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Optical bistability and collective behavior of atoms trapped in a highQ ring cavity
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We study the collective motion of atoms confined in an optical lattice operating inside a high-finesse ring
cavity. A simplified theoretical model for the dynamics of the system is developed upon the assumption of
adiabaticity of the atomic motion. We show that in a regime where the light shift per photon times the number
of atoms exceeds the linewidth of the cavity resonance, the otherwise tiny retroaction of the atoms upon the
light field becomes a significant feature of the system. As a result dispersive optical bistability can arise and the
lattice positions is determined by the strength of the atom-cavity coupling rather than by the phases of the
incoupled light beams. Solving the complete set of classical equations of motion confirms these findings,
however, additional nonadiabatic phenomena are predicted, such as, for example, self-induced radial breathing
oscillations. We compare these results with experiments involving laser-c8emid atoms trapped in an
optical lattice inside a ring cavity with a finesse of X.&80°. Our observations are in excellent agreement with
our theoretical predictions.
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I. INTRODUCTION ton times the number of trapped particles exceeds the reso-
Atoms regularly spaced in an optical lattice are a widelyN@nce linewidth of the cavity, and thus the otherwise tiny
studied model system of quantum optjds2] with potential retroaction of the atoms upon the light field becomes a sig-
applications in areas ranging from condensed matter physi<f§f'c"’mt,feature of the system. .
[3] to quantum information processirig]. Magneto-optical In this paper we experimentally and theoretically explore
loading techniques typically provide sparsely populated Op;he motion of atoms trapped in an optical lattice formed in-

tical lattices with an average interatomic distance of severa$!de & high finesse ringcavity with a large mode volume. For

microns, where dipole-dipole or spin interactions are negli-Strong atom-cavity coupling where the backaction of the at-

gite. Shemes tha provide mutua meracions among T 107 e ice peenie hecemes S e s
atoms can significantly increase the usefulness of op_t|cal Iaéharacter of the atomic motion. In this regime the intracavity
tices. A very successful approach explored by various re

) ; . ; —field can exhibit dispersive optical bistability, the lattice po-
search groups is to increase the lattice population by loadingsion is no longer determined by the phases of the incoupled
a Bose-Einstein condensdte 6]. More recently, the forma-

. . . o ) light beams but rather in a self-organization process, and the
tion of optical lattices inside optical resonators has become gydial motion can show self-induced breathing oscillations.

subject of extensive resear¢fi-10, because this can give apsorptive optical bistability due to optical pumping and
rise to cavity-mediated long-range interactions even at modsatyration has been previously observed with resonators op-
erate particle densities. Possible applications range frorarating close to an atomic resonance. Examples include small
quantum computing schemgg to novel laser cooling meth- mode-volume high-finesse resonators with a few cold atoms
0ds[11-19 which do not rely on cyclic spontaneous emis-[19] and low-finesse resonators containing large numbers of
sion and thus apply to a wider class of species without degeold atoms trapped in a magneto-optic trg8] or even
radation at high densities. dense, hot atomic samples confined in a vapor[@él. Our

The key to exploiting these new concepts is a profoundattice operates far from resonance where optical pumping
understanding of the interaction of trapped particles with in-and saturation are negligible and the atoms merely act as a
tracavity light fields with special focus on the external de-dispersive medium.
grees of freedom. For single atoms interacting with only a The paper is organized as follows. In Sec. Il we present a
few photons in cavities with a small mode volume well be-simple physical picture of the atom-cavity coupling in terms
low 104 mm® studies have been successfully performedof coherent Rayleigh and Bragg scattering. In Sec. Il we
within the last few year§l6,17. More recently, large atomic discuss the complete set of semiclassical equations of motion
ensembles have been confined in high-finesse cavities withf the system. These equations are difficult to solve leading
large mode volumes exceeding 1 rhrhong trapping times us to develop a simplified but surprisingly accurate model of
of many seconds could be realized, because disturbing higllhe complex system dynamics based upon the assumption
frequency intensity noise components of the intracavity lighthat the atomic sample adiabatically adjusts to the potential
field are significantly suppressed owing to the long photorposition and depth. A steady-state analysis for the phase and
storage timg8]. Although operation at large detunings from amplitude of the intracavity field predicts dispersive bistabil-
atomic resonance is required in order to prevent undesirabligy. In Sec. IV we summarize the characteristics of our ex-
spontaneous emission, for sufficiently high values of the cavperimental setup. In Sec. V we present experiments in the
ity finesse the strong coupling regime can be reached. In thistrong coupling regime which exhibit distinctive nonlinear
case the interaction strength given by the light shift per phobehavior in excellent agreement with the predictions of the
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(a) =(1/N)=, 122, -200)MG \where k=27/)\ is the wave
Xo+ number andz, denote the(classical axial atomic position
coordinates. This bunching parameter resembles the Debye-
« Atoms Waller factor in the theory of Bragg diffraction from crystal-
/ line solids. If there is no statistical correlation between the
Xo~ axial and radial coordinates and the spatial distributions near
each lattice site follow a Gaussian, we may wrge[1
' +4(0 1 Wo)?] texp(—2k?o?) exp(—2ikz. 1), i.€., the complex
—E Detector phase scales with the axial center of mass coordinate
(b) =(1/N)="., z, and the modulus is a measure for the axial
frequency (0, and radial(o,) spread of the atomic sample at each
lattice site. Perfect localization corresponds |g/=1,
whereas a homogeneous distribution is describef|ey0.
Bragg scattering acts to lift the degeneracy of the travel-

