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I. INTRODUCTION

The problem of double photoionization of helium is of
fundamental interest because it provides the model for much
of the basic physics for double photoionization of atoms and
molecules in general. For that reason it has been the subject
of extensive study by experimental[1–7] and theoretical
methods.

For theoretical calculations the challenge is to correctly
treat the boundary conditions for the breakup of a system of
three charged particles. That problem has been recognized as
both a formal and a practical difficulty since the 1960s
[8–10] and has been treated by a number of methods over the
last decade with varying degrees of formal rigor and numeri-
cal accuracy. For example, an ansatz wave function with an
explicit three-body asymptotic form was used in the three-
Coulomb-wave approach[11–13], while Shakeshaft and co-
workers made use of an assumed final state of screened Cou-
lomb waves[14,15] in a similar ansatz approach. The first
numerical solutions of the Schrödinger equation for this
problem were performed using the convergent close-
coupling [16–19] approach in which two-body boundary
conditions are used in close-coupling calculations and three-
body breakup amplitudes are constructed from two-body dis-
crete channel amplitudes. More recently Selleset al. [20]
developed a method in which semiclassical outgoing waves
were combined with the hypersphericalR-matrix method to
impose outgoing three-body boundary conditions in calcula-
tions of considerable accuracy. Another successful approach
is the time-dependent close-coupling method which applies
the correct boundary conditions implicitly by time propaga-
tion of the initial state[21,22] in a method that produces
accurate results for this and other Coulomb breakup prob-
lems. Finally, in a development related in both spirit and

formalism to the one discussed here, the need to explicitly
impose three-body asymptotic boundary conditions was cir-
cumvented using complex Sturmian basis functions in a
mathematically elegant method developed by Pont and
Shakeshaft[23].

A recent and particularly successful approach to the prob-
lem of imposing the correct three-body breakup boundary
conditions is the method of exterior complex scaling(ECS)
which has now been applied to a range of problems, and has
provided a formally and practically complete solution for the
three-body Coulomb breakup problem. The ECS approach
has been implemented using finite elements[24,25], finite
difference [26], and with a combination of finite elements
and the discrete variable representation(DVR) [27,28]. It has
produced essentially exact results for electron-impact ioniza-
tion of hydrogen[29,30], and has been implemented with
pseudospectral methods[31,32] to treat multiphoton detach-
ment in the context of Floquet theory for atoms in intense
fields. ECS has also been applied directly to wave-packet
propagation in the time-dependent Schrödinger equation
with external fields[33].

In this paper we explore this problem with a recently de-
veloped implementation inB-splines [34]. The B-spline
method has been applied to atomic[35,36] and molecular
[37,38] photoionization problems, and there now exists a
well-developed technology for such calculations[39–41]. An
important property ofB-splines is that they are able to span a
large volume to any degree of accuracy without encountering
the numerical problems that prevent the use of exponentially
decreasing basis functions. This is crucial for the description
of continuum states, especially when the asymptotic region is
needed. In addition,B-spline basis sets are effectively com-
plete, which is an ideal property in those problems where the
entire spectrum is needed[39]. The double-ionization con-
tinuum lies in this category.

Our goal is to compare the ECS-B-spline approach to the
problem of double photoionization with experiment and the
results of other theoretical methods, to establish its accuracy
and effectiveness. The results in the present study lay the
groundwork for the application of the ECS-B-spline method
to double photoionization of molecules.
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II. THE IMPLEMENTATION OF EXTERIOR COMPLEX
SCALING USING B SPLINES

The details of this implementation have been discussed at
length elsewhere[34], but we will provide a brief summary
of the essential points here.

The ECS transformation that underlies this approach
scales the coordinates only outside a fixed radius,

r → Hr, r ø R0

R0 + sr − R0deih, r . R0,
s1d

whereR0 defines the radius within which the wave function
will be the usual function of real-valued coordinates, andh is
a scaling angle. In an exact or converged calculation the
solutions of the Schrödinger equation forr ,R0 do not de-
pend on h. However, as has been discussed elsewhere
f28,29,42g settinghÞ0 effectively imposes outgoing scatter-
ing boundary conditions on the two-electron final state of our
problem.B-splines that scale according to this ECS transfor-
mation are defined by setting a series of knotsti ø ti+1 on the
complex contour and by using the usual recursion relation
f43g for B-splines of orderk,

