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We study the collective motion of atoms confined in an optical lattice operating inside a high-finesse ring
cavity. A simplified theoretical model for the dynamics of the system is developed upon the assumption of
adiabaticity of the atomic motion. We show that in a regime where the light shift per photon times the number
of atoms exceeds the linewidth of the cavity resonance, the otherwise tiny retroaction of the atoms upon the
light field becomes a significant feature of the system. As a result dispersive optical bistability can arise and the
lattice positions is determined by the strength of the atom-cavity coupling rather than by the phases of the
incoupled light beams. Solving the complete set of classical equations of motion confirms these findings,
however, additional nonadiabatic phenomena are predicted, such as, for example, self-induced radial breathing
oscillations. We compare these results with experiments involving laser-cooled85Rb atoms trapped in an
optical lattice inside a ring cavity with a finesse of 1.83105. Our observations are in excellent agreement with
our theoretical predictions.

DOI: 10.1103/PhysRevA.69.033403 PACS number(s): 32.80.Pj, 42.50.Vk, 42.62.Fi

I. INTRODUCTION

Atoms regularly spaced in an optical lattice are a widely
studied model system of quantum optics[1,2] with potential
applications in areas ranging from condensed matter physics
[3] to quantum information processing[4]. Magneto-optical
loading techniques typically provide sparsely populated op-
tical lattices with an average interatomic distance of several
microns, where dipole-dipole or spin interactions are negli-
gible. Schemes that provide mutual interactions among the
atoms can significantly increase the usefulness of optical lat-
tices. A very successful approach explored by various re-
search groups is to increase the lattice population by loading
a Bose-Einstein condensate[5,6]. More recently, the forma-
tion of optical lattices inside optical resonators has become a
subject of extensive research[7–10], because this can give
rise to cavity-mediated long-range interactions even at mod-
erate particle densities. Possible applications range from
quantum computing schemes[7] to novel laser cooling meth-
ods [11–15] which do not rely on cyclic spontaneous emis-
sion and thus apply to a wider class of species without deg-
radation at high densities.

The key to exploiting these new concepts is a profound
understanding of the interaction of trapped particles with in-
tracavity light fields with special focus on the external de-
grees of freedom. For single atoms interacting with only a
few photons in cavities with a small mode volume well be-
low 10−4 mm3 studies have been successfully performed
within the last few years[16,17]. More recently, large atomic
ensembles have been confined in high-finesse cavities with
large mode volumes exceeding 1 mm3. Long trapping times
of many seconds could be realized, because disturbing high-
frequency intensity noise components of the intracavity light
field are significantly suppressed owing to the long photon
storage time[8]. Although operation at large detunings from
atomic resonance is required in order to prevent undesirable
spontaneous emission, for sufficiently high values of the cav-
ity finesse the strong coupling regime can be reached. In this
case the interaction strength given by the light shift per pho-

ton times the number of trapped particles exceeds the reso-
nance linewidth of the cavity, and thus the otherwise tiny
retroaction of the atoms upon the light field becomes a sig-
nificant feature of the system.

In this paper we experimentally and theoretically explore
the motion of atoms trapped in an optical lattice formed in-
side a high finesse ringcavity with a large mode volume. For
strong atom-cavity coupling where the backaction of the at-
oms upon the lattice potential becomes significant, we find
nonlinear dynamics of the intracavity field and a collective
character of the atomic motion. In this regime the intracavity
field can exhibit dispersive optical bistability, the lattice po-
sition is no longer determined by the phases of the incoupled
light beams but rather in a self-organization process, and the
radial motion can show self-induced breathing oscillations.
Absorptive optical bistability due to optical pumping and
saturation has been previously observed with resonators op-
erating close to an atomic resonance. Examples include small
mode-volume high-finesse resonators with a few cold atoms
[19] and low-finesse resonators containing large numbers of
cold atoms trapped in a magneto-optic trap[18] or even
dense, hot atomic samples confined in a vapor cell[20]. Our
lattice operates far from resonance where optical pumping
and saturation are negligible and the atoms merely act as a
dispersive medium.

The paper is organized as follows. In Sec. II we present a
simple physical picture of the atom-cavity coupling in terms
of coherent Rayleigh and Bragg scattering. In Sec. III we
discuss the complete set of semiclassical equations of motion
of the system. These equations are difficult to solve leading
us to develop a simplified but surprisingly accurate model of
the complex system dynamics based upon the assumption
that the atomic sample adiabatically adjusts to the potential
position and depth. A steady-state analysis for the phase and
amplitude of the intracavity field predicts dispersive bistabil-
ity. In Sec. IV we summarize the characteristics of our ex-
perimental setup. In Sec. V we present experiments in the
strong coupling regime which exhibit distinctive nonlinear
behavior in excellent agreement with the predictions of the
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adiabatic model of Sec. III. In Sec. VI we explore nonadia-
batic aspects of the atomic motion. Observations of radial
breathing oscillations are discussed and a numerical simula-
tion based on solving the complete set of equations of mo-
tion is presented.