,
¢ o+ N A (9r- |gl)

o, +NAg O ing wave modes giving rise to a pair of resonance frequen-
cies split by NAy|g|. In the strong coupling regime, i.e., if
o+ N Ag (gr + |9l) the interaction parameteyy N exceeds the cavity resonance

bandwidth, the corresponding intracavity light fields acquire

FIG. 1. (a) Sketch of the experimental setup. Adjustable laserorthogonal standing wave geometries with either the antin-

powersxo. are coupled into the two counterpropagating travelingodes or the nodes coinciding with the lattice sites of the

wave modes of a ring resonator. The power transmitted through thgtomic grating. In the former case the interaction is maxi-
cavity can be detected by a photodiodeD). (b) Mode splitting  mized and the corresponding frequency shift+NAy(g,

mechanismexplained in the text +|g|) exceeds that found for the travelling wave modes in
presence of a homogeneous atomic sample. In the latter case
adiabatic model of Sec. Ill. In Sec. VI we explore nonadia-the interaction is minimized and a reduced shift,

batic aspects of the atomic motion. Observations of radiakNA, (g,—|g|) applies[Fig. 1b)].
breathing oscillations are discussed and a numerical simula- In our experiments the cavity is initially filled with light
tion based on solving the complete set of equations of moin absence of atoms and subsequently atoms are loaded into

tion is presented. the antinodes of the intracavity field. The small cavity band-
width requires that the frequency of the incoupled laser beam
Il. GENERAL CONSIDERATIONS needs to by actively controlled in order to maintain some

resonance condition. In our implementation we servolock the

The interaction of the atomic sample with the intracavity laser frequency in order to maximize the amplitude of one of
light field can be understood in terms of coherent Rayleighthe counterpropagating traveling wavissy the(+) modg
and Bragg scattering. Consider the two degenerate, mutuallyith a technique briefly discussed in Sec. IV. For symmetric
counterpropagating, traveling wave modes of a ring resongsumping this yields population of the interaction-
tor [discriminated by indices+) in the following with a  maximizing standing wave mode of Fig(hl. In this case a
common resonance frequeney, as depicted in Fig. (&). stable optical lattice is formed independent of the size of the
Let us add atoms into the common mode volume with a Bohinteraction parameter. The second, not externally pumped
frequencyw,> w. such that their interaction with the intrac- mode, blue detuned with respect to the optical lattice, can
avity fields has entirely dispersive character. If the atomicthen be utilized for implementation of a sideband cooling
sample is homogeneously distributed, it will merely give risescheme as described in Rgt4].
to Rayleigh scattering in the forward directions. This yields For asymmetric pumping of the cavity the situation be-
equal indices of refractionmn.=1-N g, Ay/w, for both  comes more complex. Consider the change of the indices of
traveling wave modes, wherd, is the light shift per refractionn, experienced by the counterpropagating travel-
photon(which is negative for the case of normal dispersioning waves, due to Bragg scattering. In addition to the usual
considered hepe N is the number of atoms, contribution of forward Rayleigh scattering, propagation of
g = (1/N)2'3=1 e—Z(X§+y§>/W§ is the radial bunching parameter, the (+) wave suffers extra delay from Bragg scattering of the

measuring the spatial overlap of the atomic sample with thé=) wave into the(+) wave. This extra contribution should
mode volumex, andy, denote thgclassical radial atomic ~ scale with the intensity ratio of the Bragg scattered)
position coordinates, andy is the mode radius. This causes wave and the copropagating:) wave. According to the
a common frequency shifN Ay g, for both modes[Fig. considerations of Ref[21] [Eq. (7)], to first scattering
1(b)]. order, the modified refractive indices are given by

