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The effect of interference stabilization is shown to exist in a system of two atomic levels coupled by a strong
two-color laser field, the two frequencies of which are close to a two-photon Raman-type resonance between
the chosen levels, with open channels of one-photon ionization from both of them. We suggest an experiment,
in which a rather significant(up to 90%) suppression of ionization can take place and which demonstrates
explicitly the interference origin of stabilization. Specific calculations are made for H and He atoms and
optimal parameters of a two-color field are found. The physics of the effect and its relation with such well-
known phenomena as light induced continuum structure and population trapping in a three-level system are
discussed.
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I. INTRODUCTION

A. Interference stabilization

Interference stabilization of Rydberg atoms, or strong-
field suppression of photoionization, is known[1,2] to be a
phenomenon related to the coherent repopulation of levels
neighboring the initially populated one. Such a repopulation
arises owing to Raman-type transitions via the continuum
and in the case of a single-color field it can be efficient only
if the field is strong enough. Specifically, the strong-field
criterion for the effect of interference stabilization is formu-
lated qualitatively as the requirement for the ionization width
Gi

snd of the initially populated atomic levelEn to be larger
than the spacing between neighboring levels

Gi
snd . uEn − En±1u, s1d

where n is the principal quantum number. The ionization
width is determined here as the rate of ionization calculated
with the help of the Fermi golden rule. However, repopula-
tion of neighboring Rydberg levels is provided, actually, by
the off-diagonal terms of the tensor of ionization widths

Gi
sn8,nd. In the approximation of adiabatic elimination of the

continuumswhich includes, in particular, the well-known ro-
tating wave approximationf2gd this tensor is determined as a
direct generalization of the Fermi golden rule expression for
Gi

snd

Gi
sn8,nd = Up

2
«0

2kn8uduElkEudunlU
E=En+v

, s2d

where «0 and v are the laser field-strength amplitude and
frequency,d is the projection of the atomic dipole moment
upon the direction of light polarization,E is the energy of the
atomic electron in the continuum, and atomic units are used
throughout the paper if not indicated differently. So, the next
crucial assumption in the theory of interference stabilization

is that all the components of the tensors2d are approximately
equal to each other

Gi
sn8,nd < G. s3d

This assumption is pretty well fulfilled for high atomic Ry-
dberg levelsn,n8@1,un−n8u!n ssee explanations in Ref.
f2gd. It should be noted also that for Rydberg levels their ac
Stark shift, as well as the shift of the ionization threshold are
equal approximately to the ponderomotive energy«0

2/4v2

and identical to each other, and this common shift does not
affect either the dynamics of photoionization from Rydberg
levels or the effect of interference stabilization.

The simplest model, in which the effect of interference
stabilization exists, is the model of two close atomic levels
E1 and E2 connected with each other by the Raman-type
transitions via the continuum, for which the conditions(1)
and (3) are fulfilled and the ac Stark shift has the same fea-
tures as described above for Rydberg levels and, actually, can
be ignored. In both two-level and multilevel systems there
are several different theoretical approaches one can use to
solve the problems of strong-field photoionization and stabi-
lization. One of them is based on the use of quasienergy or
“dressed-state” analysis. The total wave function of an
atomic electron in a light field can be expanded in a series of
the field-free atomic eigenfunctions

C = o
n

Cnstdcn + scontinuumd. s4d

In the approximation of adiabatic elimination of the con-
tinuum equations for the coefficientsCnstd are stationary,
and in the simplest case of the two-level system they have
the form

iĊ1std − E1C1std = −
i

2
G fC1std + C2stdg,

iĊ2std − E2C2std = −
i

2
G fC1std + C2stdg, s5d

where the approximation(3) is assumed to be fulfilled.
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As Eqs.(5) are stationary, they have solutions of the form
C1,2~exps−ig td, whereg is a complex quasienergy. When
this exponential dependence ont is substituted into Eqs.(5),
they turn into a set of two algebraic homogeneous equations,
which has a nonzero solution if its determinant turns zero.
This is the condition from which the two quasienergies of the
field-driven two-level system have to be found, and the result
is given by

g± =
1

2
hE1 + E2 − i G ± ÎsE2 − E1d2 − G2j. s6d

From here we see that, indeed, a drastic change in the form
of the solutions occurs when the interaction constantG be-
comes larger than the level spacingE2−E1. The point G
=E2−E1 is the branching point, below whichsat G,E2
−E1d the root square is real in Eq.s6d, whereas above the
branching pointsat G.E2−E1d it becomes imaginary. The
imaginary parts of the quasienergiesg± s6d are shown in Fig.
1, and they determine the field-dependent widths of the two
quasienergy levelsG±s«0d;2uImfg±sGdgu, whereG~«0

2 s2d.
One of the two branches arising atG.E2−E1fg+sGdg cor-
responds to a narrowing quasienergy level whose width
G+s«0d falls with a growing field-strength amplitude. This
corresponds to an increasing lifetime of this quasienergy
level and to stabilization of an atomic population at this
level.

