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Nonrelativistic double photoeffect onK-shell electrons
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We investigate the doubl€-shell ionization of heliumlike ions caused by the absorption of a single photon
with energies being much smaller than the rest energy of an electron. In the near-threshold region, differential
and total cross sections of the process are calculated for light ions, taking into account the leading orders of the
1/Z andaZ expansions. QED perturbation theory with respect to the param&exhibits a fast convergence
in the entire nonrelativistic domain for moderate nuclear charge nundyets. Going beyond the electric
dipole approximation leads to a forward/backward asymmetry in the angular distributions for the ejected
electrons with respect to the incident photon beam. A comparison of theoretical predictions for the ratio of
double-to-single photoionization cross sections with available experimental data for a number of neutral atoms
is also presented.
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[. INTRODUCTION represents a challenge to theoretical investigations of the
process in the entire nonrelativistic domain, both for photon
In studies of electron correlations in atoms, the most atenergieswo<m and for targets with moderate values of
tractive processes are those in which the electron-electronuclear charge numbebs In Refs.[15-17], aZ-scaling law
interaction plays the crucial role. One of such fundamentalvas suggested for the rat® of double-to-single photoion-
phenomena is the double photoionization of an atom causedation cross sections in the asymptotic energy regimge,
by the absorption of a single photon, the so-called doublecw<m. For the energy domain near the threshold,
photoeffect, which has been investigated for more than 36=1,,, ab initio calculations are presently not available. To
years[1-3]. Since a photon interacts only with a single elec-compare with the experiment, one usually employs a model
tron, the simultaneous ejection of two electrons is exclu-estimate of the two-electron photoejection cross seation
sively caused by the electron-electron interaction. Accordobtained by Kornberg and Miraglifl8], which however
ingly, electron correlations show up here most clearly. strongly disagrees with existing experimental data. Numeri-
So far the experiments have been mainly performed witlcal calculations oZ%c* * for He, Li*, and @ have been
helium, the simplest many-electron atomic system. The maalso performed within the framework of the convergent
jority of investigations concerns the energy dependence oflose-coupling moddgl19].
the ratioR of double-to-single photoionization cross sections  Another direction of present investigations concerns the
[4—6]. With increasing photon energy, the ratioR grows  angular distributions of atomic photoelectrons beyond the
rapidly beyond the ionization threshold. Then, after having alipole approximation. However, until now these studies have
maximum near the threshold, it declines slowly approachingeen limited to single photoionization orl§0—29. Beyond
the constant limit of 1.72(12) %] in the asymptotic domain the dipole approximation, the reflection symmetry of angular
of nonrelativistic photon energies being much larger than thelistributions with respect to the plane perpendicular to the
threshold energy,x for double ionization from th& shell,  light beam is violated30]. We shall show that there exists a
that is, l,x<w<<m, wherem is the electron massfi(=c rather wide domain of nonrelativistic photon energies, where
=1). Although a fair agreement between theory and experinondipole effects become also important in the case of
mental data has been achieved within a wide range of phototlouble K-shell ionization. The cross sections of the process
energieg 8], one of the most frequent problems in theoreticalturn out to be rather sensitive to the explicit electron-photon
descriptions of the double photoionization is the gauge deiteraction.
pendence of numerical resu[ig]. In the present paper, we employ the perturbation theory
Atomic targets with nuclear charge numh#Ze3 have  with respect to the electron-electron interaction. As a zeroth
been investigated much less thoroughly. In R&D], cross approximation, Coulomb wave functions and Coulomb
sectionso* " for doubleK-shell photoionization were mea- Green's functions are utilized. The study is performed for
sured for a few elements within the range22<28 and for ~ photon energies much smaller than the electron rest energy.
photon energies somewhat above the threshold. Recent daecordingly, all electrons involved in the ionization process
velopments of novel synchrotron radiation sources allow on@re considered as being nonrelativistic. This implies the
to perform experiments with intense collimated beams ofsmallness of the Coulomb parameter, thaiig<1, where
tunable monochromatic x rays in the keV regime. Measurea=¢? is the fine-structure constant. However, the nuclear
ments of the ratidR of double-to-singleK-vacancy produc- charge numbeZ is supposed to be high enough to utiliz& 1/
tion by photon impact have been reported for Md], Cu  as expansion parameter. The accuracy of our results is re-
[12], and Ne[13] at various photon energies as well as forstricted by higher-order terms of orderZ# and («Z)?,
Ca, Ti, and V in the energy range of 8—35 k¢¥4]. This  which are omitted in the present investigation. A similar ap-
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proach has been already used in the asymptotic part of theraction, i.e.,¥; (=VQ+¥®) . Accordingly, due to the
nonrelativistic domain] ,x <w<<m, where all formulas can one-particle character of the operat}arone obtains

be significantly simplified15]. In contrast to Ref[15], we

consider the entire nonrelativistic domain of incident photon A=2(P O 3wy 4+ 2(¥ D] 5| ¥ Oy, (3)
energies with special emphasis on the threshold region. The

results obtained are applicable for heliumlike ions with 2As a zeroth approximation, we shall utilize the single-
<Z=35 andl ,x=w=150 keV. SinceK-shell electrons are particle approximation in the Coulomb field of the nucleus
essentially separated from the other electrons in an atom, {Furry picture:

turns out that our formulas also describe fairly well the 0

doubleK-shell ionization in the case of light neutral atoms. W O(ry,15) = ¢h1(r1) h1s(12), (4)

1
IIl. THE AMPLITUDE OF DOUBLE PHOTOIONIZATION 0) _
Wi (ry,ry)=— r ry)+ r r)].
IN THE DIPOLE DOMAIN OF PHOTON ENERGIES t(rr2) \/2[%1( 1) i, (12) ¥, (12) ¥, (10)]