II. GENERAL CONSIDERATIONS

The interaction of the atomic sample with the intracavity
light field can be understood in terms of coherent Rayleigh
and Bragg scattering. Consider the two degenerate, mutually
counterpropagating, traveling wave modes of a ring resona-
tor [discriminated by indicess±d in the following] with a
common resonance frequencyvc, as depicted in Fig. 1(a).
Let us add atoms into the common mode volume with a Bohr
frequencyva@vc such that their interaction with the intrac-
avity fields has entirely dispersive character. If the atomic
sample is homogeneously distributed, it will merely give rise
to Rayleigh scattering in the forward directions. This yields
equal indices of refractionn±=1−N gr D0/vc for both
traveling wave modes, whereD0 is the light shift per
photon(which is negative for the case of normal dispersion
considered here), N is the number of atoms,

gr ;s1/Ndon=1
N e−2sxn

2+yn
2d/w0

2
is the radial bunching parameter,

measuring the spatial overlap of the atomic sample with the
mode volume,xn andyn denote the(classical) radial atomic
position coordinates, andw0 is the mode radius. This causes
a common frequency shiftN D0 gr for both modes[Fig.
1(b)].

If the atoms are localized at the sites of a lattice withl /2
lattice constant(where l is the optical wavelength), addi-
tional Bragg scattering in the backwards directions can
couple the two counterpropagating traveling wave modes. Its
efficiency depends on the degree of radial and axial localiza-
tion measured by the bunching parameterg

;s1/Ndon=1
N e−i2kzn−2sxn

2+yn
2d/w0

2
, where k=2p /l is the wave

number andzn denote the(classical) axial atomic position
coordinates. This bunching parameter resembles the Debye-
Waller factor in the theory of Bragg diffraction from crystal-
line solids. If there is no statistical correlation between the
axial and radial coordinates and the spatial distributions near
each lattice site follow a Gaussian, we may writeg=f1
+4ssr /w0d2g−1exps−2k2sz

2dexps−2ikzc.m.d, i.e., the complex
phase scales with the axial center of mass coordinatezc.m.
;s1/Ndon=1

N zn and the modulus is a measure for the axial
sszd and radialssrd spread of the atomic sample at each
lattice site. Perfect localization corresponds tougu=1,
whereas a homogeneous distribution is described byugu=0.

Bragg scattering acts to lift the degeneracy of the travel-
ing wave modes giving rise to a pair of resonance frequen-
cies split by 2ND0ugu. In the strong coupling regime, i.e., if
the interaction parameterD0 N exceeds the cavity resonance
bandwidth, the corresponding intracavity light fields acquire
orthogonal standing wave geometries with either the antin-
odes or the nodes coinciding with the lattice sites of the
atomic grating. In the former case the interaction is maxi-
mized and the corresponding frequency shiftvc+ND0sgr

+ ugud exceeds that found for the travelling wave modes in
presence of a homogeneous atomic sample. In the latter case
the interaction is minimized and a reduced shiftvc
+ND0 sgr − ugud applies[Fig. 1(b)].

In our experiments the cavity is initially filled with light
in absence of atoms and subsequently atoms are loaded into
the antinodes of the intracavity field. The small cavity band-
width requires that the frequency of the incoupled laser beam
needs to by actively controlled in order to maintain some
resonance condition. In our implementation we servolock the
laser frequency in order to maximize the amplitude of one of
the counterpropagating traveling waves[say the(1) mode]
with a technique briefly discussed in Sec. IV. For symmetric
pumping this yields population of the interaction-
maximizing standing wave mode of Fig. 1(b). In this case a
stable optical lattice is formed independent of the size of the
interaction parameter. The second, not externally pumped
mode, blue detuned with respect to the optical lattice, can
then be utilized for implementation of a sideband cooling
scheme as described in Ref.[14].

For asymmetric pumping of the cavity the situation be-
comes more complex. Consider the change of the indices of
refractionn± experienced by the counterpropagating travel-
ing waves, due to Bragg scattering. In addition to the usual
contribution of forward Rayleigh scattering, propagation of
the s±d wave suffers extra delay from Bragg scattering of the
s7d wave into thes±d wave. This extra contribution should
scale with the intensity ratio of the Bragg scattereds7d
wave and the copropagatings±d wave. According to the
considerations of Ref.[21] [Eq. (7)], to first scattering
order, the modified refractive indices are given byn±
=1−NsD0/vcdsgr + uguua7 /a±ud. Note thatn+ andn− may dif-
fer, if the field amplitudes of the traveling wavesa± are not
equal, e.g., for asymmetric external pumping of the cavity.
This gives rise to interesting nonlinear dynamics, if Bragg
scattering becomes relevant. A small external pumping
asymmetry can yield a relative change of the refractive indi-