B. Laser-induced continuum structures, autoionizing
resonances, dark states, and population trapping

Though rather attractive by its simplicity, an isolated two-
level system obeying the requirement(3) can hardly be eas-
ily found in the usual atomic spectra. This is the reason why
here we consider another scheme, in which two atomic levels
with significantly different energies and bound-free dipole
matrix elements are connected with each other by Raman-
type transitions via the continuum in a two-color field(Fig.
2). Such a scheme has been widely discussed in the literature
[3–14] in connection with the phenomenon of the light-
induced continuum structure(LICS), briefly outlined below.
The process we suggest and investigate, as well as its simi-
larity and differences with LICS are discussed in Sec. I C.

In LICS, one of the two fields of a two-color light is
assumed to be strong[sv2,«2d, the pump] and the other one
weak[sv1,«1d, the probe], wherev1,2 and«12 are the corre-

sponding frequencies and field-strength amplitudes. In a
scheme of Fig. 2,D is the Raman-type resonance detuning

D = E2 + v2 − E1 − v1. s7d

The frequency of the pump field is assumed to be smaller
then the binding energy of the initially populated levelE1,
v2, uE1u, to exclude a direct photoionization of an atom by
this field.

Under the action of the pump the first Floquet satellite of
the levelE2 takes the form of an autoionizinglike levelE2
+v2 at the background of the continuum with the width
equal to the ionization width of the levelE2, Gi

s2d;Gi
s2,2d (2)

with «0 substituted by«2. The probe field ionizes the atom
and takes the Floquet satelliteE2+v2 for an almost real au-
toionizing level, which gives rise to the typical asymmetric
Fano-profile-like structure of the dispersion curvewisv1d
(Fig. 3).

The Fano minimum of the curvewisv1d arises owing to
interference of direct and indirect transitions to the con-
tinuum (E1→E andE1→E8→E2→E). But this is not yet a
stabilization understood as an increasing suppression of ion-
ization with a growing light intensity. An experiment we sug-
gest and discuss below can explicitly demonstrate such an
interference suppression and stabilization of an atom in its

FIG. 1. The functions Imfg±sGdg (6).

FIG. 2. A scheme of two atomic levels under the conditions of a
Raman-type resonance in a two-color field.

FIG. 3. The Fano profile of the dispersion curvewisv1d at an
autoionizinglike resonance.
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bound states. We will assume that both fields can be equally
strong and in this sense the effect we consider can be re-
ferred to as a strong-field LICS.

It should be noted that the channel of ionization shown in
Fig. 2 by a dashed line(taken into account for the first time
in Ref. [5]) determines a nonzero height of the Fano curve in
its minimum. As we will see below, this is just the competi-
tion of this noninterfering channel of ionization with inter-
fering ones that is crucially important for optimization of
stabilization in its dependence on light intensities.

At last, another well-known analogue of LICS is related
to single- and double strong-field resonances at real autoion-
izing atomic levels[7,15–18]. The physics of this phenom-
enon and LICS are close though there are evident differences
concerning mechanisms of level broadening. These differ-
ences make autoionizing resonances not as closely related to
the phenomenon under consideration as LICS. The same can
be said about dark states and population trapping in a three-
level system[19–22]. The physics of all these phenomena is
similar though important details are different. In particular,
this concerns intensity-dependent mechanisms of level
broadening and an important role of the noninterfering ion-
ization channel specific for the scheme under consideration
and missing in a three-level scheme. In addition, the atomic
continuous spectrum is so much wider than any discrete third
level that this makes characteristic intensities in the phenom-
enon to be discussed absolutely different from those in the
population trapping effect.

C. An experiment we suggest

Let us assume that the initially populated level in a
scheme of Fig. 2 isE1. At the first stage, by considering
ionization of an atom by the field«1 alone(with «2=0), we
select the peak light intensityI1=«1

2/8p and pulse durationt
high and long enough to provide almost complete ionization
of an atom by a pulsewisI1,I2=0d=1. Then, by adding the
field «2 we expect that under proper conditions, owing to
interference effect, the combined action of two fields will
result in a significant suppression of ionization. In other
words, we expect that the functionwisI1,I2d in its depen-
dence onI2 at a given selected value ofI1 will start from 1 at
I2=0, then it will have a minimum at some intensityI2= I20
, I1, and then, at higher intensityI2, wisI1,I2d will return to 1
again. The region aroundI20 will be interpreted as a stabili-
zation window. The interference origin of stabilization is evi-
dent, because with a growingI2 (at a givenI1), we increase
an energy that can be put into an atom. But, counterintu-
itively, this additional energy results in a slower rather than
faster ionization, and this can be explained only by interfer-
ence effects. We will find values of the resonance detuningD
and the ratio of intensitiesI2/ I1 which optimize the stabili-
zation effect.

II. THE MAIN EQUATIONS

Compared to a simplified system of two close levels in a
single-color field described in the Introduction, to appropri-
ately characterize a system of Fig. 2 in a two-color arbitrary

strong field, in addition to ionization broadening and mixing
of levels, we have to take into account also their shifts and
mixing arising owing to the ac Stark effect. Both these ef-
fects can be described in terms of the complex polarizability
tensorai,j, i , j =1,2,

ai,isvd ; aisvd =E dEudi Eu2S 1

E − Ei − v − id
+

1

E − Ei + v
D

s8d

and

a21 =E dEd2EdE1S 1

E − E1 − v1 − id
+

1

E − E1 + v2
D < a12,

s9d

where integration overE includes summation over interme-
diate discrete states.

