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In previous papers[A. K. Bhatia and A. Temkin, Phys. Rev. A64, 032709(2001); A. K. Bhatia, ibid. 66,
064702(2002)], electron-hydrogen and electron-He+ S-wave scattering phase shifts were calculated using the
optical potential approach. This method is now extended to the singlet and triplet electron-hydrogenP-wave
scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to
220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts
obtained from previous calculations.
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Scattering by single-electron systems is always of interest
because the wave function of the target is known exactly.
Various approximations have been employed to take into ac-
count distortion produced in the target. Among them are the
method of polarized orbitals[1], Kohn-Feshbach variational
method[2], Kohn variational method[3], R-matrix method
[4], and the finite element method[5]. Recently, electron-
hydrogense-Hd and electron-He+ se-He+d scattering in the
elastic region has been studied[6,7] using the Feshbach pro-
jection operator formalism[8]. In this approach, the usual
Hartree-Fock and exchange potentials are augmented by an
optical potential, and the resulting phase shifts, being lower
bounds, are in general agreement with those of Schwartz[9]
and the close-coupling results[10]. Now this optical poten-
tial approach is being applied to thee-H system to obtain
accurate results in the eleastic region forP-wave scattering.
The optical potential is constructed using Hylleraas-type cor-
relations with up to 220 terms. The present results are rigor-
ous lower bounds on the phase shifts, provided the total en-
ergy of the system is less than those of all the resonance
positions[11].

In the study of resonances and photodetachment of nega-
tive hydrogen ion continuum functions are required. The op-
tical potential approach has been employed to calculate such
functions by Ajmera and Chung[12].

The total spatial function for thee-H for the Lth partial
wave is written as

CLsr 1,r 2d =
uLsr1d

r1
YL0sr̂ 1df10sr 2d ± s1 ↔ 2d + FLsr 1,r 2d.

s1d

The upper and lower signs correspond to singlet and triplet
scatterings, respectively. The first two terms containinguL
explicitly give rise to the exchange approximation, and the
function FL is the correlation function. For arbitraryL this
function is most efficiently written in terms of symmetric
Euler anglesf13g:

FL = o
k

ffL
k,+1sr1,r2,r12dDL

k,+1su,f,cd

+ fL
k,−1sr2,r1,r12dDL

k,−1su,f,cdg. s2d

The Dk,ese= +1,−1d are the modified spherical harmonics

which depend upon the Euler anglesf13g. The f ’s above are
radial functions, which depend on the three residual coordi-
natesr1, r2, and r12. The wave function of the scattered
electron is defined by

E ff10
* sr 2dsH − EdCLgdr 2 = 0, s3d

where H is the Hamiltonian andE is the total energy of
e-H. We have, in Rydberg units,

H = − ¹1
2 − ¹2

2 −
2Z

r1
−

2Z

r2
+

2

r12
s4d

and

E = k2 − Z2, s5d

wherek2 is the kinetic energy of the incident electron andZ
is the nuclear charge which is equal to one in the present
calculation. Carrying out the integration leads to an integro-
differential equation for scattering functionuLsr1d and letting
r1=r,

F−
d2

dr2 −
LsL + 1d

r2 + Vd ± Vex+ Vop − k2GuL = 0. s6d

Vd andVex are the well-known direct and exchange poten-
tials of the “exchange approximation”[14]. The latter are
nonlocal potentials. The optical potential acting onuLsrd is

VopuL = rKYL0
* PHQ

1

E − QHQ
QHPCLL . s7d

In defining the optical potential we have used the Feshbach
approachf8g, involving projection operatorsP andQ, which
for the hydrogenicsi.e., one-electrond target can be written
explicitly f11g as

P = P1 + P2 − P1P2, s8d

Q = 1 − P, s9d

where the spatial projectors are
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kPi = Î4Z3e−ZriY00sr̂ idlkÎ4Z3e−ZriY00sr̂ id . l s10d

Note, P1 and P2 commute and are each idempotent, hence
the completeP and Q operators are idempotentsP2=P;Q2

=Qd and orthogonalsPQ=0d.
The optical potential is expanded in terms of the

eigenspectrum of theQHQ problem:

dS kFL
* QHQFLl

kFL
* QFLl

D = 0. s11d

This leads to radial eigenfunctionsFL
ssd and eigenvaluesEs.

