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Nonrelativistic double photoeffect onK-shell electrons
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We investigate the doubleK-shell ionization of heliumlike ions caused by the absorption of a single photon
with energies being much smaller than the rest energy of an electron. In the near-threshold region, differential
and total cross sections of the process are calculated for light ions, taking into account the leading orders of the
1/Z andaZ expansions. QED perturbation theory with respect to the parameter 1/Z exhibits a fast convergence
in the entire nonrelativistic domain for moderate nuclear charge numbersZ>2. Going beyond the electric
dipole approximation leads to a forward/backward asymmetry in the angular distributions for the ejected
electrons with respect to the incident photon beam. A comparison of theoretical predictions for the ratio of
double-to-single photoionization cross sections with available experimental data for a number of neutral atoms
is also presented.
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I. INTRODUCTION

In studies of electron correlations in atoms, the most
tractive processes are those in which the electron-elec
interaction plays the crucial role. One of such fundamen
phenomena is the double photoionization of an atom cau
by the absorption of a single photon, the so-called dou
photoeffect, which has been investigated for more than
years@1–3#. Since a photon interacts only with a single ele
tron, the simultaneous ejection of two electrons is exc
sively caused by the electron-electron interaction. Acco
ingly, electron correlations show up here most clearly.

So far the experiments have been mainly performed w
helium, the simplest many-electron atomic system. The
jority of investigations concerns the energy dependence
the ratioR of double-to-single photoionization cross sectio
@4–6#. With increasing photon energyv, the ratioR grows
rapidly beyond the ionization threshold. Then, after havin
maximum near the threshold, it declines slowly approach
the constant limit of 1.72(12)%@7# in the asymptotic domain
of nonrelativistic photon energies being much larger than
threshold energyI 2K for double ionization from theK shell,
that is, I 2K!v!m, where m is the electron mass (\5c
51). Although a fair agreement between theory and exp
mental data has been achieved within a wide range of ph
energies@8#, one of the most frequent problems in theoretic
descriptions of the double photoionization is the gauge
pendence of numerical results@9#.

Atomic targets with nuclear charge numberZ>3 have
been investigated much less thoroughly. In Ref.@10#, cross
sectionss11 for doubleK-shell photoionization were mea
sured for a few elements within the range 22<Z<28 and for
photon energies somewhat above the threshold. Recen
velopments of novel synchrotron radiation sources allow
to perform experiments with intense collimated beams
tunable monochromatic x rays in the keV regime. Measu
ments of the ratioR of double-to-singleK-vacancy produc-
tion by photon impact have been reported for Mo@11#, Cu
@12#, and Ne@13# at various photon energies as well as f
Ca, Ti, and V in the energy range of 8–35 keV@14#. This
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represents a challenge to theoretical investigations of
process in the entire nonrelativistic domain, both for pho
energiesv!m and for targets with moderate values
nuclear charge numbersZ. In Refs.@15–17#, a Z-scaling law
was suggested for the ratioR of double-to-single photoion-
ization cross sections in the asymptotic energy regime,I 2K
!v!m. For the energy domain near the threshold,v
.I 2K , ab initio calculations are presently not available. T
compare with the experiment, one usually employs a mo
estimate of the two-electron photoejection cross sections11

obtained by Kornberg and Miraglia@18#, which however
strongly disagrees with existing experimental data. Num
cal calculations ofZ4s11 for He, Li1, and O61 have been
also performed within the framework of the converge
close-coupling model@19#.

Another direction of present investigations concerns
angular distributions of atomic photoelectrons beyond
dipole approximation. However, until now these studies ha
been limited to single photoionization only@20–29#. Beyond
the dipole approximation, the reflection symmetry of angu
distributions with respect to the plane perpendicular to
light beam is violated@30#. We shall show that there exists
rather wide domain of nonrelativistic photon energies, wh
nondipole effects become also important in the case
doubleK-shell ionization. The cross sections of the proce
turn out to be rather sensitive to the explicit electron-pho
interaction.