Bi
ksrd =

r − ti
ti+k−1 − ti

Bi
k−1srd +

ti+k − r

ti+k − ti+1
Bi+1

k−1srd s2d

together with the definition ofB-splines of orderk=1,

Bi
1srd = H1 for ti ø r , ti+1,

0 otherwise.
s3d

A basis ofB-splines is defined by a grid of breakpointsji
coinciding with the knotsti swhich may be multipled that
appear in the recursion relation above. The breakpoints can
be placed arbitrarily on this contour but one of them and its
corresponding knot must be placed atti =R0. In this way,Bi

k

has a discontinuous first derivative with respect tor at r
=R0, because the derivative of the contour itself is discon-
tinuous at that point. The discontinuity in the first derivative
of all the B-splines that span the pointR0 is essential to
reproduce that of the exact wave function. Figure 1 shows a
typical B-spline basis of orderk=8 and the discontinuities of
the first derivatives atr =R0. Only B-splines that straddle the
point R0 have both real and imaginary components. All other
B splines are real, whether they are on the complex part of
the contour or not.

With the above definitions, all one-electron matrix ele-
ments are reduced to sums of complex integrals between
breakpoints. In each interval, the integrals are performed us-
ing a Gauss-Legendre quadrature. Only those integrals in-
volving B splines that are different from zero need to be
evaluated. The two-electron integrals are performed by car-
rying out a multipole expansion of interelectron repulsion,
1/ur 1−r 2u. The angular portions of the two-electron matrix
elements are evaluated analytically, while the radial portions
are best handled by mapping the problem to an equivalent
one involving the solution of Poisson’s equation in an exte-
rior complex-scaledB-spline basis. We refer the interested
reader to Ref.[34] for details.

III. THE AMPLITUDE AND CROSS SECTIONS FOR
SINGLE-PHOTON DOUBLE IONIZATION OF AN ATOM

The double-photoionization amplitude is associated with
the purely outgoing wave functionCsc

+ that is the solution of
the driven Schrödinger equation, which we can write, for
example, in the “velocity form,”

sE0 + v − HduCsc
+ l = e · s=1 + =2duC0l = S d

dz1
+

d

dz2
DuC0l,

s4d

wheree is the polarization unit vector anduC0l is the initial
sboundd state of the atom.

The asymptotic form of the solution of this equation can
be written in analogy with Rudge’s formal analysis of the
electron-impact ionization problem[10],

Csc
+ → − i1/2SK3

r5D1/2

Fsr̂1, r̂2,adeiKr+isz/Kdlns2Krd, s5d

whereF is proportional to the ionization amplitude and the
hyperradius, hyperangle, and magnitude of the total momen-
tum are

r = Îr1
2 + r2

2,

a = tan−1sr2/r1d,

K = Îk1
2 + k2

2. s6d

Here the angle-dependent coefficient of the logarithmic
phase is

zsr̂1, r̂2,ad/r = 2/r1 + 2/r2 − 1/r12. s7d

With the ECS method, the most effective approach for
problems with two particles in the continuum is to write the
amplitude as a surface integral performed on a surface just

FIG. 1. Eighth-orderB splines on the complex exterior scaling
contour with R0=50 andh=40°. Heavy black lines are the real
parts of the only complex splines. Gray lines are the imaginary
parts.
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within the volume enclosed by the exterior scaling radiusR0
[28,44]. To that end we want to formulate the amplitude for
this process as an integral of the form

fsk1,k2d = kFZ1

s−dsk1,r 1dFZ2

s−dsk2,r 2duE − T − V1uCsc
+ l, s8d

where E is the total energy,T is the two-electron kinetic-
energy operator, andV1 is the sum of all one-electron poten-
tials,

V1 = − Z1/r1 − Z2/r2. s9d

The FZi

s−dsk ,r d are Coulomb functions normalized to ad
function in momentum, with effective chargesZi that will be
defined later.

To relate the integral in Eq.(8) to the amplitudeF, we can
proceed to do the integral by stationary phase exactly as in
Rudge’s analysis[10]. His Eq. (2.52) is the result we seek,
except for an overall factor ofs2pd3, which arises because
our Coulomb functions are momentum normalized, and with
a volume-dependent overall phase which arises because we
have not enforced the so-called “Peterkop condition”[8] on
their effective charges.