The domain of photon energies near the threshold of ®)

double photoionization corresponds to the dipole regime{ere p, and p, are the momenta of escaping electrons at
characterized byo<#, wheren=maZ is the average mo- infinity. The first-order corrections to the wave functions are
mentum of aK-shell electron. Neglecting terms of the order found from the following equationg32]:

of (aZ)?, the operator describing the interaction between a

photon and an electron reafl] Wy, 1) =(EQ=H;—H,) " {(1—-P)V, ¥ O(ry,ry),
(6)
A e Vi R i .
Y e (ep+5(elak)e®, (1) Ti(ry,rp) = (B —H;—Hy+ie) Vi, {0(ry,1y).
2w (7)

wherep is the momentum operator of an electranjs the HereE(¥)=2E, with E;, being the single-electron energies
vector of the Pauli matricek,is the photon wave vector, and in the initial bound stata?(?), P, =|w{®)(w(%)} is the pro-
o=|k|=k ande are the energy and the polarization vector ofjection operator on this statE,iO): Ep, + Ep,, WhereEy,

a photon, respectively. We employ here the Coulomb gaugeyng Ey, are the electron energies in the final continuum state

in which (e-k)=0 and €*-€)=1. The first term in Eq(1) (0) . - .
describes the orbital part of the interaction, while the secon@lff » andH, andH, are the single-particle Hamiltonians
or an electron in the Coulomb field of the nucleus. In Eq.

term accounts for th? spin-dependent contribution. As th 7), the infinitesimal numbee is assumed to be positive. In
result of acting withy on electronic wave functions, the thé coordinate representation, the operaity, of the

operatorp substitutes by the characteristic momenta of theglectron-electron Coulomb interaction is given By,
problem. Near the threshold, the latter are values of the same o/r,,, wherer ;,=|r;—r,|.

order of . It also implies that the process occurs at atomic  |nserting Eqgs.(4)—(7) into Eq. (3), the amplitudeA4 de-
distances of the order of thi€-shell radius. Therefore, the scribing the double photoeffect of the atoniicshell is rep-

second term in Eq(1) can be neglected. resented by the sum of four terms,
In the nonrelativistic approximation, spatial and spin parts
of two-electron wave functions are factorized. For tKe A= 2[ A+ A+ A+ Aql, (8)

shell, the spin function is antisymmetrisingley, while the
spatial function is symmetric. Since in the dipole domain ofwhere
photon energies the electron-photon interaction does not de-

pend on the electron spin, the symmetry of the spin function Aa:<¢p1¢pz| YGc(Ea)Vid ¢1st1s), 9)
is not changed in the ionization process. As a result, the spin .

function can be suppressed throughout the consideration. Ab=<l//pl¢p2|V12Gc(Eb)7| Ui, (10
While the total wave function transforms antisymmetrically

under the interchange of electrons, its spatial gaft;,r,) Ac=<l//p21//pl|:ch(Ec)V12| Vrdns), (11)

remains symmetrical. Consequently, it is sufficient to con-
sider the interaction of an incoming photon with a single -
atomic electron only. The total amplitude of the process takes Ag= (¥, ¥p,|V12Gc(Ep) Y] h1sth1s)- (12

the form ) .
Here G¢(E)=(E—H,) ! denotes the single-particle Cou-

A=2<‘1’f|3/|‘1’i), ) Iomb Green'g function ywth the eryerg?y. In Eqs.(9.)—(12),
the intermediate energies are defined as follows:

where the factor 2 takes into account that both electrons

interact with a photoficompare with Eq(70)]. Ea=2E;— By, (13
The wave functions¥; ; may be derived in first-order E_2E _E 14
perturbation theory with respect to the electron-electron in- ¢ “F1sT Epyp (14
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i ﬁjk Fapu)= [~k
s = e'
[} 1

Y vy, Y $ Vi X(F'|Ge(pa)fL)(f1+ flghs), (19

(a) (®)

% df,

¥ $ Fon= | o Sl ). @

1/’,,2 A * Yis 1/’,,2 T - Yis
" i v " i In Eq. (19), p,=v2mE,+i0 is the momentum of an elec-
o © s p @ s tron in the intermediate state for the diagram in Fig)1In

the momentum representation, the wave function of the 1

FIG. 1. Feynman diagrams for the double ionization of theState can be expressed as follows:
atomicK shell by a single photon. Solid lines denote electrons in
the Coulomb field of the nucleus, the dashed line denotes the . _ 9,
electron-electron Coulomb interaction, and the wavy line denotes (f f|w15>_N15( ,977)<f |Vi’7|f>’ (D)
an incident photon. The line with a heavy dot corresponds to the
Coulomb Green function. For this line, only the energy is con-

served, while the momentum is violated due to the interaction with (f'|V; 7]|f> = 4—77 (22)

a nucleus. Diagramsa) and (c) take into account the electron- (f'—f)°+ 7;2

electron interaction in the initial state, while diagrafig and (d)

account for it in the final state. Here the normalization factdd, is defined byN§S= 7l
and n=maZ. Inserting the expressio(21) into Eq. (20),

Ep=Ep,+Ep,~E1s= 0 +Eys. (15  one finally obtains
. . J
I'I'he Ia(tg)ei relat|(()g; results here from the energy-conservation F(p,,f)= N15< - X)<¢pzlvi)\|f>|)\—77 (23)
aw, E;”’=w+E;~’. We assume also th&s=2I, wherel

= »?/(2m) is the Coulomb potential for single ionization. In .
the double photoionization, a photon energy is distributecf"fter the closure relation for the complete system of plane
between two electrons. As a result, an outgoing electron caf2Veés
have any energy in the range between 0 andl,x . In the
following we shall assume thgb,=p,. Accordingly, the f df If)(f| =1
electron labeled by the index 1 is referred to as the fast one, (2m)3
while the second electron is referred to as the slow one.
The matrix elements given by Eq®)—(12) can be rep- has been used.
resented by the Feynman graphs depicted in Fig. 1. In any The Coulomb continuum wave functions can be repre-
vertex the energy-momentum conservation is supposed to knted as follow$§30]:
valid. The integrations are performed over all intermediate

(24)

momenta. In the momentum representation, the photon ver- 1 d ©+1hdt/ —t\'¢
tex corresponds to the following operator: <'/’p|f>:mNp R f T 1=t
- 1 JVdnma X<p(1_t)|vpt+i8|f>‘8*>0’ (25
(f'yfy=— (e-H)(f"[f+k). (16)
m 2w >
N2 2T
Here the plane-wave states are normalized tiunction in Pl-exp(—2mE)’

the momenta, : . . .
where £= 5/p. The integration contour in Eq25) is a

IE\ — 3orfr_ closed curve enclosing counter-clockwise the points 0 and 1.
{F'lf)=(2m)>a(t" ). (17) After taking the derivative, the parametershould tend to

. . zero. To calculaté- ,f), we make use of the identit
The electron-electron interactidf,, corresponds to the pho- a(Pu.f) y

ton propagatob (f) =4ma/f2, which describes an exchange , NN A ,
of the Coulomb photon. (dp,|f" +K) (e 1) =Np, T, (1) (& D) (M Ve[ '),

Let us derive first the expression for the amplitudg. It (26)
can be written as follows:

where w=vi—k, vi=p(1-t), &=7n/p1, Np,

=exp@&/2)|T(1—i &), andT'=iptV—v 19/ de with V
_ 1 Y4ma o dl being the gradient with respect to In Eq. (26), we have
Aa Fa(p1,f)D(HF(p2,f), (18
m 2w (2m)3 introduced the integral operator
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5 4}(0+ ahdt ig
f(t)__ 1t -

depending on the parameig&mand acting on functions of the
variablet.

