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We extend application of our lowest-order perturbative apprgiacblectron-electron correlatipor analy-
sis of photo-double-ionizatiofPDI) of He [A.Y. Istomin et al, J. Phys. B35, L543(2002] to excess energies
up to 450 eV and to analysis of circular dichroism. We find that account of electron correlation in the final state
to first order provides predictions for the triply differential cross section and circular dichroism that are in
reasonable agreement with absolute data for excess energies up to 80 eV. For an excess energy of 450 eV,
account of electron correlation in both initial and final states is necessary and the predicted triply differential
cross sections are in agreement with absolute data only for large mutual ejection angles. We find that at excess
energies of a few tens of eV, the PDI is dominated by the “virtual” knock-out mechanism, while the “direct”
(on-shel) knock-out process gives only small contributions for large mutual ejection angles. As a result, we
conclude that the circular dichroism effect at these energies originates from the nonzero electron Coulomb

phase shifts.
DOI: 10.1103/PhysRevA.69.032713 PACS nuniber32.80.Fb
[. INTRODUCTION of these treatments depend significantly upon the gauge em-

ployed. Perturbative treatment of the TDCS was discussed in

Over many decades both the theoretical analysis and thgeneral in Ref[25], but an actual calculation using lowest-
experimental measurement of single-photon, doubleerder perturbation theorgt OPT) with a basis 0fZ=2 Cou-
ionization(PDI) processes, especially for the He atom, haveomb functions was only carried out recenf6]. The recent
been of intense interegtl—3]. Owing to the difficulty of availability of absolute experimental data for the TDCS
describing the six-dimensional double-continuum final state[20,27-31, although for a limited number of photon ener-
most theoretical treatments have employed significant apgies, has stimulated also nonperturbative numerical theoreti-
proximations. Initially, theorists employed ground-state wavecal treatments of the two-electron correlations. The eigen-
functions and uncorrelated final-state wave functions calcuehannel R-matrix method[32], the hyperspherical close-
lated in the field of the doubly charggd=2) He nucleus coupling method[33], and the convergent close-coupling
[4,5]. By the mid-1970s, however, theorists shifted to pertur{CCC) method[34] were used to evaluate the total double-
bation theory treatmentgéusing either Coulomi{6—8] or,  ionization cross section and the ratio of double- to single-
more recently, various forms of Hartree-Fof%12 basis ionization cross sections. The TDCSs have been calculated
functiong in order to introduce correlation effects betweenusing the CCC method[29,35,36, the hyperspherical
the two ionized electrons. All of these theoretical treatment®k-matrix method with semiclassical outgoing waveskM-
have focused on the total cross section for double ionizatio’sOW) [37], and the time-dependent close-couplifidPCC)
of He. It is only in the past decade or so that attention hasnethod [38], which involves direct solution of the time-
shifted primarily to the triply differential cross section dependent Schrodinger equation.
(TDCS), which describes the angular distribution of the two  Much has been learned from these nearly four decades of
ionized electrons and which is a much more sensitive test aheoretical analyses; we note here several aspects which mo-
theoretical approximations and models. These more recetivate the present work. First, the double-ionization process
theoretical treatments of the differential and total cross secs highly sensitive to the gauge in which the electric dipole
tions have reverted to using correlated or uncorrelatedhteraction is evaluatefil1,16,21,39 for low photon ener-
ground-state wave functions and different kinds of improvedyies the velocity gauge is least sensitive to higher-order per-
analytical final-state wave functions, including the so-callecturbative correction$9] and is found to give the best abso-
3C (three Coulombfunctions[13] (which satisfy the proper Ilute values for the TDC$21]. Second, the TDCS is very
asymptotic boundary conditions for double ionization sensitive to final-statéFS) correlations(in all gaugeg and
[14-27), independent-particle final-state wave functions cal-for the case of equal energy sharing is not sensitive to the
culated in the field of momentum-dependent effective Couprecise form of the initial-state wave functi¢®l]. [Indeed,
lomb chargeg22,23, and modified 3C functions that in- the total double-ionization cross section for low photon en-
volve momentum-dependent effective charg@4,24. In  ergies(<500 e\) may be described quite accuratély the
general, even though the TDCS angular patterns are repreelocity gauge by taking only final-state correlations into
duced qualitatively, in those works where comparison withaccount[11].] Third, the detailed perturbation theory analy-
absolute experimental data is madee, e.g., Ref§20,24), ses of Refs[9] (for <290 eV) and[12] (for w=<14 keV)
various scaling factors had to be introduced; also, the resulisrovide much information on approximate ways to take into
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account high-order correlation terms. Specifically, manyare in excellent agreement with absolute experimental data
higher-order FS correlation terms that have to do with elecfor an excess energy of 20 eV.

tron screening effects can be taken into account by using two
different basis sets for the ionized electrons, with the faster
electron seeing a net chargeof 1 and the slower electron
seeing a net charge @=2. (Referencqg9] suggests that if a A. General results

single basis set is to be employed, it should probably have i , . ) i
1<Z<2; however, no calculations for such a single set were Using the velocity gauge for the electric dipole interaction
carried out) Regarding ground-stat&S) correlations, Ref. Of atomic electrons with a photon having the frequensy
[9] indicates that higher-order terms tend to cancel thetnd the unit(in general, complex polarization vector
lowest-order GS correlation diagram, particularly when a ba€ (e-€ =1), the TDCS for PDI fronS states of He or He-like

Il. THEORY

sis of Z=2 wave functions is employed. ions has the following form:

Recently, Kelle{26] has reported the first LOPT calcula- 3
tion of the TDCS for double photoionization of He using a = d°o = CoM( o) (1)
basis 0fZ=2 Coulomb functions. For the case of symmetric TOCST 40, d0,dE, O PrP2 Ol

energy sharing there is qualitative agreement with experi-

ment, while for asymmetric energy sharing there are qualitawhere p; and p, are the photoelectron moment&,

tive discrepancies with experiment. In all cases, the theoret (47°ap;p,)/w is an overall constant factotwhere a

ical results must be scaled by factors ranging from 0.10 te=1/13%, and M(p4,p-,€) is the transition amplitude,

0.19 in order to be compared with the absolute experimental

data[29]. Because for the single-particle binding energies in M(p1,P2,€) = (Ppp,le- (= 1V1=i1V2)[¢e ). 2

intermediate states a value equal to one liadf,, 39.5 eV ) .

the experimental double-ionization ener@® eV) was used N Ed. (2), g (r1,r2) is the ground-state wave function and

[26] (instead of using the theoretical Coulomb binding en-#p,p,(f1.r2) is the wave function for the final two-electron

ergy -Z?/2), the results of these calculations should becontinuum state, which we assume to be normalized accord-

gauge dependent even if all LOPT diagrams are includedng to (z/rplpzlwpin:é(pl—pi)&(pz—pé). (Atomic units are

Within the velocity gauge, which is the only one employed,used through this paper, unless otherwise statithice we

the GS correlations are predicted to have only a small influeonsider PDI from the'S state and since the photoion has

ence on the TDCS relative to FS correlations. zero angular momentum, the PDI amplitude is a rotationally
We have recently presented results of another set of calavariant scalar and its general form follows from general

culations of the TDCSs using a LOPT account of electronsymmetry argument23],

electron interaction§40]. As shown in Ref[40], account of

final-state correlations to lowest order, combined with an ac- M = (e p)f(p1,p2,cosb) + (e Py)f(pspi,cosd). (3)

count of electron screening in the ground state, provides . ) )

TDCSs that are in excellent agreement with both absolutd NUS; the entire dynamics of the PDI process for a He-like

experimental data and with accurate theoretical results for apyStem is completely described by a single scalar function,

excess energy of 20 eV. The range of the excess energidd€ polarization-independent amplituiewhich depends on
over which the approach in Ref40] is applicable remains the absolute values of the two photoelectron momenta and

an open question. their mutual angled;»,= 6, where cos9:|51-|32.2[Note2 that

In the present work we provide a detailed presentation of0" @ fixed excess enerdy (whereE=Eq+w=pi/2+py/2),
the theoretical approach for the double ionization TDCS forf depends only on two independent variableBhe gen-
He that was only sketched briefly in R§#0]. We also ana- €ral form of the angular dependence of the invariant am-
lyze the predictions of this approach over a broad energf!itude f is given by its multipole expansion In terms of
range(up to excess energies of 450 eW¥inally, we analyze derivatives of the Legendre polynomialsp/(cos 6)
in detail the circular dichroisniCD) effect in the TDCS for =dPi(cos6)/d cos 6 [41],
double ionization of He, i.e., the fact that the TDCS is dif- " ,
ferent for right- and left-circularly polarized light. We find tpp.cosh=S (i 3 (p,p’;(I1,12)1]|D||0)
that LOPT account of final-state electron correlation, com- ot vmax(ly,1,)
bined with variational account of electron screening in the
ground state, provides predictions for the TDCS that agree ><P|'1(COS 0), (4)
reasonably well with both experimental data and the most
accurateab initio theoretical results for excess energies up tovhere(p,p’; (I1,12)1[|D||0) is a two-electron reduced matrix
80 eV. At higher excess energies, such as at 450 eV, accouitement of the dipole operator between fi&eground state
of both ground-state and final-state correlations is necessargnd the 'P final (two-electron continuum state,(p,p’)
we find that LOPT provides predictions for the TDCS that=(p1,p,) or (p»,p1), andl; andl, are the individual orbital
are in reasonable agreement with experimental data and aangular momenta of the two photoelectrons, which couple to
curate theoretical results only for large mutual ejectionthe total orbital angular momentuin=1. Substituting Eq.
angles. Analysis of our CD results shows tlifdr excess (3) into Eq.(1) we obtain an expression for the TDCS for the
energies of the order of tens of gthe CD effect originates general case of an elliptically polarized photon as the sum of
from nonzero Coulomb phase shifts. Our predictions for CDfour polarization- and angular-dependent tefihs],

1,=0
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"’ "’ amplitudes have final electron momerpa and p, inter-
sy Boo1s N B changed. Analytical expressions for the amplitudes presented
i i in Fig. 1 are
1s i P2 qg | P2
(a) FSC (5) GSC Me = = iN2(y U (NG (rr)(e- Vileo, (D)

FIG. 1. Schematic diagrams contributing to the PDI process in
the first order of perturbation theorgg) FSC, final-state correla-

tions and(b) GSC, ground-state correlations. Two additional dia- Mg= —i\"E<‘/’E:_1)|(e-Vr)GEG(r,r')Uf;z)(r’)|<po>, (8)
grams with exchangep; andp, must be included in the transition
amplitude.
2Aa. A |2 2Aa. & |2 U =( ¢ o @ 9
arocs= Coflfal7e - Bal* +[f2l%e - P2l P2 P2 | |r —r'|| 7%/
+2 Ref,f}Re((e- Py)(€" - P)}
o a A whereGg_ and G are one-particle Coulomb Green Func-
+ £ Imi{f1f31K - [py X Pal), (5) Fr 2N %Eg P

tions (CGF9 with energy parameterSg=E, +E, €5 and
where f,=f(p;,p,,cos6), f,=f(p,,py,cos6), k is the Eg=2e~E, (whereE, =p{/2); the functionse, and zpé‘)
unit vector in the direction of the photon beam, a&d are one-particle Coulomb wave functions of a hydrogenlike

=ik -[ex €] is the degree of circular polarization of the ion ground and continuum statithe functiony” is normal-
photon. The last term in Ed5) describes the dependence ized according tq¢;, | #,)=8(p—p’)]; and the facton2 in

of the TDCS upon the photon helicity, i.e., the CD effect Egs.(7) and(8) accounts for symmetrization of the final
[15,41]. The parametrization of the transition amplitude state. The two amplitudes that correspond to the exchange
and the TDCS in terms of the single function diagrams are obtained by interchanging momentum vec-
f(p,p’,cos6) [which is different for the sets(p,p’)  torsp; andp,in Egs.(7)<9) and usingEg=2e€;-E, .
=(p1,p,) and(p,,p;)] is equivalent to that in terms of the Use of the LOPT approach to account for electron corre-
symmetrized amplitudesa; and a, [42,43, which are, lations in PDI of He for an excess energy of the order of tens
respectively, symmetric and antisymmetric in the inter-of eV reveals a number of difficulties compared to previous
change of electron momenta, and which may be expresseapplications of LOPT to describe the PDI process at high

in terms of the amplitudé as follows: excess energigsee, e.g., Ref$7,25,44). The first difficulty
is that if one employs a single-particle Coulomb basis set
ag,y= [f(p1,P2,COS0) £ (py, py,cO80))/2 = (f, £ f)/2. using the bare charge of the He nucleZis 2, the theoretical

