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Stripping and excitation cross sections are calculated, using a time-dependent discrete-variable approach, for
collisions of protons with energies from 0.5 keV to 2 MeV with He+ initially in the 1s, 2s, 2p, 3s, 3p, and 3d
states. This quantum-semiclassical approach takes trajectory curvature into account. The spatial and temporal
convergence properties of the method are analyzed for the ground and higher states. The results are in good
agreement with existing accurate calculations and experimental cross sections, available forEpù3.73 keV.
Results are also obtained for lower-energy collisions where the cross sections are still significant but trajectory
curvature is important.

DOI: 10.1103/PhysRevA.69.032709 PACS number(s): 34.50.Fa, 34.10.1x

I. INTRODUCTION

The collision of a hydrogenlike ion with a proton of en-
ergy sufficiently high to break up the ion is an example of the
fundamental three-body problem with Coulomb interaction.
It is also important in fusion plasmas[1]. These processes
have been extensively investigated with various theoretical
approaches, including the Born and distorted-wave approxi-
mations [2,3], the classical-trajectory Monte Carlo method
[4], the continuum-distorted-wave–eikonal-initial-state
method [2], coupled-channel basis-set expansions with
a priori assumed(usually straight-line and well-justified) tra-
jectory[3,5,6], hidden adiabatic energy crossings in the com-
plex plane [7,8], and solution of the time-dependent
Schrödinger equation with classical trajectory for the projec-
tile [9], as well as experimentally[10–13]. The high-energy
regime seems to be well understood. However, in the region
of medium and low energiessE,100 keVd there are still
significant differences between the various theoretical calcu-
lations. Also, the existing computations have been performed
only for the ground state of the ion and, in some cases, low-
lying exciteds states.

Most accurate schemes for treating the ionization and
electron transfer in this region have been based on the
impact-parameter approach with straight-line trajectories for
the relative target-projectile motion. Trajectory curvature ef-
fects, which become important at low collision energies
[14,15], have not been well studied previously.

II. METHOD

The present method was originally developed[16] for
treating nonsudden behavior in the sticking problem follow-
ing muon-catalyzed fusion[17]. In subsequent work, it has
been applied to high-harmonics generation by a hydrogen
atom in an elliptically polarized laser field[18,19], excita-

tions of muonic helium by magnetic fields[20], ionization of
ions moving in magnetic fields[21], and breakup of halo
nuclei [22,23]. In treating the different quantum dynamics,
the method has been found to be highly efficient and flexible.

We present here the computational scheme with results
for the reactions

sHe+dnil i
+ p → e+ He++ + p, s1d

sHe+dnil i
+ p → sHdnf

+ He++, s2d

and

sHe+dnil imi
+ p → sHe+dnfl fmf

+ p. s3d

These transitions are affected by the time-dependent Cou-
lomb field between the He+ and proton.

A. General scheme

The collisions are described by solutions of the time-
dependent Schrödinger equation

i"
]

] t
csr,td = fH0srd + V„r,Rstd…gcsr,td, s4d

where the wave packetcsr ,td corresponds to the relative
motion of the electron and the helium nucleus. In this expres-
sion,

H0 = −
1

2m
¹r

2 −
2

r
s5d

is the internal Hamiltonian of He+ with reduced massm
=memHe/M, whereme andmHe are the masses of the elec-
tron and helium nucleus, respectively, andM =me+mHe.
The interaction of the projectilep with the target He+ is
given by
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Vsr,td =
2

uRstd + mer/Mu
−

1

uRstd − mHer/Mu
, s6d

whereRstd is the relative coordinate between the projectile
and center of mass of the target. The Schrödinger equation
s4d is integrated simultaneously with the classical Hamilton
equationsf20,21g

d

dt
Pstd = −

]

] R
Hcl„Pstd,Rstd…, s7ad

d

dt
Rstd =

]

] P
Hcl„Pstd,Rstd…, s7bd

where

HclsP,Rd =
1

2M0
P2 + H0sp,rd + kcsr,tduVsr,Rducsr,tdl,

s7cd

with M0=mpM / smp+Md. The computational scheme in-
cludes the coupling between the electron and projectile vari-
ables and conserves the total energy of the system.

The key idea to simultaneously treat quantum and classi-
cal degrees of freedom goes back to Refs.[24,25] where it
was applied to the collisional dynamics of molecular pro-
cesses. Note also the similar self-consistent classical-
quantum treatment of muon capture by the hydrogen atoms
[26] and recent time-dependent calculations of the atomic
hydrogen ionization by antiproton impact[27].