With the aid of Egs.(21) and (26), the expressior{19)
takes the following form:

(27)

Jd
Fa(plrf):N &g)
X (K|Vi,Gc(Pa)Vid _f>|§i’5’

N1Ze (1) (e F)(
(28)

whereiv=p;t+ie. Using results of Refd.33,34], the ma-
trix element (28) can be transformed into the one-
dimensional integral:

Fa(py,f)=im Npllezfl(t)(e F)(y—g

1dx
< | S @xma(— Vil 29

| flﬂ 1 (07— (pat A0)2]
(expa=exp 17 xX'AL| X k2= (pa+iv)?
30)
Aa=(pZ— K*X) (1)~ v, (31)

where p,=y2mE,+i0 and &= 7/p,. In Eq. (30), A} is
equal to A, with the substitution ofx by x’. Taking into
account that the energff, of Green’s function is defined
according to Eq(13), we obtaini{,=1/\y2+¢,, wheree,
=E,, /I andl=7’/(2m).

Inserting Eqs(23) and(29) into Eq. (18) and taking into
account the relatiofi30]

f (2(1:)3

|>\|f> <f|VA +|§| KX>

dy
=§f09 Vaq +|)\| KXY), (32
where
Qo= V(A +i1 D%y —(kx)%y(1-y), (33

we find the following expression for the amplitude:
4 5
A =27ma —

J_
Jz_

«Joox] e

13151 )(e- F)a)\ag

)a
M‘; (U Vo -l —rexy). (34

The matrix element, which remains in the integrand of Eq.

(34), can be calculated analytical\80]. Then one obtains
the following compact representation fel; :

PHYSICAL REVIEW A 69, 032703 (2004

N R 1 1
A, =872 gngl(t)fodeOdy(e.F)
P (expa 1 [W,||'2
Xa)\ag A QW (Qa) 2:7]’ (39
e—0
Wa:(KXy+p2)2_(Qa+i)\)2a (36)
Qa=(kXY)? = (pa+Qa+iN)?, (37

where V=N, Ny N3 and &= »/p; (1=1,2). After taking
derivatives in Eq(35), one should sef=\ = 7 and take the
limit e—0.

The amplitudeA,, takes into account the electron-electron
interaction in the final state, i.e., the Coulomb interaction
between the electrons in the continuous spectrum. Usually,
this final-state interaction is either not considered at all or
treated effectively within the framework of some model-
wave functiong18,35. In the first approach, the so-called
independent-electron approximation, one takes the product
of two Coulomb continuum functions as the two-electron
wave function. In the second case, the wave function is con-
structed as a product of even three Coulomb functions of the
continuous spectrum. In the asymptotic nonrelativistic re-
gime (w~ 7), the contribution of the graph in Fig.(d) to
the total amplitude of the process turns out to be of minor
importance and therefore it might be neglected. However, in
the dipole domain of photon energie®@< ), one should
take into account all the graphs together.

Let us represent the amplitud4, in the form analogous
to Eq.(19),

1y df
Ap=rs \/—wJ 2m)? Fu(p1,H)ID(HF(p2.f), (38
df’ df,
Fo(py.f)= 2m)° (2m) <‘/’p1|f' I(F'1Ge(Po)[fr)

X(e-f)(f1—k|is). (39

The matrix elemenE (p,,f) is defined by formulag20) and

(23). Performing similar steps as for the calculation.4f,
we derive

(et —k )

1
(2m)?
=Nysn(e Vi)(fIGc(pp) Vi, k). (40)

Accordingly, Eg.(39) can be cast into the following form:

~ d
Fo(py.f)= anlle:fgl(t)( - a—) (e-Vy)

X(v1+f[Vi,Gc(pp)Vi, k), (42)
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wherev, and v are the same as in Eq&6) and (28). In- Jama
serting the expression&3) and (41) into Eg. (38) and per- A= (47)%a M(e-n)F;+(e-ny)F,], (49
forming the integration ovef, we find V20
i &y
Ama . T - _smmrgl)flg( t ) B
—a.2 =£,(0) . [fi(t)—f,(0)]
Ap=8m‘« \/ZNﬂzgl(t)fo dxfo dy(e-V,) = i ot 1t I I
9 (expp 1 [Wp\|'e2 (1=1,2), (50)
« (exp)p _(_b) , 42
dedN Abe Wb Qb )S\ig 1 1 (92
. fl(t)z—vlfode’Ody&Mg
(exp) 1 (PptAp)?—(kx)? ™ 43
eXp b: v . ’ ! 1 1 W i§2
X (ppt+in)?—k? % iplta—-f——i (EXp)a_ _a) . (50
a2 2 9e | AgQy Wol\ Qg
Ap=\(P5—KX)(1—x)— 77X, (44 |
fo(t)=(n+ipy) tfld fld (&P Xy<W"">I§2
. = i X 2= ,
Qp=Aptpittiely—aiy(i-y), (g 207 TTIPIPE O] G A0 w2 Qa
(52)
Wo=(qy+p2)2— (Qp+iN)2, 46
b= (@Y +P2)" = (fhy ) 49 wheren,=p//p, (I=1,2) are unit vectors of electron mo-
Qu=(qy)2— (po+ Qp+iN)2. (47) menta. The prime at the derivative with respecifoin Eq.

(51) implies that it does not act on the scalar product
(#e-p,), which appears iW, .