FIG. 1. (a) Sketch of the experimental setup. Adjustable laser
powersx0± are coupled into the two counterpropagating traveling
wave modes of a ring resonator. The power transmitted through the
cavity can be detected by a photodiode(PD). (b) Mode splitting
mechanism(explained in the text).
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ces and a corresponding spatial phase shift of the optical
standing wave potential. As the laser frequency is kept ac-
tively in resonance with thes+d wave, thes−d wave is tuned
slightly out of resonance and the potential well depth de-
creases. The degree of pumping asymmetry is thus further
increased yielding a runaway dynamics which only termi-
nates if the decrease of the degree of localizationugu con-
nected with the decreasing well depth sufficiently reduces
the efficiency of Bragg scattering. As we will see in the next
section, in a certain parameter range this dynamics allows
two steady states to coexist, thus giving rise to bistability
phenomena.

III. ADIABATIC MODEL

We restrict ourselves to the case where the cavity modes
support coherent fields with large mean photon numbers in-
teracting with large thermal atomic samples at sufficiently
high temperatures such that a classical description of the op-
tical intracavity fields and the atomic position and momen-
tum variables is appropriate. Moreover, we assume a large
detuning of the pump frequency from the atomic resonance
and hence negligible saturation. In this case according to
Ref. [22] the following equations describe the time evolution
of the complex fieldsa+ and a− for the counterpropagating
traveling wave modes scaled to the field per photon:

d

dt
Sa+

a−
D = MSa+

a−
D + g0Sh+

h−
D ,

M ; Sisdc − ND0grd − gc − iND0g

− iND0 g* isdc − ND0grd − gc
D . s1d

Hereh+ andh− are the complex amplitudes of the incoupled
light fields, g0 is the cavity free spectral range, anddc de-
notes the detuning of the incoupled frequency from the reso-
nance frequencyvc of the empty cavity. The diagonal ele-
ments of the matrixM comprise the forward(Rayleigh)
scattering termsND0gr which only depend on the degree of
radial bunching while the off-diagonal terms which act to
couplea+ and a− are due to Bragg scattering and thus in-
volve the overall bunching parameterg.

The equations for the momentapWn;spx,n ,py,n ,pz,nd and
the positionsxWn;sxn ,yn ,znd read

d

dt
pWn = "D0s¹W ua+e−ikz + a−eikzu2e−2fsx2+y2d/w0

2gduxW=xWv
,

d

dt
xWn =

1

m
pWn. s2d

These equations describe the motion of the atoms in the
optical potential wells provided by the intracavity fields. In
total we are concerned with 6N+2 coupled first-order non-
linear differential equations for the 3N position and momen-
tum variables, respectively and the two complex field ampli-
tudes for the counterpropagating cavity modes.

The incoupled frequency is stabilized such that the com-
plex field amplitudea+ is maintained at a constant value, i.e.,

sd/dtda+;0. More precisely, it is the complex phase factor
of a+ which is kept constant, however, as long asa± are
sufficiently different from zero this extends to keeping the
modulus ofa+ constant as well. Hence, we may combine the
two field equations(1) into a single equation for the un-
locked modea−

d

dt
a− = i

D0N

«+
ga−

2 − a−gc − iD0Ng*«+ + «−gc, s3d

using the abbreviations«± ;sg0/gcdh± for the steady state
intra-cavity fields in absence of atomssscaled to the field per
photond. We may choose«± to be real without loss of gen-
erality, thus fixing the spatial phase of the intracavity stand-
ing wave for the case when no atoms are present.

For numerical processing and comparison with experi-
ments it is useful to introduce the quantitiesa;a−/ÎI0 and
Îx0±;«± /ÎI0 scaled to the sumI0;u«+u2+ u«−u2 of the steady
state photon numbers of the traveling wave modes in absence
of atoms. Using the scaled timet;gct and the scaled light
shift per photonU;D0/gc we obtain

d

dt
a = i

UN
Îx0+

uguĝa2 − a − iUNuguĝ*Îx0+ + Îx0−. s4d

In order to incorporate the equations of motion for the
atomic ensemble into this equation we seek expressions for
the complex phaseĝ=g/ ugu of the bunching parameterg,
which is connected to the atomic center-of-mass coordinate,
while the modulusugu represents the spatial spread of the
atomic sample in each potential well. Therefore, let us con-
sider atoms tightly confined in the optical lattice, such that
the time scale of the axial motion is much shorter than the
photon lifetime s2gcd−1. Recall that s2gcd−1 represents a
lower bound for the time scale relevant for changes of the
intracavity fields. Consequently, the center-of-mass in each
potential well of the optical standing wave should adiabati-
cally follow the potential minimum. We thus assume that the
atomic distribution in the lattice can be described by a sum
of Gaussians which are centered at the instantaneous antin-
odes of the lattice. The condition that the center of mass
follows the potential well minimum is then formally ex-
pressed by the relationĝ* =a/ uau. Recall from Sec. II, thatĝ*

