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Stripping and excitation cross sections are calculated, using a time-dependent discrete-variable approach, for
collisions of protons with energies from 0.5 keV to 2 MeV with*Hitially in the 1s, 2s, 2p, 3s, 3p, and 3
states. This quantum-semiclassical approach takes trajectory curvature into account. The spatial and temporal
convergence properties of the method are analyzed for the ground and higher states. The results are in good
agreement with existing accurate calculations and experimental cross sections, availdhje: 873 keV.
Results are also obtained for lower-energy collisions where the cross sections are still significant but trajectory
curvature is important.
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[. INTRODUCTION tions of muonic helium by magnetic field0], ionization of
ions moving in magnetic field§21], and breakup of halo

The collision of a hydrogenlike ion with a proton of en- . . . .
ergy sufficiently high to break up the ion is an example of themmkal [22,23. In treating the different quantum dynamics,

fundamental three-body problem with Coulomb interaction the method has been found to be highly efficient and flexible.
. . : . " We present here the computational scheme with results

It is also important in fusion plasmd4]. These processes for the reactions

have been extensively investigated with various theoretical”"

approaches, including the Born and distorted-wave approxi-

mations[2,3], the classical-trajectory Monte Carlo method

[4], the continuum-distorted-wave—eikonal-initial-state

method [2], coupled-channel basis-set expansions with (He"), +p — (H),, + He™, (2)

a priori assumedusually straight-line and well-justifiedra- o f

jectory[3,5,6, hidden adiabatic energy crossings in the com-

plex plane [7,8], and solution of the time-dependent

Schrddinger equation with classical trajectory for the projec-

tile [9], as well as experimentalljl0-13. The high-energy

regime seems to be well understood. However, in the regioq_h . .

of medium and low energietE < 100 ke\) there are still ese'transmons are affected by the time-dependent Cou-

L . : . lomb field between the Heand proton.

significant differences between the various theoretical calcu-

lations. Also, the existing computations have been performed

only for the ground state of the ion and, in some cases, low- A. General scheme

lying exciteds states. - . . .
Most accurate schemes for treating the ionization and 'he collisions are described by solutions of the time-

electron transfer in this region have been based on thd€pendent Schrodinger equation

impact-parameter approach with straight-line trajectories for

the relative target-projectile motion. Trajectory curvature ef- ihig!/(r,t) = [Ho(r) + V(r,R) (T, 1), (4)

fects, which become important at low collision energies at

[14,15, have not been well studied previously.

(He")y . +p—e+He™" +p, (1)

(He+)nilimi tp— (He+)nflfmf tp. (3)

where the wave packef(r,t) corresponds to the relative

Il. METHOD motion of the electron and the helium nucleus. In this expres-
sion,
The present method was originally developd] for
treating nonsudden behavior in the sticking problem follow- 1_, 2
ing muon-catalyzed fusiofil7]. In subsequent work, it has Ho=-_—Vr—--— (5)

2 r
been applied to high-harmonics generation by a hydrogen H '

atom in an elliptically polarized laser field8,19, excita- is the internal Hamiltonian of Hewith reduced mass

=m,my/ M, wherem, and my, are the masses of the elec-
tron and helium nucleus, respectively, aME=m,+mye.
*Permanent address: Joint Institute for Nuclear Research, Dubndhe interaction of the projectile with the target Hé is
Moscow Region 141980, Russian Federation. given by
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2 1 nematical regions can be a challenging computational prob-
v(rt) = IR(t) + myr/M| - IR(t) = mpat/M|” (6) Ie_m. Our approach i§ free from this drawback since we use a
discrete representation for the electronic angular variables. In
whereR(t) is the relative coordinate between the projectileour representation the matr{g) is diagonal, and the diago-
and center of mass of the target. The Schrédinger equatiomal elements are simply the values of the potentialt) at
(4) is integrated simultaneously with the classical Hamiltonthe angular grid points.

equationd 20,21 In the next two subsections, we give a more detailed con-
q 5 sideration of solving the Schrédinger equati@h and de-
d_tp(t) —_ ﬁHd(P(t),R(t)), (7a) scribing the collisional dynamics.

B. Angular-subspace discretization

d We seek a solutiony(r,t), in spherical coordinates
d_tR(t) = EHC'(P(U’R(U)’ (7b) (r,Q)=(r,0,), as an expansion
where 1 N
P(r,t) = ;E Y ()Y, (8
vj

Ha(P.R) = P+ Holp,1) + (y(r O1V(ERIUAT ),
0

(70

with My=m,M/(my+M). The computational scheme in-
cludes the coupling between the electron and projectile vari- T )
ables and conserves the total energy of the system. In this basisCj," =y dnny, in general, and thu¥,(€) co-

The key idea to Simu|taneous|y treat quantum and C|assiinCideS with a usual spherical harmonic with a few possible
cal degrees of freedom goes back to R¢®L,25 where it~ exceptions for high as explained below after EqL1). The
was applied to the collisional dynamics of molecular pro-Symbolv representgl,m} and the sum over is equivalent
cesses. Note also the similar self-consistent classicafo the double sum
quantum treatment of muon capture by the hydrogen atoms N
[26] and recent time-dependent calculations of the atomic S -
hydrogen ionization by antiproton impaj@7].