Similar expressions can be obtained for other amplitudes.
e contribution corresponding to the graph in Fi¢h)lis

Here g=v;—kx, &=n/py, andp,=+2mE, with Ex=w
—1 being the electron energy in the intermediate state of th(ei_h
diagram in Fig. 1b). The momentum of the electropy

should be understood a§b2+i0 [33]. This choice fixes the given by

branch of the multivalued function, with respect to the [Ama

variablex. Ap=(4m)%a N Nyl(e-n)®y+(e-ny)d,], (53
w

The amplitudes4, and.44 corresponding to the exchange
graphs in Figs. (c) and 1d), respectively, can be derived ) 1 i,
from Eqs.(35) and(42) by interchanging ;= p,. However, ®,= ¢(0)— S'm“_Tgl)J _t( t ) [or(t)— ()]
the resulting expressions appear to be inconvenient for fur- wl ot 11—t
ther numerical calculations. The contour integral over the
variablet depends now on the valu®, which can reach (1=1,2), (54)
very large values whep,—0. Since we have chosgm
=p, and due to the energy-conservation IEWlJr Ep,= @ 1 1 # 9 (expp X [W,)'é
— 1,4, one is faced with the limiting cage,— 0 or, equiva- e1(t)= _”JO dxfo dy=oax 902 Aoy Wb(Q_b) '
lently, £,—0o0. Thus the integrand is a strongly oscillating (55)
function for anyw>1,« . Therefore, it is better to rederive
the expressions fad. and A4 in a more convenient form. 1 1 P (expp Xy [W,| €
From the two contour integrals representing the continuume,(t)= —i(n+ip2)f de dy — —)
wave functions, only that integral is evaluated analytically 0 o “dedh Apfly Wi Qp
which depends on the parameggr The final expressions for (56)
A and A4 will look similar to Egs.(35) and (42).

For numerical integration, it is convenient to transform
the contour integral into an ordinary one according to the?
following relation[36]:

Again d'/dq9? in Eq. (55) indicates that it does not act on the
roduct @-p,) in W, .

The resulting expressions for the exchange amplitudes
corresponding to the Feynman diagrams in Figge) And
1(d) will be given explicitly without derivation. The contri-

j'g(t)f(t)zf(o)— Slnirg)F?(lt t) [f(t)—f(0)]. bution due to the graph in Fig(d) reads
0 —
(48) Vama ~ ~
A= (4m)2a M(e-n)Fi+(eny)Fy],  (57)
The formulas(35) and (42) are still inconvenient for direct \/Z

numerical computations because of the presence of the op- L ) 5 it,
erator €- V). Although the expressions become somewhat (t)=—v ﬂf dxj dy 9" (eXpe Xy (%)
more complicated, the vector differentiation should be per- * Yo o NGl Ao WeQc | Qe)
formed analytically. With the aid of Eq48), we obtain (58
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- 1 1 (exp). [ W, '€ part of the electron-photon interacti¢h). The spin operator
fa(t)= dx| d NI QW (Q_) transforms the antisymmetric spin function into the symmet-
0 0 W \ e ric triplet function. Therefore, the second term in Ed@)
(59) leads to transitions into the final triplet state. As a conse-
2 o Tiée guence, the symmetry of the spatial part of the wave function
(exp) = E (xyv1)"—(Pct+Ac) (60) is also changed, i.e., it becomes antisymmetric. The expres-
¢ Ix (Yyu1)2— (Pt Qc+id)?] sion for the transition amplitude into the triplet state looks as
follows:
A=V (PE— Xy (1-X)+X(Qe+i)?,  (61)
- i Vi4ma
Q= V(pst+in)Zy—viy(1-y), (62) AnTom e
W= (k+po)*— (Actie)?, (63) X[k,€] (x1,¥il( 18"+ 0y (12 xg;)
_" ; i VAma .
Qc=r?—(pat+Actie) (64) PEPTVL ] i (K 19 .
¢ ¢ ( 1) m \/Z [k!e]—;L<\I,f|e ! |'\I/|> (70)

Here k=xyv,—k, vy=pi(1-t), i&=in/p.=12+¢,

=1/Jo—e,, andp.=y2mE:+i0 together with the energy Herey, is the spin function of the initial two-electron singlet
E. as given by Eq(14). The functionsF, in Eq. (57) are  state with zero total spirx,, is the spin function of the final
defined analogous B, in Eqg. (50) with the replacement of triplet state characterized by the total spin equal to 1 and the

f, by f (1=1,2). spin projectionu relative to a quantization axis. The spatial
The amplitude corresponding to the Feynman diagram iart of the wave function{= q,%O)Tqu,gl)t is now antisym-
Fig. 1(d) is determined by the following formulas: metric. In zeroth approximation, it looks as follows

N 1
.Ad:(417')2a ,—2 N??[(e nl)q)l“l‘ e- n2 2] (65) q’go)t(rl,rz): —\/E[lﬂpl(rl)lﬂpz(rz)_(ﬂpl(rz) ¢p2(rl)]
(71

;(t):dexfd _ _ o
' Yo 0 Yiean The first-order correction?{"" to the wave function is de-
fined by an expression similar to E,), where the function

2in ~ .| (expp Xy (Wd)igz (0 s substituted by (Ot
X414+ —=[T+pa+(ny —| = f -
Qd [ p2 ( 2 q)]} Ach W2

p Qq Introducing the unit vecton,=k/k, we obtain
(66)
ik V4 .
. Al =aZ— [n,,e]*(Wie®nw,)
- 1d ld P (expp X [Wq)'® a U \/2_
¢2(t)—_|(7]+|p2)jo XJ'O y&s&)\ Ach W2 Qd ’ Ik
(67) =5[ny,e]“At, (72)
Wy=(q+p)?—T?, (68)
A'=V2[ AL+ AL - A— Agl. (73
Qu=0°—(T+p2)?, (69)

In Eq. (73), we write down explicitly the individual con-
together withT=A,+Q.+ie, g=yv;—xk, andv,=p,(1 tributions for the amplitude of the singlet-triplet transition,
—1). After the derivatives with respect t, N, ande are  Which result for graphs in Figs.(d—-1(d), respectively. As
performed, one should sét=\ = 5 and should take the limit can be seen from Eg70), in the case of a transition into the
e—0 at the end. The functio®, in Eq. (65) looks similar to  triplet state the photon vertex does not contain a factor
the function®, in Eq. (54) with the substitution ofp, by (e-f). Let us present the final formulas for the amplitudes

(1=1,2).
Al=(47)%a 477&./\/':
Ill. THE AMPLITUDE OF DOUBLE PHOTOIONIZATION a V2w '
IN THE ASYMPTOTIC DOMAIN
OF PHOTON ENERGIES e (exp), 1 Wa i£

The asymptotic domain of photon energiesis charac- - _Igl(t) dX dya INIL A, Wo| Q) [A=7
terized by the conditioh,x < w<<m, wherew~ 7. For those &
energies of a photon, one cannot neglect the spin-dependent (74

032703-6



NONRELATIVISTIC DOUBLE PHOTOEFFECT ONK-. ..