for a Gaussian ensemble is equivalent to the complex phase
factor exps2ikzc.m.d of the center-of-masszc.m. and thata/ uau
can be written as exps2ikzand, wherezan modulol /2 denotes
the positions of the antinodes. To evaluateugu we take into
account that there is no statistical correlation between the

axial and radial coordinates writingugu<ke−i2kzlke−2r2/w0
2
l,

where the brackets denote a Gaussian average. These expres-

sions are readily calculated to beke−i2kzl=e−2k2sz
2

and

ke−2r2/w0
2
l=1/s1+4sr

2/w0
2d. In order to determine the time

evolution of sr and sz we assume that the thermal atomic
sample adjusts adiabatically to the potential well depth keep-
ing the Boltzmann factorsjax;kBTax/vv,ax and jrad
;kBTrad/vv,rad constant, wherekB is the Boltzmann constant
andTax andTrad are the axial and radial temperatures of the
sample andvv,ax and vv,rad denote the axial and radial trap
frequencies. By harmonically approximating the potential in
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axial and radial directions we find 2sz
2/k2=haxÎas0d /astd

and 4sr
2/w0

2=hradfÎx0++ uas0dug / fÎx0++ uastdug, with hax and
hrad being the ratio between the thermal energy and the po-
tential depth att=0 for the axial and radial directions, re-
spectively. With these approximations we are in the position
to state a single equation for the complex unstabilized elec-
tric field amplitude

d

dt
a = i

UN
Îx0+

Lsaduaua − a + Îx0− − iUNÎx0+Lsad
a

uau
,

Lsad ; e−haxÎua0u/uau 1

1 + hrad

Îx0+ + ua0u
Îx0+ + uau

. s5d

In this equation all the parameters can be easily obtained by
measurements and a numerical integration yields simulations
of the intracavity field, that can be compared to experimental
data. In Sec. V we will show that despite its simplicity the
adiabatic model presented here reproduces our observations
very accurately.

We may obtain additional physical insight into the dy-
namical properties of Eq.(5) by representing the complex
field a asa= uaueif with amplitudeuau and phasef. Multiply-
ing Eq.(5) by a* / uau results in separate differential equations
for uau andf:

uau
d

dt
f = UNLsadS uau2

Îx0+

− Îx0+D − Îx0−sin f, s6d

d

dt
uau = Îx0−cosf − uau. s7d

Equations7d implicates that the amplitudeuau adjusts expo-
nentially to Îx0−cosf determined by the instantaneous
value off. This happens at the fastest time scale available
inside the cavity, the decay time of the intracavity field.
Hence, any changes of the intracavity field on slower time
scales are governed by the evolution off. This lets us
adiabatically eliminate Eq. s7d by inserting uau
=Îx0−cosf into Eq. s6d, which leads to

d

dt
f =

UN
Îx0−x0+

L̃sfdSx0−cosf −
x0+

cosf
D − Îx0−tan f,

L̃sfd ;
expS− jax

vR

vV
Î 8

Îx0+x0−cosf
D

1 +
8jradvR

kw0vVsÎx0+ + Îx0−cosfd

. s8d

The localization factorL̃sfd is rescaled in terms of quantities
which remain constant during the time evolution of the sys-
tem, i.e., the axial and radial Boltzmann factorsjax andjrad,
the recoil frequencyvR, the mode radiusw0, and an effective
axial vibrational frequencyvV which is a measure of the
total power directed to the cavity. More precisely,vV is the
axial vibrational frequency corresponding to the optical po-

tential that would arise for symmetric pumping with no at-
oms inside the cavity, i.e., ifa+=a−=«+=«−.

The dynamical properties of Eq.(5) can be analyzed in
terms of its steady state solutions. The steady state values of
f are obtained as the zeros of the the right-hand side of Eq.
(8) while the corresponding values ofuau follow directly from
Eq. (7). It is particularly instructive to plot these steady state
values versus the interaction parameterUN, which can be
readily tuned experimentally via changing of the particle
numberN. In Fig. 2 this is shown for different degrees of
pumping asymmetry, i.e.,x0−=51,50,48,43, and 38% . In
this plot we use our experimental data forjax,jrad,vV,k, and
w0. For values ofx0−,43% only one stable solution exists
and the amplitude and phase of the intracavity fielda are
uniquely defined. The situation changes with increasingx0−.
For higher values, e.g.,x0−=48% a bistable regime arises for
an interaction parameter of 2&UN&3. The upper and lower
branch with a positive(negative) slope for the phase(ampli-
tude) are stable, whereas the middle branch is unstable. If
one increasesUN starting from low values on the 48% trace
in Fig. 2(a) the system will follow the upper branch until the
turning point atUN<3 is reached, where the intensity sud-
denly drops to almost zero. On the other hand, when we
reduce the number of particles starting from high values, the
intensity abruptly jumps from small to high intensity around
UN<2. This hysteresis feature is characteristic for bistable
systems. If we approach symmetric pumping(i.e., x0− ap-
proaches 50%), the upper bound of the bistability range(the
region on thex axis between the jumps) moves further out
towards infinity whereas the lower bound only slightly in-
creases above two. Forx0−ù50% the upper bound of the
bistability range equals infinity, i.e., the low intensity branch
cannot be reached by tuningUN. In this case a stable optical