For the two-color scheme(Fig. 2), similarly to Eq.(4), in
the rotating wave approximation the wave function of an
atomic electron can be written as

C = C1stdeiv1tc1 + C2stdeiv2tc2 + scontinuumd. s10d

As well as Eqs.s5d, equations for the probability amplitudes
C1std andC2std are obtained from the Schrödinger equation
with the help of the procedure of adiabatic elimination of the
continuum. In terms ofai,j s8d,s9d, these equations can be
presented in the form

iĊ1 − fẼ1std + v1gC1 = −
1

4
«10std«20stda12C2,

iĊ2 − sẼ2std + v2dC2 = −
1

4
«10std«20stda21 C1, s11d

whereẼistd are the slowly time-dependent adiabatic complex
energies of the ac-Stark-shifted and broadened levels

Ẽistd = Ei −
1

4
haisv1d«10

2 std + aisv2d«20
2 stdj. s12d

III. QUASIENERGIES

For the time-dependent pulse envelopes«10std and«20std,
Eqs. (11) have to be solved as the initial-value problem. In
the model of constant field-strength amplitudes these equa-
tions have stationary solutionsC1,2~exps−igtd, where, as
previously,g is the complex quasienergy for which we get
the solutions generalizing those of Eq.(6)

g± =
1

2
hẼ1 + v1 + Ẽ2 + v2 ± Dj, s13d

where

D =ÎD̃2 +
1

4
a12a21«10

2 «20
2 s14d

and D̃ is the time-dependent complex detuning for the ac-
Stark-shifted and broadened levelss12d
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D̃ = Ẽ2 + v2 − Ẽ1 − v1. s15d

Imaginary parts of the energiesẼi (12) are related to the
ionization widths determined by imaginary parts Imsaid
;ai9 of the polarizabilitiesai (8)

ImsE1d = −
1

2
G1,

ImsE2d = −
1

2
sG2

s1d + G2
s2dd, s16d

where

G1 =
1

2
a19sv1d«10

2 ,

G2
s1d =

1

2
a29sv1d«10

2 , and G2
s2d =

1

2
a29sv2d«20

2 . s17d

The widthG2
s1d is determined by transitions from the levelE2

under the action of the field«10 (the dashed line in Fig. 2).
As E2.E1 andv1.v2, typically,

a29sv1d ! a19sv1d or G2
s1d ! G1. s18d

Similarly to Eq.s17d, the off-diagonal component of the po-
larizability tensors9d determines the off-diagonal component
of the ionization-width tensor

G12 =
1

2
a129 «10«20 = ÎG1G2

s2d, s19d

which assumes, in particular, thata129 =Îa19sv1da29sv2d.
Imaginary parts of quasienergiesg± s13d are related to the
width of quasienergy levelsG±

G± = − 2Imsg±d. s20d

IV. PROBABILITY OF IONIZATION

The above described quasienergy solutions of Eqs.(11)
are most appropriate for solving the initial-value problem in
the case of pulses with rectangular envelopes«1,20std, with
sudden turn on and turn off(at t=0 and t=t) and «1,20std
=const at 0, t,t. With known quasienergiesg± (13) the
time-dependent probability amplitudesC1,2std to find an
atom in its bound statesc1 and c2 can be presented in the
form

C1,2std = A1,2
+ exps− i g+td + A1,2

− exps− i g−td, s21d

whereA1,2
± are constants to be found from the initial condi-

tions

A1
+ + A1

− = 1 and A2
+ + A2

− = 0 s22d

and from equations connectingA1
± with A2

±. The latter follow,
e.g., from the first of Eqs.s11d

g±A1
± − sẼ1 + v1dA1

± = −
1

4
«10«20a12 A2

±. s23d

The total residual probabilitywresstd to find an atom in
bound states att=t is given by the sum of partial probabili-
ties w1std andw2std to find an atom at levelsE1 andE2,

wresstd = w1std + w2std, s24d

where

w1,2std = uC1,2stdu2 = uA1,2
+ e−i g+ t + A1,2

− e−i g−tu2. s25d

The probability of ionization is given bywistd=1−wresstd.
Equationss22d and s23d are easily solved to give, explic-
itly,

w1std =
1

4
US1 −

D̃

D
De−ig+t + S1 +

D̃

D
De−ig−tU2

s26d

and

w2std =
a12

2 «10
2 «20

2

16 D2 ue−ig+t − e−ig−tu2. s27d

In the case of pulses with smooth envelopes«1,2std quasien-
ergy solutions are not so useful for solving the initial-value
problem, and one has to solve directly Eqs.s11d for the time-
dependent probability amplitudesC1,2std.

V. SCALING EFFECT AND RELATIVE UNITS

With the help of a phase transformation

Cistd = exph− isE1 + vdtjAistd, s28d

Eqs.s11d can be reduced to an asymmetric form

iȦ1 +
1

4
ha1sv1d«10

2 std + a1sv2d«20
2 stdjA1

= −
1

4
«10std«20stda12 A2 s29d

and

iȦ2 − FD −
1

4
ha2sv1d«10

2 std + a2sv2d«20
2 stdjGA2

= −
1

4
«10std«20stda21 A1,

where, as previously,D is the weak-field two-photon-
resonance detunings7d.