(6)  zero-order ground-state energy of HIE"|=2|es|=2%/2

. o L =108.84 eV is very different from the experimental value
Though this parametrization does not simplify the generahEeXpt| ~79.02 eVl. One way to bypass this problem is to
! . .

analysis, it is particularly convenient for the case of equal lomb basi ith Hocti tional
energy sharingp, = p,, whenf, =, anda, vanishes. Multi- use a Coulomb basis set with an effective, e.g., variational,
L Ir1ThS 12 , o creened chargg.. (This approach was used in R¢#0].)
pole expansions of the symmetrized amplitudes equivalent t
. : nother (ad hog way would be to set the one-electron
Eq. (4) were obtained in Ref43]. - )
ground-state binding energy equal to one half the experimen-
tal two-electron binding energjE®*Py, i.e., e;,,=E®**Y2, and
B. LOPT approach for account of electron correlations to use Fhese values in the energy parame&gra;ndEG of the
] ] CGFs in Eqs(7) and (8). [This approach, i.e., using;s=
Equationg3)—(6) are very general and independent of the_(79_02/3 eV, was used in Ref[26].] However, if one is
dynamical model used to describe correlated electron mOt'OFhostly concerned about PDI of He by high-energy photons
in both the ground state and the two-elegtron contlntﬁqm (as well as of He-like ions with higher nuclear charge,
to estimate the two-electron dipole matrix elements in Eq= ) the discrepancy between the theoretical and experimen-
(#]. In this work, we employ the simplest apprO,X|mat|on 10 tal energies becomes far less significant. A second difficulty
evaluate the polarization-invariant amplituti@,p’,cos6), i direct application of a LOPT approach to the analysis of
that is, we use the LOPT in the interelectron interactionthe ppj process lies in the fact that for excess energies of the
(1/ryp) to account for electron correlations in the groundgrger of tens of eV, the LOPT GSC amplitude, which is
state yg,(r1,r2) and in the two-electron continuum state evaluated using an uncorrelated final steted whose pre-
p,p,(I'1,72) in the transition amplitude2). In LOPT using a  dicted angular distribution is very different from experi-
basis of one-electron Coulomb orbitals for a nuclear chargenen, overestimates the role of GSCs, i.e., its effect is re-
Z, the total amplitudg?2) for a He or a He-like ion can be duced when higher-order GSC terms are taken into account.
schematically represented by four diagrams, in which thén order to bypass these two difficulties, we use two substan-
electron correlation interaction is taken into account either irtially different models for taking electron correlation into
the final statgFig. 1(a)] or in the ground stat¢Fig. 1(b)]. account for the cases of intermedigie., tens of ey and
The direct amplitudes are depicted in Fig. 1; the exchangéigh (hundreds of eY excess energies.
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FIG. 2. TDCS for double photoionization of He at an excess energ@)a?5 eV, (b) 40 eV, (c) 60 eV, and(d) 80 eV. Full curves,
present LOPT results with account of FSC and all individual orbital angular momenta of the two photoelectrags27r16 in the ground
state andZ=2 in intermediate and final states; dashed curves, same as above but for a single basis Agt,2%ith6 in all states; dotted
curves, results of the TDCC calculations of Colgan and Pindzt3g dot-dashed curves, results of the CCC calculations in Ré].

1. Model for intermediate excess energies energy of 20 eV. However, we have found that the second

In the case ofintermediate excess energiese account aPProach, which uses tt&=27/16 basis set in the ground
for electron screening in the ground state by using the wellSt&te only and which is somewhat more consistent from a
known variationally determined effective chargé,=Z physical point of view, provides better agreement for higher

~5/16, and take final-state electron correlation into accounXC€SS energies, up to 80 eMhe TDCSs obtained using
to first order. (For He, use ofZ=27/16 gives |E"| these two approaches are compared with results of accurate

~77.5 eV, which is close to the experimental value 0fab initio calculati_ons.of Colgan and Pindzdkb5] and thif- _
79.02 eV) The question now arises as to what basis sefts and Bray46] in Fig. 2) Therefore, for excess energies in

should one use to represent intermediate and final states A€ range E’f 20 eV to 80 eV we employ the approach which
this model. In any perturbation theory approach it is usually!S€S th&s=27/16 basis set for ground-state orbitals, and the

preferable to employ a single one-electron basis set of stateé,zz basis set for intermediate and final-stgte _orb!tals of He.
in order to avoid having to deal with nonorthogonality be- OUr @pproach corresponds to an assumpfishich is sup-

tween orbitals belonging to different basis sets as well as t§°rted by good agreement with experimental data and with
have gauge-invariant transition amplitudes. Therefore, if on@therab initio calculations that, for the excess energies con-
uses an effective charge Bf=27/16 in defining the ground- Sidered, the PDI process is dominatédthe velocity gauge

state one-electron functions, in order to maintain both orPY final-state correlationg.e., the TS-1 mechanism domi-

thogonality of the one-electron orbitals and gauge invarinates and that the entire effect of electron-nucleus and

ance, one should use this value to describe all excited angf€ctron-electron interactions in the ground state may be
continuum one-electron basis functions. Physically, howevef2ken into account on the level of screening effects, by using
as the photon energy increases, the escaping electrons spdf “Screening chargeZ=Z-5/16. Thus, for intermediate
less time near the nucleus and thus their mutual screeninfhf(ceSS energies, we approximate the total amplit@iéoy
becomes less significant; asymptotically, of course, eacH® SUm of two matrix elementdle(py, po) andMe(pz, py),
electron sees an effective nuclear charge of 2. Thus, ofind use in Eqs7) and(9) the following form for the varia-
physical grounds it would seem that as the photon energfjonal ground-state orbitalgo(r),

increases, the use of two basis sets becomes physically more J—

appropriate: for the ground state, a set of one-electron orbit- o) = \Z3 7 exp(- Zd). (10)

als calculated for an effective nuclear chafye27/16 and

for intermediate and final states, a set of one-electron orbitals
calculated for the bare nuclear char@es; 2. Of course, any
complete basis set will do if one treats electron correlations In the case ohigh excess energigsf the order of a few

to high order; but if, as here, one wishes to treat final-statéiundred eV, the contributions of electron correlations in ini-
correlations in lowest order, then the choice of basis set betial and final states are equally important. Therefore at high
comes very important. Also, we employ the velocity gauge photon energies we take into account both FS and GS corre-
for the reasons discussed in the introduction akiee, itis  lation amplitudes,Mr and Mg, and use the bare nuclear
the least sensitive and provides the best absolute yalies chargeZ in all basis states. This approach provides gauge-
has been shown in Rg#0], the first approackwhich uses a independent predictions for the TDCS. If the theoretical
single basis sgtprovides TDCSs that are in excellent agree-value for the one-particle ground-state eneegy=-22/2 is
ment with available absolute experimental data for an excesssed(as in our approaghthe transition amplitudeM =Mg

2. Model for high excess energies
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+Mg, is gauge invariant, while the separate amplitulfgs C. Partial-wave expansions of the PDI amplitude
and Mg are gauge dependent. It is easy to show that the
amplitudesMeg g(p1,p2) [0r Mg g(p2,py)] in the L and V
gauges are related as follows:

In our first approach we use partial-wave expansions for
the continuum Coulomb wave functions, for the CGF, and
for 1/rq, in Egs.(7)~9),

MY = iwgME +iAM, (11) e
(2m)” . L
Uy (1) == = 212 + e PRy ()PP ),
MY = iwgM5 — iAM, (12) P =0
(16)
AM = < lﬁ( le-(ry+r)/rideoen), (13
Gel(r,r')= E:r,r)Yim(F)Yim(F'), 17
where w;;=E;+E,—2¢;,. If one uses values other than the e(r.r") Lzmg'( i) Yim(T) S
theoretical ones for the one-electron binding enefgy.,
E®*PY2, as done in Ref.26]), the gauge invariance ol is
lost and the following relation holds:
2 I+1F>.<r (18)

. . r—r r

MY+ MY =ioMs +i(o+EPP2 - gJME.  (14) | | 1=0 7>
[Obviously, in our approach for intermediate enerdigis- ~ Where g(p)=argI'(I+1+iz) is a Coulomb phase shifty
cussed abovethe results are gauge-dependémtcause we =Z/p, andr=min(r,r’), ro=maxr,r'). Ry(r) is the ra-
use two different basis sets and account only for final-statglial part of the Coulomb wave function,

correlationg. As noted already, we employ the velocity

gauge for intermediate energies, as this one is the least sen- Cui(2pr)’ _

sitive to higher-order correlation effects and is in better Roi(r) = @2+ ) e P D(in+1+1,2+2,2pr), (19
agreement with experiment aad initio calculationgas dis-

cussed in the Introduction and in Ré40)).] where @ is a confluent hypergeometric function am,

=2p exp(wn/2)|T(1+1+i7)|. The radial function(19) is

normalized as follows: [Ry(r)Ry(r)r r2dr=2w8(p-p’).
Although in the present paper we only discuss results foFor the radial part of the CGF we use the integral repre-

neutral He, we emphasize that LOPT calculations are mosentation48]

appropriate for He-like ions with highét because the omit-

ted high-order correlation corrections have a relative magni- 1 du

tude of the order oZ™!. Thus the LOPT results are more a(E;r,r')= f 1-

accurate for highz He-like ions(including for the ground- u

state energy We note also that the results of LOPT calcula- p{ r+r'1+ u} ( arr'u )

tions (using a single basis getan be easilyZ scaled for X - I+1

application to PDI of highly charged He-like ions, as follows v(1-u)

[47]: (20)

3. Scaling properties

u—Zv—l/Z

v 1-u

E E.7]= 1 E E 1 15 wherev=1/\-2E (v=i|y| for E>0) andl(x) is a modified
orocd Er B2 2] = 767T0CY 220 720 | (15 Bessel function. With the above definitions, the transition
amplitude (2) may be expressed as an infinite sum over

_ partial-wave amplitudes,
4. Treatment of photoelectron orbital angular momenta

Finally, in order to evaluate the matrix elemes—9)

_ N N N
we use two different approache§) conventional partial- M= 2 [M{'2(py,p) + M2 (py,p;) + M2 (py, py)
wave expansions for t{, the CGF, and the Coulomb con- 1112=0
tinuum states, taking onhg, p, d, and f electron partial +|v|g1'2)(p2,pl)], (21)

waves into accountji) exact account of all individual pho-

toelectron angular momenta by using a closed form for th§here onlyl,=1,+1 contribute, owing to th® symmetry of
Coulomb continuum states, a representation for the CGF ity 4 final state. Each terrvi |1|2)(pl p,) in Eq. (21) corre-

e tor o oo ooy Sponds to thd, |, componerit of Eqst7) and (8), in which
N we p g Ivatl ®  only the angular momenta and|, in Eq. (16) for w:)l) and

using Eq.(10) to represent the ground-state orbitals, while “) . ] ] i )
for Mg we use Eq(10) with Z,=Z. Detailed descriptions of ¥, I respectively, are retained. The angular integrations in
each of these two methods for treating photoelectron orbitaéach partial-wave amplitude of E(), which involve three
angular momenta are given in the following two sections. Legendre polynomials, can be evaluated using the formula
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A N f,=ay+a,P’; + a,P; ,
f P @ )P (b-F)(C-F)df 1= 8+ &4P5(C0S ) + &;P5(cos 6)
f, = by + b;P5(cos ) + b,P;(cos 6), (27
[(-1)"P{ (@-b)(€- &) wherePj(x)=3x, P4(x)=(15¢*-3)/2, anda;, b; are complex
coefficients,
=~ [szlo)(plapz) + D|(:01)(p2,p1)] - [D(F”)(pl,pz)

where l,=1,+1, I.=max(l,,l,), & b, and & are arbitrary + DY (p,py)],

unit vectors, andP/(x) is the derivative of the Legendre

polynomial. This formula was obtained by using the re-  a; =+[DZ%(py,p,) + DX?(p,,p1)] + [DE2(p,, py)
duction formula(C2) for bipolar harmonics of rank 1

— 4 C| 40,0

T VBL(2,+ )(2,+ 1)

+(-1)2P (&-b)(&-b)], (22)

uction . O +DE¥(py,py)]

given in Ref.[41]. The angular integrations in EdB8) FAPLF2ML

which involve theV operator are evaluated using the 2 23

Wigner-Eckart theoremi49] and the formulaC2) of Ref. a; =~ [DF“(p1,p2) + DE(p2, P11, (29)

[41]. As a result, each term of the serigkl) can be writ-

ten as follows: and the coefficientb; are obtained frona; by exchange op;

andp,. In Sec. Il we present results for the TDCS obtained
M('l'z)(pl,pg) clil2)(g, pl,Pz)D('llz)(pl,pz) (23) using this para_metrization along .with a table of coef_ficients
a; andb; for various excess energies and energy sharings. We
where the angular dependence of the amplitudes is given bylso compare the TDCS results obtained using, d, and f
)i A A\ Lo . waves with those obtained from our calculations that account
C'12'(e,p1,p2) = (= 1)*P/ (P1 - P2)(€ - Py) for all angular momenta, which are described in the follow-

+(= 1P (p1-P(e-P). (29 ing section.