FIG. 2. Steady state solutions of Eqs.(6) and (7) for the inten-
sity (a) and the phase(b) of the unlocked intracavity field forx0−

=51,50,48,43, and 38%. Forx0−,43% only one stable solution
exists, while for larger values bistability occurs forUN larger than
some value around 2. The arrows indicate for the 48% trace, where
a jump from one to the other stable solution can occur, if the inter-
action parameter is tuned.

ELSÄSSER, NAGORNY, AND HEMMERICH PHYSICAL REVIEW A69, 033403(2004)

033403-4



lattice can be obtained at any value of the interaction param-
eter.

The two possible steady states feature rather different
physical characters. The high intensity branches in the upper
left corner of Fig. 2(a) describe the steady state of the weak
coupling regime, which basically resembles the familiar
steady state of the intracavity field in absence of atoms. Both
external light fields[s+d wave ands−d wave] are efficiently
coupled into the cavity forming a standing wave(with some
traveling wave admixture in case of asymmetric pumping)
with antinode positions determined by the phase difference
of the incoupled beams. The second steady state described by
the low intensity branches in the lower right corner of Fig.
2(a) corresponds to the strong coupling regime. It is charac-
terized by a displacement of the atomic grating of nearlyp /4
with respect to the weak coupling state. In this case the in-
coupled s−d wave and the Bragg-diffracted portion of the
incoupled s+d wave destructively interfere. As a conse-
quence, Bragg scattering of thes+d wave is strongly sup-
pressed and most of thes−d wave is reflected from the cavity.
If the pumping asymmetry favors thes+d wave, the Bragg-
diffracted portion of thes+d wave exceeds the incoupled
s−d wave, i.e., a− consists mainly of residual Bragg-
diffracteds+d wave which explains thep /4 lattice displace-
ment. The position of the atomic grating is thus determined
by the atom-cavity interaction rather than by the phase dif-
ference of the incoupled beams. The lattice depth is only a
fraction (typically 20% in our experiments) of that found for
the weak coupling steady state.

In our analysis we have neglected nonadiabatic aspects of
the atomic motion although this is only justified for the axial
degrees of freedom which are well confined. Motion along
the radial directions occurs on a far slower time scale, and
the adiabatic approximation does not hold. A typical nona-
diabatic reaction of the radial motion to sudden changes of
the potential depth is the excitation of breathing oscillations.
Such oscillations would come along with a small oscillatory
change of the effective interaction strength. If the system
operates deeply inside the bistability regime we may imme-
diately infer from Fig. 2 that small changes ofUN with an
amplitude well below the extension of the bistability range
do not significantly change the intracavity intensity. The
most drastic reaction of the intensity to a change ofUN
occurs, if the system is close to the frontier between stable
and bistable operation, as in the 43 % trace of Fig. 2. In this
case we in fact observe oscillations of the intensity which are
not predicted by our adiabatic model and which are the sub-
ject of Sec. V.

IV. EXPERIMENTAL SETUP

Cold 85Rb atoms are prepared with a standard double-
MOT (magnetooptical trap) setup as depicted in Fig. 3. In a
first vacuum chamber a conventional 3D-MOT collects at-
oms from a Rb dispenser source. One of the retroreflecting
mirrors is provided with a 1.5 mm diameter bore, such that
an atomic beam is extracted with a flux of 53108 s−1 and a
mean velocity of 10 m/s. This beam loads a second
magneto-optical trap placed in the main UHV chamber with

a pressure below 2310−10 mbar. Here we typically trap 5
3108 atoms at a temperature of 100mK. The implementation
of the MOT coils inside the vacuum permits rapid switching
of the magnetic field, however, at the price of contamination
emerging via heating of these coils which limits the lifetime
of the trap to about 2 s.

The experimental implementation of the resonator is
sketched in Fig. 3. In a triangular setup two curved high
reflecting mirrors(1.5 ppm transmission) and the flat incou-
pling mirror (23 ppm transmission) from the high-finesse
ring cavity with a round trio path length of 97 mm and a free
spectral range of 3.1 GHz. The beam waistsw0 (1/e2 mode
radius) in sagittal and vertical directions are 134 and
129 mm, respectively. The beam splitting optics is included
in the vacuum to keep the path lengths between the splitter
and the incoupling mirror as short as possible. This is favor-
able because the path length difference influences the spatial
phase of the intracavity standing wave.