Though not as nice as Eq.(11), Eqs.(29) are more con-
venient to describe the scaling effect existing in the system
under consideration. Let us assume that both pulse envelopes
«10std and «20std depend on timet only via the ratiot /t,
where t is the pulse duration common for both high- and
low-frequency pulses. Then, evidently, the arguments of the
functions«10std and«20std do not change if we divide botht
andt by the same factorl, t→ t /l, andt→t /l. Moreover,
one can see easily that Eqs.(29) do not change too if we
multiply simultaneously both low- and high-frequency pulse
peak intensitiesI1,2=c«1,20

2 /8p and the weak-field detuning
D by the same factorl. So, the solutions of Eqs.(29) are
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invariant with respect to the scaling transformation

D → lD, «1,20
2 → l«1,20

2 , t → t/l, t → t/l s30d

with an arbitraryl. This scaling effect can be important for
practice: parameters of an assumed experiment can be varied
to choose the most convenient conditions for observation the
two-color stabilization effect discussed in this paper. In par-
ticular, by making laser pulses longer, one can use rather
moderate-intensity lasers, as is shown below.

Owing to the the described scaling effect, it is convenient
to introduce and use the dimensionless ratio of intensitiesx,
interaction timeu and detuningd,

x =
I2

I1
, u = tI1, d =

D

I1
, s31d

dimensionless complex quasienergies

y± =
g± − E1 − v1

I1
, s32d

detuning for the ac Srark shifted and broadened levelss12d

d̃ =
D̃

I1
= d −

1

4
ha2sv1d + a1sv1d + fa1sv2d + a2sv2dgxj,

s33d

and widths of the fully dressed quasienergy levels

g± =
G±

I1
= − 2 Imfy±g

=
1

2
fa19sv1d + a19sv2dxg − d̃9 7 ImSÎd̃2 +

1

4
a12

2 xD ,

s34d

whereI1,2, D, t, g±, andG± are in atomic units. Defined in
such a way, quasienergiesy± and widthsg± depend only on
two parametersx andd, whereas the probability of ionization
wi and the residual probability to find an atom in bound
stateswres s24d–s27d depend on three parametersx, d,
and u.

VI. PULSE SHAPE

The concepts of quasienergies and quasienergy functions
are very fruitful for an analysis exploiting a model of a rect-
angular pulse envelope. Such an analysis is useful for clari-
fication of physics of the phenomenon under consideration.
However, more realistic laser pulse shapes are characterized
by smooth envelopes. To investigate a sensitivity of the re-
sults to be derived on the pulse shape and its smoothing, we
will consider pulse envelopes«1,2std of the form

«1,20std = «1,20

s1 + adsin2FpSNsad
t

t
+

1

2
DG

1 + a sin2FpSNsad
t

t
+

1

2
DG , s35d

where «1,20=const, −1/2Nsadø t /tø1/2Nsad, Nsad is the
normalization factor

Nsad =
s1 + ad2

a2 H1 −
2 + 3a

2s1 + ad3/2J s36d

such that

E
−t/2N

t/2N

«1,20
2 stddt = t «1,20

2 , s37d

anda is a smoothing parameter. Ata→`, Nsad→1 and the
envelopes«1,20std s35d turn into the rectangular ones. Ata
=0, Ns0d=3/8, and«1,20std s35d takes the form of a pure sin2

pulse envelope

«1,20std = «1,20 sin2FpS 3t

8t
+

1

2
DG . s38d

By definition, for the pulse envelopes of the forms35d, at all
values of the smoothing factora the peak values of the field
strengths and areas under the curves«1,2

2 std sfield energy per
unit cross sectiond are kept constant and equal to«1,20 and
«1,20

2 t, correspondinglyssee Fig. 4d. Hence, at alla the pa-
rametert can be interpreted as the pulse duration determined
by the conditions37d. For all a the dimensionless pulse du-
ration is determined as previously,u= I13t with both I1 and
t taken in atomic units.

VII. OPTIMIZATION OF THE LEVEL-NARROWING
EFFECT

Optimization of the stabilization and level-narrowing ef-
fects assumes minimization of the width of the narrower
quasienergy levelg+sd ,xd with respect to two variablesd and
x. As a first step in a solution of this problem, let us minimize
g+sd ,xd with respect to the field-free detuningd at a givenx.
Typically, at any givenx, in dependence ond, the functions
g±sd ,x=constd have well pronounced minimum and maxi-
mum (Fig. 5).

Specifically, the curves of Fig. 5 are calculated for a He
atom atx=0.1. Details of these and many other calculations,
as well as the data about frequencies, atomic levels, and po-
larizability tensors are given in the following section. Here
the picture of Fig. 5 is shown as a typical example of the
dependenciesg±sd ,x=constd. To find a position of the extre-

FIG. 4. Pulse envelopes(35) at three different values of the
smoothing factora.
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mum shown in Fig. 5,doptsxd, we have to solve the equation
dg±sdd /dd=0. Direct calculations show that this condition is

satisfied if Imhfd̃a12
* g2j=0, which gives two equations

Refd̃a12
* g=0 and Imfd̃a12

* g=0. It can be checked directly that
only the second of these two equations corresponds to the
extremum we are looking for, and this equation gives

a128 d̃9 − a129 d̃8 = 0, d̃opt =
a12

a129
d̃9, s39d

or

doptsxd =
1

4Ha28sv1d − a18sv1d −
a128

a129
fa29sv1d − a19sv1dgJ

+
x

4
Ha28sv2d − a18sv2d −

a128

a129
fa29sv2d − a19sv2dgJ .

s40d

As explained above,doptsxd is a value of the field-free de-
tuning, at which the width of one of the two quasienergy
levels sg+d has a minimum with respect tod at arbitrary
given x. As is seen from Eq.s40d the optimal detuning
doptsxd is a linear function of the ratio of intensitiesx
= I2/ I1. Note that the linear dependence ofdopt on I2 at a
given I1 agrees with one of the results of Ref.f9g.

