eqs(5), equations for the probability amplitudes
continuous spectrum is so much wider than any discrete thir€1(t) and C,(t) are obtained from the Schrodinger equation
level that this makes characteristic intensities in the phenomwith the help of the procedure of adiabatic elimination of the
enon to be discussed absolutely different from those in theontinuum. In terms ok ; (8),(9), these equations can be
population trapping effect. presented in the form

. ~ 1
C. An experiment we suggest iCy—[Es(t) + @1]Cy = - Zslo(t)szo(t)alz(:Za

Let us assume that the initially populated level in a
scheme of Fig. 2 i€E;. At the first stage, by considering L= 1
ionization of an atom by the field, alone(with £,=0), we iC2— (Bot) + ) Co =~ Zero(Deao()an Gy (1D)
select the peak light intensily:sfl&r and pulse duratiom
high and long enough to provide almost complete ionizationyhereE;(t) are the slowly time-dependent adiabatic complex

of an atom by a puls&(l;,1,=0)=1. Then, by adding the energies of the ac-Stark-shifted and broadened levels
field e, we expect that under proper conditions, owing to

interference effect, the combined action of two fields will
result in a significant suppression of ionization. In other
words, we expect that the functiom(l{,l,) in its depen-

B0 =6~ Jla(onsdl + aoledod). (12

dence orl, at a given selected value bfwill start from 1 at IIl. QUASIENERGIES
[,=0, then it will have a minimum at some intensity=1,,
~ 14, and then, at higher intensity, w;(I1, 1) will return to 1 For the time-dependent pulse envelopgstt) ande,q(t),

again. The region arounid, will be interpreted as a stabili- Egs.(11) have to be solved as the initial-value problem. In
zation window. The interference origin of stabilization is evi- the model of constant field-strength amplitudes these equa-
dent, because with a growirg (at a givenl,), we increase tions have stationary solutionS; ,=exp(-iyt), where, as

an energy that can be put into an atom. But, counterintupreviously,y is the complex quasienergy for which we get
itively, this additional energy results in a slower rather thanthe solutions generalizing those of E&)

faster ionization, and this can be explained only by interfer-

ence eﬁect_s. We_will finc_i values of the resonance detun_i_ng v, = }{El + o, +’E2 +w,+ D}, (13)

and the ratio of intensitiek,/1; which optimize the stabili- 2

zation effect. where

Il. THE MAIN EQUATIONS D= \/ZZ+ %alzausiosgo (14

Compared to a simplified system of two close levelsina
single-color field described in the Introduction, to appropri-and A is the time-dependent complex detuning for the ac-
ately characterize a system of Fig. 2 in a two-color arbitraryStark-shifted and broadened levél®)
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A :EZ + w) _El - w;. (15)

Imaginary parts of the energi?é (12) are related to the
ionization widths determined by imaginary parts (k)
=df of the polarizabilitiesy; (8)

1
Im(El) == Erll

1
Im(E,) = - E(F(Zl) +I'?), (16)
where
1
Iy = Eaz(wl)‘?io:
1 " 1 "
F(zl) = Eaz(wl)sio, and F(ZZ) = Eaz((oz)sgo. (17

The widthF(Zl) is determined by transitions from the levs)
under the action of the field,, (the dashed line in Fig.)2
As E,>E; and w;> w,, typically,

dj(wy) < dj(wy) or T <T,. (19)

Similarly to Eq.(17), the off-diagonal component of the po-
larizability tensor(9) determines the off-diagonal component
of the ionization-width tensor

1 " 2
5012810820~ VI,

.=
122

(19)
which assumes, in particular, that],=\a](w1)dy(w,).
Imaginary parts of quasienergies (13) are related to the
width of quasienergy levelk,

Iy ==2Im(ys). (20)

IV. PROBABILITY OF IONIZATION

The above described quasienergy solutions of Etb.
are most appropriate for solving the initial-value problem in
the case of pulses with rectangular envelopes{t), with
sudden turn on and turn offit t=0 andt=7) and &; 5((1)
=const at G<t<r. With known quasienergies. (13) the
time-dependent probability amplitudeS,; ,(t) to find an
atom in its bound stateg¢; and ¢, can be presented in the
form