For the trapping light we use an extended cavity grating
stabilized diode laser with around 500 kHz emission band-
width and variable frequency detuning relative to theD2
transition of 85Rb. An acoustooptical modulator serves as a
fast switch and an intensity regulator for the lattice. We ana-
lyze the reflected and transmitted light with three avalanche
photo diodes. In order to stabilize the laser diode emission to
the cavity resonance, we use a frequency modulation tech-
nique (Pound-Drever-Hall) with a servo bandwidth of sev-
eral MHz. Similarly as in Ref.[23] the fast branch of the
feedback control directly applies the PDH-error signal to the
injection current of the diode after passing a loop filter,
which compensates for frequency-dependent phase shifts on
the diode laser chip. With the laser locked to the resonator
we can measure the photon lifetime 2gc=9.3 ms correspond-
ing to a finesse of the cavity ofF=1.83105, a cavity reso-
nance line width of 17 kHz and a mean scattering loss per
mirror of 3 ppm. Because of the small cavity resonance line
width, tiny frequency deviations are readily converted into
intensity fluctuations, which can lead to exponential heating
of the trapped atoms[24]. Steep lattice traps are particular
sensitive to this heating mechanism because the heating time
scales quadratically with the trap frequency. Fortunately,

FIG. 3. Sketch of the double-MOT system with the resonator
placed in the vacuum chamber.
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high noise frequencies in the intracavity field are strongly
suppressed, because of the long photon storage time, such
that our servolock keeps the heating time well below the
timescale of a few seconds relevant for our experiments.

V. COMPARISON WITH EXPERIMENTS

The strong coupling regime is accessed if the interaction
parameterD0 N exceeds the decay time of the intracavity
field gcsUN.1d. In order to keep the spontaneous scattering
time of several ms long enough to avoid significant heating,
we operate the lattice at 0.7 nm detuning. This yields a light
shift per photomD0=0.091 s−1. Hence with a few 106 atoms
trapped in the lattice we are able to reach values forUN up
to 5, well within the strong coupling regime. In the following
experiments we have typically applied 5mW laser power for
each traveling wave mode yielding a trap depth of about
800 mK for symmetric pumping and in absence of atoms.
The corresponding axial vibrational frequency of 500 kHz is
sufficiently larger than the 17 kHz cavity bandwidth, i.e.,
adiabaticity of the axial motion is a well justified assump-
tion. A typical experiment proceeds in three steps. We super-
impose the MOT upon the optical lattice for several seconds,
before the MOT light is shut off and the atoms remain
trapped in the lattice. Finally, the lattice is extinguished and
the atoms are given some time to expand ballistically before
a fluorescence image of the sample is taken. From the time
of flight the radial temperature of the sample is determined.
Without ballistic expansion the fluorescence images give in-
formation on the spatial distribution of the trapped atoms.
We can continuously tune the ratio of powers in the two
running wave modes from the case of symmetric pumping
x0−=x0+ to one-sided pumping. We lock the laser frequency
to only one of the modes, i.e.,x+, and keep its phase and
amplitude at a constant value. The power leaking out from
the unlocked mode through one of the highreflectors is de-
tected and used to determine the scaled intensityx−, which
corresponds touau2 in the theoretical model in Sec. III.

In Fig. 4 we show the time evolution of the scaled intra-
cavity intensityx− for different types of pumping. The MOT
is terminated att=0 in this figure. For symmetric pumping
sx0±=50%d a stable lattice is formed with equal intensities in

each traveling wave mode irrespective of the number of at-
oms inside the cavity. For values ofx0− below 50% the situ-
ation changes drastically. For an asymmetry of only 1% in
favor to the locked mode the intracavity intensityx− drops to
about 10% during the MOT phase and to almost zero after
shutting off the MOT beams. Subsequently, a slow increase
is observed before at about 20 ms the intensity suddenly
jumps back to nearly the valuex0− (the value expected in
absence of atoms) with a rise time below a few hundred
microseconds. If the power of the unlocked mode is further
reduced, the time duration before the jump occurs increases
as well as the rise time until the jump completely vanishes
for valuesx0−,40%. At a value ofsx0−=43%d, where the
jump begins to level off, strong oscillations of roughly 1 kHz
are observed corresponding to twice the radial vibrational
frequency. The traces for asymmetric pumping in Fig. 4 are
observed forx0− adjusted to 49, 46, 43, 36, 33, 26, and 18%,
respectively. The corresponding values of the initial interac-
tion parameterUNst=0d<4.48, 4.25, 4.01, 3.54, 3.30, 2.95,
2.48 are carefully determined by measuring the initial par-
ticle number Nst=0d via fluorescence detection. The ob-
served decrease ofNst=0d with decreasingx0− arises be-
cause the capture efficiency decreases with the lattice well
depth.