The second step in optimization conditions for stabiliza-
tion requires minimization of the widthg+ calculated atd
=doptsxd with respect to the variablex. With the help of the
second equation(39) the “d-optimized” widthsg±(doptsxd ,x)
can be reduced to the following rather simple form:

g±„doptsxd,x…=
1

2
a19sv1d − d̃opt9 sxd 7Îfd̃opt9 sxdg2 +

1

4
a129

2x,

s41d

where

d̃opt9 sxd = −
1

4
fa29sv1d − a19sv1d + a29sv2dxg, s42d

and in Eqs.s41d and s42d we have puta19sv2d=0, which is
true in the casev2, uE1u.

By using Eqs. (41) and (42) we can find easily the
asymptotic expansion of the functiong+(doptsxd ,x) in powers

of 1/x at largex, x@1. The constant term in this expansion
vanishes and the first nonzero term is given by

g+„doptsxd,x… <
1

2x

a19sv1da29sv1d
a29sv2d

. s43d

This result shows that at largex the width of the narrower
quasienergy levelg+ decreases and tends zero as 1/x. This is
an indication of a possibility of the unlimited narrowing of
this quasienergy level and, hence, achievement of a very
high degree of stabilization. Real limitations of narrowing
and stabilization are determined by the applicability condi-
tions of the model. For example, at very large values ofx the
second-field intensity can become too high for the ATI pro-
cesses in this field to be ignored. In accordance with Eq.
(40), at the optimal conditions the increase ofx is accompa-
nied by a linear increase of the field-free detuningd. This
gives other limitations for the growth ofx: at sufficiently
large detunings the influence of atomic levels different from
E1 and E2 and not taken into account in the model can be-
come important. At last at very larged even the above rotat-
ing wave approximation can become invalid. But, on the
other hand, these limitations are not too severe, and rather
significant level of narrowing and stabilization of an atom
can be reached under quite realistic conditions. These con-
clusions, as well as the general result about asymptotic de-
crease of the narrower-level width at largex are confirmed
and specified in the following section by direct numerical
calculations for hydrogen and helium atoms.

It should be noted that the curvedoptsxd includes the point
sd0,x0d where the complex detuning between the ac-Stark

shifted and broadened levels(15) turns zero,d̃=0. At this
point

x0 =
a19sv1d − a29sv1d
a29sv2d − a19sv2d

s44d

and, in accordance with Eq.s40d,

d0 =
1

4
ha28sv1d − a18sv1d + x0fa28sv2d − a18sv2dgj. s45d

VIII. NUMERICAL CALCULATIONS FOR A He
ATOM

All the required numerical data are known for selected
levels in hydrogen and helium atoms. To a very large extent,
the results obtained for these two atoms appear to be very
similar. For this reason, below, the results of calculation of a
helium atom are described in detail, and then a short sketch
of calculations for a hydrogen atom is given to demonstrate
mainly the arising differences and peculiarities of each atom.

A. Widths of quasienergy levels

Let us consider the following two levels of a He atom and
the following two frequencies: 1s2s;E1 and 1s4s;E2 and
v1=8.44 eV (the second harmonic of a dye laser) and v2
=1,17 eV(Nd:YAG laser). For these levels and frequencies

FIG. 5. The functionsg±sdd;g±sd ,x=constd (33).
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all the polarizability tensor components(8), (9) are known
[23,24], and in atomic units they are equal to

a1sv1d = − 30.42 +i 22.65, a1sv2d = − 236.6,

a2sv1d = − 45.66 +i 3.21, a2sv2d = − 479.96 +i 124.55,

a12 = 38.74 +i 53.07. s46d

The point where the dressed-level detuningD̃ (15) [or d̃

(33)] turns zero,D̃= d̃=0, has the following coordinates in
the planehx,dj:

x0 = 0.156 and d0 = − 13.3. s47d

The relative width of the fully dressed quasienergy levels
g± (34) are shown in Fig. 6 in their dependence onx at d
=d0. At this value of the detuningd, the curvesg+sxd and
g−sxd cross each other twice. The left and right crossings turn
into the avoided crossings, correspondingly, atdù−11.3 and
dø−22.4, and both crossings never turn into avoided cross-
ings together.

For the polarizability tensor of Eq.(46), the expression
(40) for the optimal-narrowing detuningdoptsxd takes the
form

doptsxd = − 0.26 − 83.57x. s48d

In the picture of Fig. 7 the widthg+sd ,xd of the narrower
quasienergy level is plotted in its dependence on the intensity
ratio x at three different given values of the field-free detun-
ing d. The curve atd=−11 differs qualitatively from two
other curves. The difference arises because for this curve the
detuningd is large enough for the left crossing of Fig. 6 to
turn into the avoided crossing. The sharp peak of the curve
g+sd=−11,xd at Fig. 7 is an indication of the root-square
branch-point-like behavior, which takes place atd=−11.3
and which is similar to the root-square branch-point behavior
of the curve of Fig. 1 forg±9 in an idealized two-level system
of Sec. I A.

