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Electron-hydrogen P-wave elastic scattering
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In previous paper§A. K. Bhatia and A. Temkin, Phys. Rev. &4, 032709(2001); A. K. Bhatia, ibid. 66,
064702(2002], electron-hydrogen and electron-H8-wave scattering phase shifts were calculated using the
optical potential approach. This method is now extended to the singlet and triplet electron-hyBrogee
scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to
220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts
obtained from previous calculations.
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Scattering by single-electron systems is always of interesivhich depend upon the Euler anglds]. The f's above are
because the wave function of the target is known exactlyradial functions, which depend on the three residual coordi-
Various approximations have been employed to take into aaatesr,, r,, andr;,. The wave function of the scattered
count distortion produced in the target. Among them are thexlectron is defined by
method of polarized orbitalgl], Kohn-Feshbach variational
method[2], Kohn variational methodl3], R-matrix method .

[4], and the finite element methd&]. Recently, electron- f[‘ﬁlo(rz)(H -B)¥ ]dr,=0, 3

hydrogen(e-H) and electron-He (e-He*) scattering in the

elastic region has been studigg]7] using the Feshbach pro- where H is the Hamiltonian anct is the total energy of

jection operator formalisnj8]. In this approach, the usual e-H. We have, in Rydberg units,

Hartree-Fock and exchange potentials are augmented by an

optical potential, and the resulting phase shifts, being lower Hz-V2_y2_2£_%2£,% 4)

bounds, are in general agreement with those of Schvj@ytz 172 rh r, I

and the close-coupling resulf&0]. Now this optical poten-

tial approach is being applied to tleeH system to obtain and

accurate results in the eleastic region Rewave scattering. S

The optical potential is constructed using Hylleraas-type cor- E=k"-Z, (5

relations with up to 220 terms. The present results are rigor- . N o

ous lower bounl?:ls on the phase shif‘:s, provided the totalgenvyherekZ is the kinetic energy .Of the incident el_ectron and
Is the nuclear charge which is equal to one in the present

Sggs)i/tigg Sthl]system 's less than those of all the reésOnance, iculation. Carrying out the integration leads to an integro-

In the study of resonances and photodetachment of negg_ifferential equation for scattering functiap(r,) and letting
tive hydrogen ion continuum functions are required. The op-rl:r’
tical potential approach has been employed to calculate such [ @ LL+1)

functions by Ajmera and Chunid.2]. + Vgt Vet Vop— kz] u=0. (6

2 2
The total spatial function for the-H for the Lth partial dr r
wave Is written as V4 andV,, are the well-known direct and exchange poten-
u.(ry) R tials of the “exchange approximatiorf14]. The latter are
Wi(ry,ry = ; Yio(F1) é1o(ro) £ (1 2) + @ (ry,r). nonlocal potentials. The optical potential acting ur) is
1
W Vopll —r<Y* PHQ———=QHP¥ > (7)
The upper and lower signs correspond to singlet and triplet ovt Lo E-QHQ ya

scatterings, respectively. The first two terms containing - . .
explicitly give rise to the exchange approximation, and theIn defining the optical potential we have used the Feshbach

function @, is the correlation function. For arbitraty this ?pptrr?achr[fé], mvo!w_ng prolectllontopetratortﬁ’ and(g, wh!tcth
function is most efficiently written in terms of symmetric or the hydrogenidi.e., one-electrontarget can be written

Euler angleg13]: explicitly [11] as
L= 2 [, 15, 1) DEH6, b, ) P=P,+P,— P,P,, 8

+ ffy_l(rZIrlirIZ)ny_l( 0! ¢! l/’)] . (2) Q =1- P' (9)

The D*¢(e=+1,-1) are the modified spherical harmonics where the spatial projectors are
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TABLE I. Convergencéthe phase shiftén radiang have been optimized with respectf@nd é for each
N(w)] of P-wave phase shift as a function Nfw) for k=0.8.

lP 3P

N(w) y s v N(w) y s 7
EA? -0.11537 ER 0.32044
4(1) 0.77 0.75 -0.017394 €)) 0.85 0.90 0.41331
102) 1.03 0.67 -0.011054 1P) 0.65 0.90 0.42007
20(3) 0.81 0.67 -0.0079118 YA} 0.65 0.73 0.42274
354) 0.70 0.67 -0.0066112 85 0.65 0.81 0.42575
56(5) 0.70 0.66 —-0.0059357 L) 0.65 0.65 0.42623
84(6) 0.72 0.76 -0.0053672 8 0.73 0.81 0.42686
120(7) 0.72 0.76 -0.0051894 12D 0.73 0.81 0.42698
1658) 0.72 0.76 ~0.0049455 165 0.73 0.81 0.42725
220Q09) 0.77 0.75 -0.0048524 279 0.73 0.81 0.42730

%EA are the well-known exchange approximation phase sl it corresponds to no correlation terms

[N(@)=0—V,,=0 in Eq.(6)].