Ciat) = AT exp(—i yt) + AT, exp(—i yt),  (21)

whereA7 , are constants to be found from the initial condi-
tions

Af+A7=1 and Aj+A;=0 (22)

and from equations connectiig with A3. The latter follow,
e.g., from the first of Eqs(11)

YA~ (Eq + 0 AT = = 2510820012 A;. (23

PHYSICAL REVIEW A69, 033404(2004

The total residual probability,.{7) to find an atom in
bound states dt=7 is given by the sum of partial probabili-
tiesw;(7) andw,(7) to find an atom at levelg; andE,,

Wred 7) = Wi(7) + Wo(7), (24)
where
Wy A7) =[Co A7) = |A] £7 7 T+ AL LT R (25)

The probability of ionization is given by;(7)=1-w,c{ 7).
Equations(22) and (23) are easily solved to give, explic-

itly,
1 2 A 2
wy(n==1{1-— e‘i7+f+<1+—>e“7—T 26
1(7) 4( D) D (26)
and
WZ(T) - aizs—i)sgole—ihr_ e—i y_7'|2. (27)
16 D?

In the case of pulses with smooth envelopes(t) quasien-
ergy solutions are not so useful for solving the initial-value
problem, and one has to solve directly E(l) for the time-
dependent probability amplitude; (t).

V. SCALING EFFECT AND RELATIVE UNITS

With the help of a phase transformation

Ci(t) = exp— i(E; + w)t}A(t), (28
Egs.(11) can be reduced to an asymmetric form
o1
iA; + Z{al(wl)gio(t) + al(wz)ggo(t)}Al
1
a Zslo(t)szo(t)alz Az (29)

and

. 1
iAy— | A- Z{QZ(wl)SiO(t) + 012((02)850(0} Ay

1
=- Zslo(t)Szo(t) az1 A,

where, as previouslyA is the weak-field two-photon-
resonance detuning@).

Though not as nice as E@l1), Eqgs.(29) are more con-
venient to describe the scaling effect existing in the system

under consideration. Let us assume that both pulse envelopes

g10(t) and e,o(t) depend on time only via the ratiot/ 7,
where 7 is the pulse duration common for both high- and
low-frequency pulses. Then, evidently, the arguments of the
functionseqo(t) ande,o(t) do not change if we divide both
and 7 by the same factox, t—t/\, and7— 7/\. Moreover,
one can see easily that Eq29) do not change too if we
multiply simultaneously both low- and high-frequency pulse
peak intensitieslvzzc‘sizo/&r and the weak-field detuning

A by the same factok. So, the solutions of Eqg29) are
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invariant with respect to the scaling transformation 1.0 €.:0/&12
A — \A, sizoﬂ 7\8%20 T— 1\, t—1tIN (30)
0.8

with an arbitrary\. This scaling effect can be important for
practice: parameters of an assumed experiment can be varied 0.6F
to choose the most convenient conditions for observation the
two-color stabilization effect discussed in this paper. In par- 04k
ticular, by making laser pulses longer, one can use rather
moderate-intensity lasers, as is shown below. 02k 2710001 {0 \O

Owing to the the described scaling effect, it is convenient t
to introduce and use the dimensionless ratio of intensxjes L L L L
interaction timed and detunings, -1.0 -0.5 0 0.5 1.0

|y _ _A FIG. 4. Pulse envelope@5) at three different values of the
X= 1, o=, &= 1, (31) smoothing factor.
dimensionless complex quasienergies
plexq g N(a)—(1+a)2{1 2+3a } (36)
-E -w - 2 B 312
gz (32 2 a+a
1 such that
detuning for the ac Srark shifted and broadened le(&2s H2N
< . f sizo(t)dt =7 8%,201 (37)
~ -7/2N
o= 1. =0~ Z{az(wl) + (1) + [ay(w)) + ax(wp) X}, "
1 anda is a smoothing parameter. At— o, N(a) — 1 and the

(33  envelopese; »(t) (35 turn into the rectangular ones. At
and widths of the fully dressed quasienergy levels =0,N(0)=3/8, andey »((1) (35) takes the form of a pure sin
pulse envelope