We use the global basis on the subspace gridsui ,fid for
the angular variables of the electron coordinater in the spirit
of the discrete-variable technique. This yields a diagonal rep-
resentation for the interactionVsr ,ui ,fi ,td between the pro-
jectile and target. As a consequence, the problem is reduced
to the Schrödinger-type time-dependent radial equations
coupled only through the nondiagonal angular part of the
kinetic energy operator. This equation is propagated using a
split-operator method, which permits fast diagonalization of
the remaining nondiagonal part[19,22]. For discretizing with
respect to the radial variabler, a sixth-order(seven-point)
finite-difference approximation on a quasiuniform grid is
used. The scheme is unconditionally stable, maintains unitar-
ity, and has the same order of accuracy as the conventional
Crank-Nickolson algorithm. It allows a full three-
dimensional(3D) quantal treatment of the electronic motion
during the collisions. The only additional simplification is
the use of the classical approximation for the relative
projectile-target trajectoryRstd [determined by Eqs.(7)],
which is physically well justified for the range of the veloci-
ties considered in the present work.

We note a principal advantage of our scheme as compared
with the previous classical-quantum approaches[9,24–27].
In previous calculations, the Schrödinger equation was
solved with an expansion in spherical harmonics. Therefore
it requires analytical treatment of the angular part of the nec-
essary integrals. In such a scheme, the matrix elementsHcl in
Eq. (7c) can be calculated only with a multipole expansion of
the time-dependent potential(6) [24,25], which in some ki-

nematical regions can be a challenging computational prob-
lem. Our approach is free from this drawback since we use a
discrete representation for the electronic angular variables. In
our representation the matrix(6) is diagonal, and the diago-
nal elements are simply the values of the potentialVsr ,td at
the angular grid points.

In the next two subsections, we give a more detailed con-
sideration of solving the Schrödinger equation(4) and de-
scribing the collisional dynamics.

B. Angular-subspace discretization

We seek a solutioncsr ,td, in spherical coordinates
sr ,Vd;sr ,u ,fd, as an expansion

csr,td =
1

r
o
n j

N

YnsVdsY−1dn jc jsr,td s8d

over the two-dimensional basis

YnsVd = o
n8

Clm
l8m8Pl8

m8sudeim8f. s9d

In this basis,Clm
l8m8=dll8dmm8, in general, and thusYnsVd co-

incides with a usual spherical harmonic with a few possible
exceptions for highn as explained below after Eq.s11d. The
symboln representshl ,mj and the sum overn is equivalent
to the double sum

o
n=1

N

= o
l=0

ÎN−1

o
m=−l

l

. s10d

In previous worksf18–23g another scheme

o
n=1

N

= o
m=−sÎN−1d/2

sÎN−1d/2

o
l=umu

umu+ÎN−1

of constructing the angular basis was applied, which some-
times gives faster convergence but omits high values ofm
for l .ÎN−1. This peculiarity becomes important in the
present computations as we analyze transitions to highnf
in collisional excitationss3d.

The basis(9) is associated with a mesh. For theu vari-
able, theÎN mesh pointsu ju

correspond to the zeros of the
Legendre polynomialPÎNscosu ju

d. For the f variable, the
ÎN mesh points are chosen asf jf

=ps2jf−1d /ÎN. The total
numberN of grid pointsV j =su ju

,f jf
d is equal to the number

of basis functions in expansion(8) [19,22]. With this mesh
are associatedN weightsl j, which are the standard Gauss-
Legendre weights multiplied by 2p /ÎN. The sY−1dn j are the
elements of theN3N matrix Y−1 inverse to the matrix with
elementsYjn=YnsV jd defined at the grid pointsV j. The poly-
nomialsYnsVd are chosen in such a way, Eq.(9), that one
has exactly

E Yn
*sVdYn8sVddV = o

j

l jYn j
* Yn8 j = dnn8 s11d

for all n and n8øN. For mostn and n8, property s11d is
automatically satisfied because the basis functionsYnsVd are
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orthogonal and the Gaussian quadrature is exact. For thesen

the coefficientsClm
l8m8=dlldmm in Eq. s9d. However, in a few

cases involving the highestl andm values, some polynomi-
als Yl

m have to be specially made orthogonal in the sense of

the Gaussian quadraturesClm
l8m8Þdlldmm for these specificl

andmd. With this choice, the matrixl j
1/2Yjn is orthogonal.

The radial componentsc jsr ,td correspond tocsr ,V j ,td,
which is a complex function. We introduce theN-component
vectorcsr ,td=hl j

1/2c jsr ,tdj. With respect to the unknown co-
efficients in expansion(8), the problem is then reduced to a
system of Schrödinger-type equations

i"
]

] t
csr,td = fĤ0srd + V̂sr,tdgcsr,td. s12d

In this system,Ĥ0srd and V̂sr ,td areN3N matrix operators
representingH0 and V fEqs. s5d and s6dg on the grid. The

elements ofĤ0srd are defined by

H0kjsrd = − S 1

2m

]2

] r2 +
2

r
Ddkj +

1

2mr2slkl jd−1/2

3 o
n=hl,mj

N

sY−1dknlsl + 1dsY−1dn j . s13d

The elements ofV̂sr ,td are

Vkjsr,td = Vsr,Vk,tddkj. s14d

The values of the wave functioncsr ,td at the grid points
of the angular spacecsr ,V j ,td are utilized in the spirit of the
discrete-variable representation(DVR) [28] or Lagrange-
mesh methods[29]. It drastically simplifies the calculations
as compared with the usual partial-wave analysis. In fact, the
time-dependent Coulomb operator defined in Eq.(6) is a
diagonal matrix(14) in such a representation, and the diag-
onal elementsVsr ,Vk,td are simply the values of the poten-
tial Vsr ,td at the angular grid points. It does not require the
multipole expansion used in other approaches[9,24–27].