P, = 4Z3e Z1Y o 7)) M AZ3e Y o ;) . (10) @
| o o f(r,ra 010 =€ 7721, > Cpririrl, (15
Note, P, and P, commute and are each idempotent, hence Imn
the completeP and Q operators are idempotef®?=P;Q*> g
=Q) and orthogona(PQ=0).
_ The optical potential is expanded in terms of the T(rl,rz,rlz) =f(ryry,r0), (16)
eigenspectrum of th@HQ problem: ) ]
where the sum includes all triples such tham+n=w and
(d; QHQD,) 0=0,1,2,...,7,8,9. Thewumber of terms for eacl is
(—) = (11 given in Table I. Since the electron with coordinatehas
(PLQPY)

This leads to radial eigenfunctior'iB(LS) and eigenvaluess.

Inserting a complete set of the functions obtained from th?for a giveny, 8, andN
above equation into Eq7), the optical potential can be writ- ¢ (s=1,2 "N
< 2,

angular momentum equal to one, the minimum power,of
should be equal to one in the expansion given in @&§).

To summarize the calculation, tigHQ problem is solved
»)- The result is a set of eigenvalues
..N,) and associated eigenfunctiohs”. From

ten as them the optical potential, Eq12), is constructed, and the
integrodifferential equatioii6) is solved noniteratively. The
Vo (1) solution is unique(up to an arbitrary normalizatiorwith
. 2 2 asymptotic form
No <YLo<r1>¢lo<r2>r—12Qq>£s>><Q<I>£5>r—12P\IfL>
= rl%_: E-& : rIiHrTlu(r) o sin(kr - L7—27 + 1;), (17)

(12

As stated in the beginning, we calculate here oRlyave
(i.e., L=1) elastic-scattering phase shifts. The correlation
functionsf| in Eq. (2) are given by

where 7 is the required phase shift for theh partial wave.
Examples demonstrating the convergence;dbr k=0.8 as

a function ofN, are given in Table I. By virtue of the fact
that %'s are rigorous lower bounds on the phase sHift],

the convergence then becomes a good indication of the

0 accuracy of the result. The number of terms for a particu-
1= oS f(ry, Ml 10) £ F(r1, 20 10)] (13) lar wis also indicated in Table | folP as well as’P in the
2 expansion given in Eq.5). Phase shifts as a function of
k are given in Tables 1l and Ill fotP and3P phase shifts,

and respectively.
In the Swave scattering, the phase shift converged when
-1_ nl12 — the maximum number of terms in the wave function was 84.
=sin—==[f(rq,ro,r f(rq,ror 14 .
S 2 [frurarg) = frurars)], (14 The P-wave phase shifts are seen to converge slowly com-

K=
fL=l

pared to theéSwave results. Therefore, the computation has
wheref is only a function of the radial coordinategr,, and  to be carried up to 220 terms. In principle, the number of

ri». Heref is taken of the Hylleraas form,
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terms can be increased further but then too much computer



ELECTRON-HYDROGENP-WAVE ELASTIC SCATTERING PHYSICAL REVIEW A69, 032714(2004

TABLE II. Phase shifts of-P for variousk for N=220.

b
k Y o 7 77P0a 7Kh 7IACC IRM 7]FEMe

0.1 036 0.78 0.0063083 0.0067 0.006, 0'007  0.005782 0.006 0.006

0.2 050 0.72 0.014988 0.0171 0.0146, 0.0147 0.01445 0.015 0.0148
03 059 0.80 0.016613 0.0210 0.0163, 0.0170 0.01550 0.016 0.0160
04 052 0.76 0.0099980 0.0163 0.0096, 0.6100 0.00846 0.009 0.0090
05 066 075 -0.00084017 0.0064 -0.0014,-0.6007-0.00287  -0.002  -0.0020
06 055 0.80 -0.010359 -0.0039 -0.010,-0'009 -0.013029 -0.012 -0.0117
0.7 064 0.70 —-0.013483 -0.0100 -0.014,-0'013 -0.017225 -0.016  -0.0149
08 0.77 075 -0.0048524  -0.0095 -0.005,-0'004 -0.009544 -0.0068

dPhase shifts obtained by Sloft using the polarized orbital method.
PKohn variational results obtained by Armste&].

“Variational results obtained by Ajmera and Chyag

9R-matrix results of Scholet al. [4].