We use the global basis on the subspace @fidg;) for
the angular variables of the electron coordinabe the spirit ~ In previous workg18-23 another scheme
of the discrete-variable technique. This yields a diagonal rep- N (WN-1/2  |[m[+N-1
resentation for the interactiovi(r, 6;, ¢;,t) between the pro- S-S D
jectile and target. As a consequence, the problem is reduced
to the Schrédinger-type time-dependent radial equations
coupled only through the nondiagonal angular part of thedof constructing the angular basis was applied, which some-
kinetic energy operator. This equation is propagated using mes gives faster convergence but omits high valuesof
split-operator method, which permits fast diagonalization offor |>VN-1. This peculiarity becomes important in the
the remaining nondiagonal p4ft9,22. For discretizing with ~ present computations as we analyze transitions to hjgh
respect to the radial variable a sixth-order(seven-point  in collisional excitationd3).
finite-difference approximation on a quasiuniform grid is The basis(9) is associated with a mesh. For thevari-
used. The scheme is unconditionally stable, maintains unitagble, theyN mesh pointss; correspond to the zeros of the
ity, and has the same order of accuracy as the conventionhegendre polynomiaP g(cos 01-0). For the ¢ variable, the
Crank-Nickolson algorithm. It allows a full three- N mesh points are chosen &s :77(2j¢—1)/\s‘°N. The total
dimensional(3D_) _quantal treatment o.f.the elgctro_n_ic motio_n numberN of grid pOintSQj:(0j61¢j ) is equal to the number
during the collisions. The only additional simplification is of pasis functions in expansiai8) [19,22. With this mesh
the use of the classical approximation for the relativeyre gssociated weights\;, which are the standard Gauss-
projectile-target trajectonR(t) [determined by EQs(7)l, | egendre weights multiplied by \N. The (Y™3),; are the
vyh|ch is physmglly well justified for the range of the veloci- glements of theN X N matrix Y~! inverse to the matrix with
ties considered in the present work. elementsy;,=Y,(Q)) defined at the grid point®;. The poly-

We note a principal advantage of our scheme as compargghmials Y,(Q) are chosen in such a way, E@), that one
with the previous classical-quantum approacf@24—21. has exactly

In previous calculations, the Schrodinger equation was
solved with an expansion in spherical harmonics. Therefore . *

it requires analytical treatment of the angular part of the nec- f Y ()Y, ()d = 2 MY Yo = Sy (11)
essary integrals. In such a scheme, the matrix elent&nia :

Eq. (7c) can be calculated only with a multipole expansion offor all v and v’ <N. For mostv and v, property (11) is
the time-dependent potentiéd) [24,25, which in some ki- automatically satisfied because the basis functi;i6)) are

over the two-dimensional basis

Y,(Q) =, M P (6)em?. (9)

\éz

m=-|

(10
v=1

=1 me-(\N-1/2  I=|m|
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orthogonal and the Gaussian quadrature is exact. For thesesystem of equations(12)

the coefficientsCl,™ =8, 8um in Eq. (9). However, in a few
cases involving the highestandm values, some polynomi-
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[19]. The component-by-
component split-operator methd@0] has been applied for
the propagation in timg¢,—t,,;=t,+At as

als Y|" have to be specially made orthogonal in the sense of

the Gaussian quadratu(é?l%m’ # &) 6mm for these specifid
andm). With this choice, the matrix;*?Y;, is orthogonal.

The radial componentg;(r,t) correspond tay(r,;,1),
which is a complex function. We introduce thicomponent
vectory(r,t)={\"%y;(r,1)}. With respect to the unknown co-
efficients in expansioi8), the problem is then reduced to a
system of Schrodinger-type equations

ih%z,b(r,t) =[Ho(r) + V(r,0)]y(r 1). (12)

In this systemﬂo(r) and \A/(r ,t) are NX N matrix operators
representingHy and V [Egs. (5) and (6)] on the grid. The

elements oH(r) are defined by
1 # 2 1 _
Hoki(r) == (Z&_rz + F)@q + ﬁo\k)\j) 12
N
X 2 (YDl + DY), (13
v={I,m}
The elements of/(r ,t) are
Vi (r, 1) = V(r, Oy, ) 6. (14

The values of the wave functiog(r ,t) at the grid points
of the angular spacg(r,(};,t) are utilized in the spirit of the
discrete-variable representatigdVR) [28] or Lagrange-
mesh method$29]. It drastically simplifies the calculations

as compared with the usual partial-wave analysis. In fact, the

time-dependent Coulomb operator defined in E). is a

diagonal matrix(14) in such a representation, and the diag-

onal elementd/(r,,,t) are simply the values of the poten-

tial V(r,t) at the angular grid points. It does not require the

multipole expansion used in other approacf&24—-27.
Note that we have replaced in Ed.3) the angular matrix

elementsY,|L?|Y, ) by [(I1+1) 8/ S This is, however, not

exact for some high andm for fixed N. But the approxima-

tion is consistent with the accuracy of the Gaussian approx

mation employed for the matrix elemert€,|V|Y,) of the
interaction in Eq(14).
The rapid convergence of the expansi@) has been

YAT ty + A = (1 +2AtY) (1 - ZiAtV)(1 + 2iAtHg) ™
X (1 = 2iAtHQ) (r t,). (15)

Thus the problem is split up into two steps involving the
intermediate timet,+3At.