Note that we have replaced in Eq.(13) the angular matrix
elementskYnuL2uYn8l by lsl +1ddll8dmm8. This is, however, not
exact for some highl andm for fixed N. But the approxima-
tion is consistent with the accuracy of the Gaussian approxi-

mation employed for the matrix elementskYnuV̂uYn8l of the
interaction in Eq.(14).

The rapid convergence of the expansion(8) has been
demonstrated in problems describing different quantum dy-
namics[18–23].

C. Computational scheme

Another attractive feature of the present approach is that
the only nondiagonal part of the Hamiltonian in Eq.(12)—
the angular part of the kinetic energy operator[see Eq.
(13)]—can be diagonalized by the simple unitary transforma-
tion Skn=lk

1/2Ykn [19,22]. This property has been exploited
for developing an economical algorithm with a computa-
tional time proportional to the numberN of unknowns in the

system of equations(12) [19]. The component-by-
component split-operator method[30] has been applied for
the propagation in timetn→ tn+1= tn+Dt as

csr,tn + Dtd = s1 + 1
2iDtV̂d−1s1 − 1

2iDtV̂ds1 + 1
2iDtĤ0d−1

3s1 − 1
2iDtĤ0dcsr,tnd. s15d

Thus the problem is split up into two steps involving the
intermediate timetn+ 1

2Dt.
At the initial step, the vector functioncsr ,tn+ 1

2Dtd is
evaluated from the known vector functioncsr ,tnd using the
system ofN differential equations

f1 + 1
2iDtŜĤ0srdŜ†gc̄sr,tn + 1

2Dtd

= f1 − 1
2iDtŜĤ0srdŜ†gc̄sr,tnd, s16d

where

c̄sr,tnd = Ŝcsr,tnd. s17d

The system of equationss16d is uncoupled since

sŜĤ0Ŝ
†dnn8 = F−

1

2m

]2

] r2 −
2

r
+

1

2mr2lsl + 1dGdnn8, s18d

wheren=hl ,mj. It is solved with the boundary conditions

c̄s0,tn + 1
2Dtd = c̄srm,tn + 1

2Dtd = 0,for rm → `. s19d

Then the wave function at timetn+ 1
2Dt is obtained as

csr,tn + 1
2Dtd = Ŝ†c̄sr,tn + 1

2Dtd. s20d

The most time-consuming part in performing the initial step
tn→ tn+ 1

2Dt fEqs. s16d–s20dg—namely, solving the
boundary-value problems16d and s19d—demands onlyN

computational operations. Moreover, theŜ transformation is
independent oft and r, and, as a consequence, the matrix
Skn=lk

1/2YnsVkd has to be evaluated only once.
At the second step, the system ofN uncoupled algebraic

equations

f1 + 1
2iDtV̂sr,tndgcsr,tn + Dtd

= f1 − 1
2iDtV̂sr,tndgcsr,tn + 1

2Dtd, s21d

with the diagonal matrixV̂sr ,tnd defined in Eq. s14d, is
solved. Applying the split-operator methods15d–s21d to Eq.
s12d demands that the two-dimensional basisYnsVd, used in
Eq. s8d, be orthogonal on the gridVk. It was shown in Ref.
f19g that, because of the simplicity of the diagonalization

procedure for theĤ0srd operator, the computational time for
solving Eqs.s16d–s21d is approximately proportional toN as
long as the computation time in Eqs.s17d and s20d is negli-
gible with respect to the time for solving Eqs.s16d ands21d;
this is the case as long asN is not too large.
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III. RESULTS

In this approach, the stripping[including ionization(1)
and electron transfer(2)] cross sectionsstrsnid and the exci-
tation cross sectionssexsni ,nfd are obtained by

sstrsnid = 2pE
0

`

Pstrsnidbdb s22ad

and

sexsni,nfd = 2pE
0

`

Pexsni,nfdbdb. s22bd

Here the stripping and excitation probabilities,Pstrsnid and
Pexsni ,nfd, are calculated according to

Pstrsnid = 1 − o
nf=1

`

Pexsni,nfd, s23d

Pexsni,nfd = o
l f=1

nf−1

o
mf=−l f

l f

Wlimi
ukfnfl fmf

srducsnil imidsr,tout→ `dlu2,

s24d

assuming the electron to be initiallysat tin=−Td in the bound
statefnil imi

of the helium ion with probabilityWlimi
and using

wave-packet dynamics at larget stout=Td. Since the problem

FIG. 1. The calculated cross section for the stripping from the
ground state He+s1sd in p+He+ collisions atEp=200 keV as a func-
tion of the numberN of the basis functions in the expansion(8).