The dynamical factor® I1|2)(p1,P2) are proportional to ra- D. Exact account of all individual electron angular momenta
dial matrix elements in which all radial integrals are evalu- At high excess energigsf the order of hundreds of gy
ated analytically using integral representations for the radiathe ab initio parametrization4) for the angular dependence
parts of the CGHEq. (20)] and of one Coulomb wave func- of the polarization-invariant amplitudé(p,p’,cosé) (as
tion Ry (r) (see Appendix A As a result, the final expres- well as the similar parametrizatia25) of the LOPT ampli-
sions forDFl('32 (p1,p2), derived in Appendix A, are expressed tude) becomes ineffective, since it becomes necessary to ac-
in terms of two-dimensional integrals that are to be evaluategount for a large number of individual electron orbital angu-
numerically. lar momenta. Although the numerical technique described in
Equations(21), (23), and(24) give the same angular de- Appendix A allows one to calculate the dynamical param-
pendence for the amplitudeas theab initio expressiorn(4). etersD<FI 'gl (p1,p2) up to high values of, a closed form for
The final expression for the polarization-invariant amplitudethe polarization-invariant amplitude is useful for the analysis
fr.c(P1,P2,c0s6) in which either FS or GS correlation is of the TDCS at high excess energies. Also, an expression for
taken into account, is f in closed form allows one to estimate the contributions of
high orbital angular momenta.
, The key idea of the approach, which allows one to ac-
fr.6(P1,P2,CO8 0) = | |2_ = 1)'1Dg}'62)(p1,p2)P|1(cos 0) count exactly for all individual electron orbital angular mo-
110 menta, is to avoid the use of the partial-wave expansions in
+ (- 1)'2D l|2>(p2 pl)PI (cos®)}. (25)  Egs.(7)~9) by employing instead of Eq16) a closed form
for the continuum Coulomb wave functions,
The amplitude which accounts for both FS and GS correla-

tions is given by Uy = (2m) AP D (=in,1;=i(pr+p-r)), (29

f(py, P2, €OS 6) = fr(py, P2, €OS 6) + f5(Py, P2, COS ). WhereA;>:exp(m//2)l“(1+i7;), and employing instead of

(26) Eq. (17) the integral expression for the CGF in parabolic
coordinate450,51],

It may be expected that for excess energies of the order of Gelém b & 7 d)

tens of eV the dominant contributions to the transition am- E\S @267

plitude will be given by the lowest individual electron orbital 1 ! N E+¢& +p+qp L+x

angular momenta. Indeed, as can be seen from our numerical d"(l X)zex B 20 1-x

results, presented in the following two sections, og)lyp, d, o

andf waves contribute significantly to the TDCS for excess 2Vx&¢' 2\xn7'

energies up to 80 eV. Fothis case, the amplitudef; XEI ( w1 - x)) (y(l—x))

=1f(p;,p,,cos6) and f,=f(p,,p;,cos6) in Eg. (3) can be

expressed as x gmle=e’) (30)

my
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For ¢q(r) given by Eq.(10), the potentialuy(r) in Eq. (9) 15 ; ;
may be transformed into the following foritior Z;=Z7, a ol @B=seV, 0=
similar expression is given in Ref52]):
5 L
Up(r) = 47" (24 m) > J X (e (31) 0
p P 7P , —~1 . .
& (b) E1 =5 oV, 6,=20°
where 5100
_ e |
[q° - (p+iz)? 7 & N
vp(a) = 5 (p+iZy SIS —
P 2+ (p g " 3
X[(Zs=2)(p+iZg) = 27(p - q)]. (32 ol (O Bi=5ev,0=00°

This expression is obtained through the use of the integra g |
representation, \

0

1 1 S 0 . 60 20 180 210 300 360
(SR - (degree)
|r—r’|:§f 2 da, 33 2
q FIG. 3. TDCS for double photoionization of He at an excess

. . . . . energy of 25 eV. Full curves, present LOPT resaligh account of
with subsequent analytical integration over in Eg. (9). FSC and with variational account of electron screening in the He

Smc_e the dependence UL(r) Qnr in Eq' (31) is simple, all ground statgin which all final-state electron orbital angular mo-
spatial integrals over parabolic coordinates of the Veators \nenta are accounted for; dashed curves, present LOPT results but
andr’ in Egs.(7) and(8) can be evaluated analyticallan \yith account of final-state electros p, d, and f orbital angular
example of similar calculations is given in R¢&1]). The  momenta only; dotted curves, results of the TDCC calculations of
result of integration over the azimuthal angle of the vegtor colgan and Pindzol§5]. The experimental data of Colliret al.

®q, can be expressed in terms of the Legendre functiongs3] have been normalized to the TDCC result®at0° except for
P.(t) (see Appendix B Therefore, the final expressions for the #,=90° measurements, which were normalized differently, as in
the matrix elementd/- and Mg contain only three remain- Ref. [45]. Note that the dashed curves are virtually indistinguish-
ing integrations: a one-dimensional integral owefwhich  able from the full curves in this figure.

appears in the integral representation for the CGF in Eq.

(30)] and a two-dimensional integral over the components I1l. ANALYSIS OF THE TDCS FOR LINEARLY

and 6, of the vectorg. These resulting three-dimensional POLARIZED LIGHT

integrals are to be evaluated numerically. The final expres- ) .

sions for the amplitudesf;="f(p;,p,,cos6) and f, In this section we present our results for the TDCS for

=f(p,, py,c0s 6), which account for all individual electron PDI of He by linearly polarized photons for various excess

orbital angular momenta, may be expressed in terms Oqenergies_up to_450 eV. As described in Sec. Il B, we use two
two functions,A(py, Py, 6) and B(py,p,, 6), as follows: substantially different LOPT models to account for electron

correlation, one for intermediate excess enerdi2s eV,

40 eV, 60 eV, and 80 eMand another one for a high excess
energy (450 e\). Because the experimental data for these
energies are not absolute, we compare our results also with
f2=B(p2,P1, 6) + A(P1, P2, 0) = A(P2, Py, )cos 6, (34 those of accuratab initio calculations.

f1=B(p1, P2, 6) + A(P2,P1, 6) — A(P1, P2, H)COS 6,

or, equivalently,
A. Intermediate excess energies

1
ag’UZE{B(pl, P2, 0) £ B(p,, p1, 0) — [A(P1, P2, 6) £ A(P2, P1, 6)] As has been shown in Ref40Q], account of final-state
correlation to lowest order, combined with variational ac-
X(cosf =+ 1)}. (35) count of electron screening in the He ground state, provides

TDCSs that are in excellent agreement with available abso-
Explicit integral expressions fok(p4, p», 6) and B(py,p2, 6) lute data as well as with accuradb initio calculations for an
are given in Appendix B, where it is also shown that tbr excess energy of 20 eV. In this section we present our results
=0 and only the functionsB contribute to the amplitudes for the TDCS for excess energies of 25 eV, 40 eV, 60 eV,
f1,. We emphasize that the technique described above aknd 80 eV. We compare our results with available relative
lows one to calculate the LOPT TDCS over a wide intervalexperimental data, with results of the time-dependent close-
of energies without any of the additional approximations thatcoupling calculation§TDCC) of Colgan and Pindzol§45],
have been used in previous high-energy, LOPT calculationand with results of the CCC calculations of Kheif¢4$].
(see, e.g., Refd.7,44]), such as, e.g., the plane-wave Born  Our data presented in Figs. 3-8 were calculated using the
approximation for one of photoelectrons, etc. model that takes into account FSC to lowest order and uses
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(a) By = B3, 6,=95°
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oo
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o O o

o

0 60 120 180 240 300 360
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0 60 120 180 240 300 360
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FIG. 4. TDCS for double photoionization of He at an excess

energy of 40 eV for equal energy sharing. Full, dashed, and dotted FIG. 6. Same as shown in Fig. 5, but for the caseEgf
theoretical curves are defined as in Fig. 3; dot-dashed curves, resuks5 eV,E;=5 eV.

of the CCC calculations of Kheifets and Brgs4]. The experimen-
tal data of Cvejanovicet al. [54] have been normalized to the

: major discrepancies are similar to those found in R&®):
TDCC resultg[45] at #;=95°, as in Ref[45].

for the cases of ejection of one electron aldiog close t9

the photon polarization directioffrigs. 3a) and 3b)], there

is an unphysical enhancement of the TDCS at small mutual
ﬁzjection angle®;,. This is due to the inadequacy of a LOPT
account of the strong Coulomb repulsion between electrons.
In the case of ejection of one electron perpendicular to the
é)hoton polarization directiofFig. 3(c)], the maxima of our
predicted TDCSs are smaller than predicted by TDCC

the variational valu&,=27/16 in the(uncorrelategiground-
state wave function and=2 in the intermediate and final
states. The full curves present results which account for a
individual electron orbital angular momenta, while the
dashed curves account ferp, d, andf waves only.

In Fig. 3 we compare our results to the experimental dat
of Collins et al. [53] and to the TDCC calculation of Colgan

: theory.
and Pindzolg45] at an excess energy of 25 eV for an un- . .
equal energy-sharing case. As one sees, our results agree in'C;)mpa;lscgnr} of our gall:su?tetld TDCSdW't.Thﬂ:ﬁ Tbcc pal-
general with both experimental and theoretical results. Thé&u'ation ol Lolgan and Findzo Bd5] and wi € exper-
mental data of Cvejanoviet al. [54] and Bologneskt al.
15

| (@FTIN 6 //\\ 10
: ™ (a) E1 = E3, 6:=50°
°l 5
0
T " 0 P
B 10
10 ]
% + (b) Ey = Ep, ,=T0°
5 L
(3] 5 < 5 L
2 =
a N =
= 0 % X
a o
20 5 b
151 (0 Bi=5eV, 6;=60° o 0
- / ...... N B — By 01200°
10 £ F N, (0) By = Ez, 61
o ), f’ N, 5
° .. X
= i %) ko .
0 . y ‘ o . = ‘ ‘
0 60 120 180 240 300 360 0 60 120 180 240 300 360
o (degree) 6, (degres)

FIG. 5. TDCS for double photoionization of He at an excess FIG. 7. TDCS for double photoionization of He at an excess
energy of 40 eV for unequal energy sharilkg=5 eV,E,=35 eV.  energy of 60 eV for equal energy sharing. Full, dashed, and dotted
Full, dashed, and dotted theoretical curves are defined as in Fig. &eoretical curves are defined as in Fig. 3; dot-dashed curves, results
dot-dashed curves, results of the CCC calculations in [B8f. The of the CCC calculations of Kheife{&6]. The experimental data of
experimental data of Bolognest al. [55] have been normalized to Dawsonet al. [56] have been normalized to the TDCC results of
the CCC results a#, =0, as described in Ref55]. Colgan and Pindzolg45] at #;=90°, as in Ref[45].
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oo

amplitudef in Eqg. (26). As one sees, these results are nearly
identical to those that account for all angular momenep-
resented by the full curvesin Table | we present the coef-
ficients g andb; that were used in Eq27) for all excess
energies and energy sharings presented, as well as for a num-
ber of intermediate values. Using the data given in the Table
| one can easily construct the amplitudesandf, as well as

the TDCS and the CD parameters for any kinematical situa-
tion which corresponds to the particular values of excess
energies and energy sharings for which the coefficients
andb; are given.