So with Rudge’s Eq.(2.52) we have

Fsk1,k2,bd = − s2pd1/2xsk1,k2,rdfsk1,k2d, s10d

with xsk1,k2,rd being the usualsand irrelevantd volume-
dependent overall phase:

xsk1,k2,rd = e−2iZ2 lnsk2/Kd/k2e−2iZ1 lnsk1/Kd/k1

3 eifzsk̂1,k̂2,bd/K−Z1/k1−Z2/k2glns2Krd. s11d

The z function is, as defined by Rudge,

zsk̂1,k̂2,bd/K =
1

k1
+

1

k2
−

1

uk1 − k2u
s12d

and the hyperangleb, defined byb=tan−1sk2/k1d, param-
etrizes the asymptotic momentum distribution of the pho-
toejected electrons. The original idea of the Peterkop con-
dition was to make this overall volume-dependent phase
disappear by choosingZ1 and Z2 to satisfy

Z1

k1
+

Z2

k2
=

1

k1
+

1

k2
−

1

uk1 − k2u
, s13d

which cancels the last exponent in Eq.s11d. However the
cross section for double photoionization does not depend in
any way on this overall phasef45g.

The triple-differential cross section(TDCS) for double
photoionization is directly related to the amplitudefsk1,k2d
by

d3s

dE1dV1dV2
=

4p2

vc
k1k2ufsk1,k2du2. s14d

This result is the same as the one employed by Shakeshaft
and co-workersf14,15g. It is also consistent with the flux
formulation of the problem of Selleset al. [20] who define
the TDCS in terms of the outgoing flux associated with the
solution of Eq.(4):

d3s

dE1dV1dV2
=

2p

cv

sins2ad
4E

r5lim
r→`

FrsCsc
+ d s15d

=
2p

vc
k1k2uFsk1,k2,adu2, s16d

where k1=K cossad and k2=K sinsad are the momenta of
the outgoing electrons and the radial fluxFr is defined by

FrsCsc
+ d =

1

2i
SCsc

+* ]

] r
Csc

+ − Csc
+ ]

] r
Csc

+*D . s17d

Given the analysis of McCurdy, Horner, and Rescigno
[28], and the more complete analysis for electron-impact ion-
ization of hydrogen by Baertschyet al. [30], we know that
we can evaluate the amplitudefsk1,k2d by calculating the
integral of Eq.(8) on a finite volume, given the solution for
Csc

+ from an ECS-B-spline calculation,if we chose both the
effective charges to be equal to the nuclear charge:

Z1 = Z2 = 2. s18d

With that choice the orthogonality properties of the Coulomb
functions eliminate the contributions from the discrete
single-ionization channels, as has been discussed previously
f44,28g, allowing for the use of values of the exterior scaling
radiusR0 which are of the order of a few tenths of Bohr radii
for this problem.

There is an overall volume-dependent phase associated
with this integral that has no physical consequences for cal-
culations of the cross sections for this process. Moreover it
has been shown that if for some reason it were interesting to
do so, it can be calculated by an extension of the analysis of
Rescigno, Baertschy, and McCurdy[45].

An important practical consequence of Eq.(8) is that us-
ing Green’s theorem it can be transformed into a surface
integral that is easier to compute and that depends only on
the asymptotic form of the scattered wave function. That fact
was exploited by Pont and Shakeshaft[23] and has been
used extensively in calculations on electron-impact ioniza-
tion using exterior complex scaling[27,28,30,44,45]. We
will make use of this important property of Eq.(8) in our
derivation below of the working equations for the present
calculations.

The next question we must answer in order to do a prac-
tical calculation is how to define thepartial-wave amplitudes
corresponding to Eq.(8) and how to express the triple-
differential cross sections and single-differential cross sec-
tions in terms of these. It is to that question that we now turn
our attention.

IV. REPRESENTATION OF Csc

In a calculation using the ECS-B-spline approach we
make use of configuration interaction(CI) representation of
Csc

+ of the form

THEORETICAL TREATMENT OF DOUBLE… PHYSICAL REVIEW A 69, 032707(2004)

032707-3



Csc
+ = o

n,m,l1,l2

Cnl1,ml2
Fn,l1,m,l2

, s19d

whereCnl1,ml2
are the CI coefficients. TheB-spline calcula-

tion has configurations defined bystotal angular momentum
L with upper/lower sign corresponding to singlet/triplet spin
couplingd

Fn,l1,m,l2
=

1
Î2

1

r1r2
fwn,l1

sr1dwm,l2
sr2dYl1,l2

L,MsV1,V2d

± wm,l2
sr1dwn,l1

sr2dYl2,l1
L,MsV1,V2dg

3fas1dbs2d 7 bs1das2dg/Î2, s20d

wherer−1wn,lsrd denotes a normalized radial “orbital” asso-
ciated with the indicesn, l.