In our experiments the value of the interaction parameter
necessarily decreases with time due to trap loss. The corre-
sponding decrease ofUN in connection with the bistability
plot of Fig. 2(a) explains the observations of Fig. 4. As time
proceeds in Fig. 4 we move from right to left in Fig. 2(a)
starting on one of the low intensity branches in the lower
right corner. Hence, depending on the value ofx0− we en-
counter a sudden or soft increase of intensity, depending on
whether we travel on a curve with bistable or stable charac-
ter. We also adjusted values ofx0− above 50%. In this case
x− initially drops to a value close to 50 % independent of the
value ofx0− and gradually recovers tox0−. This behavior is
understood by similar arguments based on Fig. 2.

We have simulated the time evolution observed in Fig. 4
by means of Eq.(5). The values ofua0u are taken directly
from the observations of Fig. 4(a) for t=0. The values of
hax=0.5 andhrad=0.3 are determined by temperature mea-
surements with an uncertainty of about 0.1. The difference in
the radial and axial directions originates from different trap
depths for both directions, since the contrast of the interfer-
ence pattern in axial direction depends on the degree of
pumping asymmetry. The decrease ofNstd with time is de-
rived from trap lifetime measurements analyzed by means of
a standard trap decay model including a two-body loss term.
The theoretical simulations shown in Fig. 5 reproduce our
experimental traces very nicely. Not only the general behav-
ior of the jump feature, but also the time of the jump to
occur, is accurately matched. For the initial interaction pa-
rameterUN we used the values 2.38, 2.23, 2.15, 1.75 forx0−
being 49,46,43, and 36%, which fall within a few percent of
those determined for the corresponding experimental traces,
however reduced by a common scaling factor 1.89. The need
for this factor is not surprising, because in our atom number
measurements up to a factor two uncertainty should be ex-
pected for the absolute values, while relative values are on
the few percent level.

FIG. 4. Scaled intensityx− for different values ofx0−. The MOT
beams are shut off att=0 ms.
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In the strong coupling regime our system shows an
anomalous response to a change of the total intensity coupled
to the cavity while keeping the same pumping asymmetry.
This is shown in Fig. 6(a) for x0−=45%. In this plot we have
reducedI0 by a factor 2 att=0 ms and doubled it again at
t=2 ms. As a first immediate reaction to the reductionx−
rapidly drops on a time scale given by the cavity decay time
gc

−1, as might be expected. However, this is counteracted by
an approach of an increased steady state value on a slower
time scale. When the old power level is reestablished, after a
transient increase,x− drops back to nearly its original value.
A numerical simulation based on our adiabatic model of Sec.
V reproduces the experimental findings surprisingly well ex-
cept for an unexplained additional ripple at about 3 kHz,
which amounts to about six times the radial vibrational fre-
quency. The calculations also show that during the drop ofI0

the phase shift of the unlocked mode with respect to the
locked mode is reduced. Therefore the effective wavelength
of the unlocked mode is shifted closer to resonance and the
intensity increases.

The bistable character of the atom-cavity system can also
be observed at work during MOT loading, yielding plots as
that shown in Fig. 7, wherex− switches between two steady
state solutionssx0−=49%d. Starting att=0 at the high inten-
sity level and hence with a deep lattice with comparably low
atom numberN, the MOT tends to increaseN until the in-
teraction parameter exceeds the critical value and a jump
occurs. Now the intensity is low and hence the lattice depth,
while the temperature remains the same. This yields a de-
crease of the loading rate and thus a reduction ofN until the
system jumps back to the previous state.

In order to control the performance of the locking the
light reflected from the cavity originating from the locked
traveling wave mode is monitored together with the light of
the unlocked mode transmitted through one of the high re-
flectors. This allows us to verify that despite of the rapid
changes in time observed forx− andf, the intracavity inten-
sity of the counterpropagating locked mode remains well be-
haved. This is illustrated in Fig. 8 forx0−=45%. While in the
lower trace rapid time evolution is observed the upper trace
remains nicely constant. The residual structure seen in the

FIG. 5. Theoretical simulations of the experimental observations
of Fig. 4.

FIG. 6. (a) Observed intensity of the unlocked mode plotted
versus time. During the time interval 0 ms, t,2 ms the total
power coupled to the cavity is reduced by factor of 2.(b) A numeri-
cal simulation based on the adiabatic model. The intensityx− (solid
line) and the corresponding phasef (dotted line) are shown.

FIG. 7. Bistable switching ofx− during MOT loading forx0−

=49%.

FIG. 8. The intracavity intensitiesx− and x+ of the unlocked
mode(lower trace, recorded in transmission) and the locked mode
(upper trace, obtained from the reflected light) are plotted versus
time for x0−=45%.
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upper trace is explained by imperfect separation of the con-
tributions from the two modes due to limited quality of the
polarization optics used.