In the present paper, we employ the perturbation the
with respect to the electron-electron interaction. As a zer
approximation, Coulomb wave functions and Coulom
Green’s functions are utilized. The study is performed
photon energies much smaller than the electron rest ene
Accordingly, all electrons involved in the ionization proce
are considered as being nonrelativistic. This implies
smallness of the Coulomb parameter, that is,aZ!1, where
a5e2 is the fine-structure constant. However, the nucl
charge numberZ is supposed to be high enough to utilize 1Z
as expansion parameter. The accuracy of our results is
stricted by higher-order terms of order 1/Z2 and (aZ)2,
which are omitted in the present investigation. A similar a
©2004 The American Physical Society03-1
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proach has been already used in the asymptotic part of
nonrelativistic domain,I 2K!v!m, where all formulas can
be significantly simplified@15#. In contrast to Ref.@15#, we
consider the entire nonrelativistic domain of incident pho
energies with special emphasis on the threshold region.
results obtained are applicable for heliumlike ions with
<Z<35 andI 2K<v<150 keV. SinceK-shell electrons are
essentially separated from the other electrons in an atom
turns out that our formulas also describe fairly well t
doubleK-shell ionization in the case of light neutral atom

II. THE AMPLITUDE OF DOUBLE PHOTOIONIZATION
IN THE DIPOLE DOMAIN OF PHOTON ENERGIES

The domain of photon energies near the threshold
double photoionization corresponds to the dipole regi
characterized byv!h, whereh5maZ is the average mo
mentum of aK-shell electron. Neglecting terms of the ord
of (aZ)2, the operator describing the interaction betwee
photon and an electron reads@31#

ĝ52
e

m

A4p

A2v
H ~e•p̂!1

i

2
~e•@s,k# !J ei (k•r), ~1!

where p̂ is the momentum operator of an electron,s is the
vector of the Pauli matrices,k is the photon wave vector, an
v5uku5k ande are the energy and the polarization vector
a photon, respectively. We employ here the Coulomb gau
in which (e•k)50 and (e* •e)51. The first term in Eq.~1!
describes the orbital part of the interaction, while the sec
term accounts for the spin-dependent contribution. As
result of acting withĝ on electronic wave functions, th
operatorp̂ substitutes by the characteristic momenta of
problem. Near the threshold, the latter are values of the s
order ofh. It also implies that the process occurs at atom
distances of the order of theK-shell radius. Therefore, th
second term in Eq.~1! can be neglected.

In the nonrelativistic approximation, spatial and spin pa
of two-electron wave functions are factorized. For theK
shell, the spin function is antisymmetric~singlet!, while the
spatial function is symmetric. Since in the dipole domain
photon energies the electron-photon interaction does not
pend on the electron spin, the symmetry of the spin funct
is not changed in the ionization process. As a result, the
function can be suppressed throughout the considera
While the total wave function transforms antisymmetrica
under the interchange of electrons, its spatial partC(r1 ,r2)
remains symmetrical. Consequently, it is sufficient to co
sider the interaction of an incoming photon with a sing
atomic electron only. The total amplitude of the process ta
the form

A52^C f uĝuC i&, ~2!

where the factor 2 takes into account that both electr
interact with a photon@compare with Eq.~70!#.

The wave functionsC i , f may be derived in first-orde
perturbation theory with respect to the electron-electron
03270
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teraction, i.e.,C i , f.C i , f
(0)1C i , f

(1) . Accordingly, due to the

one-particle character of the operatorĝ, one obtains

A52^C f
(0)uĝuC i

(1)&12^C f
(1)uĝuC i

(0)&. ~3!

As a zeroth approximation, we shall utilize the singl
particle approximation in the Coulomb field of the nucle
~Furry picture!:

C i
(0)~r1 ,r2!5c1s~r1!c1s~r2!, ~4!

C f
(0)~r1 ,r2!5

1

A2
@cp1

~r1!cp2
~r2!1cp1

~r2!cp2
~r1!#.

~5!

Here p1 and p2 are the momenta of escaping electrons
infinity. The first-order corrections to the wave functions a
found from the following equations@32#:

C i
(1)~r1 ,r2!5~Ei

(0)2H12H2!21~12Pi !V12C i
(0)~r1 ,r2!,

~6!

C f
(1)~r1 ,r2!5~Ef

(0)2H12H21 i e!21V12C f
(0)~r1 ,r2!.

~7!