FIG. 2. Convergence of the calculated cross sections for the
stripping from the ground state He+s1sd in p+He+ collisions for a
few proton energies as a function ofnf in Eq. (23).

FIG. 3. The dependence of the calculated excitation cross sections onnf in the region of largenf for the transition from the ground state
ni =1 to excited statesnf. Solid curves, the results obtained by solving simultaneously the quantum-semiclassical system of equations(4)–(7);
thin-solid and dashed curves, the results obtained by solving the Schrödinger equation(4) with Coulomb and straight-line trajectories,
respectively.
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has azimuthal symmetry in the direction of the initial pro-
jectile momentum, it is natural to separate theF variable
and parametrize the two remaining coordinates for the
relative target-projectile motion with the impact parameter
b. We consider the relative target-projectile motion in the
planeY-Z with the position of the target at the origin of
the frame. The initial velocityv of the projectile is di-
rected along theZ axis and the initial relative coordinates
are defined asZstind=vtin and Ystind=b stin=−Td. It is im-
portant to start computations at a sufficiently large initial
distanceRstind between the target and projectile where the
effect of the interaction potentials6d is negligible. This is
achieved by choosing sufficiently largeT. With such a
parametrization, the nearest approach of the projectile and
target occurs close to the timet=0. At the final pointtout,
it is supposed that the projectile is already beyond the
region of interaction, and one can use the calculated wave
packetcsnil imidsr ,Td for extracting the scattering parameters
by formulass22d–s24d.

A. Convergence of the computational scheme

We have performed calculations of stripping, Eqs.(1) and
(2), and excitation, Eq.(3), from the low bound statessni

=1,2,3d of the helium ions for proton collision energies
from 0.5 keV to 2 MeV forni =1 and for proton collision
energies from 10 keV to 2 MeV forni =2 and 3.

For discretizing with respect to the radial variabler, a
sixth-order(seven-point) finite-difference approximation on
a quasiuniform grid has been used on the intervalr
P f0,rmg. This grid has been realized by the mappingr →x
of the initial interval onto xP f0,1g by the formula r
=rmse6x−1d / se6−1d [18]. The boundary of integration was
chosen rather far atrm=100 a.u. to prevent possible distor-
tion of the spreading wave packet by the edge of the radial
grid.

The calculations have been performed on the three-
dimensional gridshr i ,u j ,f jji,j=1,1

Nr,N with up to N=Nu3Nf

=13313=169 angular andNr =23103 radial grid points.
Note that in this approach the number of angular grid points,
N, is equal to the number of angular basis functionsYnsr̂ jd
used for the expansion of the three-dimensional wave func-
tion (8). The steps of integration over the time variable were
chosen asDt=0.05–0.025 a.u. and the boundary of integra-
tion varied in the limitsT=10–380 a.u., depending on the
initial proton energy. On such a grid we were able to repro-
duce the binding energies ofsHe+dni

and the norms
kcsr ,tind ucsr ,tindl=1 for all initial ni up toni =7 within eight
significant digits. For all states from the shellni =8 the accu-
racy is better than 2310−5, for ni =9 it is better than
3310−3, and for the stateni =10,l i =mi =0 the accuracy is
about 10−1 but improving with increasingl i and mi up to
4310−4 at ni =10,l i =mi =9.

TABLE I. Stripping cross sectionssstrsni , l id (in units of 10−18 cm2). The energies are the laboratory
energies of the proton projectile.

nil i 0.5 keV 1 keV 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

1s 0.0287 0.0902 1.003 25.74 15.56 7.21 4.02 2.22

2s 602.7 111.5 60.6 27.17 14.78 7.94

2p 580.0 134.4 69.5 29.65 15.60 8.13

3s 1667 223 123.5 54.1 28.4 14.6

3p 1718 245 131.5 56.6 29.4 15.1

3d 2280 275 124.2 59.7 30.4 15.4

TABLE II. Excitation cross sectionssexsni ,nfd for the 1s initial state(in units of 10−18 cm2). These cross sections are summed over final
quantum numbersl f andmf.

Ep 0.5 keV 1 keV 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =2 0.06215 0.09247 1.181 10.39 8.696 5.626 3.653 2.248