Iy

+ = ==-21 + . 3t 1
G Il rr{y_] €1 20(t):81 205|nz|:77<_+_>:|. (38)
' ' 8r 2
1 ~ ~, 1
= E[a’l’(wl) +dj(w)x] -8 F Im( \/ &+ Zaﬁx) , By definition, for the pulse envelopes of the fo8b), at all

values of the smoothing factarthe peak values of the field
(34)  strengths and areas under the cursrég(t) (field energy per
unit cross sectionare kept constant and equal 49 5o and
sizor, correspondingly(see Fig. 4. Hence, at alla the pa-
rameterr can be interpreted as the pulse duration determined
by the condition(37). For all a the dimensionless pulse du-
ration is determined as previouslys1, X 7 with bothl; and
7 taken in atomic units.

wherel, 5, A, 7, v, andI', are in atomic units. Defined in
such a way, quasienergigs and widthsg, depend only on
two parameters and 8, whereas the probability of ionization
w; and the residual probability to find an atom in bound
statesw,. (24)—(27) depend on three parametexs 6,
and 6.

VI. PULSE SHAPE

. . . . VII. OPTIMIZATION OF THE LEVEL-NARROWING
The concepts of quasienergies and quasienergy functions EEEECT

are very fruitful for an analysis exploiting a model of a rect-

angular pulse envelope. Such an analysis is useful for clari- Optimization of the stabilization and level-narrowing ef-
fication of physics of the phenomenon under consideratiorfects assumes minimization of the width of the narrower
However, more realistic laser pulse shapes are characterizegiasienergy levad.(d,x) with respect to two variable§and

by smooth envelopes. To investigate a sensitivity of the rex. As a first step in a solution of this problem, let us minimize
sults to be derived on the pulse shape and its smoothing, w&.(8,x) with respect to the field-free detunirdat a givenx.

will consider pulse envelopes t) of the form Typically, at any giverx, in dependence o#, the functions
_— g:(8,x=cons} have well pronounced minimum and maxi-
(1+ a)sinZ{w(N(a)— + —)} mum (Fig. 5. _
T 2 Specifically, the curves of Fig. 5 are calculated for a He

e12d1) = €120 . (39 atom atx=0.1. Details of these and many other calculations,

l+a sinz{w(N(a); + E)J as well as the data about frequencies, atomic levels, and po-
larizability tensors are given in the following section. Here

where g, yo=const, —1/X(a)<t/7<1/2N(a), N(a) is the the picture of Fig. 5 is shown as a typical example of the

normalization factor dependencieg.(8,x=cons}. To find a position of the extre-
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L of 1/x at largex, x>1. The constant term in this expansion

£(®) [ 15 vanishes and the first nonzero term is given by

i 1 ay(wy) a(wy)

Oopi( X),X) = 43
1o 982020 = 5 = (43
This result shows that at largethe width of the narrower
2.(5) 5 quasienergy leval, decreases and tends zero ag.This is
o B an indication of a possibility of the unlimited narrowing of
L L L L 0 this quasienergy level and, hence, achievement of a very
—40 -30 20 -10 high degree of stabilization. Real limitations of narrowing

and stabilization are determined by the applicability condi-
tions of the model. For example, at very large valuex thfe
o ~ second-field intensity can become too high for the ATI pro-
mum shown in Fig. 55,,(x), we have to solve the equation cesses in this field to be ignored. In accordance with Eq.
dgi(é)/d5=0 Direct calculations show that this condition is (40), at the opt|ma| conditions the increasexois accompa-
satisfied if m{["[sa’;z]Z}:o, which gives two equations nied by a linear increase of the field-free detunifigThis
Re[’3a12]=0 and |nf3a*12]=0- It can be checked directly that gives other_ Iimitatio_ns for the growth of: at su_fficiently
only the second of these two equations corresponds to t rge detunings the influence of atomic levels different from

extremum we are looking for, and this equation gives 1 anq E; and not taken into account in the model can be-
' come important. At last at very larggeven the above rotat-

ing wave approximation can become invalid. But, on the

FIG. 5. The functiong.(8) =g.(8,x=consj (33).