\/47TaNq),
N

3

Al=(47)%a

EIfl fdxf dy

W, ié&
)\=7],
e—0

Qb
(75

P

(expp 1
(980")\(97] Abe Wb

Ao

N

-A/FY

=(4m)%a

——Igl(t)j dxf dy———

@ (exp. 1 2

eINIL A W,

We
Qc

wloy

A
4
&

Al=(47)%a

o f,x), o w0l g

All quantities are similar to those defined in Sec. Il. The
partial derivatived/dn does not act org, and &,. The for-

mulas for the transition into the final singlet state, which
were derived in Sec. Il in the dipole energy regime, are als
valid in the asymptotical domain, because they are derive
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(77)
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whereL =[r,p] is the operator of the orbital angular momen-
tum. For convenience we shall work in the coordinate repre-
sentation. Assuming that theandy axes are directed along

the vectorsk and e, respectively, the operatd} preserves

only its component., relative to thez axis. Then the orbital
part of the magnetic dipole transition amplitude correspond-
ing to the graph in Fig. (B) reads

ik VAma

2m

(kel-(L+0)), (78)

f drdrldrzwp (NL,Ge(r,r;Ew)
1

T U, (1) Y1s(11) P14(12). (79
12

The wave function of the ejected electron can be written
in terms of the partial-wave decompositipf0],

where g|(p) are the phase shifts of the radial functidRys .
The latter are orthogonal and normalized according to

P

p

(1) = —2 i'e 1R mE Y.m( ) (

(80)

fomdrrsz/,(r)Rp,(r)z2775(p’—p). (81)

he wave functiong80) are normalized according to the
condition

without performing an expansion with respect to the photon

momentum.

IV. THE MAGNETIC DIPOLE TRANSITION
AMPLITUDE VANISHES

In Secs. Il and 1ll, we have derived nonrelativistic expres-

sions for amplitudes of the doubléshell photoeffect with a
complete dependence upon the photon momerkuin the

J dry (NN =(2m)*s(p’' —p), (82

which is usual for the continuous spectrum. The spherical

functionsY,,(n) are eigenfunctions of the operaif){.
The Coulomb Green’s function reads

* !
electric dipole approximation, one sé¢s 0 in Eq.(1). Go- Gc(”'iEa)ZJ dp lﬁp(f)lﬂp(r ) (83
ing beyond the dipole approximation means to retain at least (2m?® Ea—Ep
the first k-dependent term in the expansion akp()=1
+i(k-r)—---, which has a relative smallness of the order of »dp Rpi(NRpi(r”)
k/ 7 in the near-threshold domain. Thék-r) term gives rise = fo 27 <) ?Ep
to magnetic dipole and electric quadrupole transition ampli-
tudes. Due to the interference between the electric dipole and r r’
the electric quadrupole amplitudes in differential double- X 2 Y|m(—> . —,) , (84
photoionization cross sections, the nondipole effect turns out m ' r

to be of the same order dd%. In the case of the single
photoeffect the magnetic dipole amplitude is known to give a
vanishing contribution within the framework of the nonrela-
tivistic description, due to the orthogonality of bound and

where the summation over the discrete spectrum is also as-
sumed. The partial-wave decomposition of Green’s function
1/r 4, for the scalar Laplace equation is given by

continuum wave function$37—-39. Below we shall show o |
that a similar result is also valid for the douldeshell photo- i=4w2 1 < E v (r_l) * (r_'é‘) (85)
ionization. M2 b (20+1) (R M) M)
The magnetic dipole transition is caused by the following
interaction[37]: wherer - =min{ry,r,} andr - =maxry,ro}.
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With the aid of the normalization conditiof81) and the
expansiong80), (84), and(85), the expressio79) takes the
form

ik VAma (2m)® g (-1)
m 20 PPz =1 (21+1)
i 11(P1,P2) (pl) (pz)
x @llda(P1)+o1(pr)] =" "<7 Y, | —=|Y* | =<,
am plgﬂ 'l py) el by
(86)
The radial integral,(p1,p,), which is defined as
(2.p2)= | drardarr iR, )Ry (1)
|
I’.<
Xr|_+1¢15(r1)¢15(r2), (87
>

is symmetrical, i.e.l,(p1,p2) =1(P2.,P1)-

The orbital part of the magnetic dipole transition ampli-

tude corresponding to the exchange diagram in Fig) i&
derived in a similar manner. It reads

E\/47Ta 2m® & (-1
m 2w PiP2 =1 (21+1)

i 11(p2,P1) P2 P1
e8P +8(pp)) 1221 % x L)
¢ Ep, % HTkl p, P2 o P1
(88)
Taking into account thet,— Ep,=Ec—Ep,=-w and using

the following property of the spherical function¥;,
=(—1)"Y, _n, one can see that the amplitudess) and

PHYSICAL REVIEW A 69, 032703 (2004

With the aid of the representation of Green’s function analo-
gous to Eq.(83) and the normalization conditio(82), the
expression89) takes the form

i V4T«
ﬁﬁ([k,e}ﬂ)f

df,  (¥plf1)
(277)3 Ea— EP1<

11+ fl ).
(90

The spin-dependent magnetic dipole contribution corre-
sponding to the graph in Fig.(ld) can be written as

i Ama
2m\/_

di' (P lf'—1)
ke | e

(t'[ 1)
(91

Taking into account thaEa—Ep1= Eis— Ep=—w, one can

see that the contributions given by E¢80) and(91) cancel
each other. The same occurs for the exchange diagrams in
Figs. 1c) and Xd), respectively.