HereEi
(0)52E1s with E1s being the single-electron energie

in the initial bound stateC i
(0) , Pi5uC i

(0)&^C i
(0)u is the pro-

jection operator on this state,Ef
(0)5Ep1

1Ep2
, where Ep1

andEp2
are the electron energies in the final continuum st

C f
(0) , and H1 and H2 are the single-particle Hamiltonian

for an electron in the Coulomb field of the nucleus. In E
~7!, the infinitesimal numbere is assumed to be positive. I
the coordinate representation, the operatorV12 of the
electron-electron Coulomb interaction is given byV12
5a/r 12, wherer 125ur12r2u.

Inserting Eqs.~4!–~7! into Eq. ~3!, the amplitudeA de-
scribing the double photoeffect of the atomicK shell is rep-
resented by the sum of four terms,

A5A2@Aa1Ab1Ac1Ad#, ~8!

where

Aa5^cp1
cp2

uĝGC~Ea!V12uc1sc1s&, ~9!

Ab5^cp1
cp2

uV12GC~Eb!ĝuc1sc1s&, ~10!

Ac5^cp2
cp1

uĝGC~Ec!V12uc1sc1s&, ~11!

Ad5^cp2
cp1

uV12GC~Eb!ĝuc1sc1s&. ~12!

Here GC(E)5(E2H1)21 denotes the single-particle Cou
lomb Green’s function with the energyE. In Eqs.~9!–~12!,
the intermediate energies are defined as follows:

Ea52E1s2Ep2
, ~13!

Ec52E1s2Ep1
, ~14!
3-2
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Eb5Ep1
1Ep2

2E1s5v1E1s . ~15!

The latter relation results here from the energy-conserva
law, Ef

(0)5v1Ei
(0) . We assume also thatI 2K52I , whereI

5h2/(2m) is the Coulomb potential for single ionization. I
the double photoionization, a photon energy is distribu
between two electrons. As a result, an outgoing electron
have any energy in the range between 0 andv2I 2K . In the
following we shall assume thatp1>p2. Accordingly, the
electron labeled by the index 1 is referred to as the fast o
while the second electron is referred to as the slow one.

The matrix elements given by Eqs.~9!–~12! can be rep-
resented by the Feynman graphs depicted in Fig. 1. In
vertex the energy-momentum conservation is supposed t
valid. The integrations are performed over all intermedi
momenta. In the momentum representation, the photon
tex corresponds to the following operator:

^f8uĝuf&5
1

m

A4pa

A2v
~e•f!^f8uf1k&. ~16!

Here the plane-wave states are normalized tod function in
the momenta,

^f8uf&5~2p!3d~ f82f!. ~17!

The electron-electron interactionV12 corresponds to the pho
ton propagatorD(f)54pa/f2, which describes an exchang
of the Coulomb photon.

Let us derive first the expression for the amplitudeAa . It
can be written as follows:

Aa5
1

m

A4pa

A2v
E df

~2p!3
Fa~p1 ,f!D~ f!F~p2 ,f!, ~18!

FIG. 1. Feynman diagrams for the double ionization of t
atomic K shell by a single photon. Solid lines denote electrons
the Coulomb field of the nucleus, the dashed line denotes
electron-electron Coulomb interaction, and the wavy line deno
an incident photon. The line with a heavy dot corresponds to
Coulomb Green function. For this line, only the energy is co
served, while the momentum is violated due to the interaction w
a nucleus. Diagrams~a! and ~c! take into account the electron
electron interaction in the initial state, while diagrams~b! and ~d!
account for it in the final state.
03270
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Fa~p1 ,f!5E df8

~2p!3

df1

~2p!3
^cp1

uf81k&~e•f8!

3^f8uGC~pa!uf1&^f11fuc1s&, ~19!

F~p2 ,f!5E df2

~2p!3
^cp2

uf2&^f22fuc1s&. ~20!

In Eq. ~19!, pa5A2mEa1 i0 is the momentum of an elec
tron in the intermediate state for the diagram in Fig. 1~a!. In
the momentum representation, the wave function of thes
state can be expressed as follows:

^f82fuc1s&5N1sS 2
]

]h D ^f8uVihuf&, ~21!

^f8uVihuf&5
4p

~ f82f!21h2
. ~22!