At the initial step, the vector functiomdr,t,+2At) is
evaluated from the known vector functiafir,t,,) using the
system ofN differential equations

[1+2iAtSH(r)Sur t, + 2A1)
=[1 - 3IAtSHHN ST ), (16)

where

YAr ) = SYr ). 17)

The system of equatior{d6) is uncoupled since

1
2p

+

r2I(I +1)(5,,, (18

wherev={l,m}. It is solved with the boundary conditions
POt + 2AL) = (rpty+ SAD = 0,forry, — 0. (19)

Then the wave function at timig+3At is obtained as

YAr ty+ A1) = STy(r 1, + 2At). (20)
The most time-consuming part in performing the initial step
tn—>tn+%At [Egs. (16)—(20)]—namely, solving the
boundary-value problenfl6) and (19—demands onlyN
computational operations. Moreover, tBé¢ransformation is
independent ot andr, and, as a consequence, the matrix
Se=N\2Y,(Q)) has to be evaluated only once.

At the second step, the system Mfuncoupled algebraic

iequations

[1+2IAtV(r,t) JoAr t, + Ab)

=[1 - LIAtV(r, t) Tyr t, + A1), (21)

demonstrated in problems describing different quantum dy-

namics[18-23.

C. Computational scheme

with the diagonal matrix\A/(r,tn) defined in Eqg.(14), is
solved. Applying the split-operator meth¢tis)—(21) to Eq.
(12) demands that the two-dimensional bagj$()), used in

Another attractive feature of the present approach is thagd: (8), be orthogonal on the grifd,. It was shown in Ref.

the only nondiagonal part of the Hamiltonian in EG2)—
the angular part of the kinetic energy operafsee Eq.

[19] that, because of the simplicity of the diagonalization
procedure for thédy(r) operator, the computational time for

(13)]—can be diagonalized by the simple unitary transformasolving Eqs.(16)—21) is approximately proportional th as
tion SK,,:)\ﬁ’ZYk,, [19,22. This property has been exploited long as the computation time in Eq47) and (20) is negli-
for developing an economical algorithm with a computa-gible with respect to the time for solving Eq4.6) and(21);
tional time proportional to the numbé&f of unknowns in the this is the case as long &&is not too large.
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FIG. 1. The calculated cross section for the stripping from the
ground state H&1s) in p+He" collisions atE,=200 keV as a func-
tion of the numbeN of the basis functions in the expansi).

=0°)

Ill. RESULTS

0.s’tr(nf)/ cstr(nf

In this approach, the strippinfincluding ionization(1)
and electron transfg®2)] cross sectiorrg,(n;) and the exci-
tation cross sections,,(n;,n;) are obtained by

osu(ni) = ZWJ Pst(ni)bdb (223 FIG. 2. Convergence of the calculated cross sections for the
0 stripping from the ground state Hgs) in p+He* collisions for a
and few proton energies as a function of in Eq. (23).
“ ﬂf—l |f
OeNj,N =277f Pey(n;i,ns)bdb. 22h 1m
e>& I f) 0 ex( I f) ( ) Pex(nivnf)= 2 2 V\/|imi|<¢nf|fmf(r)|¢(nlllml)(r,'[0ut—>oc)>|2,
|f=1 mf=—lf
Here the stripping and excitation probabilitie3,,(n;) and (24)

Pe(Ni,N¢), are calculated according to

o assuming the electron to be initialfgt t;,=-T) in the bound
Peg(M) =1 = > Poy(iu1y), (23)  stategyn, of the helium ion with probabilityV; , and using
n=1 wave-packet dynamics at largét, =T). Since the problem
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FIG. 3. The dependence of the calculated excitation cross sectiomsimithe region of large for the transition from the ground state
n;=1 to excited states;. Solid curves, the results obtained by solving simultaneously the quantum-semiclassical system of gdiaflons
thin-solid and dashed curves, the results obtained by solving the Schrédinger eqédatiwith Coulomb and straight-line trajectories,
respectively.
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TABLE |. Stripping cross sections,(n;,l;) (in units of 108 cn?). The energies are the laboratory
energies of the proton projectile.

nil; 0.5 keV 1 keV 10 keV 100 keV 200 keV ~ 500 keV ~ 1000 keV ~ 2000 keV
1s 0.0287 0.0902 1.003 25.74 15.56 7.21 4.02 2.22
2s 602.7 1115 60.6 27.17 14.78 7.94
2p 580.0 134.4 69.5 29.65 15.60 8.13
3s 1667 223 123.5 54.1 28.4 14.6