(a) By =5 eV, 6;=0°

L= =]

N

N R O 0O

TDCS (b eV~1sr=2) TDCS (b eV~ lsr—2)

o

120 180
0 (degree)

B. Physical mechanism of PDI at intermediate energies
FIG. 8. Same as shown in Fig. 7, but for the cas&pt5 eV, ys! ! ! ! g

E;=55eV. Using our approach, it appears to be possible to identify a
distinct physical mechanism for PDI at intermediate excess
[55] at an excess energy of 40 g¥igs. 4—§ reveals good energies. In our model, which treats FSC to first order, the
agreement, especially for the case of equal energy sharingDl transition amplitude is given by E¢7) and the associ-
(Fig. 4). For unequal energy sharindrigs. 5 and § the ated diagram, Fig.(&), corresponds to the knock-out mecha-
major disagreements occur negr=0. They have the same nism of PDI. The CGF in Eq(7) is evaluated for a positive
origin as for the case of an excess energy of 25 eV. energy paramete=Eg, and may be written using the fol-
For an excess energy of 60 ¢WFigs. 7 and 8 reasonable lowing spectral representation:
agreement is observed between our LOPT results, the experi-

mental data of Dawsoat al. [56] and the TDCC calculation Ge= > |n|m><n|m| + f dkw_ (36)
of Colgan and Pindzol§5]. am En—& K2 -£-i0
At an excess energy of 80 eV and equal energy sharin , , ,
(Fig. 9), the discrepancies between predictions of our modefRecalling the identity,
and those of the accurath initio CCC calculationg46] 1 1
become more pronounced. 0" P— +imd(X), (37

Our results that account for ongy p, d, andf final-state
electron orbital angular momenta, represented by the dash&ghere P denotes the principal value, the real and imaginary
curves in Figs. 3-9, were calculated using Ezj7) for the  parts of Eq.(36) may be written as

1.4 ; ; . : : |n|m><n|m| f k)]
' ReGg= 2, dk——
Lo12p (a) 6; = 0° $ 1 e k2-¢ "’
1 1
I> 0.8
& 08 Im Gg= f Ayl )k (39)
w04 :
8 0.2 wherek’?/2=€. When the real and imaginary parts of the
=R CGF in Eq.(38) are substituted into Eq.7) for the FSC

amplitude, the imaginary part of the CGF gives rise to the
so-called “direct”(on-shel) knock-out mechanism for PDI,
which has a direct classical interpretation: one electron ab-
sorbs the photon, and becomes excited to a continuum state
with asymptotic momenturik’; then it knocks-out the sec-
ond electron, and they both leave with asymptotic momenta
p; andp,. Since energy conservation fixes only the energy of
the “intermediate” electroifcf. Eq. (38)], the amplitude in-
volves an integration over all directions kf. The PDI am-
plitude involving the real part of the CGF in E8) corre-
sponds to the so-called “virtual” knock-out mechanism,
which may be considered a quantum counterpart of the clas-

FIG. 9. TDCS for double photoionization of He at an excessSical knock-out process.
energy of 80 eV for equal energy sharing. Present theoretical re- INsight into the physical mechanism of the PDI knock-out
sults, indicated by the full and dashed curves, are as defined in Firocess can be obtained by comparing the contributions of
3; dotted curves, results of the CCC calculations in R&8]. The  the real and imaginary parts of the CGF to the transition
experimental data of Turet al. [46] have been normalized to the amplitude(7). One way to do this is to directly evaluate the
CCC results, as in Ref46]. contribution of the imaginary part of the CGF. In our study,

0 60 120 180 240 300 360
02 (degree)
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TABLE |. Expansion coefficients; and b; (in atomic unit$ for the amplitudes; andf,, as defined in Eq(27), for various excess
energies(Eeyo and energy sharings. In calculating these coefficients, FS correlations are taken into account, a basiZgseWifl6 is
used for the He ground-state wave function, and the basis se@2withis used for intermediate and final states.

Eexc E N ay a bo by b,
(eV) (eV) (103%a.u) (102 a.u) (10%a.u) (102 a.u) (10%a.u) (10%*a.u)
9 45 -18.29+11.91  8.199-5.93D -1.115+6.720  -18.29+11.9L  8.199-5.939 -1.115+6.72D
6 -10.00+19.20  5.165-9.44B 2.132+7.064 -10.52+20.58  3.302-9.498 2.994+5.840
8 -14.81-13.4i  13.33+2.80R -7.288+6.03%  -29.08-2.59% 11.33-2.626 -2.669+6.60#
15 75 -2.895-14.68  1.215+7.299 -3.993-4.31  -2.895-14.6B 1.215+7.299 -3.993-4.311
12 -15.20+1.500  8.946+0.551 -5.897+4.120  -17.62+2.231 7.097-2.208B -3.059+4.497
20 10 6.616-9.709  -3.779+4.76b 1.049-5.302 6.616—9.70D -3.779+4.76b 1.049-5.30R
14.5 0.807-11.53  -1.665+6.744  —1.790-5.92P 0.476-13.0D 0.204+5.84# -2.551-4.199
17 -11.82-2.878  7.199+3.564 -6.954+1.146  —-14.74-2.80D 6.132-0.058 -3.953+2.777
175  -11.61+4.47%3  8.316-1.14#4 -5.179+5.180  -14.29+6.406  4.992-3.816 -1.363+4.671
25 20 1.427-9.382  -2.382+5.987  -0.829-6.12D 1.031-11.46 0.110+4.93L -2.049-3.86R
40 20 5.484+1.924  -3.043-1.644  4.082+1.028 5.484+1.924 -3.043-1.644  4.082+1.028
30 5.580-0.049  -4.084-0.982  4.902-0.53D 6.680-0.694 -3.134+0.321 3.319-1.238
35 2.973-4971  -3.680+3.44B 1.959-5.214 3.054-7.298 -0.781+3.13B  -0.349-3.24B
50 25 3.577+2.626  -1.912-2.016  3.061+2.201L 3.577+2.62B -1.912-2.016  3.061+2.201
45 2.831-3.386  -3.614+2.45P 2.629-4.387 3.045-5.63#4 -0.818+2.416  0.074-2.73b
60 30 2.325+2.611 -1.167-1.964  2.130+2.63b 2.325+2.611 -1.167-1.964  2.130+2.636
50 3.180+0.994  -2.757-1.674  2.443+0.262 4.446+0.448 -1.813-0.055 3.111-0.371
55 2.542-2.362  -3.380+1.78B 2.908-3.651 2.816-4.474 -0.766+1.91B 0.284-2.298
70 35 1.520+2.3%7  -0.688-1.78% 1.405+2.716 1.520+2.377 -0.688-1.78% 1.405+2.716
65 2.241-1.676  -3.102+1.31B 2.982-3.026 2.538-3.63B -0.692+1.54B 0.386-1.941
80 40 0.996+2.096  -0.379-1.577  0.866+2.62B 0.996+2.096 -0.379-1.577 0.866+2.626
70 1.937+1.072  -1.855-1.666  3.148+1.564 3.114+0.62D -1.338-0.199 1.824+0.136

however, it is more convenient to use the results alreadyor excess energies up to 60 &Wot presented in Fig. 20
obtained for the partial-wave amplitudM;ﬂl'Z) in Eq. (21). reveals similar findings. We conclude therefore, that the
If one uses the multipole expansions for the continuumdominant physical mechanism for PDI at intermediate excess
states, the CGF may be rewritten in terms of eigenstates ¢fnergies and intermediate and large mutual ejection angles is
energy and orbital angular momentuj|m), to yield the virtual(off-shell) knock-out process. This conclusion ap-
pears to be gauge invariant: a similar analysis of the ampli-
|EIm)(EIm]| tudes calculated using the length form for the dipole transi-
PJ dEE— ; tion operatornot presented heyshows that for intermediate
-¢ energies the relative contribution of the on-shell knock-out
mechanism in the length gauge is even smaller than that in
_ the velocity gauge. Note that, as follows from the equations
Im G, = 77% [Elm)}{Elm]. (39) corresponding to Eq$11) and(13) for the partial-wave am-
' pIitudes,Mfz'l"Z), the on-shell knock-out contributiofgiven
The contributions of the real and imaginary parts of the CGRY the imaginary part of the CGHs gauge independent,
to each termM 2 can now be extracted easily; they are Provided a smg(llelb)a}ss setis used in the calculgierause
given by the real and imaginary parts of the radial matrixtN€ quantityAM™+%2" in Egs.(11)«13) is real, apart from the

(I112) . . multiplicative Coulomb phase-shift factors that appear in
eIement;RF _[see Eqs_(A2) ar_1d_(A14) in Appendix A, each term of Eq(11)]. Although we use two different basis
which will be discussed in detail in Sec. V.

. . . sets in our model, the absolute values of our on-shell knock-

Our results for the TDCS, in which we account either for o+ mechanism contributions are of the same magnitude in
real(dashed curvgsor imaginary(dotted curvepparts of the o1 ength and velocity gauges, while the contributions of
CGF, are presented for the excess energies of 25 eV anfle off-shell knock-out mechanism are two to three times
60 eV in Fig. 10. As one sees, the real part alone gives gyrger in the length gauge. Thus, although the shapes of the
correct qualitative description of the TDCS for intermediate|ength-gauge TDCSs are very similar to the velocity-gauge
and large mutual ejection angles for all excess energies premnes, the quantitative discrepancies between the length-
sented, while the imaginary part of the CGF gives only agauge TDCSs and the absolute experimental data are much
small correction. Our analysis of other kinematical situationggreater{40].

[nIm){nim|
ReG.= Ir———
o %<E Bl
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A ;80 240 300 360 having energyE; is emitted along the photon polarization direction,
2 (degree) indicated by the arrows. Full curves, gauge-invariant LOR¥2)
results; dashed curves, CCC results from Knappl. [36]. The
experimental data of Knapgt al. [36] have been normalized to the
CCC results, as in Ref36].

FIG. 10. TDCS with account f, p, d, andf final-state electron
orbital angular momenta for an excess energies of 2%agsnd(b)
and 60 eV(c) and(d). Full curves, present exact resultssing the
full CGF, GEF); dashed curves, “virtual” knock-out onl(y.e., using

ReGg,); dotted curves, “direct” knock-out onlyi.e., using The TDCSs presented in Figs.(tland 11d) correspond
Im Gg,). [Note: CGF denotes the Coulomb Green function; seeto another case of unequ@ut not so strongly asymmetyic
Egs.(36) and(38).] energy sharing. For this kinematical situation, the LOPT-

calculated TDCS is comprised of a strongly destructive in-

) terference between the FS and the GS correlation amplitudes.
~ The results of several of our calculations show that oufpne sees that there is agreement of our results with the CCC
first model, which accounts for electron correlation only inesits at large mutual ejection anglg;,| >90° in Fig.

the final state, fails to describe the TDCS correctly at highll(c) and |6,,] >120° in Fig. 11d)] and disagreement for
excess energieg.e., for excess energies of a few hundredsma” mutual angles.

eV). We find that an account of electron correlations in both In summary, our LOPT results confirm that while the PDI

final and ground states is necessary at such excess energies. . . ; .
In Fig. 11 we present results using our LOPT approacHs dominated by the knock-out mechanism at intermediate

excess energies, for high excess ener¢iés few hundred

with account of both FS and GS correlations, in which the 2
bare charg&=2 is used in all unperturbed one-electron basi<EV) electron correlation in the ground state becomes at least

states. Because we include all diagrams of the giizen the ~ °f €qual importance.
first) PT order, results of this calculation are gauge indepen-
dent. We compare our results with the relative experimental

C. High excess energies

D. Contributions of high angular momenta

data of Knappet al. [36] and with the CCC calculation re-  Theoretical treatments for high-energy PDI must neces-
sults of Kheifets and Bray36] at an excess energy of sarily account for a large number of electron orbital angular
450 eV. momenta. Therefore it is of interest to study how the contri-

The plots given in Figs. X&) and 11b) present the TDCS butions of high angular momenta depend upon excess en-
for a strongly asymmetric energy-sharing regime. In the casergy.
when the slow electroii2 eV) is ejected along the photon It can be seen from Figs. 3-9, where we compare results
polarization direction, shown in Fig. (&), the fast electron that account fosp, pd, anddf final-state two-electron chan-
(448 eV) exhibits ap-wave angular distribution, which cor- nels with results that account exactly for all angular mo-
responds to the single ionization limit. In the case when thanenta, for excess energies of tens of eV the relative contri-
fast electron is ejected along the photon polarization direcbution of high angular momentd.e., 1>3) is almost
tion, shown in Fig. 1{b), the angular distribution of the slow negligible. The discrepancies between these two descriptions
electron shows clear evidence of shake-off into $h@ave  are seen to become noticeable only at an excess energy of
continuum. As one sees, there are clear discrepancies b&0 eV (cf. Fig. 9).
tween our calculated TDCS and the CCC results for this In contrast, at higher excess enelgy the order of hun-
strongly asymmetric energy-sharing case. dreds of eV, especially for not very asymmetric energy shar-
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ing, the contribution of higher angular momer{da>3) is TDOS(¢=+1) (107° a.w.)
comparable to that of thep, pd, anddf channels. Our cal- 3210123
culations of thesp, pd, anddf partial-wave amplitudes at = 3f ’El —19.5 eV
high excess energy allow us to find the relative contributions® 2 | i T
of each channel. For the cases of equal energy sharing and ¢& 1 |
excess energy oEq=200 eV, we find thafag|/|a;/=1.5 =,
and |ay|/|ay|=4.9, for E.=300¢eV, |aj/|a;|]=1.4 and 4l
|ag|/|as|=4.0, for Eqx =450 eV, |ag|/|a;|=1.3 and|a|/|ay| ¥
=3.5. Thus, the relative contributions of higher angular mo- & 20
menta increase with increasing excess energy. For the case o 3k
a very asymmetric energy sharing, howewgr=448 eV and =
E;=2 eV, |ag|/|a;|=1.2 andl|ay|/|a,|=7.6. Therefore, in this = 1 |
case the contribution of théf channel is much less than that &
for the symmetric energy-sharing case. 70
Il
IV. ANALYSIS OF THE TDCS AND CIRCULAR % 1
DICHROISM FOR THE CASE OF CIRCULARLY E ol
POLARIZED LIGHT g~2j
[}