aj, 8'—djy 8 =0, Gop= a_]ﬁtz‘g,’ (39  other hand, these limitations are not too severe, and rather
12 significant level of narrowing and stabilization of an atom
or can be reached under quite realistic conditions. These con-
clusions, as well as the general result about asymptotic de-
1), , e . crease of the narrower-level width at largeare confirmed
Sopt(X) 2 ay(wy) — aj(wy) _a_rlrz[aZ(“’l) ~ aj(wy)] and specified in the following section by direct numerical

X ! ! a, 1 1
+ Z{az(wz) —ay(wy) - _,l,z[az(wz) - aj(w))]
24V

It should be noted that the cundg,(x) includes the point
(80:%9) Where the complex detuning between the ac-Stark

} calculations for hydrogen and helium atoms.
(40)  shifted and broadened leve($5) turns zero,5=0. At this

point
As explained aboveg,,(x) is a value of the field-free de- ) .,
tuning, at which the width of one of the two quasienergy - ay(wy) — dy(wy) (44)
levels (y,) has a minimum with respect té at arbitrary dy(wo) = d(wy)

given x. As is seen from Eq(40) the optimal detuning
dopiX) is a linear function of the ratio of intensities
=l,/1;. Note that the linear dependence &f, on I, at a 1, , ) ,
given |, agrees with one of the results of R€]. d0=jlas(w1) — (@) + X[ ag(wy) — (@) ]} (49)
The second step in optimization conditions for stabiliza-
tion requires minimization of the widtly, calculated ats
= JopdX) With respect to the variable. With the help of the
second equatio(B9) the “5-optimized” widthsg.(S,p(X) ,X)
can be reduced to the following rather simple form:

and, in accordance with E§40),

VIIl. NUMERICAL CALCULATIONS FOR A He
ATOM

L 1 All the required numerical data are known for selected
_T o _ — 2. 02 levels in hydrogen and helium atoms. To a very large extent,
gi(ﬁopt(x)’x)_zal(wl) Fop>) T \/[5"“()()] T2 the results obtained for these two atoms appear to be very
(41) similar. For this reason, below, the results of calculation of a
helium atom are described in detail, and then a short sketch
where of calculations for a hydrogen atom is given to demonstrate
mainly the arising differences and peculiarities of each atom.

~ 1
Sopl¥) == Z[aZ(wl) - dj(w) + d(w)X], (42
A. Widths of quasienergy levels
and in Egs.(41) and(42) we have puta)(w,)=0, which is Let us consider the following two levels of a He atom and
true in the casev,<|E|. the following two frequencies:sPs=E; and Js4s=E, and
By using Egs.(41) and (42) we can find easily the w;=8.44 eV (the second harmonic of a dye lasand w,
asymptotic expansion of the functign(d,p(x),x) in powers  =1,17 eV(Nd:YAG lase). For these levels and frequencies
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0.1 0.2 0.3

FIG. 6. The relative widths of quasienergy levels of a He atom  FIG. 7. Three typical curveg,(5=constx) for He calculated at

0+(X) calculated av= 45, (47).

all the polarizability tensor componeng8), (9) are known
[23,24, and in atomic units they are equal to

ay(wy) = —30.42 + 22.65, a;(w,)=—236.6,

ay(wg) =—45.66 +H 3.21, ay(wy) =—479.96 4 124.55,

ay,=38.74 + 53.07. (46)

The point where the dressed-level detun'ﬁlq15) [or%

(33)] turns zero,Z:';S:O, has the following coordinates in
the plane(x, &}:

%=0.156 and &=-13.3. (47)

6=-11, -15, and -23from the left to the right

be found from the equatiod=Jy,(x). The x-dependent
width of the narrower quasienergy level, minimized with re-
spect tod, is given byg"(x) =g.(S,p{(x),X), and its depen-
dence orx is given by the curve of Fig. 8.