3p 1718 245 1315 56.6 29.4 15.1

3d 2280 275 124.2 59.7 30.4 15.4

has azimuthal symmetry in the direction of the initial pro-  For discretizing with respect to the radial variallea
jectile momentum, it is natural to separate thevariable  sixth-order(seven-point finite-difference approximation on
and parametrize the two remaining coordinates for thea quasiuniform grid has been used on the interval
relative target-projectile motion with the impact parameterc [0,r,]. This grid has been realized by the mappmg x
b. We consider the relative target-projectile motion in theof the initial interval ontoxe[0,1] by the formular
plane Y-Z with the position of the target at the origin of =r, (€%~ 1)/ (5~ 1) [18]. The boundary of integration was

the frame. The initial velocitw of the projectile is di- chosen rather far at,,=100 a.u. to prevent possible distor-

rected along th& axis and the initial relative coordinates .. . .
are defined ag(t,)=ot, and Y(t,)=b (t,=-T). It is im- tion of the spreading wave packet by the edge of the radial

portant to start computations at a sufficiently large initialgn.l.'he calculations have been performed on the three-
distanceR(t;,) between the target and projectile where thedimensional gridsir;, 6, 63NN with up to N=N,x N
effect of the interaction potentidb) is negligible. Thisis 50 3o 165 o00iia/ 'arjldll'\JI:iéx 1 radial arid 0 oiné
achieved by cho?]sing sufficiently Iarr]g“éf Y}Wth such Ia ote that in this agproach th:a number of angSIar g?id po.ints
parametrization, the nearest approach of the projectile anH : ) S e ’
target occurs close to the tinte 0. At the final pointt,,, , Is equal to the number of angular basis functiafi’)

it is supposed that the projectile is already beyond th used for the expansion of the three-dimensional wave func-

region of interaction, and one can use the calculated Waﬁéon (8). The steps of integration over the time variable were

nilimy) : . chosen as\t=0.05-0.025 a.u. and the boundary of integra-
E;cﬁmm (gz’)T_)(Z; extracting the scattering parameters ;. - ieq in the limitsT=10—380 a.u., depending on the

initial proton energy. On such a grid we were able to repro-
duce the binding energies ofHe")ni and the norms
(r ) | (1)) =1 for all initial n; up ton;=7 within eight

We have performed calculations of stripping, Ed9.and  significant digits. For all states from the shelE8 the accu-
(2), and excitation, Eq(3), from the low bound state@; racy is better than 21075 for m;=9 it is better than
=1,2,3 of the helium ions for proton collision energies 3x 1073, and for the statey=10,;=m=0 the accuracy is
from 0.5 keV to 2 MeV forn;=1 and for proton collision about 10 but improving with increasind; and my up to
energies from 10 keV to 2 MeV famn;=2 and 3. 4x10%atn=10,;=m=9.

A. Convergence of the computational scheme

TABLE II. Excitation cross sectionsey(n;,n;) for the Is initial state(in units of 1018 cm?). These cross sections are summed over final
quantum numberk and my.

Ep 0.5 keV 1 keV 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
ng=2 0.06215 0.09247 1.181 10.39 8.696 5.626 3.653 2.248
n;=3 0.02908 0.02719 0.1472 2.285 1.742 1.056 0.6650 0.4008
ng=4 0.00591 0.00393 0.03869 0.8836 0.6555 0.3875 0.2415 0.1445
ng=5 0.00173 0.00454 0.01838 0.4348 0.3196 0.1868 0.1158 0.06907
n;=6 0.00107 0.01452 0.00969 0.2466 0.1802 0.1047 0.06477 0.03855
ng=7 0.00234 0.00839 0.00588 0.1535 0.1118 0.06470 0.03996 0.02376
n;=8 0.00308 0.00577 0.00380 0.1022 0.08482 0.04728 0.02918 0.01534
n;=9 0.00323 0.00416 0.00258 0.07131 0.05174 0.02982 0.01839 0.01092
ng=10 0.00226 0.00293 0.00192 0.05179 0.03754 0.02161 0.01332 0.00791
ng: 1l-o0 0.0102 0.0133 0.0087 0.2343 0.1699 0.0978 0.0603 0.0358
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TABLE IIl. Excitation and deexcitation cross sectiong,(n;,n¢) for the Z initial state (in units of
1078 cn).
E, 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
n=1 0.8193 2.552 1.239 0.4785 0.2321 0.1144
n;=3 176.4 202.9 127.5 60.91 32.69 16.93
ni=4 53.82 38.24 23.80 11.64 6.406 3.391
ng=5 34.03 14.49 8.907 4.369 2.425 1.296
n;=6 23.03 7.241 4.417 2.165 1.206 0.6473
ng=7 16.72 4.197 2.547 1.247 0.6957 0.3744
n;=8 11.77 2.695 1.631 0.7980 0.4455 0.2400
n;=9 8.67 1.811 1.0903 0.5342 0.2984 0.1609
ng=10 6.48 1.289 0.7765 0.3792 0.2119 0.1144
ng: 11-o0 29.33 5.80 3.51 1.72 0.96 0.52