VI. NONADIABATIC MOTION

The adiabatic model excellently explains the experimental
findings regarding the intracavity intensity except for the
pronounced oscillation feature observed in thex0−=43%
trace of Fig. 4. As has been discussed at the end of Sec. III
the assumption of adiabaticity is not well justified for the
radial degrees of the atomic motion. We came to the conclu-
sion that for fast changes of the lattice well depth breathing
oscillations should be excited which would produce corre-
sponding oscillations in the intracavity intensity, if the sys-
tem is operated near the frontier between the stable and the
bistable regime, i.e., in the 43% trace of Fig. 2. In fact this
oscillation is observed in Fig. 4. An expanded version is
shown in Fig. 10(a).

As an experimental test of our interpretation in terms of
radial breathing oscillations we have measured the momen-
tum and position spread of the atomic ensemble in the radial
direction during the observed intensity oscillations, finding
the behavior shown in Fig. 9(a). The black rectangles show
the radial momentum spread of the atomic sample deter-
mined by time-of-flight measurements, while the open
circles show the radial spread directly observed viain situ
images of the atoms in the lattice. The solid and dashed lines
are trigonometric fits withp phase delay, which confirm the
expected anticyclic behavior. In Fig. 9(b) we plot the fre-
quency of the observed intensity oscillations versus the po-
tential well depth which is consistent with the expected
square-root dependence.

In order to include nonadiabatic aspects in our theoretical
description we use the full set of 6N+2 equations of motion
of Eq. (4) and Eq. (2) (i.e., 6N equations for the atomic
positions and momenta and two equations for the amplitude

and the phase of the unlocked intracavity mode). Since these
equations are coupled and nonlinear, the simulation of all 106

atoms is beyond our computational capacities. Therefore, in
our calculations we reduce the number of atoms to one hun-
dred and work with an increased light shift per photon, such
that the interaction parameter acquires values which compare
to the experiments. The artificially increased light shift per
photon comes along with a correspondingly increased light
shift acting on each atom. Hence, in order to maintain the
potential well depth at the level used in the experiments, we
work with correspondingly decreased incoupled intensities.

The full model for one hundred atoms very accurately
reproduces our calculations based on the adiabatic model
shown in Fig. 5 except for the fact that in the vicinity of
x0−<43% additional oscillations arise. This confirms once
again that the assumption of adiabaticity of Sec. V is well
justified for the axial degrees of freedom. We can quantita-
tively reproduce the frequency of the breathing oscillation as
is shown in Fig. 10(b). The experimental data are taken for
UN<3.5 and an axial vibrational frequency of 500 kHz,
whereas for the theoretical curveUN=2.0 and 550 kHz was
used. Applying the scaling factor 1.89 compensating for our
systematic overestimation of the atom number similarly as in
Sec. V the measured interaction parameter coincides with the
theoretical value within 10 %. The discrepancy in the vibra-
tional frequencies lies within our observation uncertainty of
around 10 %.

VII. CONCLUSIONS

We conclude that optical lattices formed inside high fi-
nesse cavities open up an interesting new regime character-
ized by collective interactions which significantly contribute
to the atomic dynamics. This regime can be experimentally
realized even far from an atomic resonance such that the
atom-light interaction is entirely dispersive. In the ring cavity
studied here, specific parameter ranges are identified which
allow us to operate a stable lattice independent of the number
of trapped atoms. Other regimes are found where dispersive
optical bistability accompanied by self-induced breathing os-
cillations occur. The spatial phase of the lattice is not pinned

FIG. 9. (a) Oscillation of the atomic position spread(circles)
and momentum spread(rectangles). The solid and dashed lines are
trigonometric fits withp phase delay.(b) Oscillation frequency
plotted versus the well depth. The solid line shows the expected
square-root dependence.

FIG. 10. (a) Experimental observation of radial breathing oscil-
lations.(b) Simulation of the oscillations of(a) by means of solving
the complete set of equations of motion for hundred atoms with an
upscaled interaction parameter.
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by the phases of the incoupled laser beams, but rather deter-
mined by the strength of the atom-cavity interaction. Bistable
behavior arises for asymmetric pumping and can be under-
stood in terms of an adiabatic approximation for the atomic
motion, whereas the general equations of motion must be
considered to model the observed breathing oscillations. In
this article we have only discussed selected aspects of the
system dynamics. Other interesting phenomena could be
studied, as for example collective atomic recoil lasing[25],
which has been recently observed for unidirectional pumping
of the ring cavity[26]. The strong coupling regime might

also be utilized for implementing novel laser cooling
schemes, which rely on cavity-tailored coherent scattering,
for example, as described in Ref.[14]. Such schemes are
highly desirable since they promise to extend laser cooling to
new species and to operate in a density regime not yet ac-
cessible.
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