If the atoms are localized at the sites of a lattice Wif2 ~ =1-N(Ay/ w.) (g, +|g||@+/ a.|). Note thatn, andn_ may dif-
lattice constaniwhere\ is the optical wavelengih addi-  fer, if the field amplitudes of the traveling waves are not
tional Bragg scattering in the backwards directions carequal, e.g., for asymmetric external pumping of the cavity.
couple the two counterpropagating traveling wave modes. It¥his gives rise to interesting nonlinear dynamics, if Bragg
efficiency depends on the degree of radial and axial localizascattering becomes relevant. A small external pumping
tion measured by the bunching parameteg asymmetry can yield a relative change of the refractive indi-
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ces and a corresponding spatial phase shift of the opticqll/dt)a,=0. More precisely, it is the complex phase factor
standing wave potential. As the laser frequency is kept acef «, which is kept constant, however, as long @s are
tively in resonance with thét+) wave, the(-) wave is tuned sufficiently different from zero this extends to keeping the
slightly out of resonance and the potential well depth de-modulus ofa, constant as well. Hence, we may combine the
creases. The degree of pumping asymmetry is thus furthéwo field equations(1) into a single equation for the un-
increased yielding a runaway dynamics which only termi-locked modea._
nates if the decrease of the degree of localizafgncon-

nected with the decreasing well depth sufficiently reduces Ea_:iAoN
the efficiency of Bragg scattering. As we will see in the next dt &4

section, in a certain parameter range this dynamics aIIowaSing the abbreviations, = (yo/ yc) 7. for the steady state

:)v;/]c;ns;?naedg/astates to coexist, thus giving rise to l:)'Stab"'tyintra-cavity fields in absence of atorfscaled to the field per

photor). We may choose, to be real without loss of gen-
erality, thus fixing the spatial phase of the intracavity stand-
1. ADIABATIC MODEL ing wave for the case when no atoms are present.

. _ For numerical processing and comparison with experi-
We restrict ourselves to the case where the cavity modeg,enys it is useful to introduce the quantitiess a_/+1, and
support coherent fields with large mean photon numbers in-_ —

: . . he Uxor=e./\1, scaled to the surty=|e.|?+|e_|? of the steady
teracting with large thermal atomic samples at sufficientlygiate hhoton numbers of the traveling wave modes in absence

high temperatures such that a classical description of the ORSf atoms Using the scaled time= v and the scaled light
tical intracavity fields and the atomic position and momen-gpic per bhotoﬂJ=A0/y we obtainc
- Cc

tum variables is appropriate. Moreover, we assume a large
detuning of the pump frequency from the atomic resonance d UN i e
and hence negligible saturation. In this case according to E_a—l\fﬁlglga -a-iUN[gl§ Vxo++ VXo-- (4
Ref.[22] the following equations describe the time evolution 0
of the complex fieldsy, and a_ for the counterpropagating In order to incorporate the equations of motion for the
traveling wave modes scaled to the field per photon: atomic ensemble into this equation we seek expressions for
the complex phasg=g/|g| of the bunching parameteg,
E<0‘+) -M <“+> +y <77+> which is connected to the atomic center-of-mass coordinate,
dt 0 )’ while the modulus|g| represents the spatial spread of the
atomic sample in each potential well. Therefore, let us con-
sider atoms tightly confined in the optical lattice, such that
)- (1) the time scale of the axial motion is much shorter than the
Ye photon lifetime (2y,)". Recall that(2y,)™* represents a
Here 7, and 7_ are the complex amplitudes of the incoupled lower bound for the time scale relevant for changes of the
light fields, v, is the cavity free spectral range, addde- intracavity fields. Consequently, the center-of-mass in each
notes the detuning of the incoupled frequency from the resopotential well of the optical standing wave should adiabati-
nance frequency. of the empty cavity. The diagonal ele- cally follow the potential minimum. We thus assume that the
ments of the matrixM comprise the forwardRayleigh  atomic distribution in the lattice can be described by a sum
scattering term&NAqg, which only depend on the degree of of Gaussians which are centered at the instantaneous antin-
radial bunching while the off-diagonal terms which act toodes of the lattice. The condition that the center of mass
couple a, and a_ are due to Bragg scattering and thus in-follows the potential well minimum is then formally ex-

ge? - a_y.—iANg e, +ey, (3

a_ a_

_ (i(5c_ NAGY) ~ ¥e —iNAqg
—iNA g i(3 = NAgg,) =

volve the overall bunching parametgr pressed by the relatiafi =a/|a|. Recall from Sec. Il, thag"
The equations for the momenf@,=(py,.py,..P,,) and for a Gaussian ensemble is equivalent to the complex phase
the positionsx,=(x,,Y,,z,) read factor exg2ikz. ,) of the center-of-masg. ,, and thata/|a
can be written as exXgikz,,), wherez,, modulo\/2 denotes

d. N ) ‘ - X -
=P, =hA(V]a e+ a_elk2|ze—2[<x2+y2)/w§]) - the positions of the antinodes. To evalubgb\_/ve take into
account that there is no statistical correlation between the

dt
axial and radial coordinates writingg| ~ (€722 (e 2 "G),
E)? - iﬁ 2) where the brackets denote a Gaussian average. These expres-
v ve . . . 2
de = m sions are readily calculated to b@i2%=e20: and