If the initial state is1S, and is therefore spherically sym-
metric, and the polarization is linear, we can choose any axis
to coincide with the polarization vectore. If we choose that
to be thez axis, then the final state must have the symmetry
1P0, whereM =0 corresponds to thez axis, because the di-
pole operator, for example, in the length representation,e ·r ,
transforms withY1,0sr̂ d. So for the case of double ionization
of the helium ground state we haveL=1 andM =0 in Eq.
(20).

Thus we have written the scattered wave function in the
form

Csc
+ = o

l1,l2

fcl1,l2
dir sr1,r2dYl1,l2

L,MsV1,V2d

± cl1,l2
exchsr1,r2dYl2,l1

L,MsV1,V2dg. s21d

As we will see below, it is useful to visualize the partial-
wave radial wave functionscl1,l2

sr1,r2d in this equation. The
coupled spherical harmonics are defined by

Yl1,l2
L,MsV1,V2d = o

m1,m2

sl1m1l2m2ul1l2LMdYl1,m1
sV1dYl2,m2

sV2d,

s22d

using the notation of Edmondsf46g for the vector coupling
coefficients. In terms of 3-j symbols these functions are

Yl1,l2
L,MsV1,V2d = o

m1,m2

s− 1dl2−l1−Ms2L + 1d1/2S l1 l2 L

m1 m2 − M
D

3Y l1,m1
sV1dYl2,m2

sV2d, s23d

and we will use their properties in deriving the expressions
for the TDCS below.

V. PARTIAL-WAVE ANALYSIS OF THE DOUBLE-
IONIZATION AMPLITUDE

A. The ionization amplitude and the triple-differential
cross section

As mentioned above, it is most effective in applications of
the ECS approach to computing breakup amplitudes to for-
mulate the amplitudes as surface integrals taken over a vol-
ume just inside the exterior scaling radiusR0. To get those

working equations we now need to explicitly evaluate the
integral expression for the double-ionization amplitude:

fsk1,k2d = kFs−dsk1,r 1dFs−dsk2,r 2duE − T − V1uCsc
+ l,

s24d

whereFs−dsk ,r d denotes a Coulomb function with momen-
tum normalization and nuclear chargeZ=2. That function is
related to the one with outgoing boundary conditions by
Fs−dsk ,r d=fFs+ds−k ,r dg* , and its partial-wave expansion is
given by f47g

Fs−dsk,r d = S 2

p
D1/2

o
l,m

ile−ihl

kr
fkl

scdsrdYlmsr̂ dYlm
* sk̂d, s25d

where

hl = argGsl + 1 − iZ/kd s26d

and the asymptotic form of the radial Coulomb function that
defines its normalization is

fkl
scdsrd → sinSkr +

Z

k
ln 2kr −

pl

2
+ hlD . s27d

Now we can substitute Eqs.(25) and(19) [using Eq.(20)]
into Eq. (24) to get the working equation for the ionization
amplitude fsk1,k2d in terms of direct and exchange partial-
wave amplitudes:

fsk1,k2d = o
l1,l2

i−sl1+l2dfeihl1
sk1d+ihl2

sk2dFl1l2k1k2

dir Yl1,l2
L,Msk̂1,k̂2d

± eihl1
sk2d+ihl2

sk1dFl1l2k1k2

exch Yl2,l1
L,Msk̂1,k̂2dg. s28d

The double-ionization amplitude has two contributions:
one from the direct part and the other from the exchange part
of each of the CI configurations in Eq.(20). Note that thel i
indices are reversed in the coupled spherical harmonic in the
exchange contribution and that thek’s and l ’s appear paired
differently in the direct and exchange contributions. The al-
gebra that leads up to Eq.(28) involves first doing the angu-
lar integrations, which pick out the contributions to the
coupled spherical harmonics in Eq.(20). The vector coupling
coefficients are used to recombine the resulting terms to give
coupled spherical harmonics that are function of the angles
of ejection corresponding to the two momentak1 andk2. The
other phase factors come from the two expansions of the
Coulomb functions using Eq.(25).