Concluding, we have shown that the magnetic dipole tran-
sition amplitude describing the doubléshell photoioniza-
tion vanishes within the framework of the nonrelativistic
consideration. In addition, since the spin operator changes
the symmetry of spin functions in the initial and final elec-
tron states, the orbital contribution does not interfere with
that corresponding to the spin-dependent term in(EQg.As
a result, the singlet-triplet transition turns out to be sup-
pressed by a factor of abokf/z* in cross sections of the
process in the near-threshold domain. The derivation pre-
sented can be easily generalized for any sind& state.

V. DIFFERENTIAL AND TOTAL CROSS SECTIONS
FOR THE DOUBLE PHOTOIONIZATION

The basic quantity for describing the process under inves-
tigation is the fivefold differential cross sectidAo* *, from

(88) cancel each other. The cancellation of amplitudes dewhich all the angular and energy distributions for photoelec-
scribing the absorption of the right- and left-polarized pho-trons can be derived. The cross sections should be summed

tons, which correspond to the matrix elements of the operadver the final states of the system:

torsL. = thlL can be proven in a similar manner. The
orbital part of the magnetic dipole contribution vanishes also dp;
in the separate graphs in Figgbland Xd). This is easy to d°c" =27 |A|2+§ |J4;L|2 —(277)3
verify, because the operatbrof the orbital angular momen-
tum results in differentiations with respect to angles, while dp,
the ground-state functiot, is independent of angles. X?5(Epl+ Ep, T l2k— o)
Let us consider the magnetic-dipole transition amplitude, (2m)
which is caused by the spin-dependent term of the interaction m2p,p K2
(78). Since the matrix elemem(p,,f) is the same in ampli- ! 2‘ | A _2|J4t|2 dQ,dQ,dE, ,
tudes corresponding to graphs in Figga)land ib) [see (2m)° 7 ?

Egs.(18) and(38)], it is sufficient to evaluate the following
matrix element:

i VAT« df’
%ﬁ([k,e]ﬁ)f 2m)? (2m )3<¢/p1| ")

X(f'|Ge(Ea) [f1)(f1+ 1)

(92

where A and A' are defined by Eq¥8) and (73), respec-
tively. It should be noted that the second term in E39) is
independent of the photon polarization.
For convenience we introduce dimensionless amplitudes,
(89 £ and !, according to the following relation:
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k2 alN? do™t 2V7q
| A2+ — | AY2=(4m)® :
4y w

e azh, 97

2
2 k_ 12
|/J|+4|/j| )
(93

7712

All momenta on the right-hand side of E@3) are supposed G(gz,gy;k)Zifwd 6,sin eljwd 0,sin GZJdeo
to be expressed in units oj=maZ. For example, the di- 4mx Jo 0 0
mensionless momentum of a photonkis k/ . Introducing 2 2ci
as well dimensionless energies for the incoming photon, X{IF[sirt6,+ | 75l *sir 0,
=wl/l, and for both outgoing electrons,=E, /I (1=1,2), + 2R F1.F5 )sin 61Sin 6,c0s¢}, (989
wherel = %%/(2m), one obtains
whereoy= awaé. Due to a complicated dependence of the
k? amplitudes upon the angles, the further integrations in Eq.
|£|2+Z|£t|2]d91d92d82- (94 (98) can be performed only numerically.
We denote the total energy of both outgoing electrons as
g=g,+&,=¢e,—2. The double-photoionization threshold
: ~ corresponds to the photon energty:Z. To obtain the total
(1=12), L'=F+d®—-F—-®, and a,=1/(ma) denotes ross section, Eq97) should be further integrated over the
the Bohr radius. In Eq(94), the factory is given by  gnergys, from 0 tos/2 (or, equivalently, over the energy
x=[1—exp(=2mn)]|[1-exp(-277)], where 71=1/\e1  from &/ to 2):
=1/\e,—&,—2 and m,=1/\Je,. It is interesting to note

7 2
d50_++:

-7
Z4sy)(

Here L=(e-n)Fit(eny)F, F=F+®+F+d,

that the amplitude£ and £ ' being expressed in terms of the 210,
dimensionless quantities, such as energies and momenta, o (e,;k)=0y 2 Qe k), (99
now depend on the nuclear charge numbetia the photon 3z

momentumk= aZe /2, which serves as a quantitative mea-

sure of the nondipolarity. The latter is due to the mutual o L(er )

interplay between two input parameteZsande . Qley k)= e,)o de,Glez,8,:k). (100
In the following, we shall restrict to the dipole domain of

photon energies, where the contribution of the second termin | the dipole approximationk=0), the amplitudesr;

brackets of Eq(94) can be neglected. However, we keep aandr, depend only on the angl, via cos;,. In this case

complete dependence upon the vedtdn the amplitudel.  the expressiort98) can be further simplified to
This allows us to go beyond the dipole approximation and to

calculate a contribution to differential and total cross sections w

of the process arising from the photon momentum in the G(82!87;0):j dO58in 01| F 1| ?+]F5|?

dipole regime. In the case of unpolarized photons, the aver- 0

aging of the cross sectio®4) over the polarizations of the + 2R F1.F5 ) Cc0SH15}. (101

incoming photon results in a replacement| 6> by

- ) ] Moreover, the quantit@(e,;0) becomes independent &f

| L2=3{| F1|?sinf 01+ | F | *sir? 6, + 2Re( F1. 75 ) The same holds true for the whole helium isoelectronic se-

(95) quence. Accordingly, up to leading order of the expansion
over 1Z the producZ*c" " does not depend ahwithin the

where ¢; are angles between the vectérsandp; (i=1,2). dipole approximation only. The corresponding expression for
The angled,, is that enclosed by the vectops andp,. the_cross'sectlomr*. of the singleK-shell photoionization
The energy distribution of the emitted electrons can bederived without taking into account the electron-electron in-
found after integration of Eq94) over the angles. The de- teraction is well knowri31]:
pendence of the amplitude’ (1=1,2) upon the azimuthal
angle results only through the function as=cosé,cosé,
+sin #;sin 6,cos(p,— ¢1). One may introduce a relative angle
¢=@,— @1 instead of the angle,. This eliminates all de-
pendence orp; and leads to a factor72 after the angular 1
integration. Thend(,dQ,= 2 sin #;,d#;Sin §,dO,de. The H(e,: :i exp(— 47 cot T)'
angle ¢ varies from 0 to 2r. However, it is easy to verify 7 el [1—exp—2m7)]
that the relation