These equations describe the motion of the atoms in thée‘zrz’“’%>=1/(1+40flvvg). In order to determine the time
optical potential wells provided by the intracavity fields. In evolution of ¢, and o, we assume that the thermal atomic
total we are concerned withN6+2 coupled first-order non- sample adjusts adiabatically to the potential well depth keep-
linear differential equations for theNBposition and momen- ing the Boltzmann factorséy=KgTax/ @, ax and &aq
tum variables, respectively and the two complex field ampli-=kgT,,¢/ ©, rag CONStant, wherég is the Boltzmann constant
tudes for the counterpropagating cavity modes. andT,, and T4 are the axial and radial temperatures of the

The incoupled frequency is stabilized such that the comsample andv, o, and w, ,5q denote the axial and radial trap
plex field amplituder, is maintained at a constant value, i.e., frequencies. By harmonically approximating the potential in
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axial and radial directions we fi_ndoé/kzz Nacya(0)/a(t) 5y
and 47/ Wg= mrad Vxo+ +1a(0)[1/ [Vxos +[a(t)[], with 7, and S
Mrag D€ING the ratio between the thermal energy and the po- o
tential depth at=0 for the axial and radial directions, re- G
spectively. With these approximations we are in the position 2
to state a single equation for the complex unstabilized elec- %
tric field amplitude ]
[
d . UN — . — a
—a=i——L(a)lala-a+ xo-—iUNVxo.L(a)—,
dr VXo+ |a|
£
- 1 <
L(a) = & 7ax[ad/lal — ) (5) 9
VXo++ |a0| 2
1+ 7, I o ]
VXo+t |a| wl =039 49
. . . . 0.0 —
In this equation all the parameters can be easily obtained by s R S e

0 1 2 3 4 5

ical i i ields simulations ;
measurements and a numerical integration yield Interaction Strength U N

of the intracavity field, that can be compared to experimental

data. In Sec. V we will show that despite its simplicity thg FIG. 2. Steady state solutions of Eq6) and(7) for the inten-
adiabatic model presented here reproduces our observatlogisy () and the phaseb) of the unlocked intracavity field fog-
very accurately. =51,50,48,43, and 38%. Fof-<43% only one stable solution

We may obtain additional physical insight into the dy- exists, while for larger values bistability occurs 10N larger than
namical properties of Eq5) by representing the complex some value around 2. The arrows indicate for the 48% trace, where
field a asa=|ale'? with amplitude|a| and phases. Multiply-  a jump from one to the other stable solution can occur, if the inter-
ing Eq.(5) by a'/|a| results in separate differential equations action parameter is tuned.
for |a| and ¢: , , _ _ ,

tential that would arise for symmetric pumping with no at-
d la? — — oms inside the cavity, i.e., if,=a_=e,=¢_.

\a|a_¢: UNL(@){ === Vxo+| = Vxo-Sin ¢,  (6) The dynamical properties of E@5) can be analyzed in

VX0~ terms of its steady state solutions. The steady state values of
¢ are obtained as the zeros of the the right-hand side of Eq.
£|a| - \e“'x—cos é-|a 7 (8) while the corresponding values |af follow directly from
dr 0~ ' Eq. (7). Itis particularly instructive to plot these steady state

. L . . values versus the interaction parametd, which can be
Equation(7) implicates that the amplitude| adjusts expo- oty tuned experimentally via changing of the particle
nentially to Vxo-cos¢ determined by the instantaneous ,mperN, In Fig. 2 this is shown for different degrees of
value of ¢. This happens at the fastest time scale ava”abl%umping asymmetry, i.ex,.=51,50,48,43, and 38% . In
inside the cavity, the decay time of the intracavity field. g plot we Use our experimental data g, £, oy, k, and
Hence, any changes of the intracavi_ty field on slower timeWO_ For values ofy,_< 43% only one stable solution exists
scales are governed by the evolution of This lets us  yn4 the amplitude and phase of the intracavity fialdre
adiabatically eliminate Eq. (7) by inserting El uniquely defined. The situation changes with increaging
=\Xo-cos ¢ into Eq. (6), which leads to For higher values, e.gy,-=48% a bistable regime arises for

d UN ~—~ ( Xo+ ) — an interaction parameter of2UN =< 3. The upper and lower

—¢p= ———=L(d)| xo_COSp— —— | = Vxotan ¢, branch with a positivénegativé slope for the phaseampli-

dr VXo-Xo+ cosé tude) are stable, whereas the middle branch is unstable. If

one increaseblN starting from low values on the 48% trace
p( ¢ wR 8 ) in Fig. 2(a) the system will follow the upper branch until the
ax

_ ex ov Y Vxorxoc0s ¢ turning point atUN~ 3 is reached, where the intensity sud-
L(¢) = vV~ \Xo+Xo- _ (8)  denly drops to almost zero. On the other hand, when we
1+ 8&radwr reduce the number of particles starting from high values, the

kWOwV(V’X—(H+ \s‘XT_cos ) intensity abruptly jumps from small to high intensity around