Here the normalization factorN1s is defined byN1s
2 5h3/p

and h5maZ. Inserting the expression~21! into Eq. ~20!,
one finally obtains

F~p2 ,f!5N1sS 2
]

]l D ^cp2
uViluf& ul5h ~23!

after the closure relation for the complete system of pla
waves

E df

~2p!3
uf&^fu51 ~24!

has been used.
The Coulomb continuum wave functions can be rep

sented as follows@30#:

^cpuf&5
1

2p i
NpS 2

]

]« D R (01,11)dt

t S 2t

12t D
i j

3^p~12t !uVpt1 i«uf& u«→0 , ~25!

Np
25

2pj

12exp~22pj!
,

where j5h/p. The integration contour in Eq.~25! is a
closed curve enclosing counter-clockwise the points 0 and
After taking the derivative, the parameter« should tend to
zero. To calculateFa(p1 ,f), we make use of the identity

^cp1
uf81k&~e•f8!5Np1

Îj1
~ t !~e•G!^kuVp1t1 i«uf8&,

~26!

where k5v12k, v15p1(12t), j15h/p1 , Np1

5exp(pj1/2)uG(12 i j1)u, andG5 ip1t“k2v1]/]« with “k
being the gradient with respect tok. In Eq. ~26!, we have
introduced the integral operator

e
s
e
-
h

3-3
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Îj~ t !5
1

2p i R (01,11)dt

t S 2t

12t D
i j

, ~27!

depending on the parameterj and acting on functions of the
variablet.

With the aid of Eqs.~21! and ~26!, the expression~19!
takes the following form:

Fa~p1 ,f!5Np1
N1sÎj1

~ t !~e•G!S 2
]

]z D
3^kuVinGC~pa!Vi zu2f&u z5h

«→0
, ~28!

where in5p1t1 i«. Using results of Refs.@33,34#, the ma-
trix element ~28! can be transformed into the one
dimensional integral:

Fa~p1 ,f!5 imNp1
N1sÎj1

~ t !~e•G!
]

]z

3E
0

1dx

La
~exp!a^2kxuVLa1 i zuf&u z5h

«→0
, ~29!

~exp!a5expH ihE
x

1 dx8

x8La8
J 5F1

x

~kx!22~pa1La!2

k22~pa1 in!2 G i ja

,

~30!

La5A~pa
22k2x!~12x!2n2x, ~31!

where pa5A2mEa1 i0 and ja5h/pa . In Eq. ~30!, La8 is
equal toLa with the substitution ofx by x8. Taking into
account that the energyEa of Green’s function is defined
according to Eq.~13!, we obtaini ja51/A21«2, where«2
5Ep2

/I and I 5h2/(2m).
Inserting Eqs.~23! and~29! into Eq. ~18! and taking into

account the relation@30#

E df

~2p!3
Viluf&

1

f2
^fuVLa1 i zu2kx&

5
i

2E0

1dy

Va
VVa1 ilu2kxy&, ~32!

where

Va5A~La1 i z!2y2~kx!2y~12y!, ~33!

we find the following expression for the amplitude:

Aa52pa
A4pa

A2v
Np1

N1s
2 Îj1

~ t !~e•G!
]2

]l]z

3E
0

1

dxE
0

1

dy
~exp!a

LaVa
^cp2

uVVa1 ilu2kxy&. ~34!

The matrix element, which remains in the integrand of E
~34!, can be calculated analytically@30#. Then one obtains
the following compact representation forAa :
03270
.

Aa58p2a
A4pa

A2v
NÎj1

~ t !E
0

1

dxE
0

1

dy~e•G!

3
]2

]l]z

~exp!a

LaVa

1

Wa
S Wa

Qa
D Ul5h

z5h
«→0

i j2

, ~35!

Wa5~kxy1p2!22~Va1 il!2, ~36!

Qa5~kxy!22~p21Va1 il!2, ~37!

where N5Np1
Np2

N1s
2 and j l5h/pl ( l 51,2). After taking

derivatives in Eq.~35!, one should setz5l5h and take the
limit «→0.