In this section we use our LOPT approach to elucidate the; 1|
dominant physical mechanism of PDI which is responsible 2
for the circular dichroism effect, and to analyze the generalz 0
properties of the CD parameter. By introducing the notation !

o(§) =orpcd §), whereé is the degree of circular polariza- AT
tion of the incident light, the absolute and normalized CD & , |
parameters\.q and &.4 are defined as 2

_o(+1D)-o(-1)

Acdz 0'(+ 1) - 0'(_ 1); 5cd_ 0'(+ 1) + 0_(_ 1)-

(40)

+1) (1075 a.w.) TDCS(

We carry out our analysis for the geometrical arrangement

used in the experiment of Rdf31], in which the electrons %-1 |

are ejected in the plane perpendicular to the photon waveg « 08| (h

vector. We denote the mutual ejection angle between the tw¢ 2 E : : : R : : ; : :

electrons byg,,. Therefore, the explicit expressions for the 2 1012 8 135 180 225 270

CD parameters, which follow from Eq5), are TDCS(E=+1) (1077 au) 612 (degree)
Agg=2C, Im{flf;}sin 012, (42) FIG. 12. TDCS(for (= +1) and the normalized circular dichro-

ism parameteb.q [cf. Eq. (40)] for PDI of He at an excess energy
_— of 20 eV. FS correlation is taken to first order, the effective charge
_ 2 Im{f,f5}sin 6;, (42)  Z=27/16is used in the He ground state, afw2 is used in the
|f1)2+]f5)? + 2 Re[f,f,}cos b, intermediate and final states. All curves in bold, present results in-
. cluding all angular momenta; all curves of regular thickness, ac-
In Fig. 12 we present our results for both the TDCS and;qnt of onlys, p, d, andf waves; full curves, account of both Re
the CD effect parameter in E(¢2) for the case Qf an excess and Im parts of the CGRe,; dashed curves, RBg,_ only; dotted
energy of 20 eV and for several energy sharings for whichyyrves, ImGz_ only; dot-dashed curves, R with account of
absolute experimental data are availal3#]. As can be seen  interference terms containing I@c,_. Experimental data, Achlest
from Figs. 12a)-12d), our predictions for the TDC$full  al. [31]. [Note: CGF denotes the Coulomb Green function; see Egs.
curves in bolg, are in reasonable agreement with experimen{36) and(38).]
for all energy sharings considered. Excellent agreement with

experiment is found for the circular dichroism parametery, predictions of Ref[37] A is zero only for6;,=0 and
(full curves in bold, presented in Figs. 1&-12h). Analysis 4 —1g0° which are the so-called “geometrical zeros.” In

of our results for this case enables us to elucidate the physgec v B, below we analyze in detail the occurrence of these
cal mechanisms of the CD effect, which is the subject of Secnongeometrical zeros of the CD parameters.

IV A below.

At the excess energy of 60 eV, our predictions for the
dichroism parameteA.q in Eq. (41) agree in general with
those of the HRM-SOW calculations of R¢87], as shown As pointed out in Sec. Ill, the dominant mechanism of
in Fig. 13. A striking discrepancy, however, is that our resultsPDI by linearly polarized light at intermediate energies is the
predict two nongeometrical zeros: one in the vicinityg$  virtual knock-out process. In Fig. 12 we present the separate
=90° and the second one ne@,L=40°, while according to contributions of the realdashed curvgsand the imaginary

5cd

A. Physical mechanism of the CD effect
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amplitude factorizes into a product of the plane-wave PDI
amplitude and the amplitude for elastic Coulomb scattering
of one of the electrons. Therefore, the fact that the transition
amplitude is complex primarily due to the Coulomb phase
shifts (owing to the smallness of the contribution of the
imaginary part of the CGF to the FSC amplity@dlows us

to draw the conclusion that the CD effect originates from the
interference of two two-electron phase-locked wave packets:
one, consisting offreely-propagating plane waves and the
other that is elastically scattered from the nucleus.

B. Nongeometrical zeros of the CD parameters

The origin of nongeometricali.e., dynamicgl zeros of
the CD parameters has become a longstanding question since
the general structure of the CD parameters was first analyzed
in Refs.[15,16. The geometrical zeros of the dichroism pa-
rameterA.q are due to zeros of sié, in Eq.(41) and occur
at 6,,=0 and#,,=180°. The existence of nongeometricai

FIG. 13. Circular dichroism parametdry for PDI of He at an dyna_mlca) ZEros OffACd’ orlglnatln_g from zeros of the_ dy-
excess energy of 60 eV, for two different valuesRifE, /E,. Bold ~ namical factor Inif, f,}, were predicted16]. In a numerical
solid curves, present LOPT results with account of all angular mo€Xample in Ref[16], the position of a zero point of the CD
menta; dashed, dotted, and dot-dashed curves, present LOPT resud@rameters as a function of the coordinatés E,, 6,,) was
with account of onlys, p, d, andf waves. Dashed curves, account estimated to be &;=31 eV,E,=3 eV, andf;,=90°. Non-
of Re Gg, only; dotted curves, account of I@¢_only; dot-dashed ~geometrical zero points of the CD parameters have also been
curves, ReGg_ with account of interference terms containing both predicted by recent CCC calculations and measured ex-
Im Gg,.. Regular solid curves, results of the HRM-SOW calcula- perimentally(for an excess energy of 20 gMn the vicinity
tions in Ref.[57]. Experimental data are from R€67]. The posi-  of #;,=90° [31]. However, dynamical zeros for the CD pa-
tions of the nongeometrical CD zero points are indicated by arrowstameter were not found in all studies of the effect. As men-
[Note: Gg,_ denotes the Coulomb Green function; see £86) and  tioned above, dynamical zeros were neither predicted by the
(38).] HRM-SOW theory nor observed experimentally for an ex-

dotted curvegparts of the CGF to the TDCS and to th cess energy of 60 ey57]. ,
éarameter in E&AZ) together with the results which acc%unt In contrast to the results of Re7], we find that for an
for both contributiongfull curves in bold. As one can see ©XCESS energy of 60 evfor energy sharings oR=E,/E,
from this figure, PDI by circularly polarized photons is also => @1dR=11) there are two nongeometrical zero points in
dominated by the virtual knock-out process. This fact allowsth€ CD parameter in the vicinities 6{,= +90°, indicated by
us to identify the origin of the CD effect in PDI for interme- the arrows in Fig. 13. This case is thus similar to that for an
diate excess energies. excess energy o_f_20 eV, shown in Fig. 12. Our th_eory als_o
As shown by the general parametrization of the TDCS inp_re_d_lcts two additional nongeomgtrlcal zero points in the vi-
Eq. (5), the CD effect originates from an interference pe-Cinities of 012:140°,. but these might _be an artefact of our
tween the amplitudef;, andf, and is nonzero only for com- LOPT approach, which does not provide accurate values for
plex amplitudesf, and/orf,. If one neglects the contribution the TDCS for small mutual ejection angles. An independent
of the imaginary part of the CGF to the PDI transition am—ab_ initio calculation woqlo_l be necessary to either confirm or
plitude (7), the transition amplitude remains nevertheless'€j€ct these latter predictions. _ _
complex(and thus non-Hermitigrand predicts a CD param- ~ Use of our LOPT approach together with the parametri-
eter that is in agreement with experimental data. This com#ation of the amplitude$, andf in Eq. (27), permits us to
plexity of the amplitude stems from the complex multiplica- 92in some insight into the appearance of two of the nongeo-
tive factors exl{j(ﬁl(pl)‘*@z(pz))}, which are due to the Metrical zeros of the CD parameter, namely, the ones which

nonzero Coulomb phase shifig(p). Note that in the plane- ©CCUT In the vicinity of,=+90°. By substituting the am-
wave Born approximation for the one-particle continuump“tUdeS]cl andf given by Eq.(27) into the expression for

wave functionswé_)(r), the amplitude is realassuming the Bcq In BQ. (41), Aq takes the following form:

imaginary part of the corresponding Green function is negli- A.4= ¢, + ¢; C0S#;,+ C, COS ;,+ C3 COS b1+ C4 COS' 645,

gible) and thus the CD effect vanishes. However, if one takes (43)

into account even the first Born correcti¢iue to the Cou-

lomb potentia), then the transition amplitude becomes com-where the(real) coefficient of thenth power of cosf;, has

plex and the CD effect becomes nonzero. Account of the firsbeen denoted by,,.

Born correction corresponds to account of elastic scattering Obviously, if A.4=0 in the vicinity of #;,=90° then the

of the photoelectrons from the nucleus. Indeed, a simpleoefficientcy, must be small compared & andc,. We find
analysis shows that the imaginary part of this first-Born PDIthis to be the case. For example, for the case of an excess

0 90 180 270 360
612 (degree)
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TABLE II. Predicted values o, (in degreesfor the positions 8
of the nongeometrical zeros of the CD parametgy [cf. Eq. (41)] -
for various excess energies. Values obtained from the approximat: [ _ ,.:'_’,;;Z-
Eqgs.(43) and(44) (see text for discussions 6l ol
G5l
Eexc E: ‘9(112) 9(112) 0(122) ‘9(122) o
(eV) (eV) Eq. (43 Eq. (49 Eq. (43 Eq. (49 i 4|
) ":‘" -

9 6 39.6 49.2 88.2 88.2 3 " g = 11027 ]

8 < | gt T el
20 14.5 335 52.2 86.1 86.1

17 35.0 51.6 86.2 86.2

17.5 35.4 51.4 86.2 86.2
40 30 19.3 55.3 83.9 83.8

35 23.4 54.4 84.0 83.9 1 —p2 (aw)
50 45 15.8 55.2 83.3 83.2
0 S e e

55 55.8 82.7 82.6 Pi=P2 g'eF1z
70 65 56.2 82.3 82.2 . . .
80 20 575 82.0 818 with Eq. (43). This difference occurs because for small

mutual ejection angles the contribution of tdé channel
[which is neglected in Eq(44)] is important. As men-
tioned above, an independent calculation is necessary to
confirm or reject the existence of the zeros in the CD
parameters predicted by our LOPT approach.

energy of 20 eV, folE;=14.5 eV andE,=5.5 eV, the coef-

ficients ¢, are calculated to have the following values:

=-4.26,¢,=70.2, c,=-103.2,¢3=33.3, andc,=-4.28, so

that|co| <|cy, |c,|. Similarly small values of the coefficient

Co (compared to those af; andc,) are found for other en- C. CD as a function of the energy sharing

ergy sharings. . One can use the parametrizati@?) for the polarization-
The exact positiong;, of the dynamical zeros ai.q for  jnvariant amplituded, andf, to analyze the dependence of

a given excess energy and energy sharing may be obtaingde CD effect upon the energy sharing between photoelec-

by finding the real roots of the transcendental equafign  trons. In Fig. 14 we present the paramedey as a function

=0, whereAq is given by Eq.(43). If one neglects the con-  of the difference of the final-state electron momenia; p,,

tributions of f waves in the final statfi.e., one set®,=b,  for an excess energy of 20 eV for various mutual ejection

=0 in Eq.(27)], which gives a good approximation for an angles in the interval 100 6,,<170°. The most interest-

excess energy of 20 eJ40], the equation determining the ing fact is that, as can be seen from Fig. 14, the parameter

approximate positions of the zeros of the CD parameter bea , depends nearly linearly upom,—p, over a very wide

comes quadraticsincecz=c,=0), which yields the solutions range of energy sharing configurations, frof,=E,

=10 eV up toE;=17.0 eV ande,=3 eV, for all mutual ejec-

tion angles considered.

o
—Ci*\ci - 40002> (44)