— UN=2. This hysteresis feature is characteristic for bistable
The localization factoL(¢) is rescaled in terms of quantities systems. If we approach symmetric pumpifig., xo- ap-
which remain constant during the time evolution of the sysproaches 50% the upper bound of the bistability ranghe
tem, i.e., the axial and radial Boltzmann fact@gs and &4 region on thex axis between the jumpsnoves further out
the recoil frequencwg, the mode radiug/y,, and an effective  towards infinity whereas the lower bound only slightly in-
axial vibrational frequencyw, which is a measure of the creases above two. Faip-=50% the upper bound of the
total power directed to the cavity. More precisaly, is the  bistability range equals infinity, i.e., the low intensity branch
axial vibrational frequency corresponding to the optical po-cannot be reached by tunitgN. In this case a stable optical
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lattice can be obtained at any value of the interaction param-
eter.

The two possible steady states feature rather different
physical characters. The high intensity branches in the uppe
left corner of Fig. 2a) describe the steady state of the weak
coupling regime, which basically resembles the familiar
steady state of the intracavity field in absence of atoms. Bott
external light field§(+) wave and(-) wave are efficiently
coupled into the cavity forming a standing waweth some
traveling wave admixture in case of asymmetric pumping
with antinode positions determined by the phase difference
of the incoupled beams. The second steady state described t
the low intensity branches in the lower right corner of Fig.
2(a) corresponds to the strong coupling regime. It is charac-
terized by a displacement of the atomic grating of nearly
with respect to the weak coupling state. In this case the in-
coupled (=) wave and the Bragg-diffracted portion of the
incoupled (+) wave destructively interfere. As a conse-

quence, Bragg scattering of tlie) wave is strongly sup- a pressure below 2 107'° mbar. Here we typically trap 5
pressed and most of tlie) wave is reflected from the cavity. x 10% atoms at a temperature of 10K. The implementation
If the pumping asymmetry favors tHe) wave, the Bragg- of the MOT coils inside the vacuum permits rapid switching
diffracted portion of the(+) wave exceeds the incoupled of the magnetic field, however, at the price of contamination
(=) wave, i.e., . consists mainly of residual Bragg- emerging via heating of these coils which limits the lifetime
diffracted (+) wave which explains ther/4 lattice displace- of the trap to about 2 s.
ment. The position of the atomic grating is thus determined The experimental implementation of the resonator is
by the atom-cavity interaction rather than by the phase difsketched in Fig. 3. In a triangular setup two curved high
ference of the incoupled beams. The lattice depth is only &eflecting mirrors(1.5 ppm transmissigrand the flat incou-
fraction (typically 20% in our experimentf that found for ~ Pling mirror (23 ppm transmissignfrom the high-finesse
the weak coupling steady state. ring cavity with a round trio path length of 97 mm and a free
In our analysis we have neglected nonadiabatic aspects &Pectral range of 3.1 GHz. The beam waists(1/€* mode
the atomic motion although this is only justified for the axial radiug in sagittal and vertical directions are 134 and
degrees of freedom which are well confined. Motion alongl29 um, respectively. The beam splitting optics is included
the radial directions occurs on a far slower time scale, andn the vacuum to keep the path lengths between the splitter
the adiabatic approximation does not hold. A typical nona-2nd the incoupling mirror as short as possible. This is favor-
diabatic reaction of the radial motion to sudden changes ofble because the path length difference influences the spatial
the potential depth is the excitation of breathing oscillationsPhase of the intracavity standing wave.
Such oscillations would come along with a small oscillatory ~ For the trapping light we use an extended cavity grating
Change of the effective interaction Strength. If the Systenﬁtab”ized diode laser with around 500 kHz emission band-
operates deeply inside the bistability regime we may immeWwidth and variable frequency detuning relative to the
diately infer from Fig. 2 that small changes ON with an  transition of8°Rb. An acoustooptical modulator serves as a
amplitude well below the extension of the bistability rangefast switch and an intensity regulator for the lattice. We ana-
do not significantly change the intracavity intensity. The|yze the reflected and transmitted ||ght with three avalanche
most drastic reaction of the intensity to a changeUd photo diodes. In order to stabilize the laser diode emission to
occurs, if the system is close to the frontier between stabléhe cavity resonance, we use a frequency modulation tech-
and bistable operation, as in the 43 % trace of Fig. 2. In thifiique (Pound-Drever-Hajl with a servo bandwidth of sev-
case we in fact observe oscillations of the intensity which aré@ral MHz. Similarly as in Ref[23] the fast branch of the

not predicted by our adiabatic model and which are the subfeedback control directly applies the PDH-error signal to the
ject of Sec. V. injection current of the diode after passing a loop filter,