The accuracy of calculated cross sectig®8) was esti- resulting order of accuracy at the level fixed above—i.e.,
mated by comparing the results obtained on a sequence about 1 % for proton energies greater than 10 keV and some-
converging grids with successively increasing numbers ofvhat less accurate for lower energies.
grid points. The convergence with respect to the impact pa- Note that withN=121, used in our computations, all pos-
rameterb was also tested. Figure 1 illustrates the accuracy osible (I,m)<(10,10 are included completely in the basis
the computational scheme by the convergence with respect {9). This enables us to reach the asymptotic regigig
N. Such tests have permitted us to fixat 121 for all the
computations. By analogous numerical analyses we chose TaMNg) ~ const (25)
N,=1000,r,,=100, andb,,=10. The resulting accuracy is of X e 1
the order of 1% or better for proton energies greater than ) o
10 keV. At lower energies the calculations performed on thédd thus to make the extrapolationip— <, which is im-
chosen grids are slightly less accurate. portant for the excitation as well as for the stripping cross
sectionsog,(n;).

In Fig. 3 we show the dependence of the calculated exci-
tation cross sections(n;=1,n;) on the finaln;. The ex-

Another important feature of the computational scheme ipected 1hf behavior is rather well attained at=10, though
the procedure of extracting the stripping component from thenot for smallern. This was confirmed by simply fitting a
wave packet in the final stai@t t,,) by projection on the power law between pairs af values. Betweem;=8 and
bound states; of the He ion. We have checked the accuracyn;=9 the power fit is most often between 4 andtbere
of the projection proceduré3) and (24) by analyzing the seems to be an anomaly betwegs8 andn;=9 at 0.5 keV
convergence of the calculated stripping cross secti@d@s  in Table Il), but betweem;=9 andn;=10 the power fit is
with respect ton;. The convergence is illustrated in Fig. 2. usually close to Jvarying between 2.8 and 3.6 for all 38
From this test one can see that with=10 we keep the cases in Tables II-V)I Thus byn;=10 the behavior is quite

B. Extrapolation to higher ns

TABLE IV. Excitation and deexcitation cross sectiong,(n;,ns) for the 2 initial state (in units of

10718 cnrP).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
ne=1 0.1365 2.681 2.506 1.723 1.143 0.7124
ne=3 166.8 255.8 169.3 84.07 45.79 23.88
ni=4 59.37 47.75 30.07 14.66 8.042 4.251
ne=5 32.29 18.13 11.11 5.338 2.931 1.556
n=6 19.72 9.077 5.477 2.609 1.431 0.7611
ne=7 13.41 5.266 3.149 1.492 0.8175 0.4350
n;=8 9.351 3.383 2.248 1.063 0.5823 0.3207
n=9 6.825 2.275 1.347 0.6340 0.3471 0.1848
ny=10 5.039 1.619 0.9557 0.4491 0.2457 0.1308
ng:  11-oo 22.80 7.33 4.32 2.03 1.11 0.59
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TABLE V. Excitation and deexcitation cross sectiongyn;,n;) for the 3 initial state (in units of

10718 cnP).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
ne=1 0.01936 0.5767 0.2659 0.09737 0.04658 0.02292
ne=2 73.94 35.77 20.89 9.33 4.87 2.48
ni=4 1387 592.3 3495 156.3 81.20 41.31
n¢=5 415.5 142.4 81.93 36.13 18.68 9.472
n=6 192.5 58.46 33.40 14.70 7.599 3.853
ne=7 109.9 30.55 17.40 7.653 3.959 2.008
n¢=8 74.13 18.73 10.65 4.685 2.424 1.230
ng=9 52.42 11.94 6.774 2.979 1.542 0.783
ny=10 40.03 8.28 4.691 2.063 1.068 0.542
ng:  11-oo 181.0 375 21.2 9.3 4.8 2.5

TABLE VI. Excitation and deexcitation cross sectionsyn;,n;) for the 3 initial state (in units of

10718 cn).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
ni=1 0.03170 0.4887 0.4370 0.2969 0.1948 0.1203
ng=2 89.34 61.37 38.96 18.83 10.16 5.273
ni=4 1366 686.7 413.5 188.0 98.24 50.12
n{=5 420.6 160.1 93.68 41.80 21.70 11.03
ni=6 195.3 64.91 37.63 16.71 8.665 4.401
ng=7 111.0 33.68 19.43 8.611 4.465 2.268
ni=8 71.79 20.57 13.46 5.963 3.092 1.571
n{=9 48.61 13.05 7.496 3.315 1.719 0.8736
n{=10 35.64 9.027 5.177 2.288 1.187 0.6032
ng: 1l-o0 161.3 40.8 23.4 10.4 5.4 2.7

TABLE VII. Excitation and deexcitation cross sectiong(n;,n;) for the 3 initial state (in units of

10718 cnrP).