nf =3 0.02908 0.02719 0.1472 2.285 1.742 1.056 0.6650 0.4008

nf =4 0.00591 0.00393 0.03869 0.8836 0.6555 0.3875 0.2415 0.1445

nf =5 0.00173 0.00454 0.01838 0.4348 0.3196 0.1868 0.1158 0.06907

nf =6 0.00107 0.01452 0.00969 0.2466 0.1802 0.1047 0.06477 0.03855

nf =7 0.00234 0.00839 0.00588 0.1535 0.1118 0.06470 0.03996 0.02376

nf =8 0.00308 0.00577 0.00380 0.1022 0.08482 0.04728 0.02918 0.01534

nf =9 0.00323 0.00416 0.00258 0.07131 0.05174 0.02982 0.01839 0.01092

nf =10 0.00226 0.00293 0.00192 0.05179 0.03754 0.02161 0.01332 0.00791

nf : 11−` 0.0102 0.0133 0.0087 0.2343 0.1699 0.0978 0.0603 0.0358
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The accuracy of calculated cross sections(22) was esti-
mated by comparing the results obtained on a sequence of
converging grids with successively increasing numbers of
grid points. The convergence with respect to the impact pa-
rameterb was also tested. Figure 1 illustrates the accuracy of
the computational scheme by the convergence with respect to
N. Such tests have permitted us to fixN at 121 for all the
computations. By analogous numerical analyses we chose
Nr =1000,rm=100, andbm=10. The resulting accuracy is of
the order of 1% or better for proton energies greater than
10 keV. At lower energies the calculations performed on the
chosen grids are slightly less accurate.

B. Extrapolation to higher nf

Another important feature of the computational scheme is
the procedure of extracting the stripping component from the
wave packet in the final state(at tout) by projection on the
bound statesnf of the He ion. We have checked the accuracy
of the projection procedure(23) and (24) by analyzing the
convergence of the calculated stripping cross sections(22)
with respect tonf. The convergence is illustrated in Fig. 2.
From this test one can see that withnf =10 we keep the

resulting order of accuracy at the level fixed above—i.e.,
about 1 % for proton energies greater than 10 keV and some-
what less accurate for lower energies.

Note that withN=121, used in our computations, all pos-
sible sl ,mdø s10,10d are included completely in the basis
(9). This enables us to reach the asymptotic regime[31]

sexsni,nfd ,
nf→`

const

nf
3 s25d

and thus to make the extrapolation tonf →`, which is im-
portant for the excitation as well as for the stripping cross
sectionssstrsnid.

In Fig. 3 we show the dependence of the calculated exci-
tation cross sectionssexsni =1,nfd on the finalnf. The ex-
pected 1/nf

3 behavior is rather well attained atnf =10, though
not for smallern. This was confirmed by simply fitting a
power law between pairs ofn values. Betweennf =8 and
nf =9 the power fit is most often between 4 and 5(there
seems to be an anomaly betweennf =8 andnf =9 at 0.5 keV
in Table II), but betweennf =9 andnf =10 the power fit is
usually close to 3(varying between 2.8 and 3.6 for all 38
cases in Tables II–VII). Thus bynf =10 the behavior is quite

TABLE III. Excitation and deexcitation cross sectionssexsni ,nfd for the 2s initial state (in units of
10−18 cm2).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =1 0.8193 2.552 1.239 0.4785 0.2321 0.1144

nf =3 176.4 202.9 127.5 60.91 32.69 16.93

nf =4 53.82 38.24 23.80 11.64 6.406 3.391

nf =5 34.03 14.49 8.907 4.369 2.425 1.296

nf =6 23.03 7.241 4.417 2.165 1.206 0.6473

nf =7 16.72 4.197 2.547 1.247 0.6957 0.3744

nf =8 11.77 2.695 1.631 0.7980 0.4455 0.2400

nf =9 8.67 1.811 1.0903 0.5342 0.2984 0.1609

nf =10 6.48 1.289 0.7765 0.3792 0.2119 0.1144

nf : 11−` 29.33 5.80 3.51 1.72 0.96 0.52

TABLE IV. Excitation and deexcitation cross sectionssexsni ,nfd for the 2p initial state (in units of
10−18 cm2).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =1 0.1365 2.681 2.506 1.723 1.143 0.7124

nf =3 166.8 255.8 169.3 84.07 45.79 23.88

nf =4 59.37 47.75 30.07 14.66 8.042 4.251

nf =5 32.29 18.13 11.11 5.338 2.931 1.556

nf =6 19.72 9.077 5.477 2.609 1.431 0.7611

nf =7 13.41 5.266 3.149 1.492 0.8175 0.4350

nf =8 9.351 3.383 2.248 1.063 0.5823 0.3207

nf =9 6.825 2.275 1.347 0.6340 0.3471 0.1848

nf =10 5.039 1.619 0.9557 0.4491 0.2457 0.1308

nf : 11−` 22.80 7.33 4.32 2.03 1.11 0.59
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TABLE V. Excitation and deexcitation cross sectionssexsni ,nfd for the 3s initial state (in units of
10−18 cm2).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =1 0.01936 0.5767 0.2659 0.09737 0.04658 0.02292