2¢c,

12 _
g2 = arcco{

where CO:|m{aOb5}, C1:3Im{a1b5+a0b1}, and ¢, V. DISCUSSION

=9 Im{a,b}. The predicted positions of the nongeometri- In general, PDI is an essentially two-electron process
cal zeros, obtained using the approximate E4S®) and whose description requires a proper account for electron cor-
(44), are presented in Table Il. Our results indicate thatrelations in both the initialS, state and thé® wave, final
Egs. (43) and (44) have two real roots for almost all ex- two-electron continuum state. However, we have demon-
cess energies up to 50 €¥xcept for one kinematical situ- strated that account of electron correlationly in the final
ation for E¢,.=9 eV), while for higher energies there are state andonly in the LOPT provides TDCSs which are in
several situations when there is only one real root. Ageasonable agreement with both the existing experimental
predicted by Eq.43), one of the two zeros usually ap- data and the results of numerically intensiab, initio calcu-
pears in the interval 014.6°< #,,<<40.1°, while the sec- lations for excess energies up to 80 eV. We have interpreted
ond zero appears in the interval 81.3°<6,,<88.4° as  this somewhat surprising and unexpected result as evidence
the excess energy is varied from 9 eV to 80 eV. One seethat the dominant physical mechanism of PDI for the energy
that the predictions for the CD parameter zero points neainterval considered is the absorption of a photon by one of
01,=85°, obtained using Eq44), are in agreement with the electrons with subsequent, correlation-induced redistribu-
those obtained using E¢3). On the contrary, the predic- tion of the energy between the two electrons. Our results
tions for zeros nea#;,=40°, obtained using Eq44), are  show that taking account of interelectron interaction only in
very different from(and less accurate thathose obtained the lowest PT order is sufficient to reproduce the experimen-
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tal data over a wide interval of kinematical conditions andground-state energy of He to within a few percent, which is
excess energy sharings, with the only exception being thquite acceptable for many applications in which higpec-
case of small mutual ejection angles, for which the TDCS igroscopi¢ precision is not necessary or can be achieved by
suppressed by Coulomb repulsion and for which a LOPTUSIng spectroscopic experimental data.

description is inadequate. This simple approximation is also For bound-continuum transitions, a global estimate of the
capable of describing the delicate interference effects respofinportance of contributions from the next-order V) cor-

sible for circular dichroism. Of course, it is not possible to "€ctions to the LOPT resultespecially for smallZ, Z=2)
presenta priori theoretical arguments why high-order corre- cannot be obtained, since those contributions depe_nd on the
lation effects are unimportant for the kinematical situationsP@rametersmostly, on the electron energjesf the particular

we have considered, owing to the fact that the correlatio roblem considered. Specifically, the important difference
parameter, 12, for He (Z=2) is not a small parameter. How- etween PT treatments . for bound-bound and bound-

. ntinuum transitions is that in the latter case, in each order
ever, below we present our perspective on the treatment tg?

lect lect int i . LOPT h PT in Vg the nuclear chargg enters the PT result not
electron-electron Interactions ‘using a approach angny as a multiplicative factofas in Eq.(45)] but also
attempt to explain its success in the present work.

through the electron energy-dependent parametaes so-
called Coulomb factors of the form=2/\2E), which char-
acterize the intensity of electron-nuclear interacthy, in
the intermediatévirtual) and final(continuun) states of the
escaping electragg). Generally, as the Coulomb factors de-
When discussing the problem of convergence of PT exerease in magnitude, so do the corresponding transition am-
pansions for Coulomb perturbations in atomic processes, onglitudes. Thus, for different energy intervals, both the mag-
should distinguish between PT account of electron-nucleahitudes of LOPT and high-order PT terms and the relative
Ven and electron-electrony,, interactions. Usually, the importance of sequential terms in the PT expansion of a
former approach is used in collisional problems, inwhiGh  physical amplitude in the parameterZliay be different in
interactions(or both Ve, andV,g) are taken into account us- general. For multicharged ions, these deviations may have
ing a plane-wave basis s¢ie., employing free-electron little consequence since the contribution of each next-order
Green functionp The accuracy of such Born-like expansionsterm inV,.is suppressed by the overall factorZL However,
is rather unclear and depends on the parameters of a particthis factor is not a small parameter fée 2; thus the accu-
lar problem; even the question whether such a PT series igicy of LOPT results in this case requires a special analysis
convergent, asymptotic, or even initially divergent, is openfor each particular problem.
This circumstance may create an impression that PT treat- Below we shall summarize some arguments concerning
ment of Coulomb interactions is always questionable. How+the accuracy of LOPT TDCS results for the PDI of He. Of
ever, since the convergence properties of any PT expansiaiburse, the most convincing analysis would be the direct
essentially depend not only on the form of the perturbatiorcalculation of high-order corrections in Z;/ however, this
operator, but also on the choice of the unperturbed basis sethallenging problem is scarcely realizable at the present time
the situation is quite different whew,. is taken into account since treatment of even the next-ord@m Z™1) correction
using a Coulomb basis séte., employing Coulomb Green requires an accurate estimation of multiple integrals involv-
functions. In particular, this is the case for the PT treatmenting three CGF<G¢(r,r’), including integration over the en-
of the correlation interactioV,. in bound state and photo- ergy parameters in two of them. Instead, we show that some
ionization(including PD) problems for He and He-like ions. conclusions may be made, based on the general remarks dis-
The PT expansion of the ground-state energy of a nonrelcussed above, on the existing PT analyses for angle-

A. On the applicability of the LOPT approach to treatment
of interelectron interactions in PDI of He

ativistic He-like ion in powers of 17, integrated cross sections and on comparisons of our LOPT
— ® P TDCS result§40] with experimental and otheb initio the-
Eug2=-2 +21E . EV=eVZT, (45) oretical data. In the LOPT treatment of PDI, the Coulomb
n=

factors aren,=Z/p,, 1,=2/p,, and p=-iZv=-iZ/\-2¢,

may be expected to be a convergent series everzf®  wheref is the virtual electron energfthe energy parameter
[58]. Thus, the question is only the convergence rate, whiclof the CGF Gy). Effects of Ve, are negligible only in the

is defined by thez-independent atomic parametef8. For  (Born) limit of small Coulomb factors. For the VUV region
ground and2p)? 3P states, these parameters are obtained if photon energies explored in the present work, the Cou-
Ref.[59] up ton=20. It is interesting that each of the few lomb factors are of the order of unity or less; this should

first coefficientse™ in the expansion(45) decreases by be taken into account exactly. Moreover, the interplay be-
about one order of magnitude with increasing As a  tween Coulomb factors essentially determines the energy de-
result, even for neutral H¢Z=2), the sum of the three pendence and the magnitude of the dynamical atomic param-
leading corrections t‘EE(l))s>2:_22:_108-84 eVl[i.e., E® e;ers(i.he., tr:e radial ma_tri>éi eIen;ekr]wts; see.t/;\ppendbiaﬁd,d.

_ _ - B thus, the relative magnitudes of the contributions of the dia-
_(5/3)2_34'0_2 e_V’ E(Z)___A"Zg ev, qnd E®=0.12 3;{' grams in Figs. (@) and Xb) to the total PDI amplitude.
practically coincides with the experimental vaILE%S)z For the FSFig. 1(a)] and GSFig. 1(b)] diagrams, the
=-79.02 eV. (For the (2p)? 3P-state, the convergence is values of the Coulomb factors corresponding to the interme-
similar [59].) Thus, the account of only the two lowest-order diate states; - and 7, are quite different, sincég is
(i.e.,Z”tandZ?) correlation corrections gives a value of the purely imaginary: 7g=-iZ/vg, Where vg=1/\-2Eg
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=1/\-2(2€1s~E,). The radial CGFg,(€;r,r’), with nega-  each other, making the correlation operator truly a perturba-
tive £=Eg, is localized mostly at smatlandr’. It thus has a  tive quantity. As for the angle-integrated cross sections, it
much larger overlap with this) orbital as compared to the may be expected that they should be described reasonably
case of FSC, wher&Er (and thus7g) is positive and well by LOPT since the contribution of small mutual angles
0/(Eg;r,r') oscillates as a function of andr’. Quantita- (for which TDCSs decreagshould be small. As a justifica-
tively, this formal analysis shows that for moderate exceséion of this statement we can consider the good agreement of
energies(for which the oscillations of the Coulomb wave exact theoretical resul{§0] for the ratio of double-to-single
functions of the final state are not too fashe magnitude of ~photoionization cross sections}*/o*, for He, Li*, and G*

the (real) GSC radial matrix elements is higher than that forwith those obtained from the parametrization of exact results
FSC. Owing to the large magnitude of the LOPT result forbased on the scaling law in E(L5). This scaling law fol-
GSC, it is clear that the LOPT treatment of GSC is inad-lows immediately from the LOPT analysis and was sug-
equate, as the first-order contribution overestimates the exgested in Ref[47] assuming thaZ —  (which is equivalent
tent of ground-state electron correlations, and higher-ordeto taking account oV only in the lowest nonvanishing
terms must be considered9]. For this reason we order, i.e., tothe LOPT resyltin Ref.[47] it was also men-
use a simple variational ground-state wave function thationed that there is reasonable agreement of numerical and
gives—empirically—a reasonable description of both thescaled results for TDCSs. Finally, in a very recent publica-
initial-state energy and its spatial distribution. The use of thigion [61] it has been shown that straightforward LOPT cal-
initial-state together with inclusion of only first-order elec- culations of the ratioc™*/o™ are in reasonable agreement
tron correlations in the final state appears empirically to bevith experimental data for He for excess energies from
sufficiently accurate for current experimental measurementéireshold up to 300 eV.

at intermediate excess energies. However, with increasing

excess energy, the situation changes, and in order to achieve B. On the physical mechanisms of PDI of He

better agreement with experiments it is necessary to account gjnce in LOPT the PDI amplitude for intermediate excess
for both FSC and GSC on an e_qual footing. _Th|s fact againsnergies is described by two diagrafie., that in Fig. 1)

may be understood_by conydenng the b_ehav[or of the spatia)g that with interchanged momenga and p,], both of
integrals in the radial matrix elements involving the CGFS.\yhich describe the so-called direeon-shel) and virtual

Indeed, with increasing excess energy, the radial CGFRoff.shell) knock-out mechanisms, analysis of their relative
9i(Eg;r,r") becomes localized even closer to the nucleusgongiputions allows one to elucidate the underlying physical
however, on the other hand, the integration oveinvolves  mechanism of PDI. The analogy between the direct knock-
also the Coulomb continuum stafez | (r'), whose oscilla- oyt mechanism for PDI and the similar mechanism for the
tions for largeE; significantly suppress the absolute value of (¢, 2¢) process has been noted some time @g. However,

the GSC amplitude. Since it is reasonable to expect that fof the case of PDI this analogy is incomplete, since we have
higher-order(in 1/Z) GSC diagrams this tendency is even 3 quite different kinematical situation: the direction of an
more significant than for the LOPT term, their contributionsjntermediate electron momentum is not fixed and requires an
to the total GSC amplitude are thus not as important as fofytegration over the differential solid angle. As discussed
small excess energies. Consequently, at higher excess energljove, our approach involves the on-shell knock-out mecha-
the FSC and GSC LOPT contributions to the total amplltudq“3m tak|ng into account on|y the imaginary part of the CGF

of PDI become comparable and should strongly interferejn gq. (7), the amplitudeM may be expressed as
(Indeed, we have observed this in our numerical results for

an excess energy of 450 gWVe believe that these variations
in LOPT treatments for intermediate and high energies and
their formal analysis correspond physically to a change of ) , ,
the physical mechanism of PDI with increasing excess enWh‘?fe _the mtegr_and is a product of the smgle-electr(_)n photo-
ergy, i.e., to the growing role of the shakeoff mechanism atonization amphtude(MElSHk.,) and'an '(e,2e) amp.htud'e
high energies. (Mg~ p, p,)) @nd where the integration is over all directions
Regarding final-state correlations, we note that the accuef the intermediate electron momentukii. However, we
racy of our LOPT results is not uniform with respect to thefind that this on-shell knock-out process does not give the
mutual ejection anglé= 6,,. Indeed, final-state correlations dominant contribution to the PDI amplitude. On the contrary,
are strongest when the two ionized electrons leave the atoihie off-shell(or virtual) knock-out mechanism is more im-
along directions having a small mutual angle. This is pre.portant. This mechanism of PDI does not assume a real col-
cisely the electron configuration for which our LOPT resultslision between two electrons; moreover, the continuum state
are not in good agreement with either experiment or withof an electron with energy=e€;s+ o does not contribute to
other, more detailed calculations. However, for intermediatdéhe real part of the CFG5,, even as an intermediateirtual)
excess energies and not extremely asymmetric energy sha&tate.
ings, the TDCS for this configuration is small, since the larg- Exhaustive information on the dynamics of PDI may be
est values of the TDC@aside from requirements of symme- obtained by analyzing the energy dependence of the radial
try selection rulep occur for configurations in which the matrix elementsRﬂl'Z)(pi,pj), which are independent of the
electrons leave with large mutual angles. For large mutugparticular geometry and give us complete information on the
ejection angles, the photoelectrons are well separated fromlynamical parameters. The important questions to be an-

b_
ME’ = f dQM M py)s (46)
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TABLE lll. Radial matrix elementﬁzﬂlw [cf. Eq. (A2)] for an excess energies of 20 and 80 eV. The theoretical model is the same as
for Table 1.