Ep 10 keV 100 keV 200 keV 500 keV 1000 keV 2000 keV
ne=1 0.00674 0.06625 0.03597 0.01457 0.00717 0.00357
ne=2 80.61 152.4 100.6 49.76 27.06 14.09
ni=4 1376 879.2 544.6 253.0 133.3 68.21
ne=5 439.6 194.7 114.9 51.28 26.61 13.52
n=6 203.3 77.33 44.67 19.64 10.14 5.143
ne=7 113.7 39.68 22.67 9.893 5.096 2.582
n;=8 74.30 24.11 15.63 6.807 3.505 1.775
n=9 50.85 15.19 8.586 3.721 1.913 0.9688
ny=10 37.46 10.47 5.899 2.552 1.312 0.6644
ng:  11-oo 169.5 47.4 26.7 115 5.9 3.0
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FIG. 4. Extrapolation to the region;— oo of the calculated cross sections for stripping from"tis) in p+He" collisions. Curves are
denoted as in Fig. 3.

close to the expected asymptotic behavior. This makes the The calculations show that the excitation cross sections
extrapolation very simple; the contribution framp=11->is  depend considerably on the trajectory curvature at lower pro-
just 4.525 times the cross section fjr=10. This observa- ton energies. Thus the cross sections calculated with a
tion enables us to accurately extrapolate the excitation anstraight-line trajectory differ dramatically at =7 from the

stripping cross sections to highey. The resulting values are cross sections obtained by direct integration the system of

given in Tables |-VII. equationg4)—«7). We also show the difference of the strip-

s 170 —~ 12
£ n=2, 100 keV NE n=2, 2000 keV
&£ 160 - s M
IO 7 ‘To 10 -
T 150 - = 1
SR = 9]
X 140 | S gl
o) 1 bw i

130 - ‘ - 7 , . .

0 0.005 0.01 0 0.005 0.01
ng3 ng3

~ 500 —~ 40
& y
£ £ ni=3, 2000 keV
(3] 3]
2 400 - S 80
o o |
o ] n=3, 100 keV o

200 - ‘ " 10 . T ;

0 0.005 0.01 0 0.005 0.01
ng3 ng3

FIG. 5. Extrapolation to the regiam — o of the calculated cross sections for stripping from the excited statesand 3 of the(He*)ni
ion in p+He* collisions.
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ping cross section calculated with a straight-line trajectory at .
E,=0.5 keV from the result obtained by direct integration of ‘“g
coupled equation&4)—(7). This effect of deformation of the g
projectile trajectory increases with decreasing collision en- =3
ergy. However, the deviation of the actual trajectory from the &
Coulomb trajectory is not considerable fég= 0.5 keV and
has a less important effect on the calculated cross sections. .
Generally the Coulomb trajectory appears to be the better fg
approximation and should probably be used instead of the i
more usual straight-line trajectory in a method that requires =
a priori choice of the trajectorysee Figs. 3 and)4 &
C. Computations at low collisional energies «’.E‘
Computations at low energies are more challenging in two 4
respects. First, as mentioned above, it is important to include 2
the deformation of the projectile trajectory. Second, the time &
T must be larger since the distance from projectile to the
target before and after collisions, given Bz \(vT)%+b?, (@)
must be similar to make the remaining interaction small. The
second effect is illustrated in Fig(l®, where a strong de- .
pendence on time is seen with decreasing proton energy. ‘:EJ
Here we may also note the somewhat slower approach to the ]
asymptotic behavior for the stripping cross sections in the 2
case of a straight-line trajectory. This may be understood as &
due to the projectile leaving the region of interaction faster
when trajectory curvature is allowed. In Figiap we show -~
the dependence of the calculated cross section o tte- 5
ordinate of the projectile. This analysis showed that for cal- °;°3
culations in the regiofc,= 100 keV it was sufficient to per- =
form calculations withT=10 a.u. in order to obtain 1% 8
accuracy, but for lower energies the integration time must be
considerably increased to maintain accuracy. N
Another effect that needs to be analyzed for low collision ‘“g
energy is the dependence of the scattering cross sections on 2
the impact parameten. In Fig. 7 we show the calculated 2
stripping probabilityPg,(n,=1,b), multiplied by impact pa- &
rameterb, as a function ofb and proton energy,. For
proton energies above 100 keV—i.e., in the region where (b)
ionization dominatessee Fig. 4 of Ref[32]), the calculated
values bPg,(n;,b) have only one maximum, around FIG. 6. (a) Dependence of the calculated cross sections for strip-

=1 a.u. At energies below 100 keV, electron transfer beping from the ground state Figls) in p+He" collisions on theZ
comes dominant in the stripping cross section and leads teoordinate between the proton and the ion after the colligion.
the appearance of an oscillating structure in the transitiorfime evolution of the calculated cross sections for the stripping
probability Pg,(n;,b). These oscillations reflect interference from He'(1s) in p+He" collisions. Solid curves, the results ob-
between multiple passes of the electron around the nucldgined b)_/ solving simu_ltanegusly the quantum-semiclassical system
during the collision(see, e.g., Ref6]). Naturally this effect  ©f equations(4)~7); '[hln-SO.|.Id. and dashed curves, the results ob-
demands more accurate integration over the impact paranigined by solving the Schrédinger equatieh with Coulomb and
eter. With increasing collision energy, there is less time forstraight-line trajectories, respectively.