nf =2 73.94 35.77 20.89 9.33 4.87 2.48

nf =4 1387 592.3 349.5 156.3 81.20 41.31

nf =5 415.5 142.4 81.93 36.13 18.68 9.472

nf =6 192.5 58.46 33.40 14.70 7.599 3.853

nf =7 109.9 30.55 17.40 7.653 3.959 2.008

nf =8 74.13 18.73 10.65 4.685 2.424 1.230

nf =9 52.42 11.94 6.774 2.979 1.542 0.783

nf =10 40.03 8.28 4.691 2.063 1.068 0.542

nf : 11−` 181.0 37.5 21.2 9.3 4.8 2.5

TABLE VI. Excitation and deexcitation cross sectionssexsni ,nfd for the 3p initial state (in units of
10−18 cm2).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =1 0.03170 0.4887 0.4370 0.2969 0.1948 0.1203

nf =2 89.34 61.37 38.96 18.83 10.16 5.273

nf =4 1366 686.7 413.5 188.0 98.24 50.12

nf =5 420.6 160.1 93.68 41.80 21.70 11.03

nf =6 195.3 64.91 37.63 16.71 8.665 4.401

nf =7 111.0 33.68 19.43 8.611 4.465 2.268

nf =8 71.79 20.57 13.46 5.963 3.092 1.571

nf =9 48.61 13.05 7.496 3.315 1.719 0.8736

nf =10 35.64 9.027 5.177 2.288 1.187 0.6032

nf : 11−` 161.3 40.8 23.4 10.4 5.4 2.7

TABLE VII. Excitation and deexcitation cross sectionssexsni ,nfd for the 3d initial state (in units of
10−18 cm2).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV

nf =1 0.00674 0.06625 0.03597 0.01457 0.00717 0.00357

nf =2 80.61 152.4 100.6 49.76 27.06 14.09

nf =4 1376 879.2 544.6 253.0 133.3 68.21

nf =5 439.6 194.7 114.9 51.28 26.61 13.52

nf =6 203.3 77.33 44.67 19.64 10.14 5.143

nf =7 113.7 39.68 22.67 9.893 5.096 2.582

nf =8 74.30 24.11 15.63 6.807 3.505 1.775

nf =9 50.85 15.19 8.586 3.721 1.913 0.9688

nf =10 37.46 10.47 5.899 2.552 1.312 0.6644

nf : 11−` 169.5 47.4 26.7 11.5 5.9 3.0
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close to the expected asymptotic behavior. This makes the
extrapolation very simple; the contribution fromnf =11−` is
just 4.525 times the cross section fornf =10. This observa-
tion enables us to accurately extrapolate the excitation and
stripping cross sections to highernf. The resulting values are
given in Tables I–VII.

The calculations show that the excitation cross sections
depend considerably on the trajectory curvature at lower pro-
ton energies. Thus the cross sections calculated with a
straight-line trajectory differ dramatically atnf ù7 from the
cross sections obtained by direct integration the system of
equations(4)–(7). We also show the difference of the strip-

FIG. 4. Extrapolation to the regionnf →` of the calculated cross sections for stripping from He+s1sd in p+He+ collisions. Curves are
denoted as in Fig. 3.

FIG. 5. Extrapolation to the regionnf →` of the calculated cross sections for stripping from the excited statesni =2 and 3 of thesHe+dni
ion in p+He+ collisions.
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ping cross section calculated with a straight-line trajectory at
Ep=0.5 keV from the result obtained by direct integration of
coupled equations(4)–(7). This effect of deformation of the
projectile trajectory increases with decreasing collision en-
ergy. However, the deviation of the actual trajectory from the
Coulomb trajectory is not considerable forEpù0.5 keV and
has a less important effect on the calculated cross sections.
Generally the Coulomb trajectory appears to be the better
approximation and should probably be used instead of the
more usual straight-line trajectory in a method that requires
a priori choice of the trajectory(see Figs. 3 and 4).

C. Computations at low collisional energies

Computations at low energies are more challenging in two
respects. First, as mentioned above, it is important to include
the deformation of the projectile trajectory. Second, the time
T must be larger since the distance from projectile to the
target before and after collisions, given byR=ÎsvTd2+b2,
must be similar to make the remaining interaction small. The
second effect is illustrated in Fig. 6(b), where a strong de-
pendence on time is seen with decreasing proton energy.
Here we may also note the somewhat slower approach to the
asymptotic behavior for the stripping cross sections in the
case of a straight-line trajectory. This may be understood as
due to the projectile leaving the region of interaction faster
when trajectory curvature is allowed. In Fig. 6(a) we show
the dependence of the calculated cross section on theZ co-
ordinate of the projectile. This analysis showed that for cal-
culations in the regionEpù100 keV it was sufficient to per-
form calculations withT=10 a.u. in order to obtain 1%
accuracy, but for lower energies the integration time must be
considerably increased to maintain accuracy.