The amplitudeAb takes into account the electron-electro
interaction in the final state, i.e., the Coulomb interacti
between the electrons in the continuous spectrum. Usu
this final-state interaction is either not considered at all
treated effectively within the framework of some mode
wave functions@18,35#. In the first approach, the so-calle
independent-electron approximation, one takes the prod
of two Coulomb continuum functions as the two-electr
wave function. In the second case, the wave function is c
structed as a product of even three Coulomb functions of
continuous spectrum. In the asymptotic nonrelativistic
gime (v;h), the contribution of the graph in Fig. 1~b! to
the total amplitude of the process turns out to be of min
importance and therefore it might be neglected. However
the dipole domain of photon energies (v!h), one should
take into account all the graphs together.

Let us represent the amplitudeAb in the form analogous
to Eq. ~18!,

Ab5
1

m

A4pa

A2v
E df

~2p!3
Fb~p1 ,f!D~ f!F~p2 ,f!, ~38!

Fb~p1 ,f!5E df8

~2p!3

df1

~2p!3
^cp1

uf82f&^f8uGC~pb!uf1&

3~e•f1!^f12kuc1s&. ~39!

The matrix elementF(p2 ,f) is defined by formulas~20! and
~23!. Performing similar steps as for the calculation ofAa ,
we derive

E df1

~2p!3
^f8uGC~pb!uf1&~e•f1!^f12kuc1s&

5N1sh~e•“k!^fuGC~pb!Vihuk&. ~40!

Accordingly, Eq.~39! can be cast into the following form:

Fb~p1 ,f!5hNp1
N1sÎj1

~ t !S 2
]

]« D ~e•“k!

3^v11fuVinGC~pb!Vihuk&, ~41!
3-4
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wherev1 and n are the same as in Eqs.~26! and ~28!. In-
serting the expressions~23! and ~41! into Eq. ~38! and per-
forming the integration overf, we find

Ab58p2a
A4pa

A2v
NhÎj1

~ t !E
0

1

dxE
0

1

dy~e•“k!

3
]2

]«]l

~exp!b

LbVb

1

Wb
S Wb

Qb
D U

l5h
«→0

i j2

, ~42!

~exp!b5F1

x

~pb1Lb!22~kx!2

~pb1 ih!22k2 G i jb

, ~43!

Lb5A~pb
22k2x!~12x!2h2x, ~44!

Vb5A~Lb1p1t1 i«!2y2q2y~12y!, ~45!

Wb5~qy1p2!22~Vb1 il!2, ~46!

Qb5~qy!22~p21Vb1 il!2. ~47!

Here q5v12kx, jb5h/pb , and pb5A2mEb with Eb5v
2I being the electron energy in the intermediate state of
diagram in Fig. 1~b!. The momentum of the electronpb

should be understood asApb
21 i0 @33#. This choice fixes the

branch of the multivalued functionLb with respect to the
variablex.

The amplitudesAc andAd corresponding to the exchang
graphs in Figs. 1~c! and 1~d!, respectively, can be derive
from Eqs.~35! and~42! by interchangingp1
p2. However,
the resulting expressions appear to be inconvenient for
ther numerical calculations. The contour integral over
variable t depends now on the valuej2, which can reach
very large values whenp2→0. Since we have chosenp1
>p2 and due to the energy-conservation lawEp1

1Ep2
5v

2I 2K , one is faced with the limiting casep2→0 or, equiva-
lently, j2→`. Thus the integrand is a strongly oscillatin
function for anyv.I 2K . Therefore, it is better to rederiv
the expressions forAc and Ad in a more convenient form
From the two contour integrals representing the continu
wave functions, only that integral is evaluated analytica
which depends on the parameterj2. The final expressions fo
Ac andAd will look similar to Eqs.~35! and ~42!.

For numerical integration, it is convenient to transfor
the contour integral into an ordinary one according to
following relation @36#:

Îj~ t ! f ~ t !5 f ~0!2
sinh~pj!

p i E
0

1dt

t S t

12t D
i j

@ f ~ t !2 f ~0!#.

~48!

The formulas~35! and ~42! are still inconvenient for direc
numerical computations because of the presence of the
erator (e•“k). Although the expressions become somew
more complicated, the vector differentiation should be p
formed analytically. With the aid of Eq.~48!, we obtain
03270
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Aa5~4p!2a
A4pa

A2v
N@~e•n1!F11~e•n2!F2#, ~49!