A monotonous fall of the functiog?""(x) means that the
x-dependent width of the narrower quasienergy level, mini-
mized with respect to the detuni®ytends to zero at asymp-
totically large values ok. In other words, in the framework
of the used model one of the two quasienergy levels of the
system can be narrowed unlimitedly by means of increasing
the ratio of intensitiex=1,/1, and the field-free detuning|
in such a way that the equatia¥r &,,(x) remains satisfied.
Real limitations of such a narrowing are determined only by
the model applicability conditiongi) at very large values of
x the second-field intensity, will become too high to ignore

The relative width of the fully dressed quasienergy levelsabove-threshold ionization produced by this field gingat

0+ (34) are shown in Fig. 6 in their dependence @t
=& At this value of the detuning, the curvesg,(x) and

very large values ofd| other levels ignored above can be-
come more important and, g| ~ w,, the rotating-wave ap-

g-(x) cross each other twice. The left and right crossings turproximation can become invalid. But at sufficiently long

into the avoided crossings, correspondinglygzat-11.3 and

pulse durationg and low first-field intensityl; these limita-

0=<-22.4, and both crossings never turn into avoided crosstions are not too severe, and the achievable degree of nar-

ings together.

For the polarizability tensor of Eq46), the expression
(40) for the optimal-narrowing detunin@,(x) takes the
form

Sopi(¥) = = 0.26 — 83.5%. (49)

In the picture of Fig. 7 the widtlg,(J,x) of the narrower

quasienergy level is plotted in its dependence on the intensity

ratio x at three different given values of the field-free detun-
ing 8. The curve ats=-11 differs qualitatively from two

other curves. The difference arises because for this curve the

detuningd is large enough for the left crossing of Fig. 6 to
turn into the avoided crossing. The sharp peak of the curv
g+(6=-11x) at Fig. 7 is an indication of the root-square
branch-point-like behavior, which takes place &t—-11.3
and which is similar to the root-square branch-point behavio
of the curve of Fig. 1 fory, in an idealized two-level system
of Sec. | A.

rowing can be rather high.

B. Probabilities of ionization and nonionization

The residual probabilities to find a He atom in its bound
states after interaction with a two-color field in the case of a

&"'(x)

1.50
1.25
1.00
0.75

e
0.50

r

0.5 1.0 1.5 2.0

The minima of all three curves at Fig. 7 are seen to be FIG. 8. The width of the narrower quasienergy level of a helium

getting deeper the larger i%|. Positions of these minima
XMN(5) are determined by the optimal detuni(g) and can

atom g™"(x), minimized with respect to the detuningj in its de-
pendence Ox.
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w,.(8, x) w;
1.0F 1t
W, (8,,(x), x) ®)
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0.4 d
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0.2
02} . 1/1,
2 z ¢ 8 10 05 1 15 2 25 3

FIG. 9. The residual probability to find a He atom in bound  FIG. 11. wi(l1/1g) at =313, 8==30Qle/11) and 6=0.1(14/1¢)
states calculated #=-100, —250, and —50@rom the left to the (&) andly/lg (b).

ight d o=, 48) (th =0.1. - L
right an oplX) (48) (the upper curvi ¢ surements, the probability of ionization in its dependence on

- : I,¢1, is given by the curves of Fig. 11. In this picture the
rectangular envelope is determined by EG, (26), and | tensity |, is expressed in units of an arbitrary constant in-

(27), and the results of the corresponding calculations ar% . B a ) .
shown in Fig. 9. The three resonance like curves correspon nsitylo atx=1,/1,=3. The detuningh and pulse duratiom

to three different values of the field-free detunidgThe  &'¢ taken to be equal ta=-200, and_TZO._l/Io(a) or
envelope of peaks of these curves is the maximized residuail/!o(b). v'vhe.reA, i andIO, are in atomic units.
probability equal tow,ed op(X),X) With Sop(X) given by Eq. Normallzanon by an arb|t_rary Constai@treﬂe_!c_t_s the scal-
(48). These results show that the functispy d,p(X),X) mo- ing effect descn_bec_i above in Sec. V. A _p_ossublhty to choose
notonously grows approaching one at large values dhis any value 9”0 mdmatgs a large erX|b|I|ty_ of the system
means that under optimal conditions stabilization of a Heunder_qon&deratlon with respect to a choice pf Ofﬁthe light
atom in a two-color field can be very high, more than 90%_|nten5|tlglso and E]szlse duya’uon; FSf exampldo#10™ a.u.
The picture of Fig. 10 shows the distribution of the re-(ze’Xl1 W/cnr), the intensityl,=3x 1, does not exceed
sidual probability between the levels and E,. Under the .3X 10" W/cn in the variation range df, at Fig. 11, which
conditions of optimal stabilizatiofd= d,,(x)] at sufficiently '3 low enough for no AT effects to take place. And, under
high value of the intensity ratia, the ratio of probabilities the best stabilization conditions, the detuniagand pulse