Another effect that needs to be analyzed for low collision
energy is the dependence of the scattering cross sections on
the impact parameterb. In Fig. 7 we show the calculated
stripping probabilityPstrsni =1,bd, multiplied by impact pa-
rameterb, as a function ofb and proton energyEp. For
proton energies above 100 keV—i.e., in the region where
ionization dominates(see Fig. 4 of Ref.[32]), the calculated
values bPstrsni ,bd have only one maximum, aroundb
=1 a.u. At energies below 100 keV, electron transfer be-
comes dominant in the stripping cross section and leads to
the appearance of an oscillating structure in the transition
probability Pstrsni ,bd. These oscillations reflect interference
between multiple passes of the electron around the nuclei
during the collision(see, e.g., Ref.[6]). Naturally this effect
demands more accurate integration over the impact param-
eter. With increasing collision energy, there is less time for
the electron to bounce back and forth between the nuclei, and
the oscillations in the transition probabilities are eliminated.

D. Cross sections

In Fig. 8 we present the results of our calculations of the
cross sections for stripping from the ground state, as well as
the 2s and 3s states, which are the only excited states that
have been previously treated. We also show the results of
existing experimental and recent theoretical investigations.

Here the effect of the trajectory curvature can be seen to be
essential at low energies. We obtain rather good agreement
with existing experimental data, though unfortunately these
data have been obtained so far only for proton energies
above 3.7 keV. To understand the enhancement in the strip-
ping cross sections nearEp=1 keV and subsequent drop with
decreasing proton energy, we made a simple quasiclassical
estimate of the turning point for the proton having angular
momenta that yield the main contributions to the cross sec-
tion. These estimates show that at aroundEp=1 keV the

FIG. 6. (a) Dependence of the calculated cross sections for strip-
ping from the ground state He+s1sd in p+He+ collisions on theZ
coordinate between the proton and the ion after the collision.(b)
Time evolution of the calculated cross sections for the stripping
from He+s1sd in p+He+ collisions. Solid curves, the results ob-
tained by solving simultaneously the quantum-semiclassical system
of equations(4)–(7); thin-solid and dashed curves, the results ob-
tained by solving the Schrödinger equation(4) with Coulomb and
straight-line trajectories, respectively.
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classical turning point occurs when the centrifugal potential
and Coulomb potential are about equal. With decreasingEp,
the Coulomb potential becomes dominant. This implies more
backscattering(with respect to the electron-transfer cross
section) and reduces the stripping. Note that previous calcu-
lations [7,15] showed faster decay of the electron-transfer
cross sections with decreasing energy than found in the
present calculations. While we do not have a definitive ex-
planation of this difference, we note that, in the previous
close-coupling computations, only a few low molecular
states(n,6 andm,4) were included[15]. However, it is
known that with decreasing collision energy the influence of
the continuum states can become dramatic, even on the elas-
tic scattering[33]. Also, the importance of interference with
the highly excited states at low energies has been noted by

Fritsch and Lin[34]. They, as well as Hose[35], found os-
cillations at low energies. Our approach correctly includes
the effects of both the electronic continuum and interference.

Numerical values of our calculated cross sections are
given in the Tables I–VII. In Fig. 9 we illustrate the calcu-
lated excitation and deexcitation cross sections for the tran-
sitions from the statesni =1,2, and 3 of the He+ ion. All
excitation cross sections peak just aboveEp=100 keV. Ex-
cept for a region around 1 keV, the excitation cross sections
decrease monotonically with increasingnf. The secondary
maximum in the excitation cross sections fornf ù6 is likely
due to the effect of backward elastic scattering on electron
transfer around 1 keV. It would be interesting to test this
effect by other methods. It could also lead to the presently
found enhancement of electron transfer at such low energies.

FIG. 7. The probabilitiesPstr [see Eq.(23)], multiplied by im-
pact parameterb, of He+s1sd stripping in p+He+ collisions as a
function of the impact parameter for a few different proton energies.
Solid curve,Ep=200 keV; thin-solid curve,Ep=5 keV; and dashed
curve,Ep=1 keV. The values are given in atomic units.

FIG. 8. The cross sections for stripping in collisions between
protons and He+ (1s, 2s, and 3s) ions. Present calculations: solid
curves, the result obtained by solving simultaneously the quantum-
semiclassical system of equations(4)–(7); thin-solid and dashed
curves, the results obtained by solving the Schrödinger equation(4)
with fixed Coulomb and straight-line trajectories, respectively. Re-
sults of some previous calculations: open triangles, the ionization
cross sections of Winter and Winter[3] and Igarashi and Shirai[2]
(indistinguishable from each other on this scale); 3, Hall et al. [38];
open squares, Errea and Sänchez[39]; open circles, Hose[35]; open
diamonds, Stoddenet al. [40]; solid line, Grozdanov and Solov’ev
[7]; +, Winter et al. [15]. Experimental results: squares, Peartet al.
[10]; triangles, Angelet al. [11]; circles, Rinnet al. [12]; diamonds,
Wattset al. [13].

FIG. 9. The excitation and deexcitation cross sections for colli-
sions between protons andsHe+dni

ions for the transitions from the
initial statesni =1, 2, and 3 to the final statesnf. The dashed curve
is the extrapolated total cross section for transitions to all excited
states withnf .10.