which compensates for frequency-dependent phase shifts on
IV. EXPERIMENTAL SETUP the diode laser chip. With thg Igser locked to the resonator
we can measure the photon lifetime.2 9.3 us correspond-
Cold ®Rb atoms are prepared with a standard doubleing to a finesse of the cavity df=1.8x 10°, a cavity reso-
MOT (magnetooptical trgpsetup as depicted in Fig. 3. In a nance line width of 17 kHz and a mean scattering loss per
first vacuum chamber a conventional 3D-MOT collects at-mirror of 3 ppm. Because of the small cavity resonance line
oms from a Rb dispenser source. One of the retroreflectingidth, tiny frequency deviations are readily converted into
mirrors is provided with a 1.5 mm diameter bore, such thatntensity fluctuations, which can lead to exponential heating
an atomic beam is extracted with a flux ok3.0° st and a  of the trapped atomg24]. Steep lattice traps are particular
mean velocity of 10 m/s. This beam loads a secondsensitive to this heating mechanism because the heating time
magneto-optical trap placed in the main UHV chamber withscales quadratically with the trap frequency. Fortunately,

FIG. 3. Sketch of the double-MOT system with the resonator
placed in the vacuum chamber.
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60 %= each traveling wave mode irrespective of the number of at-
50 b ‘ 50% oms inside the cavity. For values g§- below 50% the situ-
3 WMt bbbttt 49% ation changes drastically. For an asymmetry of only 1% in
‘;. wl ‘ MM_M_Wwwww«w-*ww 46% favor to the locked mode the intracavity intensitydrops to
> lhe 43% about 10% during the MOT phase and to almost zero after
= A g e . .
@ 30t 'W §hutt|ng off the MOT beams. Subsequentl_y, a sl_ow increase
k9 Wb ™| 36% is observed before at about 20 ms the intensity suddenly
£ 20} ‘ W o] 33% jumps back to nearly the valug,_ (the value expected in
B | T P absence of atomswith a rise time below a few hundred
g 1oL e | 18% microseconds. If the power of the unlocked mode is further
N: reduced, the time duration before the jump occurs increases
0 20 40 60 80 100 as well as the rise time until the jump completely vanishes

Time [ms] for valuesy,-<40%. At a value of(x,-=43%), where the
jump begins to level off, strong oscillations of roughly 1 kHz
FIG. 4. Scaled intensity_ for different values of,-. The MOT  are observed corresponding to twice the radial vibrational
beams are shut off a=0 ms. frequency. The traces for asymmetric pumping in Fig. 4 are
observed fory,- adjusted to 49, 46, 43, 36, 33, 26, and 18%,
respectively. The corresponding values of the initial interac-
'Rn parametetJN(t=0) = 4.48, 4.25, 4.01, 3.54, 3.30, 2.95,
.48 are carefully determined by measuring the initial par-
ticle numberN(t=0) via fluorescence detection. The ob-
served decrease dfi(t=0) with decreasingy,- arises be-
cause the capture efficiency decreases with the lattice well
depth.
In our experiments the value of the interaction parameter
The strong coupling regime is accessed if the interactiomecessarily decreases with time due to trap loss. The corre-
parameterAy N exceeds the decay time of the intracavity sponding decrease &fN in connection with the bistability
field y.(UN>1). In order to keep the spontaneous scatteringplot of Fig. 2a) explains the observations of Fig. 4. As time
time of several ms long enough to avoid significant heatingproceeds in Fig. 4 we move from right to left in Figca®
we operate the lattice at 0.7 nm detuning. This yields a lighstarting on one of the low intensity branches in the lower
shift per photomA,=0.091 s*. Hence with a few 1®atoms  right corner. Hence, depending on the valueygf we en-
trapped in the lattice we are able to reach valuedJrup  counter a sudden or soft increase of intensity, depending on
to 5, well within the strong coupling regime. In the following whether we travel on a curve with bistable or stable charac-
experiments we have typically appliedV laser power for ter. We also adjusted values gf- above 50%. In this case
each traveling wave mode yielding a trap depth of abouty_ initially drops to a value close to 50 % independent of the
800 K for symmetric pumping and in absence of atoms.value of yo,_ and gradually recovers tg,_. This behavior is
The corresponding axial vibrational frequency of 500 kHz isunderstood by similar arguments based on Fig. 2.
sufficiently larger than the 17 kHz cavity bandwidth, i.e., We have simulated the time evolution observed in Fig. 4
adiabaticity of the axial motion is a well justified assump-by means of Eq(5). The values ofla,| are taken directly
tion. A typical experiment proceeds in three steps. We supeffrom the observations of Fig.(d) for t=0. The values of
impose the MOT upon the optical lattice for several secondsy,=0.5 and#,,q=0.3 are determined by temperature mea-
before the MOT light is shut off and the atoms remainsurements with an uncertainty of about 0.1. The difference in
trapped in the lattice. Finally, the lattice is extinguished andthe radial and axial directions originates from different trap
the atoms are given some time to expand ballistically beforelepths for both directions, since the contrast of the interfer-
a fluorescence image of the sample is taken. From the timence pattern in axial direction depends on the degree of
of flight the radial temperature of the sample is determinedpumping asymmetry. The decreaseNit) with time is de-
Without ballistic expansion the fluorescence images give infived from trap lifetime measurements analyzed by means of
formation on the spatial distribution of the trapped atomsa standard trap decay model including a two-body loss term.
We can continuously tune the ratio of powers in the twoThe theoretical simulations shown in Fig. 5 reproduce our
running wave modes from the case of symmetric pumpingxperimental traces very nicely. Not only the general behav-
Xo-=Xo+ to one-sided pumping. We lock the laser frequencyior of the jump feature, but also the time of the jump to
to only one of the modes, i.ex,, and keep its phase and occur, is accurately matched. For the initial interaction pa-
amplitude at a constant value. The power leaking out frontameterUN we used the values 2.38, 2.23, 2.15, 1.75xfqr
the unlocked mode through one of the highreflectors is debeing 49,46,43, and 36%, which fall within a few percent of
tected and used to determine the scaled intengifywhich  those determined for the corresponding experimental traces,
corresponds t¢a/? in the theoretical model in Sec. Ill. however reduced by a common scaling factor 1.89. The need
In Fig. 4 we show the time evolution of the scaled intra-for this factor is not surprising, because in our atom number
cavity intensityy- for different types of pumping. The MOT measurements up to a factor two uncertainty should be ex-
is terminated at=0 in this figure. For symmetric pumping pected for the absolute values, while relative values are on
(x0+=50%) a stable lattice is formed with equal intensities in the few percent level.