w; /W, falls tending asymptotically to zero. This means thatduration are eqcl;al_ /tO_AO;_2400__2'4X 10 au.
under the optimal stabilization conditions, interference sup-~ OT-ﬁ65 eV “’1? 'a;n 1_11 lo=10 aI'L;'N 3hps. bilization bi
presses not only ionization but also excitation of the l&ugl € curves ot Fig. 11 are typlca or the sta "Za“‘.’T‘ pic-
which can be seen experimentally also. ture. Wlth a growing light intensity, at f|rs_t, the probability of
ionization growgperturbation theory regionthen falls, and

In all pictures of this sectioifFigs. 6—10 the calculated o S ) g .
values are plotted in their dependence on the intensity xatio this is the .beg'”f.“”g of the stabilization window, andi flnaply
ows again, which corresponds to the break of stabilization.

To see such dependencies in experiments one has to ma tabilization and its break arise because, owing to the ac
for example, a series of measurements at different values ’ 9

the second-field intensitl, at a given first-field intensity;. tark shift and level mixing, with a growing light intensity
Another possible way of an experimental investigation isthe system comes to and, then, goes out of th_e resonance
keeping the ratiok=1,/1, constant and changing both inten- conditions, optimal for fully dressed-level narrowing and in-
sities synchronously. Calculated for such a scheme of me&grference stab|||zat|or.1.. Curvéb)_ of Fig. 11 indicates an .
appearance of an additional region between the perturbation
wyw, theory and stabilization zone at a sufficiently long pulse du-
04 ration 7. This is the region of the total ionization of an atom,
wherew,=1. This means that at some intermediate intensity
light pulses provide a complete ionization and at a stronger

0.3 field, owing to interference, ionization becomes rather small
(w;~0.2). In absolute values, the minimal achievable prob-
ozl ability in the stabilization region is somewhat lower in the

case of short pulses=0.1,/1,) [curve(a) of Fig. 11]. But

the degree of stabilization can be determined alternatively as

o1}k the ratio of the maximal probability achievable in the region
between perturbation theory and stabilization regions to the
minimal value ofw; in the stabilization window. In terms of

é "1 é P 1'ox such a definition, the degree of stabilization is much higher
in the case of longer pulsés=1,/1) [curve(b) of Fig. 11].

FIG. 10. The ratiow,/w; for a He atom ats= op(X) (48), 6 Of course, a further increase of the pulse duration flattens the
=0.1. curve of Fig. 11 in the stabilization region and decreases the
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W8, %), W, [8,,(x), x]

0.7

0.6

0.5

-500 -400 300 -200 —100 0.4

FIG. 12. W,d ) atl,=3l, 1;=1.2, 6=0.12(a), and 1.2(b). 03
degree of stabilization. In this sense, the pulse duration cho
sen for the curvd of Fig. 11,7=14/1,, is close to the optimal
one.

The_picture of F!g. 12 (_:haracterizes_ s_pectral features of £ 13. A series of curves,.{ 8, at various given values of
the residual probability to find an atom in its bound states athe detunings and the functionw,ed 53%(x),] (@ thick curve for a

the beSt Stabl|lzatI0n COﬂdItIOI’]S Of F|g 1“2:/'1:3, Il/IO He atom and the Sﬁfpu'se enve|opeEq. (38)]
=1.2, 6=0.12 (@) and 1.2 (b) (which corresponds tor