X (cosf,— €c0S0,C0S05)},

10

0'+(87;0):0'0

72 1200 (102

(103

wherer=1/\e ,— 1. The rigorous QED calculations of cross
o7 sections describing the single photoionization and the single
def(cosdyy) ZJO def(cosdy) (96) ionization with excitation in the next-to-leading order of per-
turbation theory in 1 are presently not available. The ratio
holds for any functionf(cosé,,). Accordingly, the energy R of double-to-single ionization cross sections, which is usu-
distribution simplifies to ally measured experimentally, is given by

2m
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FIG. 3. Different contributions to the universal raﬂBR(sy) of

FIG. 2. The universal quantitZ*c™ " is calculated in dipole double-to-single photoionization cross sections calculated in Cou-
approximation as a function of the scaled excess en&rgE,, lomb gauge fork=0 according to Eq(104). Dashed line, contri-
+Ep,. Numerical results for He, [, and G have been obtained bution due to the Feynman diagrams in Fig&) Jand 1c) only;
by Kheifets and Bray within the framework of the convergent close-Solid line, total contribution of all diagrams.
coupling formalism using the 20-parameter Hylleraas ground-state

wave functiong19]. is valid for moderate values &= 2 [41]. Accounting for the
electron-electron interaction to the final state results in sig-
t*(e,:0) 1 Q(s,; nificar_1t qorrt_actions to the total cross section of th_e double
R(e,)=— =~ 2 H(e. 0 (104  photoionization. However, the individual contributions of
o' (e,;0) Z (e4;0) each diagram are gauge dependent. Note also that the

) ) 5 o ~ maxima of the curveZ*c™ " andZ?¢* */o" peak at dif-
The universal scalmg_ for“R(e ) appears again in leading ferent values of the photon energy,. The curveZ4ott
order of the perturbation theory with respect to the paramet€logches its maximum at about,~2.5, while the ratio

1/, if one setsk=0 only. Z%0""/o" becomes extremal at abotii=4 (see Fig. 3
In Ref.[41], our numerical results for the rat®given by
VI. NUMERICAL RESULTS AND DISCUSSION Eqg. (104 have been compared with most recent measure-

ments performed for the ratio in heliupd—6]. Accounting

In the evaluation of matrix elements, differentiations in- for electron-electron interaction correctionsad as well as
volved have been performed analytically with the aid of theaccounting for the single photoionization with excitation turn
computer algebra systemmTHEMATICA . For subsequent nu- out to be more essential than accounting for two-photon ex-
merical integrations, the standard Gauss-Kronrod method hahange graphs te* *. The fast convergence of the pertur-
been employed. To achieve stable results, some of the intdation theory over Z in entire nonrelativistic domain is
grals over the intervdl0,1] were performed along different connected with the smallness of coefficients of the expan-
contours, such as ellipse, semiellipse, or semicircle, in theion, which accelerates the convergence for any small value
complex plane. In the case of equal electron momenta, thef Z=2. One can also mention here similar example from
contributions from both direct and exchange FeynmarQCD, where the expansion overNLY for the number of
graphs coincide with each other, although their functionalquark colorsN.=3 is known to converge by an order of
dependences seem to be different. Assuminerp,, we  magnitude due to appearance of the additional factar 1/
made these additional cross-checks of the quality of the nu42].
merical integrations. In Fig. 4, the energy distributions are presented for heli-

In Fig. 2, we compare the universal quant#§o"* ob-  umlike molybdenum with respect to the energy of one of the
tained in dipole approximation with numerical results of Ref.outgoing electrons, without distinguishing between fast and
[19]. As can be seen, the curves lie relatively close to eaclslow particles. In each event of the double photoionization,
other, although they are not identical. The contributions tdboth electrons, the fast and the slow one, leave an atom pair-
ot due to the two-photon exchange graphs turn out to bevise. In virtue of the energy-conservation law, the excess
relatively small. It should be noted that the curves forenergye is fixed by the energy, of the incident photon,
Z%** calculated by Kheifets and Brgy9] show a slight taking into account the reduction by the ionization energy.
dependence o# even in the dipole approximation. This oc- Furthermore, the number of slow electrons is equal to the
curs because of the necessity to take into account next-taumber of fast electrons. These two circumstances lead to
leading order termé&n the sense of perturbation thepgnd  the symmetry of the energy distributions relative to the cen-
in order to adjust the threshold energies for each particulater point ¢/2 of the energy interval. Since the double-
ion. In Fig. 3, the universal ratiZZR(sy) is depicted, which  photoionization cross section is quite close to its maximum
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FIG. 4. The energy distributions are calculated for heliumlike

molybdenum with respect to the energy of one of the ejected elec- FIG. 6. The angular distributions of slow electrons are calcu-
trons. The energy parametef is eithere; or ¢,, taking into ac- lated for heliumlike molybdenum within the dipole approximation.

count that one does not distinguish between fast and slow electron§h€ angled, is that between the vectoksandp,, andd(}; is the
The curves are obtained within the dipole approximation and besolid angle of slow electrons. The normalization factoris the
yond. The normalization coefficient is given By=o,/Z*, where  Same as in Fig. 4.

0o=ama5=0.642 Mb withag=1/(ma) being the Bohr radius. o
for the fast and slow electrons, calculated for heliumlike

at the photon energy,=2.4, the energy distribution of the N€oN and calcium with taking into account the complete de-
emitted electrons lies in this case higher than thaeat Pendence upon the photon momentum corresponding to the
=2.8 (see Fig. 4 In addition, the energy dependence turns€nergys,=8. The results are compared with those obtained
out to be rather weak in the vicinity of the double- Within the dipole approximation. As a limiting case, we have
photoionization threshold. The comparable contributions tcSO calculated the angular distributions for heliumlike mo-
the cross section arise from the emission of electrons wittybdenum[see Figs. 5-B The photon energies have been
arbitrary energy sharing. However, increasing the photon er¢hosen to be,=2.4 ande ,=2.8, which correspond to pho-
ergy ¢, further, it becomes distributed very nonuniformly ton momentak=0.37 andk=0.43, respectively. Although
among the outgoing electrofé3], although employment of the accuracy of our calculat|0n§ in l@P(J)’ can k?e estlm.ated.
the dipole approximation may be still adequate. to be of about 10% due to relativistic corrections omitted in