The minima of all three curves at Fig. 7 are seen to be
getting deeper the larger isudu. Positions of these minima
xminsdd are determined by the optimal detuning(48) and can

be found from the equationd=doptsxd. The x-dependent
width of the narrower quasienergy level, minimized with re-
spect tod, is given byg+

minsxd;g+(doptsxd ,x), and its depen-
dence onx is given by the curve of Fig. 8.

A monotonous fall of the functiong+
minsxd means that the

x-dependent width of the narrower quasienergy level, mini-
mized with respect to the detuningd, tends to zero at asymp-
totically large values ofx. In other words, in the framework
of the used model one of the two quasienergy levels of the
system can be narrowed unlimitedly by means of increasing
the ratio of intensitiesx= I2/ I1 and the field-free detuningudu
in such a way that the equationd=doptsxd remains satisfied.
Real limitations of such a narrowing are determined only by
the model applicability conditions:(i) at very large values of
x the second-field intensityI2 will become too high to ignore
above-threshold ionization produced by this field and(ii ) at
very large values ofudu other levels ignored above can be-
come more important and, atuDu,v2, the rotating-wave ap-
proximation can become invalid. But at sufficiently long
pulse durationst and low first-field intensityI1 these limita-
tions are not too severe, and the achievable degree of nar-
rowing can be rather high.

B. Probabilities of ionization and nonionization

The residual probabilities to find a He atom in its bound
states after interaction with a two-color field in the case of a

FIG. 6. The relative widths of quasienergy levels of a He atom
g±sxd calculated atd=d0 (47).

FIG. 7. Three typical curvesg+sd=const,xd for He calculated at
d=−11, −15, and −23(from the left to the right)

FIG. 8. The width of the narrower quasienergy level of a helium
atom g+

minsxd, minimized with respect to the detuningd, in its de-
pendence onx.
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rectangular envelope is determined by Eqs.(24), (26), and
(27), and the results of the corresponding calculations are
shown in Fig. 9. The three resonance like curves correspond
to three different values of the field-free detuningd. The
envelope of peaks of these curves is the maximized residual
probability equal towres(doptsxd ,x) with doptsxd given by Eq.
(48). These results show that the functionwres(doptsxd ,x) mo-
notonously grows approaching one at large values ofx. This
means that under optimal conditions stabilization of a He
atom in a two-color field can be very high, more than 90%.

The picture of Fig. 10 shows the distribution of the re-
sidual probability between the levelsE1 and E2. Under the
conditions of optimal stabilizationfd=doptsxdg at sufficiently
high value of the intensity ratiox, the ratio of probabilities
w1/w2 falls tending asymptotically to zero. This means that
under the optimal stabilization conditions, interference sup-
presses not only ionization but also excitation of the levelE2,
which can be seen experimentally also.

In all pictures of this section(Figs. 6–10) the calculated
values are plotted in their dependence on the intensity ratiox.
To see such dependencies in experiments one has to make,
for example, a series of measurements at different values of
the second-field intensityI2 at a given first-field intensityI1.
Another possible way of an experimental investigation is
keeping the ratiox= I2/ I1 constant and changing both inten-
sities synchronously. Calculated for such a scheme of mea-

surements, the probability of ionization in its dependence on
I1~ I2 is given by the curves of Fig. 11. In this picture the
intensity I1 is expressed in units of an arbitrary constant in-
tensityI0 at x= I2/ I1=3. The detuningD and pulse durationt
are taken to be equal toD=−200I0 and t=0.1/I0sad or t
=1/I0sbd, whereD, t, andI0 are in atomic units.

Normalization by an arbitrary constantI0 reflects the scal-
ing effect described above in Sec. V. A possibility to choose
any value ofI0 indicates a large flexibility of the system
under consideration with respect to a choice of of the light
intensities and pulse durations. For example, ifI0=10−6 a.u.
s<331010 W/cm2d, the intensityI2=33 I1 does not exceed
331011 W/cm2 in the variation range ofI1 at Fig. 11, which
is low enough for no ATI effects to take place. And, under
the best stabilization conditions, the detuningD and pulse
duration are equal to D=−240I0=−2.4310−4 a.u.
,0.065 eV!v1,2 andt=1/I0=106 a.u.,3 ps.