°Finite element method results obtained by Beteroa and Sh¢&ger
fExtrapolated phase shifts obtained by Armstg3d

time is required. The convergence of the results suggests that the singlet case and less importance in the triplet case
they are accurate to one or two units in the fourth significantvhere the spatial function is antisymmetric. The phase shifts
place after the decimal point, and we have given five signifi-obtained by Sloari1], including the exchange polarization
cant digits because to that accuracy they are rigorous lowderms, are also given in Tables Il and Ill féP and 3P,
bounds. The phase shifts are compared to polarized orbitaespectively. The polarized orbital method does not provide
results of Sloari1], the Kohn variational results of Armstead any bound on the phase shifts but they are seen to contain the
[3], the variational results of Ajmera and Churi@], dominant part of the correlation enhancement over the ex-
R-matrix results of Scholzt al. [4], and finite element change approximatio(cf. Table .

method of Botero and Shertzgs]. Armstead[3] has also In the effective-range theory, it is well known that if only
obtained the most probable values for the phase shifts bghort-range potentials are importa@t*! coty approaches a
extrapolating taw=c. These results have also been includedconstant ask goes to zero. In the presence of long-range
in the tables but they appear to be overestimated in sompotentials such as 17, L=1, it is k?coty which approaches
cases. In general, the agreement is good. The presently ca-constant ak goes to zero. The scattering lengtkisandAT
culated phase shifts are higher than most of the results offer P and 3P, respectively, have been calculated by
tained in the calculation of the scattering functions. It shouldO’Malley et al. [15] using phase shifts &=0.1 obtained by

be noted that the phase shifts increase as a functikmupfto  the method of polarized orbitals. Using the expression
k=0.3 and then they decrease upkte0.7 only to increase 2_ _

again for the singlet case while the phase shifts for the triplet tan 7/k"= mall5 - Ak (18)
case increase continuously as a functiorkafp to k=0.8.  wherea=4.5, thepolarizability of the hydrogen atom, they
This behavior indicates the importance of spatial correlationsoncluded tha®S=1.6 andA™=-1.3. If thepresently cal-

TABLE IIl. Phase shifts offP for variousk for N=220.

K Y 6 Ui 7o Tk 7RM Trem”
0.1 0.35 0.80 0.010382 0.0109 0.0101, 0.6114 0.010 0.0100
0.2 0.35 0.95 0.045345 0.0486 0.0448, 0.0450 0.045 0.0452
0.3 0.62 0.75 0.10679 0.1151 0.1059, 0.1063 0.107 0.1067
0.4 0.55 0.80 0.18730 0.2005 0.1866, 0.1872 0.187 0.1873
0.5 0.68 0.76 0.27058 0.2867 0.2700, 0.%705 0.270 0.2708
0.6 0.77 0.86 0.34128 0.3574 0.3405, 0.3412 0.341 0.3417
0.7 0.89 0.89 0.39257 0.4063 0.3918, 0.3927 0.392 0.3933
0.8 0.73 0.81 0.42730 0.4351 0.425, 0.227 0.4283

*Phase shifts obtained by SlogH using the polarized orbital method.
PKohn variational results obtained by Armstef.

“R-matrix results of Scholet al. [4].

“Finite element method results obtained by Beteroa and Shé¢Bker
®Extrapolated phase shifts obtained by Armstggid

"The number of terms=165 instead of 220.
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TABLE IV. Phase shifts at lower values &ffor N=84. only recourse is to add a term proportional ta2J9] to

the trial function given in Eq(15) to assimilate the long-

k y=6 p y=46 3p range 1f* potential. This calculation will be taken up
sometime in the future.
0.01 0.20 0.000024321 0.20  0.000029089  The effects of polarization and other long-range potentials
0.02 0.20 0.00017003 0.25 0.00020833 could be significant. Since such terms are not included in the
0.05 0.25 0.0017060 0.25 0.0021818 calculation, no attempt has been made to extrapolate the cal-

culated results. Moreover, the inclusion of such effects in any
approximate manner results in a loss of the bound property,
Man important feature of this calculation.

The problem to calculate phase shifts is not a new one,
t it is expected that the present results, because of their
accuracy and the rigorous lower bounds, will be useful to test
Bther theoretical methods for scattering problems.

culated phase shifts given in Tables Il and Il are used i
the above equation, then least-square fits ghre3.37
andAT=-1.3. Itseems that Hylleraas functions assimilatebu
some of the long-range 14 potential, especially when the
number of terms is as large as 220. However, if the phas
shifts at lowk, given in Table 1V, are also included then
very large positive values foAS and A" are obtained. I would like to thank E. C. Sullivan for taking time out of
Since these phase shifts are less thark?/15, omitting  his retirement to modify the differential equation routines
this term in the above equation again did not give anymodeled on the Nordsieck method to run the programs for
meaningful results. Increasing the number of terms to 220arger expansions. Thanks are extended to Professor A. Dal-
from 84 for these low values of will not change the garno for asking a question at the 23rd ICPEAC about the
phase shifts considerably nor the conclusion that thescattering lengths and to Dr. R. J. Drachman for helpful dis-
meaningful results foAS and AT cannot be obtained. The cussions.
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