FIG. 10. The ratio of the stripping cross sections
sstrs2p0d /sstrs2p1d from the ground state of the He ion as a function
of the impact parameterb for three collision energies.
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The orientation dependence of these cross sections is usu-
ally unimportant in the absence of strong externally applied
fields. However, this is not true if something in the applica-
tion defines a unique axis—e.g., directional detection of the
neutron after muon-catalyzedd-t fusion in coincidence with
detection of the helium ion[36]. In this situation the quanti-
zation axis of the helium ion is significant. Thus in Fig. 10
we give the calculated ratio of the stripping cross sections
sstrs2p0d /sstrs2p1d. At small impact parameters,sstrs2p0d is
considerably greater but the two components are similar at
large impact parameters. This behavior can be understood in
view of the fact that stripping is more probable if the proton
projectile is always on the same side of the electron charge
density so that the pull is always in the same direction. This
is the case if the impact parameter is large compared with the
rms size of the helium ion, regardless of the orientation of
the orbital. However, in the case of a small impact parameter,
the encounter will still be one sided if the charge density is
confined to the incident direction(as it is for 2p0), but will
tend to pass through the center of the charge density if the
orientation is perpendicular(as for 2p±1).

Similar considerations apply to the orientation depen-
dence of the excitation and deexcitation cross sections. This
dependence is shown for collisions with He+s1sd and
He+s2sd in Figs. 11(a) and 11(b), whose muonic counterpart
is of particular relevance to interpreting some muon-
catalyzedd-t fusion experiments[36,37]. In the high-energy
limit the excitation from as state to ap state yieldsp±1 but
not p0. The effective high-energy limit depends on the ratio

of the collision energy to the target splitting, so is achieved at
a much lower energy for 2s→2p excitation than for 1s
→2p excitation(even for the former, the effective splitting is
nonzero due to the Stark effect).

Of more frequent concern are Stark transitions that take
the ion from a metastablessd state to a radiating state. The
associated cross sections are shown in Figs. 11(b) and 11(c)
for He+s2sd and He+s3sd, respectively. It can be seen that the

FIG. 11. Some partial excitation and deexcitation cross sections.
(a) Dependence of 1s excitation cross sections on the quantum
numbermf (and their sum), (b) dependence of the 2s Stark mixing
cross sections on the quantum numbermf (and their sum), and(c)
cross sections for 3s Stark mixing and deexcitation.

FIG. 12. Partial cross sections for specific final angular momen-
tum sl fd states(summed over finalmf) in excitation from the ground
state to the levels(a) nf =5 and(b) nf =10.

FIG. 13. Partial cross sections for specific final angular momen-
tum sl fd states(summed over finalmf) in excitation from the 3s
state to the levels(a) nf =5 and(b) nf =10.

STRIPPING AND EXCITATION IN COLLISIONS… PHYSICAL REVIEW A 69, 032709(2004)

032709-11



Stark transitions generally have larger cross sections than
inelastic transitions to lower principal-quantum-number
states.

In Figs. 12 and 13 we show how the excitation cross
sections depend on the angular momentum of the final state.
In the dipole approximation, onlyDl = ±1 is allowed, so ans
state can only go to ap state. In most cases this behavior is
evident, although it requires going to energies that may be
higher than expected. At lower energies it can be seen that
the favored state is not always related by this selection rule.
The cross sections for excitation to high-angular-momentum
states are relatively small and some show anomalous struc-
ture. While we believe that the shapes are basically correct, it
is true that the accuracy is not as good as it is for smalll f,
and we cannot rule out the possibility that this behavior is a
numerical artifact.

IV. CONCLUSION

The advantages of the present computational scheme in-
clude the following.

(i) The direct numerical calculation of the relative
projectile-target trajectory in the simultaneous integration of
Eqs.(4)–(7) permits extension of the approach to lower en-
ergies where assuming anya priori trajectory is unrealistic.

(ii ) The algorithm in the present form permits treatment of
all the states of the target atomic ionsHe+dni

up to ni =10
with accuracies of a few significant digits and enables accu-
rate computations of the stripping and excitation and deexci-
tation cross sections up tonf =10.

(iii ) We do not use the usual expansion in spherical har-
monics and, as a result, avoid the drawbacks of the partial-
wave analysis—namely, a multipole expansion of the Cou-
lomb potential(6) and calculation of the resulting matrix
elements.

(iv) Applying the special angular and radial grids yields
rapid convergence and the possibility to check the accuracy
of the computations by employing a sequence of converging
grids.

(v) Though not done in the present application, it is also
possible in the framework of this approach to consider sepa-
rately the ionization process(1) by using the technique of
projection onto the continuum. In previous work this method
was successfully applied to the Coulomb breakup of halo
nuclei [22,23]. For that specific problem, it was numerically
shown that the procedure is consistent with the alternative
technique(22)–(24) of elimination of the bound states from
the scattered wave packet.

In summary, we have done calculations at low collision
energies where the cross sections are significantly affected
by trajectory curvature. Experimental determination at these
energies could provide a useful validation of the extended
theory.
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