Fl5 f l~0!2
sinh~pj1!

p i E
0

1dt

t S t

12t D
i j1

@ f l~ t !2 f l~0!#

~ l 51,2!, ~50!

f 1~ t !52v1E
0

1

dxE
0

1

dy
]2

]l]z

3S ip1t
]8

]k2
1

1

2

]

]« D ~exp!a

LaVa

1

Wa
S Wa

Qa
D i j2

, ~51!

f 2~ t !5~h1 ip2!p1tE
0

1

dxE
0

1

dy
]2

]l]z

~exp!a

LaVa

xy

Wa
2 S Wa

Qa
D i j2

,

~52!

where nl5pl /pl ( l 51,2) are unit vectors of electron mo
menta. The prime at the derivative with respect tok2 in Eq.
~51! implies that it does not act on the scalar produ
(k•p2), which appears inWa .

Similar expressions can be obtained for other amplitud
The contribution corresponding to the graph in Fig. 1~b! is
given by

Ab5~4p!2a
A4pa

A2v
Nh@~e•n1!F11~e•n2!F2#, ~53!

F l5w l~0!2
sinh~pj1!

p i E
0

1dt

t S t

12t D
i j1

@w l~ t !2w l~0!#

~ l 51,2!, ~54!

w1~ t !52v1E
0

1

dxE
0

1

dy
]2

]«]l

]8

]q2

~exp!b

LbVb

x

Wb
S Wb

Qb
D i j2

,

~55!

w2~ t !52 i ~h1 ip2!E
0

1

dxE
0

1

dy
]2

]«]l

~exp!b

LbVb

xy

Wb
2 S Wb

Qb
D i j2

.

~56!

Again ]8/]q2 in Eq. ~55! indicates that it does not act on th
product (q•p2) in Wb .

The resulting expressions for the exchange amplitu
corresponding to the Feynman diagrams in Figs. 1~c! and
1~d! will be given explicitly without derivation. The contri-
bution due to the graph in Fig. 1~c! reads

Ac5~4p!2a
A4pa

A2v
N@~e•n1!F̃11~e•n2!F̃2#, ~57!

f̃ 1~ t !52v1hE
0

1

dxE
0

1

dy
]2

]l]z

~exp!c

LcVc

xy

WcQc
S Wc

Qc
D i j2

,

~58!
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f̃ 2~ t !52~h1 ip2!E
0

1

dxE
0

1

dy
]2

]l]z

~exp!c

VcWc
2 S Wc

Qc
D i j2

,

~59!

~exp!c5F1

x

~xyv1!22~pc1Lc!
2

~yv1!22~pc1Vc1 i z!2G i jc

, ~60!

Lc5A~pc
22xy2v1

2!~12x!1x~Vc1 i z!2, ~61!

Vc5A~p1t1 il!2y2v1
2y~12y!, ~62!

Wc5~ k̃1p2!22~Lc1 i«!2, ~63!

Qc5k̃22~p21Lc1 i«!2. ~64!

Here k̃5xyv12k, v15p1(12t), i jc5 ih/pc51/A21«1

51/Av2«2, andpc5A2mEc1 i0 together with the energy
Ec as given by Eq.~14!. The functionsF̃ l in Eq. ~57! are
defined analogous toFl in Eq. ~50! with the replacement o
f l by f̃ l ( l 51,2).

The amplitude corresponding to the Feynman diagram
Fig. 1~d! is determined by the following formulas:

Ad5~4p!2a
A4pa

A2v
Nh@~e•n1!F̃11~e•n2!F̃2#, ~65!

w̃1~ t !5v1E
0

1

dxE
0

1

dy
]2

]«]l

3H 11
2ih

Qd
@T1p21~n2•q̃!#J ~exp!b

LbVc

xy

Wd
2 S Wd

Qd
D i j2

,

~66!

w̃2~ t !52 i ~h1 ip2!E
0

1

dxE
0

1

dy
]2

]«]l

~exp!b

LbVc

x

Wd
2 S Wd

Qd
D i j2

,

~67!

Wd5~ q̃1p2!22T2, ~68!

Qd5q̃22~T1p2!2, ~69!

together withT5Lb1Vc1 i«, q̃5yv12xk, andv15p1(1
2t). After the derivatives with respect toz, l, and « are
performed, one should setz5l5h and should take the limi
«→0 at the end. The functionF̃ l in Eq. ~65! looks similar to
the functionF l in Eq. ~54! with the substitution ofw l by w̃ l
( l 51,2).