Defining the one-electron radial Hamiltonians as

hi = −
1

2

d2

dri
2 +

lsl + 1d
2r i

2 −
2

r i
, s29d

the partial-wave amplitudes in Eq.s28d are then given by
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Fl1l2k1k2

dir =
2

p

1

k1k2

1
Î2

o
n,m

Cnl1,ml2

3kfk1l1
scd fk2l2

scd uE − h1 − h2uwn,l1
wm,l2

l

=
2

p

1

k1k2

1
Î2

o
n,m

Cnl1,ml2E dr1dr2fk1l1
scd sr1dfk2l2

scd sr2d

3 sE − h1 − h2dwn,l1
sr1dwm,l2

sr2d s30d

and

Fl1l2k1k2

exch =
2

p

1

k1k2

1
Î2

o
n,m

Cnl1,ml2

3kfk1l2
scd fk2l1

scd uE − h1 − h2uwm,l2
wn,l1

l

=
2

p

1

k1k2

1
Î2

o
n,m

Cnl1,ml2E dr1dr2fk1l2
scd sr1dfk2l1

scd sr2d

3 sE − h1 − h2dwm,l2
sr1dwn,l1

sr2d. s31d

The “two-potential” formulas of Eqs.(30) and (31) also
have an equivalent surface integral representation of the
partial-wave amplitudes, which appears upon the application
of Green’s theorem. By using the hyperspherical coordinates
defined in Eq.(6), we can write each of them as an integral
over a “surface” withr=r0, which defines the volume inr1
and r2 for the integration,

kfk1l1
scd fk2l2

scd uE − h1 − h2uwn,l1
wm,l2

l

=
r0

2
E

0

p/2 UFfk1l1
scd sr1dfk2l2

scd sr2d
]

] r
wn,l1

sr1dwm,l2
sr2d

− wn,l1
sr1dwm,l2

sr2d
]

] r
fk1l1

scd sr1dfk2l2
scd sr2dGU

r=r0

da

s32d

and

kfk1l2
scd fk2l1

scd uE − h1 − h2uwm,l2
wn,l1

l

=
r0

2
E

0

p/2 UFfk1l2
scd sr1dfk2l1

scd sr2d
]

] r
wm,l2

sr1dwn,l1
sr2d

− wm,l2
sr1dwn,l1

sr2d
]

] r
fk1l2

scd sr1dfk2l1
scd sr2dGU

r=r0

da.

s33d

This representation makes it obvious that Eqs.(24) and
(28) depend only on the asymptotic form ofCsc

+ . In a prac-
tical calculation we chooser0 to be just inside(a few tenths
of a Bohr radius) R0. The working equations with which we
will compute the double-ionization amplitudes are thus Eqs.
(32) and(33) together with Eq.(28). The TDCS is then given
by Eq. (14).

B. The singly differential cross section

The coupled spherical harmonics in Eq.(28) are orthonor-
mal. Since the singly differential cross section is the integral

of the TDCS in Eq.(14) over V1 and V2, it simplifies be-
cause of the orthonormality of the coupled spherical harmon-
ics. The result is that the singly differential cross section
(SDCS) is simply

ds

dE1
=

4p2

vc
k1k2o

l1l2

suFl1l2k1k2

dir u2 + uFl1l2k1k2

exch u2d, s34d

and the phase factors in Eq.s28d do not play a role in its
computation.

The total cross section for double ionization is then

sion =E
0

E ds

dE1
dE1, s35d

although the integral cross section is frequently defined as
the integral over half this interval, which requires a defini-
tion of the singly differential cross section as

ds̃

dE1
= 2

ds

dE1
, s36d

so that

sion =E
0

E/2 ds̃

dE1
dE1. s37d

Equations37d is, in fact, the convention used in this paper.

VI. CALCULATED CROSS SECTIONS FOR DOUBLE
PHOTOIONIZATION OF HELIUM

The first requirement of accurate calculations of double
photoionization cross sections is an accurate description of
the ground state of the atom, because double-ionization cross
sections are largely determined by correlation effects in the
initial state. For the ground state in these calculations we
used configurations containing orbital angular momenta up
to l =4. The initial state is described by a CI wave function
made up of Slater-type orbitals with exponents of 2.4, 3.6,
4.8, 6.0, and 6.8 forl =0, . . . ,4 respectively, to give a total of
115 configurations. These Slater orbitals are expanded in the
sameB-spline basis described below. The ground-state en-
ergy given by this calculation is −2.903 198 hartree com-
pared to the exact value[48] of −2.903 724 hartree and is
thus close to thel =4 limit for the energy of the initial state.