=0.1/15 and 7=1/1). stead of 90% Moreover, curve 3 of Fig. 14 shows that in
Curve(a) of this picture looks similar to the Fano curve of the case of a smooth pulse envelope the residual probability
Fig. 1. This shows that at=0.121, still, the effect of sta- remains more or less stable in a rather large variation interval
bilization under discussion can be interpreted as a strongdf the intensity ratiox, approximately from 0.5 to 5 and
field LICS. But in the case of longer pulses; 1.2/ [curve  more. This shows that the effect of stabilization is rather
(b) of Fig. 12 similarity with LICS practically disappears. robust.
The only reminder about a remote connection with the Fano Another interesting effect seen rather well from compari-
curve is a slight asymmetry of the curbeof Fig. 12. Apart son of curves 2 and 3 of Fig. 14. These two curves are
from this, curve(b) describes the effect of interference sta- calculated at the coinciding dependencies of the detuding

bilization in its pure form. on the intensity ratio parametgy 6= 5§E‘t(x) (49). As is seen
well from Fig. 14, atx<1 the curve 3 goes above the curve
C. Smooth envelope 2. This means that at the same detunings the residual prob-

) . ability to find an atom in its bound states in the case of
All the results described above were derived for pulsegmooth envelope pulses exceeds the same probability at a
with a rectangular envelope. Usually, envelopes of short lasgiactangular pulse envelope. In other words, in this range of
pulses are smooth. To consider such a more realistic situgne intensity ratio parametersmoothing of the pulse enve-
tion, we have solved general equatioiid) with the sif  |ope increases rather than reduces the degree of stabilization.
pulse envelopeg38). The results of such a solution are Thjs conclusion follows directly from calculations though it

shown in Fig. 13, which is a direct analog of Fig. 9. Again, ajooks counterintuitive and, in this sense, rather interesting.
series of resonancelike curves describes the residual prob-

ability of finding an atom in its bound stateg.{5,x) at
various given values of the detunidgand the intensity ratio

x considered as the independent variable. The residual prob-
ability maximized with respect to the detuniégs the enve-
lope of the peaks of these curves. In Fig. 13 such a maxi-
mized probability is approximated by the functions
Wied Sopi(X) ,X), Where 553(x) is the empirically found linear
function providing the best fitting to the peak envelope.

Sm(x) = 3.122 - 73.. (49)

In Fig. 14 we plot the maximized residual probability to
find He atoms in bound states calculated in the cases of rect-
angular(curves 1 and Rand sif (curve 3 pulse envelopes

. X

at 6= 5g%°tt(x) (48) (the curve } and 5= 55p(x) (49) (curves 2 02, ; 5 5 ; .

and 3. Comparison of curves 1 and 3 shows that a transition

to a smooth envelopey(t) reduces a little bit the maximal FIG. 14. The functionw;gg{gg%cttx),x] D, W;gg[bgﬂ(x),x] ),

achievable degree of stabilization compared to theandw(y 55ri(x),x] (3) with (x) and &5(x) , x given by Eqs(48)
rectangular-envelope case, but not too m@eb—75% in-  and(49), respectively.
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FIG. 15. The functiong.(5,X) (33). - . . . . X
0 1 2 3 4 5 6

IX. HYDROGEN ) )
FIG. 16. The functionw,edx) in a three-level scheme af

In a hydrogen atom, all the polarizability tensor compo-=-530, §=0.1, and the envelope smoothing parameter in(B8)
nents are known for the levelssand % and frequencies a=100,10, and 0.1from top to bottom.
w;=4.02 eV(XeCl lasej and w,=1.17 eV(Nd:YAG lase)
[20]. In atomic units they are given by

s 1
iICy—[E1(t) + @1]Cy == —g10(t)ex0(t) (a15,Cy + a13C3),
ay(wy) = - 45.56 4 27.29, ay(w,) =179.92, v A

az(u)l) == 4566 +i 178, az(ﬁ)z) == 51376 'H 9383, L ~ 1
iCy—[Ex(t) + w,] Cy=— Z8lo(t)820(t) a1Cq

a1,= 6.56 +i 50.60. (50) )
2
The data (50) show, in particular, that T"/T; - Z[a23(w1)810(t)
=d(w,)/ aj(wy) ~6.5X 1072, which means that the assump- )
tion (18) is pretty well satisfied. + ap3(wp)esy(t)] Ca(t),

Rigorously, in a hydrogen, there are other levé&d and
5f) of almost the same energy as. ®wing to the selection ) — 1
rules, the level §is not connected either withsdr 5s levels iC3—[Es(t) + wp] C3=— Zslo(t)szo(t)alscl
by two-photon Raman-type transitions and, for this reason,
can be ignored. As for the leveld5in principle, it can par-

_= 2
ticipate in a scheme of two-photon Raman-type transitions 4[“23(“’1)810(t)

under consideration. However, by ignoring at first this addi- )

tional level let us consider a two-levet®s scheme, analo- + apg(wy)eqy(t)] Co(t) (52

gous to that of the previous section.