high noise frequencies in the intracavity field are strongly,
suppressed, because of the long photon storage time, su
that our servolock keeps the heating time well below th
timescale of a few seconds relevant for our experiments.

V. COMPARISON WITH EXPERIMENTS
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FIG. 7. Bistable switching of- during MOT loading foryq-
Time [ms] =49%.

FIG. 5. Theoretical simulations of the experimental observationgpe phase shift of the unlocked mode with respect to the

of Fig. 4. locked mode is reduced. Therefore the effective wavelength

of the unlocked mode is shifted closer to resonance and the
In the strong coupling regime our system shows anintensity increases.

anomalous response to a change of the total intensity coupled The bistable character of the atom-cavity system can also

to the cavity while keeping the same pumping asymmetrybe observed at work during MOT loading, yielding plots as

This is shown in Fig. @) for y,-=45%. In this plot we have that shown in Fig. 7, wherg_ switches between two steady

reducedl, by a factor 2 at=0 ms and doubled it again at state solutiongy,-=49%). Starting at=0 at the high inten-

t=2ms. As a first inmediate reaction to the reductjpn  sity level and hence with a deep lattice with comparably low

rapldly drops on a time scale given by the cavity decay timeatom numbemN, the MOT tends to increasid until the in-

VC , as might be expected. However, this is counteracted byeraction parameter exceeds the critical value and a jump

an approach of an increased steady state value on a slowetcurs. Now the intensity is low and hence the lattice depth,

time scale. When the old power level is reestablished, after @hile the temperature remains the same. This yields a de-

transient increasey_ drops back to nearly its original value. crease of the loading rate and thus a reductioN oftil the

A numerical simulation based on our adiabatic model of Secsystem jumps back to the previous state.

V reproduces the experimental findings surprisingly well ex-  In order to control the performance of the locking the

cept for an unexplained additional ripple at about 3 kHz,light reflected from the cavity originating from the locked

which amounts to about six times the radial vibrational fre-traveling wave mode is monitored together with the light of

quency. The calculations also show that during the dro of the unlocked mode transmitted through one of the high re-
flectors. This allows us to verify that despite of the rapid

> @ changes in time observed fgr and ¢, the intracavity inten-
@ sity of the counterpropagating locked mode remains well be-
% haved. This is illustrated in Fig. 8 fof,_=45%. While in the
= lower trace rapid time evolution is observed the upper trace
% remains nicely constant. The residual structure seen in the
1 60 MWM
2 0 2 4 . ‘ WH
X o g sowvwwmw WWW o
1 20 4 = 40_X+
2 = 2 lﬂ
o E 3 4l /w
= o} 25 % M w\}‘ \
2 : 5 el I
D o : : o & or WW
2 0 2 4
Time [ms] "% 10 2 %
Time [ms]
FIG. 6. (a) Observed intensity of the unlocked mode plotted
versus time. During the time interval 0 rig<2 ms the total FIG. 8. The intracavity intensitieg- and y, of the unlocked
power coupled to the cavity is reduced by factor oft8.A numeri- mode (lower trace, recorded in transmissjcend the locked mode
cal simulation based on the adiabatic model. The intensitgsolid (upper trace, obtained from the reflected lighte plotted versus
line) and the corresponding phage(dotted ling are shown. time for xo-=45%.
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00 200 800 1200 FIG. 10. (a) Experimental observation of radial breathing oscil-
Well Depth [uK] lations.(b) Simulation of the oscillations daf) by means of solving