Inserting a complete set of the functions obtained from the
above equation into Eq.s7d, the optical potential can be writ-
ten as

VopuLsr1d

= r1o
s

Nv KYL0
* sr̂1df10sr2d

2

r12
QFL

ssdLKQFL
ssd 2

r12
PCLL

E − Es
.

s12d

As stated in the beginning, we calculate here onlyP-wave
si.e., L=1d elastic-scattering phase shifts. The correlation
functions fL

k in Eq. s2d are given by

fL=1
k=1 = cos

u12

2
ffsr1,r2,r12d ± f̃sr1,r2,r12dg s13d

and

fL=1
k=−1 = sin

u12

2
ffsr1,r2,r12d 7 f̃sr1,r2,r12dg, s14d

wheref is only a function of the radial coordinatesr1, r2, and
r12. Here f is taken of the Hylleraas form,

fsr1,r2,r12d = e−gr1−dr2r1o
lmn

Nv

Clmnr1
l r2

mr12
n s15d

and

f̃sr1,r2,r12d = fsr2,r1,r12d, s16d

where the sum includes all triples such thatl +m+n=v and
v=0,1,2, . . . ,7 ,8 ,9. Thenumber of terms for eachv is
given in Table I. Since the electron with coordinater1 has
angular momentum equal to one, the minimum power ofr1
should be equal to one in the expansion given in Eq.s15d.

To summarize the calculation, theQHQ problem is solved
(for a giveng, d, andNv). The result is a set of eigenvalues
Es ss=1,2, . . . ,Nvd and associated eigenfunctionsFssd. From
them the optical potential, Eq.(12), is constructed, and the
integrodifferential equation(6) is solved noniteratively. The
solution is unique(up to an arbitrary normalization) with
asymptotic form

lim
r→`

usrd ~ sinSkr − L
p

2
+ hD , s17d

whereh is the required phase shift for theLth partial wave.
Examples demonstrating the convergence ofh for k=0.8 as
a function ofNv are given in Table I. By virtue of the fact
that h’s are rigorous lower bounds on the phase shiftf11g,
the convergence then becomes a good indication of the
accuracy of the result. The number of terms for a particu-
lar v is also indicated in Table I for1P as well as3P in the
expansion given in Eq.s15d. Phase shifts as a function of
k are given in Tables II and III for1P and 3P phase shifts,
respectively.

In the S-wave scattering, the phase shift converged when
the maximum number of terms in the wave function was 84.
The P-wave phase shifts are seen to converge slowly com-
pared to theS-wave results. Therefore, the computation has
to be carried up to 220 terms. In principle, the number of
terms can be increased further but then too much computer

TABLE I. Convergence[the phase shifts(in radians) have been optimized with respect tog andd for each
Nsvd] of P-wave phase shift as a function ofNsvd for k=0.8.

1P 3P

Nsvd g d hs+d Nsvd g d hs−d

EAa −0.11537 EAa 0.32044

4(1) 0.77 0.75 −0.017394 4(1) 0.85 0.90 0.41331

10(2) 1.03 0.67 −0.011054 10(2) 0.65 0.90 0.42007

20(3) 0.81 0.67 −0.0079118 20(3) 0.65 0.73 0.42274

35(4) 0.70 0.67 −0.0066112 35(4) 0.65 0.81 0.42575

56(5) 0.70 0.66 −0.0059357 56(5) 0.65 0.65 0.42623

84(6) 0.72 0.76 −0.0053672 84(6) 0.73 0.81 0.42686

120(7) 0.72 0.76 −0.0051894 120(7) 0.73 0.81 0.42698

165(8) 0.72 0.76 −0.0049455 165(8) 0.73 0.81 0.42725

220(9) 0.77 0.75 −0.0048524 220(9) 0.73 0.81 0.42730

aEA are the well-known exchange approximation phase shifts[14]; it corresponds to no correlation terms
[Nsvd=0→Vop=0 in Eq. (6)].

A. K. BHATIA PHYSICAL REVIEW A 69, 032714(2004)

032714-2



time is required. The convergence of the results suggests that
they are accurate to one or two units in the fourth significant
place after the decimal point, and we have given five signifi-
cant digits because to that accuracy they are rigorous lower
bounds. The phase shifts are compared to polarized orbital
results of Sloan[1], the Kohn variational results of Armstead
[3], the variational results of Ajmera and Chung[2],
R-matrix results of Scholzet al. [4], and finite element
method of Botero and Shertzer[5]. Armstead[3] has also
obtained the most probable values for the phase shifts by
extrapolating tov=`. These results have also been included
in the tables but they appear to be overestimated in some
cases. In general, the agreement is good. The presently cal-
culated phase shifts are higher than most of the results ob-
tained in the calculation of the scattering functions. It should
be noted that the phase shifts increase as a function ofk up to
k=0.3 and then they decrease up tok=0.7 only to increase
again for the singlet case while the phase shifts for the triplet
case increase continuously as a function ofk up to k=0.8.
This behavior indicates the importance of spatial correlations

in the singlet case and less importance in the triplet case
where the spatial function is antisymmetric. The phase shifts
obtained by Sloan[1], including the exchange polarization
terms, are also given in Tables II and III for1P and 3P,
respectively. The polarized orbital method does not provide
any bound on the phase shifts but they are seen to contain the
dominant part of the correlation enhancement over the ex-
change approximation(cf. Table I).