The curves of Fig. 11 are typical for the stabilization pic-
ture. With a growing light intensity, at first, the probability of
ionization grows(perturbation theory region), then falls, and
this is the beginning of the stabilization window, and finally
grows again, which corresponds to the break of stabilization.
Stabilization and its break arise because, owing to the ac
Stark shift and level mixing, with a growing light intensity
the system comes to and, then, goes out of the resonance
conditions, optimal for fully dressed-level narrowing and in-
terference stabilization. Curve(b) of Fig. 11 indicates an
appearance of an additional region between the perturbation
theory and stabilization zone at a sufficiently long pulse du-
rationt. This is the region of the total ionization of an atom,
wherewi =1. This means that at some intermediate intensity
light pulses provide a complete ionization and at a stronger
field, owing to interference, ionization becomes rather small
swi ,0.2d. In absolute values, the minimal achievable prob-
ability in the stabilization region is somewhat lower in the
case of short pulsesst=0.1I1/ I0d [curve (a) of Fig. 11]. But
the degree of stabilization can be determined alternatively as
the ratio of the maximal probability achievable in the region
between perturbation theory and stabilization regions to the
minimal value ofwi in the stabilization window. In terms of
such a definition, the degree of stabilization is much higher
in the case of longer pulsesst= I1/ I0d [curve(b) of Fig. 11].
Of course, a further increase of the pulse duration flattens the
curve of Fig. 11 in the stabilization region and decreases the

FIG. 9. The residual probability to find a He atom in bound
states calculated atd=−100, −250, and −500(from the left to the
right) andd=doptsxd (48) (the upper curve), u=0.1.

FIG. 10. The ratiow2/w1 for a He atom atd=doptsxd (48), u
=0.1.

FIG. 11. wisI1/ I0d at I2=3I1, d=−300sI0/ I1d and u=0.1sI1/ I0d
(a) and I1/ I0 (b).
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degree of stabilization. In this sense, the pulse duration cho-
sen for the curveb of Fig. 11,t= I1/ I0, is close to the optimal
one.

The picture of Fig. 12 characterizes spectral features of
the residual probability to find an atom in its bound states at
the best stabilization conditions of Fig. 11:I2/ I1=3, I1/ I0
=1.2, u=0.12 (a) and 1.2 (b) (which corresponds tot
=0.1/I0 andt=1/I0).

Curve(a) of this picture looks similar to the Fano curve of
Fig. 1. This shows that att=0.12/I0, still, the effect of sta-
bilization under discussion can be interpreted as a strong-
field LICS. But in the case of longer pulses,t=1.2/I0 [curve
(b) of Fig. 12] similarity with LICS practically disappears.
The only reminder about a remote connection with the Fano
curve is a slight asymmetry of the curveb of Fig. 12. Apart
from this, curve(b) describes the effect of interference sta-
bilization in its pure form.

C. Smooth envelope

All the results described above were derived for pulses
with a rectangular envelope. Usually, envelopes of short laser
pulses are smooth. To consider such a more realistic situa-
tion, we have solved general equations(11) with the sin2

pulse envelopes(38). The results of such a solution are
shown in Fig. 13, which is a direct analog of Fig. 9. Again, a
series of resonancelike curves describes the residual prob-
ability of finding an atom in its bound stateswressd ,xd at
various given values of the detuningd and the intensity ratio
x considered as the independent variable. The residual prob-
ability maximized with respect to the detuningd is the enve-
lope of the peaks of these curves. In Fig. 13 such a maxi-
mized probability is approximated by the functions
wres(dopt

sinsxd ,x), wheredopt
sinsxd is the empirically found linear

function providing the best fitting to the peak envelope.

dopt
sinsxd = 3.122 − 73.3x. s49d

In Fig. 14 we plot the maximized residual probability to
find He atoms in bound states calculated in the cases of rect-
angular(curves 1 and 2) and sin2 (curve 3) pulse envelopes
at d=dopt

rectsxd (48) (the curve 1) andd=dopt
sinsxd (49) (curves 2

and 3). Comparison of curves 1 and 3 shows that a transition
to a smooth envelope«0std reduces a little bit the maximal
achievable degree of stabilization compared to the
rectangular-envelope case, but not too much(70–75 % in-

stead of 90%). Moreover, curve 3 of Fig. 14 shows that in
the case of a smooth pulse envelope the residual probability
remains more or less stable in a rather large variation interval
of the intensity ratiox, approximately from 0.5 to 5 and
more. This shows that the effect of stabilization is rather
robust.

Another interesting effect seen rather well from compari-
son of curves 2 and 3 of Fig. 14. These two curves are
calculated at the coinciding dependencies of the detuningd
on the intensity ratio parameterx, d=dopt

sinsxd (49). As is seen
well from Fig. 14, atxø1 the curve 3 goes above the curve
2. This means that at the same detunings the residual prob-
ability to find an atom in its bound states in the case of
smooth envelope pulses exceeds the same probability at a
rectangular pulse envelope. In other words, in this range of
the intensity ratio parameterx smoothing of the pulse enve-
lope increases rather than reduces the degree of stabilization.
This conclusion follows directly from calculations though it
looks counterintuitive and, in this sense, rather interesting.

FIG. 12. wressdd at I2=3I1, I1=1.2I0, u=0.12(a), and 1.2(b).

FIG. 13. A series of curveswressd ,xd at various given values of
the detuningd and the functionwresfdopt

sinsxd ,xg (a thick curve) for a
He atom and the sin2 pulse envelopes[Eq. (38)].

FIG. 14. The functionswres
rectfdopt

rectsxd ,xg (1), wres
rectfdopt

sinsxd ,xg (2),
andwres

sinfdopt
sinsxd ,xg (3) with dopt

rectsxd anddopt
sinsxd ,x given by Eqs.(48)

and (49), respectively.
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IX. HYDROGEN

In a hydrogen atom, all the polarizability tensor compo-
nents are known for the levels 2s and 5s and frequencies
v1=4.02 eVsXeCl laserd and v2=1.17 eVsNd:YAG laserd
[10]. In atomic units they are given by

a1sv1d = − 45.56 +i 27.29, a1sv2d = 179.92,

a2sv1d = − 45.66 +i 1.78, a2sv2d = − 513.76 +i 93.83,

a12 = 6.56 +i 50.60. s50d

The data (50) show, in particular, that G2
s1d /G1

=a29sv1d /a19sv1d,6.5310−2, which means that the assump-
tion (18) is pretty well satisfied.