the complete set of equations of motion for hundred atoms with an
FIG. 9. (a) Oscillation of the atomic position spreadircley  Upscaled interaction parameter.
and momentum spregdectangles The solid and dashed lines are
trigonometric fits with phase delay(b) Oscillation frequency and the phase of the unlocked intracavity mpdince these
plotted versus the well depth. The solid line shows the expectegquations are coupled and nonlinear, the simulation of &ll 10
square-root dependence. atoms is beyond our computational capacities. Therefore, in
our calculations we reduce the number of atoms to one hun-
upper trace is explained by imperfect separation of the condred and work with an increased light shift per photon, such
tributions from the two modes due to limited quality of the that the interaction parameter acquires values which compare
polarization optics used. to the experiments. The artificially increased light shift per
photon comes along with a correspondingly increased light
shift acting on each atom. Hence, in order to maintain the
VI. NONADIABATIC MOTION potential well depth at the level used in the experiments, we
ork with correspondingly decreased incoupled intensities.
The full model for one hundred atoms very accurately
reproduces our calculations based on the adiabatic model
. . hown in Fig. 5 except for the fact that in the vicinity of
trace of Fig. 4. As has been discussed at the end of Sec. I)ﬁ(o_z43% additional oscillations arise. This confirms once

the_assumptlon of adlabapcny IS not well justified for the again that the assumption of adiabaticity of Sec. V is well
radial degrees of the atomic motion. We came to the conclu-

sion that for fast changes of the lattice well depth breathin ustified for the axial degrees of freedom. We can quantita-
i ges . P ively reproduce the frequency of the breathing oscillation as
oscillations should be excited which would produce corre-

sponding oscillations in the intracavity intensity, if the sys- is shown in Fig. 1(). The experimental data are taken for

tem i rated near the frontier between the stable and thUN%3.5 and an axial vibrational frequency of 500 kHz,
em 1S operated hear the frontier between the stable and g, o eas for the theoretical curkéN=2.0 and 550 kHz was
bistable regime, i.e., in the 43% trace of Fig. 2. In fact this

N S .~ "used. Applying the scaling factor 1.89 compensating for our
:ﬁgl\:\l/?]tli?]nFliS i%zt)arved in Fig. 4. An expanded version ISsys'[ematic overestimation of the atom number similarly as in
9. 1. . L Sec. V the measured interaction parameter coincides with the
As an experimental test of our interpretation in terms of

radial breathing oscillations we have measured the mome theoretical value within 10 %. The discrepancy in the vibra

tum and position spread of the atomic ensemble in the radi jonal frequencies lies within our observation uncertainty of
e . . ; S -~ . around 10 %.

direction during the observed intensity oscillations, finding

the behavior shown in Fig.(8). The black rectangles show

the radial momentum spread of the atomic sample deter-

mined by time-of-fight measurements, while the open

circles show the radial spread directly observed iviaitu We conclude that optical lattices formed inside high fi-

images of the atoms in the lattice. The solid and dashed linesesse cavities open up an interesting new regime character-

are trigonometric fits withr phase delay, which confirm the ized by collective interactions which significantly contribute

expected anticyclic behavior. In Fig(l® we plot the fre- to the atomic dynamics. This regime can be experimentally

quency of the observed intensity oscillations versus the porealized even far from an atomic resonance such that the

tential well depth which is consistent with the expectedatom-light interaction is entirely dispersive. In the ring cavity

square-root dependence. studied here, specific parameter ranges are identified which

In order to include nonadiabatic aspects in our theoreticahllow us to operate a stable lattice independent of the number

description we use the full set of\&-2 equations of motion of trapped atoms. Other regimes are found where dispersive

of Eqg. (4) and Eq.(2) (i.e., 6N equations for the atomic optical bistability accompanied by self-induced breathing os-

positions and momenta and two equations for the amplitudeillations occur. The spatial phase of the lattice is not pinned

The adiabatic model excellently explains the experimentaYV
findings regarding the intracavity intensity except for the
pronounced oscillation feature observed in the=43%

VII. CONCLUSIONS
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by the phases of the incoupled laser beams, but rather detealso be utilized for implementing novel laser cooling
mined by the strength of the atom-cavity interaction. Bistableschemes, which rely on cavity-tailored coherent scattering,
behavior arises for asymmetric pumping and can be undefor example, as described in Rdfl4]. Such schemes are
stood in terms of an adiabatic approximation for the atomichighly desirable since they promise to extend laser cooling to
motion, whereas the general equations of motion must baew species and to operate in a density regime not yet ac-
considered to model the observed breathing oscillations. lcessible.

this article we have only discussed selected aspects of the

system dynamics. Other interesting phenomena could be ACKNOWLEDGMENT

studied, as for example collective atomic recoil lasja§],

which has been recently observed for unidirectional pumping This work has been supported by Deutsche Forschungs-
of the ring cavity[26]. The strong coupling regime might gemeinschaffDFG) under Contract NoHe2334/3-2.
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