For the final double-continuum wave functionCsc
+ we

have performed calculations with a variety ofB-spline basis
sets and included various numbers of partial waves for the
double continuum. In Fig. 2 we show, as an example, the
results of calculations in both the length and velocity gauges
for the TDCS for a photon energy of 40 eV above the
double-ionization threshold. In that figure we include partial
waves up tol =4 and plot the results of calculations with
values of the turning pointR0 for the ECS contour equal to
26a0, 30a0, and 35a0. We also show a calculation including
up to l =5 in the final state forR0=30a0. All calculations in
Fig. 2 make use of 53B splines for each partial wave. The
level of stability exhibited in Fig. 2 strongly suggests that
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these calculations are converged with respect to the compu-
tational parameters of theB-spline basis and partial-wave
expansion.

These calculations require much smaller values ofR0, and
therefore smaller basis sets, than do calculations of electron-
impact ionization of hydrogen, for which a value ofR0 near
100 a0 is necessary. We speculate that the reason for this
behavior is that the final state of the double-photoionization
process in helium is more strongly dominated by the nuclear
attraction potential. The fact that this interaction is included
in the Coulomb functions of the “two-potential” integral ex-
pressions, Eqs.(32) and (33), with which we evaluate the
amplitudes, allows them to be computed as a surface integral
at values of the hyperradius corresponding to the point where
that interaction begins to dominate the behavior of the out-
going wave.

All the results that we compare with experiment below
were computed using a computational grid with 47B-spline
knot points over the first 42.0a0, and 6 additional knot points
on the remaining complex contour out toRmax=80a0. The
turning point R0 of the ECS contour was 35.0a0. The
angular-momentum expansion includedl values up tolmax
=4, giving us contributions from thekskp, kpkd, kdkf, and
kfkgdouble continua. Using these 53B-splines and 4 double
continua, we have a total of 11 236 configurations in the CI
representation ofCsc

+ . All the results we present below were
computed in the velocity gauge, although as Fig. 2 indicates,
the results in the length gauge are essentially the same.

The components ofCsc
+ defined in Eq.(21) reveal much

of the dynamics of the photoionization process at a glance.
The first three of them, thekskp, kpkd, andkdkf contribu-
tions, are plotted in Fig. 3 for a photon energy 20 eV above
the double-ionization threshold. These plots show only the
direct contribution and are thus not symmetric under inter-
change ofr1 and r2. In the first of these we see the single-
ionization contribution as an outgoing wave parallel to ther2
axis and confined to smallr1. The kskp contribution also
displays the outgoing waves for double ionization as wave
fronts at constant hyperradius. For the higher angular com-

ponents the relative importance of single ionization de-
creases since it proceeds through higher ionization thresh-
olds; thus the outgoing double-ionization wave fronts are
more apparent. Asl1 and l2 increase the wave-function com-
ponents rapidly decrease in magnitude as can be seen in the
kpkdcontribution.

The SDCS for 20 eV is compared with experiment[1]
and with the calculations of Colganet al. [22] in Fig. 4. The

FIG. 2. TDCS for both length gauge(dashed curves) and veloc-
ity gauge (dark solid curves) for computational grids havingR0

=26a0,30a0,and 35a0. The light solid curve shows the calculation
including another double continuum,l1, l2=4,5.

FIG. 3. Real part of direct contribution to the wave function at
20 eV. The panels from top to bottom show the contributions from
the kskp, kpkd, andkdkf partial waves.
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agreement between these two calculations is very good. The
partial-wave contributions are also shown and demonstrate
how the SDCS converges with inclusion of higherl values.
The details of the TDCS, however, are naturally more sensi-
tive to the higher angular momenta.

Braüninget al. [2] have measured absolute TDCS’s for a
photon energy of 20 eV above threshold. These measure-
ments provide a rigorous test of the theoretical description of
the double-photoionization process and, thus, we begin by
presenting results at this photon energy. Figure 5 shows a
comparison between our results and the experimental ones
for u1=0°, i.e., for the case in which the first electron exits
parallel to the polarization axis. The agreement is very good.
The figure also includes results from previous theoretical cal-
culations, namely, results from the time-dependent close-
coupling (TD-CC) method of Colganet al. [22] and the hy-

FIG. 4. SDCS for photon energy 20 eV above threshold.
Circles: experiment by Wehlitzet al. [1]. Dashed curve: TD-CC
calculations by Colganet al. [22]. Thick solid curve: present result.
Lighter solid curves: contributions to SDCS from each noted double
continuum.