In Ref. [43], we have presented the angular distributions

25 — T T T T T T 1
T T T T T
20
15 q—'
Q}” 3
g N
I «
«C 10 .
=S % 10
Py S
=
5 5
L 1 " 1 L 1 " 1 L 1 "
PR TR S T S 0 1/6 1/3 1/2 2/3 5/6 1

0 1/6 1/3 172 2/3 5/6 1 01 /7

6 /=x

FIG. 7. The angular distributions of fast electrons are calculated
FIG. 5. The angular distributions of fast electrons are calculatedor heliumlike molybdenum beyond the dipole approximation. The
for heliumlike molybdenum within the dipole approximation. The momentumk of an incoming photon is determined by the chosen
normalization factoA is the same as in Fig. 4. The angleis that  photon energy ,=2.4 ore,=2.8 and the nuclear charge number
between the vectork andp;, andd{), is the solid angle of fast Z=42 according tok=aZe /2. The notations are the same as in

electrons. Fig. 5.
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FIG. 8. The angular distributions of slow electrons are calcu-  F|G. 9. A comparison between the theoretical and experimental
lated for heliumlike molybdenum beyond the dipole approximation.atios of double-to-singl&-shell photoionization cross sections in

The notations are the same as in Fig. 6. neutral calcium. Experimental data are taken from Gatral. [14].

the present investigation, the nondipole effects become herg¢,=0 and #,=, or ;=7 and 6,=0) is forbidden. This
much more pronounced already in the vicinity of the double-can be seen directly from the relati@®6), which vanishes in
ionization threshold. these particular cases. Note that for the single photoeffect,
Within the dipole approximation, the angular distributionsthe electron emission in forward and backward directions
for both ejected electrons are symmetric with respect to theannot occur within the framework of the nonrelativistic de-
plane perpendicular to the photon beam. Although the photoscription.
momentumk is completely neglected within the dipole ap-  Considering doublé&-shell photoionization in neutral at-
proximation, the polarization vect@ defines a distinguish- oms, the wave functions and Green’s functions possess es-
ing direction for the preferred ejection of electrons. Thesentially a non-Coulomb behavior. Accordingly, numerical
curves become asymmetrical, if one accounts for a nonzercalculations require the use of the Hartree-Fock method al-
momentum of the incident photon. The nondipole terms giveready in zeroth approximation. Formally, the screening effect
rise to positive(negative contributions to the cross section can be simulated by replacing the true nuclear charge num-
for the electron emission in forwartbackward direction.  berZ in Eq. (104) by an effective valu& ;. The latter can
Accordingly, both electrons are preferably ejected in the forbe defined by equating the experimental potenitfsf* for
ward hemisphered , 6,< w/2). Moreover, in double photo- single K-shell ionization and the effective one, that i§®
ionization, the electrons can leave an atom in forward and=m(aZ.4)?/2. In Table |, we present a comparison of our
backward directions relative to the incident photon. Neverpredictions for neutral atoms with available experimental
theless, a simultaneous ejection of both electrons along theéata. The significant disagreement for the nickel atom seems
direction of the photon beam9(=6,=0, or8,=6,=, or  to be just due to high uncertainties of the results, both theo-

TABLE I. For various neutral atoms, the nuclear charge numBethe experimental energies of an
incident photon, the experimental potentiaf$ for single K-shell ionization[44], dimensionless photon
energies ,, effective value< for the nuclear charge, and the theoretical and experimental Riog of
double-to-singlék-shell ionization cross sections are tabulated. The photon enesgies calibrated in units
of the experimental ionization potentid&®. The theoretical ratioR(e,) are calculated using the effective
valuesZ according to Eq(104).

Neutral 1) | expt R(e,)

atom V4 (keV) (keV) e, Z s This work Experiment Reference
Ne 10 5 087 5.75 8.0 0.281072  0.32(4)x10°2 [13]

Ti 22 17.4 497 350 19.11 0.%110°° 0.53x10°3 [10]

Cr 24 17.4 599 290 2098 0.870° 0.38x10°° [10]

Fe 26 17.4 712 244 2288 0230° 0.24x 1073 [10]

Ni 28 17.4 834 209 2476 05104 1.1x10°4 [10]

Cu 29 20 899 222 2570 a0 1.3(3)x10°4 [12]

Mo 42 50 20.01 250 3835 0.8710°4 3.4(6)x10™* [11]
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retical and experimental. The ratR(e,) here is extremely spect to the parameterZLshows a fast convergence in the
sensitive to the photon energy, because the latter is vergntire nonrelativistic domain foZ=2. The electric dipole
close to the threshold energy. It should be noted that thapproximation can become inadequate for the description of
experimental uncertainty in Ni has been estimated to be ofngular distributions in a quite wide domain of nonrelativis-
about 30%[10]. In the case of molybdenum, the deviation tic photon energies. Because of a nonzero photon momen-
may be connected with relativistic effects, for example, withtum, the number of electrons leaving an atom in the forward
the spin-orbit interaction, which have been neglected in thelirection with respect to the photon beam becomes larger
present consideration. Another possible explanation might bthan the number of electrons ejected in backward direction.
higher error bars rather than those quoted in REf]. From  Going beyond the leading-order consideration requires a rig-
the comparison with the measurements performed on Ca, Tarous QED treatment.
and V in Ref.[14] one can see that theoretical calculations
underestimate the corresponding experimental curves. The
discrepancies exceed the experimental uncertainties and in-
crease up to about 30% beyond the maxima of photoioniza- We thank S.H. Southworth and M. Oura for useful com-
tion double-to-single ratios. The reason for this so far is unmunications. A.l.M. is grateful to the Dresden University of
clear. The satisfactory agreement has been found only in théechnology for its hospitality and to DFG for financial sup-
case of Ca just above the threshé¢ége Fig. 9. port. G.S. and G.P. acknowledge financial support from
Concluding, we have investigated the douldeshell BMBF, DFG, and GSI. A.LLM., LAM., ANN.M., and A.V.N.
photoionization for heliumlike ions and neutral atoms with are supported by RFBRGrants No. 01-02-17246 and No.
moderateZ values, taking into account the leading orders 0f00-15-96610. A.V.N. acknowledges support from the Alex-
1/Z and aZ expansions. QED perturbation theory with re- ander von Humboldt Foundation.
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