the electron to bounce back and forth between the nuclei, andere the effect of the trajectory curvature can be seen to be
the oscillations in the transition probabilities are eliminated.essential at low energies. We obtain rather good agreement
with existing experimental data, though unfortunately these
data have been obtained so far only for proton energies
above 3.7 keV. To understand the enhancement in the strip-
In Fig. 8 we present the results of our calculations of theping cross sections negp=1 keV and subsequent drop with

cross sections for stripping from the ground state, as well adecreasing proton energy, we made a simple quasiclassical
the 3 and 3 states, which are the only excited states thatestimate of the turning point for the proton having angular
have been previously treated. We also show the results ahomenta that yield the main contributions to the cross sec-
existing experimental and recent theoretical investigationstion. These estimates show that at aroufg=1 keV the

D. Cross sections
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S
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FIG. 7. The probabilitieP, [see Eq(23)], multiplied by im- n=1 S
pact parameteb, of He"(1s) stripping in p+He" collisions as a 1019
function of the impact parameter for a few different proton energies. 10-14
Solid curve,E,=200 keV; thin-solid curveE,=5 keV; and dashed o n=
curve,E,=1 keV. The values are given in atomic units. “g 101
. . : : . S 108
classical turning point occurs when the centrifugal potential S
and Coulomb potential are about equal. With decreaging 10-20
the Coulomb potential becomes dominant. This implies more 101 10 108
backscattering(with respect to the electron-transfer cross proton lab energy (keV)

sectior) and reduces the stripping. Note that previous calcu- o o ) )
lations [7,15 showed faster decay of the electron-transfer FIG. 9. The excitation anc+:I dqexcnatlon cross _sgctlons for colli-
cross sections with decreasing energy than found in th&lonS between protons arile”)y, ions for the transitions from the
present calculations. While we do not have a definitive exi"'tia! statesn=1, 2, and 3 to the final stateg. The dashed curve
planation of this difference, we note that, in the previous's the ex_trapolated total cross section for transitions to all excited
close-coupling computations, only a few low molecularStates withn; > 10.
states(n<6 andm<4) were included[15]. However, it is ) )
known that with decreasing collision energy the influence of fitsch and Lin[34]. They, as well as Hosg83)], found os-
the continuum states can become dramatic, even on the elggllations at low energies. Our approach correctly includes
tic scattering[33]. Also, the importance of interference with the effects of both the electronic continuum and interference.
the highly excited states at low energies has been noted by Numerical values of our calculated cross sections are
given in the Tables |I-VII. In Fig. 9 we illustrate the calcu-
1015 lated excitation and deexcitation cross sections for the tran-
sitions from the states;=1,2, and 3 of the Heion. All
excitation cross sections peak just abdg=100 keV. Ex-
cept for a region around 1 keV, the excitation cross sections
decrease monotonically with increasimg The secondary
maximum in the excitation cross sections fge=6 is likely
due to the effect of backward elastic scattering on electron
transfer around 1 keV. It would be interesting to test this
effect by other methods. It could also lead to the presently

1018

T, (cm?)

- found enhancement of electron transfer at such low energies.
10-21
10-1 10 103 3
proton lab energy (keV)
FIG. 8. The cross sections for stripping in collisions between ’gv_—

protons and He(1s, 2s, and %) ions. Present calculations: solid N oo b N
curves, the result obtained by solving simultaneously the quantum- &
semiclassical system of equatio()—(7); thin-solid and dashed = LN —e—2MeV

. . Ly . a ---0--- 8 MeV
curves, the results obtained by solving the Schrddinger equ@tjon N | 32 MoV
with fixed Coulomb and straight-line trajectories, respectively. Re- Bl N
sults of some previous calculations: open triangles, the ionization ©
cross sections of Winter and Wintg8] and lgarashi and Shir§2]
(indistinguishable from each other on this s¢ake, Hall et al. [38]; 101 1 10 102
open squares, Errea and Sancf&%; open circles, Hosg35]; open b (a.u.)
diamonds, Stoddeat al. [40]; solid line, Grozdanov and Solov'ev
[7]; +, Winteret al. [15]. Experimental results: squares, Pesral. FIG. 10. The ratio of the stripping cross sections
[10); triangles, Angekt al. [11]; circles, Rinnet al. [12]; diamonds,  og(2pg)/ o5(2p1) from the ground state of the He ion as a function
Wattset al. [13]. of the impact parametds for three collision energies.

032709-10



STRIPPING AND EXCITATION IN COLLISIONS.. PHYSICAL REVIEW A 69, 032709(2004)

10

nl=1s, n=5
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108

108

o (nl,ndy) (108cm?)