FIG. 5. TDCS for photon energy 20 eV above threshold, at vari-
ous energy sharings foru1=0°. Circles: experiment by Braüninget
al. [2]. Dashed curve: TD-CC calculations by Colganet al. [22].
Dotted curve: HRM-SOW calculations by Selleset al. [20]. Thick
solid curve: present result.

FIG. 6. TDCS for photon energy 20 eV above threshold for variousu1 values in equal energy sharing. Circles: experiment by Braüning
et al. [2]. Dashed curve: TD-CCet al. [22]. Dotted curve: HRM-SOW[20].
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persphericalR-Matrix method with semiclassical outgoing
waves(HRM-SOW) method of Selleset al. [20]. Although
the general agreement between different theoretical results is
good, there are significant discrepancies when the two elec-
trons escape “back-to-back” in directions colinear with the
polarization vector. This geometry, which we might call the
“Wannier geometry” because it is the geometry that domi-
nates at threshold for electron-impact ionization, is the one

that requires the most partial waves and densest basis to con-
verge in the present calculations. Our results are closer to
those of the TD-CC method.

For other geometries the agreement between variousab
initio calculations is much better, and for them essentially
identical results are obtained at 20 eV by ECS, TD-CC, and
HRM-SOW methods. As an illustration, Fig. 6 shows a com-
parison for equal energy sharing and different values ofu1. A

FIG. 7. TDCS for photon energy 20 eV above threshold, at energy sharings withE1=3 eV (upper panels) and 17 eV(lower panels) for
u1=60° andu1=90°. Circles: experiment by Braüninget al. [2]. Thick solid curve: present result.

FIG. 8. TDCS at 20 eV above threshold for geometryu1=30°, f1=f2. The panels show various energy sharings with the energyE1

given in each panel. Circles: experiment by Braüninget al. [2]. Solid curve: present results.
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similar agreement between theoretical results from these
three methods is found at all the other geometries reported
here for 20 eV.

In Fig. 7 we compare the ECS results for unequal energy
sharings with the absolute experimental determinations of
Braüninget al. for u1=60° andu1=90°. Figure 8 shows a
similar comparison for all the energy sharings measured by
Braüninget al.at 20 eV andu1=30°. A very good agreement
is obtained in all cases.

These experiments and essentially all others on this sys-
tem were performed in “coplanar geometry,” that is, with the
polarization vector and both momentak1 andk2 lying in the
same plane. To provide an overall visualization of the
double-ionization process, we have also evaluated TDCS’s
for out-of-plane geometries. In Fig. 9 we show two three-
dimensional views of the TDCS for a photon energy of

20 eV above threshold that correspond to two panels of Fig.
8. In the first one we see the effects on the three-dimensional
TDCS of the selection rule for equal energy sharing that
prevents the electrons from exiting in opposite directions
[12]. The selection rule is more apparent in three dimensions
than in Fig. 8. In the second case, for strongly unequal en-
ergy sharing(E1=3 eV andE2=17 eV), we see that the se-
lection rule does not apply and a lobe appears in the TDCS
corresponding to emission of the second electron in the op-
posite direction to the first, lower energy electron.

We now turn to the case of 40 eV for which the experi-
ments of Bologonesiet al. [49] and those of Cvejanović et
al. [50] provide only relative values of the cross sections. In
each case the reported TDCS for different energy sharings
and angles are internormalized within the experiment. So we
have two separate sets of internormalized results with which
to compare. Theoretical calculations predict absolute values
for cross sections. Therefore, we adhere here to the principle
that no scaling of any theoretical TDCS predictions should
be made when comparing them with experiment. To do oth-
erwise would be misleading, especially when there are sev-
eral theoretical predictions to be compared with the same
experimental cross section.

In Fig. 10 we compare our result with the experimental
results of Bolognesiet al. [49] and the results of convergent

FIG. 9. Three-dimensional TDCS plots for 20 eV. The lighter
vertical arrow pointing downward is the photon polarization direc-
tion to which all angles refer. The darker arrow represents the di-
rection of one ejected electron,u1=30°. The surface shows the an-
gular ejection distribution of the second electron for the case of
equal energy sharing,E1=E2=10 eV (top panel), and unequal en-
ergy sharing,E1=3 eV (bottom panel).