For this system the coordinates of the 0 point in the
{x, &} plane are given by

Xo=0.272, 8,=—47.2. (51)

whereE3 is given by the same Eq12) asEl andEz with
as(w, ) and new off-diagonal elements of the polarizability
tensor given by10]

_ i as(wy) =—43.26 + 0.42, az(w,) =-405.9+ 81.8,
At 6=6,, the calculated relative width of the fully dressed

quasienergy levelg, (34) in their dependence om are

Shown |n Flg 15. 0123(a)1) =0.74 +i 021, a23(W2) =68.61 +i 2163,
Compared with Fig. 5, the picture of Fig. 15 indicates the
first well pronounced difference between helium and hydro- 3= 6.15+ 11.69. (53)

gen. In the case of hydrogen the curves of widths of quasien-
ergy levels vs< have two avoided-crossing points whereas inFound from Eqgs(52) and (35) the residual probability to
the case of helium such a situation never occurs ané at find an atom in its bound states is shown in Fig. 16 for three
=&, there are two real-crossing poinsig. 5). different values of the pulse envelope smoothing faetor
Another important difference concerns smooth pulse en- Two rather interesting conclusions can be deduced from
velopes and the third level effect. To solve such a problemthis picture. First, a strong smoothing of pulse envelopes
we have to generalize Eq§10) and (11). In Eqg. (10), in  decreases the peak value of the residual probability to find an
accordance with the more general E4), there appears an atom in bound states. At the chosen value of the detuning
additional term C4(t)e“?'ys;. Then, equations forC;(t)(i 5=-530 in the case of pure Sipulses W,cdX) |max iS almost
=1,2,3 take the form twice as small as in the case of rectangular envelopes. The

033404-10



TWO-COLOR INTERFERENCE STABILIZATION OF ATOMS PHYSICAL REVIEW A9, 033404(2004)

smoothing induced decrease of the residual probability in théuning and the ratio of the two laser intensities. Specific cal-
case of hydrogen is much more significant than in the case afulations are carried out for hydrogen and helium atoms for
helium. couples of atomic levels and laser frequencies at which in-
The second effect seen in the picture of Fig. 16 concernformation about the complex polarizability tensors involved
the influence of the third level. This influence manifests itselfis available. Qualitatively, the results of calculations for hy-
in a shoulder on the curveg.{x), but the third level is seen drogen and helium appear to be very similar. This gives us a
not to affect the main maximum of the curves much. reason to think that the effect described is rather universal,
and can occur also at other atoms, levels, and frequencies.
The dependence of the effect on laser pulse shapes is inves-
X. CONCLUSION tigated. It is shown that in the case of helium atoms sensi-
To summarize, we describe and discuss a scheme of irlii_vity of the results to a pulge shape is_ lower than in the case
teraction of atoms with radiation of two lasers. Intensity andOf hydrogen atoms. In hel_u.Jm,. even |n.the case O.f smoath
pulse duration of lasers are assumed to be high and lon ulses, the degree of stab|I|.zat|on remains (ather tigbre
enough to provide full ionization in the field of each of these an 70%, and the gﬁect.emsts at this level in a.rather large
two lasers alone if only atoms are prepared initially at levelg 2N9€ of th_e Intensity ratio parameterThe descrlbed_ s_cal-
from which one-photon ionization can take place. We show"9 effect gives a pos_5|b|I|ty_ to select ranges of variation of
that owing to interference effects under the conditions closéhe laser pulse peak Intensities and pulse QUratlon In ranges
to Raman-type resonance between some two selected atonfltPSt convenient for experimental observation.
levels ionization of an atom experiencing a joint action of the
field of two lasers can be significantip to 90% sup-
pressed. Optimization of such a stabilization effect involves The work is supported partially by RFBR Grant Nos. 02-
optimization with respect to the Raman-type resonance ded2-16400 and 03-02-06144.
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