O (nk,ndy) (10-78cm2)

107 S * ‘
101 10 108
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101 10 103 FIG. 12. Partial cross sections for specific final angular momen-
proton lab energy (keV) tum (I) stategsummed over finain) in excitation from the ground
state to the levelga) ns=5 and(b) n;=10.
FIG. 11. Some partial excitation and deexcitation cross sections.

(@) Dependence of d excitation cross sections on the quantum

numbermy (and their suny (b) dependence of thesStark mixing ~ Of the collision energy to the target splitting, so is achieved at

cross sections on the quantum numbgr(and their sumqy and(c) @ much lower energy for 2-2p excitation than for &

cross sections for3Stark mixing and deexcitation. — 2p excitation(even for the former, the effective splitting is
nonzero due to the Stark effect

The orientation dependence of these cross sections is usy- Of more frequent concern are Stark transitions that take
ally unimportant in the absence of strong externally appliedh® ion from a metastablés) state to a radiating state. The
fields. However, this is not true if something in the applica—""ssoc'f‘te‘j cross sections are shown in Fige)ldnd 11c)
tion defines a unique axis—e.g., directional detection of thdor He"(2s) and HE(3s), respectively. It can be seen that the
neutron after muon-catalyzetit fusion in coincidence with
detection of the helium iof36]. In this situation the quanti-

zation axis of the helium ion is significant. Thus in Fig. 10 — 10°

we give the calculated ratio of the stripping cross sections g

0st(2P0) ! 05(2p1). At small impact parameterss,(2po) is 3?0

considerably greater but the two components are similar at = 10

large impact parameters. This behavior can be understood in =

view of the fact that stripping is more probable if the proton =

projectile is always on the same side of the electron charge %

density so that the pull is always in the same direction. This © 10 ,

is the case if the impact parameter is large compared with the 1 102 104

rms size of the helium ion, regardless of the orientation of 102
the orbital. However, in the case of a small impact parameter, g
the encounter will still be one sided if the charge density is ;-g° 100 |
confined to the incident directiogas it is for Zg), but will e
tend to pass through the center of the charge density if the E:
orientation is perpendiculaeas for 2.,). £ 1021
Similar considerations apply to the orientation depen- £
dence of the excitation and deexcitation cross sections. This  © ;
dependence is shown for collisions with H&s) and 10‘41 10; 100

He*(2s) in Figs. 1Xa) and 11b), whose muonic counterpart
is of particular relevance to interpreting some muon-
catalyzedd-t fusion experiment$36,37. In the high-energy FIG. 13. Partial cross sections for specific final angular momen-
limit the excitation from &s state to gp state yieldsp.; but  tum (I;) states(summed over finahy) in excitation from the 8

not po. The effective high-energy limit depends on the ratiostate to the levelga) n;=5 and(b) n;=10.

proton lab energy (keV)
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Stark transitions generally have larger cross sections than (iii) We do not use the usual expansion in spherical har-
inelastic transitions to lower principal-quantum-numbermonics and, as a result, avoid the drawbacks of the partial-
states. wave analysis—namely, a multipole expansion of the Cou-

In Figs. 12 and 13 we show how the excitation crosslomb potential(6) and calculation of the resulting matrix
sections depend on the angular momentum of the final statelements.

In the dipole approximation, onlil=+1 is allowed, so ais (iv) Applying the special angular and radial grids yields
state can only go to p state. In most cases this behavior is rapid convergence and the possibility to check the accuracy
evident, although it requires going to energies that may bef the computations by employing a sequence of converging
higher than expected. At lower energies it can be seen thajrids.

the favored state is not always related by this selection rule. (v) Though not done in the present application, it is also
The cross sections for excitation to high-angular-momentunpossible in the framework of this approach to consider sepa-
states are relatively small and some show anomalous strucately the ionization procesd) by using the technique of
ture. While we believe that the shapes are basically correct, firojection onto the continuum. In previous work this method
is true that the accuracy is not as good as it is for sipall was successfully applied to the Coulomb breakup of halo
and we cannot rule out the possibility that this behavior is anuclei[22,23. For that specific problem, it was numerically
numerical artifact. shown that the procedure is consistent with the alternative
technique(22)—24) of elimination of the bound states from
the scattered wave packet.

In summary, we have done calculations at low collision

The advantages of the present computational scheme ignergies where the cross sections are significantly affected
clude the following. by trajectory curvature. Experimental determination at these

(i) The direct numerical calculation of the relative energies could provide a useful validation of the extended
projectile-target trajectory in the simultaneous integration oftheory.
Egs.(4)«7) permits extension of the approach to lower en-
ergies where assuming amypriori trajectory is unrealistic.

(i) The algorithm in the present form permits treatment of We gratefully acknowledge valuable discussions with
all the states of the target atomic i¢hle”), up ton=10  Thomas G. Winter. V.S.M. acknowledges the use of the com-
with accuracies of a few significant digits and enables accuputing facilities at the Computer Center of the Free Univer-
rate computations of the stripping and excitation and deexcisity of Brussels. This work was supported by the National
tation cross sections up tg=10. Science Foundation through Grant No. Phy-0088936.

IV. CONCLUSION
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