FIG. 10. TDCS for photon energy 40 eV above threshold, in the
unequal energy sharing ofE1=5 eV andE2=35 eV at various val-
ues ofu1 of the 5 eV electron. Circles and dashed curve: experi-
ment and CCC calculation of Ref.[49]. Thick solid curve: present
result.
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close coupling(CCC) calculations included in the same ref-
erence for an energy sharingE1=5 eV andE2=35 eV, and
u1 varying from 0° to 60°. We have normalized the relative
experimental cross sections to our computed TDCS atu1
=60° andu2=30° for this energy sharing, thereby fixing the
normalization of the experiment in Fig. 10 as well as in Fig.
11 where we compare with complementary sets of experi-
mental data forE1=35 eV andE2=5 eV. The results of CCC
calculations from Ref.[49] are also shown in those figures
with no scaling. Although both theoretical results generally
reproduce the shapes of these six TDCS plots, there remain
significant differences between the theories and between the
theories and the experiment. The CCC results are signifi-
cantly smaller than the ECS results foru1=60° and 30° in
both figures. Nonetheless both theories suggest, as was origi-
nally suggested in Ref.[49], that the internormalization of
the experiment forE1=5 eV andu1=30° and 0° may be
suspect. The ECS results, however, seem to be in better over-
all agreement with the results of this experiment.

Turning to the experiments of Cvejanović et al. [50] for a
photon energy of 40 eV above threshold andE1=5 eV, we
again normalize the relative cross sections to our computed
TDCS value at one point, namely,u1=130° andu2=250°,
thereby determining the normalization of all six TDCS plots
in Figs. 12 and 13. In these figures we also plot the CCC
results of Ref.[51]. Again, while the overall shapes of the

cross sections are very similar and there is general quantita-
tive agreement, some significant differences can be seen be-
tween the ECS and CCC computed results. Overall the CCC
results seem to be in better agreement with this experiment,
although both theoretical calculations differ from the experi-
ment systematically. Those differences are particularly pro-
nounced for the Wannier geometry where the electrons go
out in opposite directions colinear with the polarization axis.

VII. CONCLUSION

We have evaluated TDCS for double photoionization of
helium using a recent implementation of ECS withB-spline
basis functions. This implementation takes advantage of ex-
isting B-spline codes for atomic two-electron systems as well
as of all the ECS technology developed to evaluate TDCS’s
in electron-impact ionization problems. Details of the most
important modifications in the currentB-spline codes have
been published elsewhere[34], while the link with the
double-photoionization problem has been presented in detail
in this paper. The power of the ECS-B-spline approach re-
sides in its ability to provide converged results to any desired
accuracy without losing the possibility to work with atomic
orbitals as in traditional basis sets expansions. This is a very

FIG. 11. TDCS for photon energy 40 eV above threshold, in the
unequal sharing ofE1=35 eV andE1=35 eV at variousu1 of the
35 eV electron. Circles and dashed curve: experiment and CCC
calculation of Ref.[49]. Thick solid curve: present result.

FIG. 12. TDCS for photon energy 40 eV above threshold, in the
unequal energy sharing ofE1=5 eV andE2=35 eV at variousu1 of
the 5 eV electron. Circles: experiment of Cvejanovicet al. [50].
Dashed curve: CCC calculation[51]. Thick solid curve: present
result.
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important feature that allows one to reduce the size of the
calculations without loosing accuracy and, therefore, it will
be very convenient for future applications to more compli-
cated systems such as diatomic molecules.

Application of this methodology to the evaluation of
TDCS in double photoionization of helium has shown that
converged results are obtained with a moderate number of
basis functions and partial waves. Our results for a photon
energy of 20 eV above threshold are in very good agreement
with absolute measurements of Brauninget al. for all the
coplanar geometries and energy sharings investigated here.
There is also general good agreement with previous theoret-
ical results obtained with the TD-CC and HRM-SOW meth-
ods, although some discrepancies exist for unequal energy
sharing when the two electrons escape in opposite directions.
At this photon energy, we have also presented a few results
for three-dimensional(noncoplanar) geometries for which
previous experimental or theoretical results do not exist.

Similar conclusions have been obtained for a photon en-
ergy of 40 eV above threshold, although, in this case, the
differences between the present results and those from a pre-
vious CCC calculation are significantly larger and these dif-
ferences are not confined to geometries where the electrons
escape in opposite directions.
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