Eerc E R(F10> R<F01> R(an R(Flz) R(F32) R(an)
(eV) (eV) (102 a.u) (102 a.u) (102 a.u) (102 a.u) (102 a.u) (103 a.u)
20 17.5 0.81+2.95 12.3+6.61 -13.4-1.5% -9.46+2.34 -0.82-1.52 -0.65-1.31
145 0.98+3.32 12.9+7.66 -14.3-1.42 -11.6+2.54 -1.01-1.64 -0.91-1.69
10.0 1.13+3.33 11.7+8.08 -13.2-1.01 -13.3+2.35 -1.06-1.47 -1.16-1.98
55 1.21+2.97 9.38+7.61 -10.7-0.60 -13.3+1.88 -0.87-1.10 -1.20-1.88
25 1.13+2.46 7.16+6.54 -8.23-0.35 -11.8+1.42 -0.63-0.76 -1.06-1.58
80 70 -0.68+2.70 12.0+5.85 -16.3-1.29 -7.75+3.72 -2.08-0.30 -1.35-2.09
58 -0.63+2.91L 10.5+6.62 -15.9-0.61 -10.2+3.67 -3.05-0.30 -2.18-2.88
40 -0.10+2.58 6.85+6.79 -12.7+0.09 -12.7+2.84 -3.09-0.28 -3.09-3.05
22 0.52+2.04 3.06+6.29 -8.41+0.42 -13.4+1.81 -2.01-0.14 -3.17-2.59
10 0.78+1.54 9.25+5.38 -5.27+0.438 -12.1+1.10 -1.06-0.07 -2.47-1.91

swered arefi) which individual electron angular momenta or, equivalently, to replace the diagram Figb)lby an effec-
give the dominant contribution to the transition amplitude,tive matrix element involving an uncorrelated final state and
(i) what are the relative contributions of the real and imagi-an appropriately highly correlated initial state, which may be
nary parts of the CGF in the corresponding matrix elementsysed to describe the shake-off mechanism of PDI. In this
and(iii ) how do the answers to the first two questions abovevay the PDI amplitude takes the form of a sum of the knock-
depend upon the excess energy and the energy sharing? daot and shake-off amplitudes. By neglecting their interfer-
Table 11l we present the numerical values of the radial matrixence, we would recover the results of R@f3], in which the
elementsRﬂl'Z) for excess energies of 20 eV and 80 eV, for PDI cross section is approximated by a sum of independent
several of the lowest angular momentum pairs and for varishake-off and knock-out contributiorfaiith the latter esti-
ous energy sharingshe energy sharing ratid®=E,;/E, for ~ mated classically We note that calculation of the knock-out
the case of 80 eV are the same as for 20.#¢ may be seen contribution in our approach, which involves partial-wave
from Table Ill, the matrix elements having angular momentaexpansions, is not more complicated than the quasiclassical
(13,1, equal to(1,0), (0,1), (2,1), and(1,2) give the domi- analysis of Ref[63]. Furthermore, it gives reasonable results
nant contributions to the transition amplitude. The real partgor the angle-resolved absolute TDCS, for which the accu-
of R(FZD and R(F12> are larger than their imaginary parts by racy of quasiclassical simulations is unclear.

approximately one order of magnitude, and the real parts of

R(FOl) are also larger then their imaginary parts. Only in the C. On the importance of the larger and small+ electron

matrix eIementSRf:m) (which give the smallest contribution correlations

to the transition amplitude within this groppre the imagi- In order to estimate the importance of langand smallr
nary parts larger then the real parts. This fact implies that theorrelations for the PDI amplitude, we have compared the
on-shell knock-out process is relatively more important forragial matrix element® !1'? evaluated using the asymptotic

the R(Fm) matrix element than for the others, for which the (r .0 andr— ) expreg'sGions for the functiony(r) [using

off-shell knock-out mechanism dominates. Also, the prob-Eqs_(A30) and(A31)] with the exact results. We have found
ability of the latter PDI events is greater for those kinemati-that for intermediate excess energies, such as 20 eV, the
Cal Situations in WhiCh, after the ine|aStiC electron'electronarge{ Corre|ati0n and Sma“-corre'ation terms in the matrix
collision, the primary electron leaves with higher enef®Y)  elementsR are of the same order of magnitude and that
than the secondary electron, in agreement with classical athere is a strong interference between them, which implies
guments. the importance of both small-and larger correlations. On

At higher excess energies, such as at 450 eV, account @he contrary, for the case of higher excess energy, such as
correlation in both initial and final states becomes necessarys0 eV, we find that the largecorrelation terms are negli-
and the LOPT approach provides reasonable agreement wifiple in both R and R matrix elements, which implies the

experiment only for large mutual ejection angles. It is reaimportance of the smali-and intermediate-correlations.
sonable to expect that with increasing excess energy, the ac-

curacy of a LOPT account for FSC should become even VI. CONCLUSIONS

better than for intermediate energies. Thus, in order to extend

our results to a wider interval of excess energies, a more To summarize, we have used a LOPT approénohthe
exact account of GSC is necessary. Assuming that only thiterelectron interactiorto evaluate the TDCS for PDI of He
diagram in Fig. {a) is sufficient to account for FSC contri- over a wide range of excess energies and, for the case of
butions, one may neglect FSC effects in calculations of higheircularly polarized photons, to analyze the circular dichro-
order correlation corrections to the GSC diagram Figp) 1 ism effect. We have found that for an excess energy of the
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order of tens of eV, the PDI process is dominated by the 32 @ .

virtual (off-shell) knock-out mechanism, while the direct Upz(r):ZWl’ZLE (—i)'2e"ﬁz(pz)upz,z(r)Pb(ﬁz-F).
(on-shel) knock-out mechanism is rather small for the large P2 1,20

mutual angles at which the CD effect is maximum. As a (A3)

result of these findings, we can deduce that the CD effect in
PDI at intermediate energies originates from the nonzer
electron Coulomb phase shifts, i.e., from the interference o
two two-electron, phase-locked wave packets: one compos
of plane waves and the other that is elastically scattered from
the nucleus.

he expression foup2|2(r) thus follows from Eqgs(9) and
8),

|
r2 "
dr” r”sz2|2(r”) —e 4, (A4)

Io+1
rz

upzlz(r) =
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APPENDIX A: EVALUATION OF PARTIAL-WAVE RADIAL (A5)
MATRIX ELEMENTS
In this appendix we present the derivation and final resultsThe integration over” in Eq. (A4) can be performed ana-

for the dynamical p_arqmetet}ﬂ}g)(pl,pz), introduced N EQ.  ytically in terms of elementary functiondsee Egs.
(23), for arbitrary individual electron angular momerita  (3.351.1-2 in Ref. [64]]; we thus obtain the following ex-
andl,. pression forug(r),

0%8

1. Evaluation of the FSC parameters

1
Let us consider first the evaluation of the FSC parameters Upi(r) = Cplfo dx XL =)'y (r,X), (AB)
Dﬂl'Z). The explicit form ofD(F'l'Z)(pl,pz) follows from Eg.
(7) after substituting the multipole expansions in Egs. .
(16)«(18) into Egs. (7) and (9), and using the fact that WhereCp andx,(r,x) are given by
(e-V,)eo(r)==Z4e-T)py(r). After performing the angular in-

tegrations by means of Eq22), the expression fop\1"? _ (2p)*tem? A7
may be written as follows: PTIT(+1+ig)| (A7)
5 4
D2, py) = iI1+I2+lV_23%ei(ﬁl(pl)ﬂslzmz))
(2m)° p1p, > Sl 20+ 2)!
— e +2 " < _
[2,+1 Xp'(r’x)’J e T L
% —Clo R(|1|2)(p ,pz), 0 >
3(2l,+ 1)l 1007 1 2041 5 (1)K
ot K2+ | \7T)~
(A1) xX11-€ %(1 2|+2) [ (A8)
wherel,=I;+1, |- =max,I,) andR(F'l'Z) is the radial inte-
gral, and wherer=Z,+ip(1-2x). Using Eq.(A6) and the integral
(i) (" ) representation(20) for the radial part of the CGF,
Re2(p1.p2) —J dr r°Ry i, (Nup,,(r) a.(E;r,r’), the integrations over the variablegsandr in Eq.
0 (A2) may be performed analytically in terms of elementary
o, oy functions, leaving for numerical calculation only the integra-
x JO dr' r'2gy(E;rr)e ™. (A2) tions overx [see Eq(A6)] and the variablel in the integral
representatiori20) for g,(E;r,r’).
In this equation, the functioup2|2(r) is related to the corre- The integrals involving the modified Bessel functign
lation potentiaIUpz(r) as follows: [cf. EQ.(20)] are evaluated using the formujé4]
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f dt 1% 11,12\

0
~ (n+|)! B2|+1 ﬂZ

2l —n- R
"(2|+1)!aﬁ+'+1eﬁ (D<I+1 mialez; cr)'

(A9)

where the confluent hypergeometric functidil+1-n;2l
+2;2z) with integer parameters is either a polynomiatiffor

PHYSICAL REVIEW A 69, 032713(2004
continuation formulacf. Eq. 2.1.417) in Ref. [65])
szl(K,k;m:Z)
_ T(k-r)(1-2)"k~
T (k=1 !'T(m- k) (-2
XoFi(=k+1m-k;1-k+k;1/2)

. 'k =Kk),Fi(k+1-mk;1+k-«;1/2)
(m=-k=-1) ! T(x)(-2)

n=(l+1)] or reduces to elementary functions. Such reduc-

tion may be performed by using the recurrence relations for

® to express it in terms ofb(1/2+v;1+2v;2) with half-

(A13)

The resulting two-dimensional integral de(F'l'Z) may be

integer v, which may be expressed as a Bessel function ofyritten in the following form:

half-integer orderv (see Eq.(10) on p. 265 in Ref[65]),
which in turn is a combination of polynomials mand ex-
ponentials.

The integration over’ in Eq. (A2) [with the substitution

of Eqg. (20) and the use of EqA9)] is straightforward,

fdr’r’zgl(E;r,r’)e‘zsr'
0

_16wr fld
_(1+ZSV)4 0

1=zv p( ri- yu)
u 2expl - — ,
(1+y) v1l+qu
(A10)

where

vy=(1-Zw)(1+Zyw), (Al11)

and wherev=ve=1/\-2(E, +E, ~ €1 =i|vgl. Thus, the
parametew for the FSC diagram in Fig.(&) is imaginary,
which leads to the complexity o‘R(F'l'?)(pl,pz), whose
imaginary part corresponds to the diréon-shel) knock-
out PDI amplitude.

After substituting Eqs(19) and (A10) into Eqg.(A2) and
taking into account EqYA6)—(A8), the integration over

which involvest1|1(r) may be performed using the formula

[64]

o) = f: dttle D (k;m; Bt)= (k ;J(l)!

2F1<K,k;m;§),
o

(A12)

where the hypergeometric functigifr; reduces to elemen-

tary functions for any positive integer valueslofndm (as

in our cas¢ Form=k, it reduces to a hypergeometric poly-
nomial of the order of(k—-m) by using the known Gauss

relation ,F;(x,k;m;2)=(1-2)™ ¥, F;(=(k-m),m-x; m;2).

R'(:|1|2) -

16VCp1I1(2p1)|1Cp2I2(2|2 +2)! fl y Tad
(1+Zw)* @+ 1+

1
xfdx
0

k=0

X247m2(1 = x)l27i72

2123

I1+1+i71,2ipq
‘]Il—I2+3,2|1+2()\)

M‘ é\]' +1+i71,2ipg (A +17)
2|2+ 2 k' |1—|2+k+3,21+2 !
(A14)

where

11-
A=ipy+ - =

. A15
1+ (A15)

Note that the functiond(%(o) defined in Eq(A12) may be

reduced to elementary functions as discussed below Eg.

(A12).

2. Evaluation of the GSC parameters

In order to evaluate the GSC amplitude in E8), we first
carry out the angular integrations in E&) by means of the
Wigner-Eckart theorem. Next, we integrate ovday parts to
move the action of the differential operatdrdr from the
CGF to the functioanl|l(r) (i.e., the radial part oﬁﬁ;,'l)).