Rigorously, in a hydrogen, there are other levels(5d and
5f) of almost the same energy as 5s. Owing to the selection
rules, the level 5f is not connected either with 2s or 5s levels
by two-photon Raman-type transitions and, for this reason,
can be ignored. As for the level 5d, in principle, it can par-
ticipate in a scheme of two-photon Raman-type transitions
under consideration. However, by ignoring at first this addi-
tional level let us consider a two-level 2s-5s scheme, analo-
gous to that of the previous section.

For this system the coordinates of thed̃=0 point in the
hx,dj plane are given by

x0 = 0.272, d0 = − 47.2. s51d

At d=d0, the calculated relative width of the fully dressed
quasienergy levelsg± s34d in their dependence onx are
shown in Fig. 15.

Compared with Fig. 5, the picture of Fig. 15 indicates the
first well pronounced difference between helium and hydro-
gen. In the case of hydrogen the curves of widths of quasien-
ergy levels vsx have two avoided-crossing points whereas in
the case of helium such a situation never occurs and atd
=d0 there are two real-crossing points(Fig. 5).

Another important difference concerns smooth pulse en-
velopes and the third level effect. To solve such a problem,
we have to generalize Eqs.(10) and (11). In Eq. (10), in
accordance with the more general Eq.(4), there appears an
additional term C3stdeiv2tc3. Then, equations forCistdsi
=1,2,3d take the form

iĊ1 − fẼ1std + v1gC1 = −
1

4
«10std«20stdsa12C2 + a13C3d,

iĊ2 − fẼ2std + v2g C2 = −
1

4
«10std«20stda21C1

−
1

4
fa23sv1d«10

2 std

+ a23sv2d«20
2 stdg C3std,

iĊ3 − fẼ3std + v2g C3 = −
1

4
«10std«20stda13C1

−
1

4
fa23sv1d«10

2 std

+ a23sv2d«20
2 stdg C2std s52d

whereẼ3 is given by the same Eq.(12) as Ẽ1 and Ẽ2 with
a3sv1,2d and new off-diagonal elements of the polarizability
tensor given by[10]

a3sv1d = − 43.26 +i 0.42, a3sv2d = − 405.9 +i 81.8,

a23sv1d = 0.74 +i 0.21, a23sw2d = 68.61 +i 21.63,

a13 = 6.15 +i 11.69. s53d

Found from Eqs.(52) and (35) the residual probability to
find an atom in its bound states is shown in Fig. 16 for three
different values of the pulse envelope smoothing factora.

Two rather interesting conclusions can be deduced from
this picture. First, a strong smoothing of pulse envelopes
decreases the peak value of the residual probability to find an
atom in bound states. At the chosen value of the detuning
d=−530 in the case of pure sin2 pulsesfwressxdgmax is almost
twice as small as in the case of rectangular envelopes. The

FIG. 15. The functionsg±sd0,xd (33).

FIG. 16. The functionwressxd in a three-level scheme atd
=−530,u=0.1, and the envelope smoothing parameter in Eq.(35)
a=100,10, and 0.1(from top to bottom).
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smoothing induced decrease of the residual probability in the
case of hydrogen is much more significant than in the case of
helium.

The second effect seen in the picture of Fig. 16 concerns
the influence of the third level. This influence manifests itself
in a shoulder on the curveswressxd, but the third level is seen
not to affect the main maximum of the curves much.

X. CONCLUSION

To summarize, we describe and discuss a scheme of in-
teraction of atoms with radiation of two lasers. Intensity and
pulse duration of lasers are assumed to be high and long
enough to provide full ionization in the field of each of these
two lasers alone if only atoms are prepared initially at levels
from which one-photon ionization can take place. We show
that owing to interference effects under the conditions close
to Raman-type resonance between some two selected atomic
levels ionization of an atom experiencing a joint action of the
field of two lasers can be significantly(up to 90%) sup-
pressed. Optimization of such a stabilization effect involves
optimization with respect to the Raman-type resonance de-

tuning and the ratio of the two laser intensities. Specific cal-
culations are carried out for hydrogen and helium atoms for
couples of atomic levels and laser frequencies at which in-
formation about the complex polarizability tensors involved
is available. Qualitatively, the results of calculations for hy-
drogen and helium appear to be very similar. This gives us a
reason to think that the effect described is rather universal,
and can occur also at other atoms, levels, and frequencies.
The dependence of the effect on laser pulse shapes is inves-
tigated. It is shown that in the case of helium atoms sensi-
tivity of the results to a pulse shape is lower than in the case
of hydrogen atoms. In helium, even in the case of smooth
pulses, the degree of stabilization remains rather high(more
than 70%), and the effect exists at this level in a rather large
range of the intensity ratio parameterx. The described scal-
ing effect gives a possibility to select ranges of variation of
the laser pulse peak intensities and pulse duration in ranges
most convenient for experimental observation.
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