In the effective-range theory, it is well known that if only
short-range potentials are importantk2L+1 coth approaches a
constant ask goes to zero. In the presence of long-range
potentials such as 1/r4, Lù1, it is k2Lcoth which approaches
a constant ask goes to zero. The scattering lengthsAS andAT

for 1P and 3P, respectively, have been calculated by
O’Malley et al. [15] using phase shifts atk=0.1 obtained by
the method of polarized orbitals. Using the expression

tan h/k2 = pa/15 −Ak, s18d

wherea=4.5, thepolarizability of the hydrogen atom, they
concluded thatAS=1.6 andAT=−1.3. If thepresently cal-

TABLE II. Phase shifts of1P for variousk for N=220.

k g d h hPO
a hKh

b hAC
c hRM

d hFEM
e

0.1 0.36 0.78 0.0063083 0.0067 0.006, 0.007f 0.005782 0.006 0.006

0.2 0.50 0.72 0.014988 0.0171 0.0146, 0.0147f 0.01445 0.015 0.0148

0.3 0.59 0.80 0.016613 0.0210 0.0163, 0.0170f 0.01550 0.016 0.0160

0.4 0.52 0.76 0.0099980 0.0163 0.0096, 0.0100f 0.00846 0.009 0.0090

0.5 0.66 0.75 −0.00084017 0.0064 −0.0014,−0.0007f −0.00287 −0.002 −0.0020

0.6 0.55 0.80 −0.010359 −0.0039 −0.010,−0.009f −0.013029 −0.012 −0.0117

0.7 0.64 0.70 −0.013483 −0.0100 −0.014,−0.013f −0.017225 −0.016 −0.0149

0.8 0.77 0.75 −0.0048524 −0.0095 −0.005,−0.004f −0.009544 −0.0068

aPhase shifts obtained by Sloan[1] using the polarized orbital method.
bKohn variational results obtained by Armstead[3].
cVariational results obtained by Ajmera and Chung[2].
dR-matrix results of Scholzet al. [4].
eFinite element method results obtained by Beteroa and Shertzer[5].
fExtrapolated phase shifts obtained by Armstead[3].

TABLE III. Phase shifts of3P for variousk for N=220.

k g d h hPO
a hKh

b hRM
c hFEM

d

0.1 0.35 0.80 0.010382 0.0109 0.0101, 0.0114e 0.010 0.0100

0.2 0.35 0.95 0.045345f 0.0486 0.0448, 0.0450e 0.045 0.0452

0.3 0.62 0.75 0.10679 0.1151 0.1059, 0.1063e 0.107 0.1067

0.4 0.55 0.80 0.18730 0.2005 0.1866, 0.1872e 0.187 0.1873

0.5 0.68 0.76 0.27058 0.2867 0.2700, 0.2705e 0.270 0.2708

0.6 0.77 0.86 0.34128 0.3574 0.3405, 0.3412e 0.341 0.3417

0.7 0.89 0.89 0.39257 0.4063 0.3918, 0.3927e 0.392 0.3933

0.8 0.73 0.81 0.42730 0.4351 0.425, 0.427e 0.4283

aPhase shifts obtained by Sloan[1] using the polarized orbital method.
bKohn variational results obtained by Armstead[3].
cR-matrix results of Scholzet al. [4].
dFinite element method results obtained by Beteroa and Shertzer[5].
eExtrapolated phase shifts obtained by Armstead[3].
fThe number of terms=165 instead of 220.
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culated phase shifts given in Tables II and III are used in
the above equation, then least-square fits giveAS=3.37
andAT=−1.3. It seems that Hylleraas functions assimilate
some of the long-range 1/r4 potential, especially when the
number of terms is as large as 220. However, if the phase
shifts at lowk, given in Table IV, are also included then
very large positive values forAS and AT are obtained.
Since these phase shifts are less thanpak2/15, omitting
this term in the above equation again did not give any
meaningful results. Increasing the number of terms to 220
from 84 for these low values ofk will not change the
phase shifts considerably nor the conclusion that the
meaningful results forAS and AT cannot be obtained. The

only recourse is to add a term proportional to 1/r2 f9g to
the trial function given in Eq.s15d to assimilate the long-
range 1/r4 potential. This calculation will be taken up
sometime in the future.

The effects of polarization and other long-range potentials
could be significant. Since such terms are not included in the
calculation, no attempt has been made to extrapolate the cal-
culated results. Moreover, the inclusion of such effects in any
approximate manner results in a loss of the bound property,
an important feature of this calculation.

The problem to calculate phase shifts is not a new one,
but it is expected that the present results, because of their
accuracy and the rigorous lower bounds, will be useful to test
other theoretical methods for scattering problems.
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TABLE IV. Phase shifts at lower values ofk for N=84.

k g=d 1P g=d 3P

0.01 0.20 0.000024321 0.20 0.000029089

0.02 0.20 0.00017003 0.25 0.00020833

0.05 0.25 0.0017060 0.25 0.0021818
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