Thus, the functiongl'Z)(pl, p,), introduced in Eqs(21) and
(23), has the following form:

L2 anZd
(2m)% p1po(21, + 1)
% ei(5'1(p1)+5'2(p2))7zgl|2)(pl,pz), (A16)

D& (py,py) = '

where the radial integraRgl'Z) is defined as

Rgl'z)(pl.pz)zjo drer(lz'll)Rpl'l(r)

Xfo dr’r’Zg|2(E;r,r’)up2|2(r’)e‘zsr’,

(A17)

For m>Kk, the reduction is obtained by using the analyticalthe radial momentum operatér(lz,ll) is given by
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Sgr(ll Il +1 |cy| 2ZC, 141 .
Dl,l —_ +t A18 - ) _$ 1=14-ipqr
(Iz,10) . (A18)  D(II+ DR, 1.a()=p; z Roy () (2|+1)!c*1(2p1r) e 1Py
and sgiiz) is the sign ofz The integral over’ in Eq. X[D(cy; 21 + 2;2ipyr)
(A17) involvesuy(r') and is thus much more complicated — ®(cy, 20 + 2;2ipyr)]. (A21)

than the corresponding FSC integral ovéin Eq. (A10). o
Substituting Eqs(20) and (A6) into Eq. (A17) and using In Eq. (A21) and below we use the abbreviatio=I+k
Eq. (A9) gives the following result for the integral ovet ~ *+i7:. We now consider the first term on the right-hand side

(W1 -wl '

in Eq. (A17), of Eq. (A21) separately from the remaining two terms. We
shall thus represeﬂﬁgl"Z) as the sum of two contributions,
s ’ ! each of whose evaluations we consider below.
J dr'r"“g, (E;r,r')up, (r')e s Since the first term on the right-hand side of E&21) is
proportional toRp1|(r), the evaluation of its contribution to
=81Cp,,(I2+1) the integral(A17) is simplified by taking into account the
N L et -l known relation (R, (r)[g(&;r,r')=(E,—&)” 1<Rpl(|r))| The
><(4r)'zf du dz‘z”f dx 3 corresponding contrlbutlon of this term ta is thus
0 0 72 given by py(|c,|/c)SY, where we have defmed the matrix
r B element  S¢/=(Ro,i(r)|up, (1) golr )/ (Ep, + Ep, = 261),
f1- | 205,20, +2;- 1y which reduces to a one-dimensional integi@ter x) by us-
X| exp —— ing Egs.(A6), (A8), and(Al12),
Xp( Vqu) I~ 0 g Eqgs.(A6), (A8) (A12)
Cp.1Cp(2pp)'(2 +2
eXp( rl-qyu+énl +U)) sh =2 pi(2p) (2 + 2
v1+yu+ édl-u) (Ep, + By, ~ 2609
1
BZ ) |+I7]2(1 =iy
+2; -2 X)
< ) <k Aot vl-u dex 243 glzﬂpzl()\o)
X >, by? (A19) |
k=-1

where

21+1
§k2l+l> 7J( Cl 2ipy
Ao+ A22
k:o( 21 +2) g deamdhot D) |, (A22)

wherehy=ip;+Zs.

1 +ZsV Since the confluent hypergeometric functiohsin Egs.
(A21) and (A19) have the same lower parameters=2l +2,
integrals involving the product of two functiors are calcu-

a=(1+Zpy)(L+w), &=

Bi= A , lated using a known resu(see Eg. 6.122) in Ref. [61]).
(1+Z)(1+ ) For our purposes, we present this result as
4u f dr e‘”’rm‘1<b(;<;m;2ip1r)<I>(k;m;— A r)
o= (L zalL ey L -u] : W1-u)
=[1(1 - u)KiG(o), (A23)
b(lz):( _ %1 ) (2,+1 -k A2k (A20) where
2,+ 2/ [a+ vr(1-u)]H2r2

Kio) = (m—1)!ak‘m< o )K

andy is defined by Eq(A11). Note that for the GSC ampli- [ov(1-u)+ B\ o~ 2ip;

tudle given in tE(tq'(S) ;hetﬂaramdgt?v aptpefartii?g |(;1 the inte- o ( y - 2ip,B )
gral representation for the radial part of the CGF. Eq. oF 1| e k;m;

(20)] is a positive real numbety= vg=1/y-2(2e1s~Ep). (o= 2ip)lor(l-u)+p]
Thus the radial matrix elemeni.‘%('l'Z)(pl p,) are real desplte (A24)

the appearance of complex quantities in their definitise®  \here ,F, for integerk and m reduces to elementary func-
Egs.(A22), (A25), and(A28) below]. _ _ tions, similarly to the one in Eq(A12). Therefore, taking

In order to perform an analytical integration ovein EQq.  into account Eq.(A19), the radial matrix element§A17)
(A17), it is convenient to employ the special relations for themay be presented in terms of two-dimensional integrals hav-
action of the operatoID(Iz, 1) ONTR, N (r) in Eq. (A17) [see ing a structure similar to that in EqA14) for the radial
Egs. (A1) and (A2) in Ref. [62]]. SpeC|f|caIIy, forl;=1,+1  matrix elements of the FSC amplitude. The final result for
(i.e., I=1, I;=1+1), [1=1,+1 (i.e., 1,=I, 1;=1+1) is
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rian = p Algo 8"M1Zupy 'Cp11Cpy(1 + 1) f ' dxw
te "¢ @+1tc, 0 7
Yoo X1 —x) i (1 + 1 +i 7,2
Xf du d va dx 7,2I+3 = (—i )2l+3+k(2| + 1),
0 0 P2 '
2 ><zFl(—l—kJ+1+i77z;2|+2;2/(i7;s+1))
k_z_l b(|)[KC2 2|+2 ) _ K%‘éZzHZ()\/)] (l 7]5+ 1)|+1+i 7]2(i Ne— 1)|+2+k—i 7 f
(A29)
2[K§|2§'+2()\) - Kgll;,g'fz()\)] , (A25)  whereris defined below Eq(A8), 7s=Z/p,, andk=0 or 2,

so that,F, reduces to simple polynomlals The contributions
of integrals of the form in Eq(A29) to R 1'2 correspond to
_ ) _ the account of only the Iargeasymptotlc behavior of the
where\ is defined by Eq(A15) (with v=vg) and where correlation potentialiy(r) in Eq. (A6), which is defined by
the asymptotic behavior of the function(r),

11- 1
=ipy+— yu+ ér(1 +u) _ (A26) Xpl(") ~ (ZL_;-T?!FH,

v1+yu+ér(l-u)
As can be seen from Eq6A2) and (Al17), in this approxi-

If we define the factowv(1-u)+B=s(o,B) which appears mation the dependence ﬁF'lez) on the photoelectron mo-

r— oo, (A30)

in Eq. (A24), one can show the nontrivial result that menta factorizes to the product of two independent functions
SN, B1)=s(\", Bo)=ipyv(1—u)+1+u. of p; and p, (in contrast to the exact resyltsThe smallr
For the casd,=I,+1 (i.e., I,=I, I,=I+1), the relation asymptotic behavior of the functiogy(r) in Eq. (A8) is
similar to Eq.(A21) is [66] given by
I.I
* Xpl(r) =~ ?1 r— 01 (Agl)
Cl —
D(I + 1.DRy (1) = = p1— Ry 1+1(r)— _(2pyr)e P
Pr Yoo P @1+ 3)' ' so that a similar factorization appears as well in this approxi-
X [ca®(cy; 2l + 4; 2ipyr) mation.
* Clq)(CZ’ZI +4:2pan)]. (A27) APPENDIX B: EXPRESSIONS FOR THE TRANSITION
AMPLITUDE WITH ACCOUNT OF ALL
Thus we obtain ANGULAR MOMENTA . .
Below we present analytic expressions for the functions
A(p1,P2, 612 and B(py,ps, 612 Which enter the transition
* 8270 C. ¢ [ +2 amplitudesf, , in Eq. (34) that account exactly for all indi-
ng"fl):_pliggﬂu PPCoyCpynll +2) vidual photoelectron orbital angular momenta. Each of the
[ (2 +3)! functionsA(py, p», 61,) andB(py,p,, 6;,) is the sum of FSC
1 1 elny(q — i and GSC contributions, labeled by indicBsand G. The
f du J*? ZVJ dx s functionsAg g andBg  involve an integral over the variable
X [stemming from the integral representatig30) for the
21+2 CGFH] as well as a two-dimensional integration ogeand ¢
Xy > b(k'J'l)[czK‘;?;Z'“‘()\ )+ CiKZ 2"'4()\ )] of the functionsua(q, 6,) and ug(q, 6,), respectively, which
k=-1 are defined by
Cq.20+4 *10Cp,2+4 2m
2[02K2I+23 (N) + C1K2|+2,/31(7\)] : (A28) Ua(0, ) = Up, (0, O, #g)COS ¢ depy,
0
The Eqs(Al14), (A25), (A22), and(A28) present our final )
results for the radial matrix elemerfl%(F'l(;Z), which may be _f i
easily calculated numerically for an arbitrary set of indi- Ug(0, 6g) = . Up, (G, 0, 9q)depg, (B1)

vidual photoelectron orbital angular momenta and |,

=l;+1. Note that the integrals overin these equations that wherev,, (q, 6y, ¢;) is defined in Eq(32). The scalar product
involve the functionsJ(\), K(\), and J(Ay) (all three of (p,-q) may be written as followsin the coordinate system
which are independent & may be calculated analytically in whose z axis is directed along; and whosexz plane is
terms of elementary functions, spanned by, andp,):
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(P2 +a) = pq(sin  sin 6, COS @q + COS @ COS 6,) . Oy =0 Sin 6, Q,=q COS b, (B7)
(B2) In addition, the parameters, 5; are defined by
Although the integration ovep, in the integralgB1) for u, 7
andug may be easily performed numerically, they may also g =X+=,
be evaluated analyticallgby using Eq.(3.682 in Ref. [60] 2

and Eq.(15.4.7 in Ref.[67]) in terms of the Legendre func-
tions of the first kind, P,(2)=,F1(-u,u+1;15(1-2)/2) s
(which reduce to Legendre polynomials for integer ap=X+ 2

Ua(Q, O) = 2702 = (P +1Z9)%T "2 (py +iZ)
ip; . i9; X
1 o @ VD G - .- S S
x Lo V= 2] - p Us(@ f), s 2T 2 A1-%a

. _ o 2
Us(0, ) = 2 = (P2 +iZ9°]™ 72 H(p, +iZy) aAZX_)\1+IF)_1_I(J_Z_—2 X . +&x,
() (a-1) 2 2 v(1-xa; 4o
X[eI = mpd 7],

9 =[(@-b)a-30)]*2P,(2), Przah
. a-2b Pa=azt ),
a=2-in, Z:ﬁ’ (B3)
V(a-bj(a-30) s = a3 with the substitution, — 35,
where the following notations have been used:
a= Z§ + p% + G2 + 2p,0 COS 6 COS B, Ba= a4 With the substitutionsy; — B, a3 — Ba.
(B8)
b=2p,q sin ¢ sin 6, The parameters; and\ in the factorsy; and g, in Egs.(B5)
and (B6) should be set equal to zero after evaluation of the
C=(Zs— 2)(po+iZg) + m(Z2+ P53+ ). (B4)  derivatives.

FunctionsA andB for the ground-state correlation ampli-
tude have forms similar to those in Eq85) and (B6). For
this case the parametepr is given by v=1/V-2Eg

The functionsA andB for the FSC amplitude may thus be

presented as follows:
y Aol ™ . J =1/\4e— pg, andZ,=Z. The corresponding results are
A= —Zf q dqj déy, sir? 0qua(a, 6y)| —
v AN
0 0 170

ZC [~ m )
Jl dx X 2(a, - ipl—Z)( ipl>—1—in1 Ag=- ?fo q dqf0 de, sir? 0y Ua(0, 6g)
X 1-— ’

0 (1 —X)4(ala2a3)2ai Qy " (i) Jl dx x&2v (1 ~ ip_1>1—i m
(BS) N/ odo (L= (y17y2¥374)? Ya ,
o ; (B9)
B-=- iZSCf dqf déy, sin Htu(q,eq)(—>
0 0 IN1/0 - - J
7y S Bg=-2p,C df dé, sin 6, ug(q, 6 (—)
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In these expressiors is a normalization factor, ; N P
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™ where
where the coefficienA”)" is defined below Eq(29), and S :X_)\_ip_l
where we have used the following notations: ! 2"’
+ Z i X
:i_l X’ V= 1 = 7 1 , 52:X—)\l+—+iz—ﬁ,
2v1-x" " \-2E \2e,-pi-P 2 2 =0
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Y1=O01tN, ¥2=0 Y3=63,

Ya= 04+ N +ipy. (B11)

As may by seen from EqB2), for /=0 and the function
v(q, 604,99 in EQ. (B1) is independent ofg, so that
ua(d, 6,)=0. Therefore, for=0 and 6= only the ampli-
tude B contributes to the amplitudein Eq. (34).
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