III. THE AMPLITUDE OF DOUBLE PHOTOIONIZATION
IN THE ASYMPTOTIC DOMAIN

OF PHOTON ENERGIES

The asymptotic domain of photon energiesv is charac-
terized by the conditionI 2K!v!m, wherev;h. For those
energies of a photon, one cannot neglect the spin-depen
03270
in

ent

part of the electron-photon interaction~1!. The spin operator
transforms the antisymmetric spin function into the symm
ric triplet function. Therefore, the second term in Eq.~1!
leads to transitions into the final triplet state. As a con
quence, the symmetry of the spatial part of the wave funct
is also changed, i.e., it becomes antisymmetric. The exp
sion for the transition amplitude into the triplet state looks
follows:

A m
t 5

i

2m

A4pa

A2v

3@k,e#•^x1mC f
t u~s1ei (k•r1)1s2ei (k•r2)!ux0C i&

5~21!m
i

m

A4pa

A2v
@k,e#2m^C f

t uei (k•r1)uC i&. ~70!

Herex0 is the spin function of the initial two-electron single
state with zero total spin,x1m is the spin function of the fina
triplet state characterized by the total spin equal to 1 and
spin projectionm relative to a quantization axis. The spati
part of the wave functionC f

t .C f
(0)t1C f

(1)t is now antisym-
metric. In zeroth approximation, it looks as follows

C f
(0)t~r1 ,r2!5

1

A2
@cp1

~r1!cp2
~r2!2cp1

~r2!cp2
~r1!#.

~71!

The first-order correctionC f
(1)t to the wave function is de-

fined by an expression similar to Eq.~7!, where the function
C f

(0) is substituted byC f
(0)t .

Introducing the unit vectorng5k/k, we obtain

A m
t 5aZ

ik

h

A4pa

A2v
@ng ,e#m^C f

t uei (k•r1)uC i&

5
ik

2h
@ng ,e#mA t, ~72!

A t5A2@A a
t 1A b

t 2A c
t 2A d

t #. ~73!

In Eq. ~73!, we write down explicitly the individual con-
tributions for the amplitude of the singlet-triplet transitio
which result for graphs in Figs. 1~a!–1~d!, respectively. As
can be seen from Eq.~70!, in the case of a transition into th
triplet state the photon vertexĝ does not contain a facto
(e•f). Let us present the final formulas for the amplitude

A a
t 5~4p!2a

A4pa

A2v
NF,

F52
h

2
Îj1

~ t !E
0

1

dxE
0

1

dy
]3

]«]l]z

~exp!a

LaVa

1

Wa
S Wa

Qa
D Ul5h

z5h
«→0

i j2

,

~74!
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A b
t 5~4p!2a

A4pa

A2v
NF,

F52
h

2
Îj1

~ t !E
0

1

dxE
0

1

dy
]3

]«]l]h

~exp!b

LbVb

1

Wb
S Wb

Qb
D U

l5h
«→0

i j2

,

~75!

A c
t 5~4p!2a

A4pa

A2v
NF̃,

F̃52
h

2
Îj1

~ t !E
0

1

dxE
0

1

dy
]3

]«]l]z

~exp!c

LcVc

1

Wc
S Wc

Qc
D Ul5h

z5h
«→0

i j2

,

~76!

A d
t 5~4p!2a

A4pa

A2v
NF̃,

F̃52
h

2
Îj1

~ t !E
0

1

dxE
0

1

dy
]3

]«]l]h

~exp!b

LbVc

1

Wd
S Wd

Qd
D U

l5h
«→0

i j2

.

~77!

All quantities are similar to those defined in Sec. II. T
partial derivative]/]h does not act onjb and j2. The for-
mulas for the transition into the final singlet state, whi
were derived in Sec. II in the dipole energy regime, are a
valid in the asymptotical domain, because they are deri
without performing an expansion with respect to the pho
momentum.

IV. THE MAGNETIC DIPOLE TRANSITION
AMPLITUDE VANISHES

In Secs. II and III, we have derived nonrelativistic expre
sions for amplitudes of the doubleK-shell photoeffect with a
complete dependence upon the photon momentumk. In the
electric dipole approximation, one setsk50 in Eq. ~1!. Go-
ing beyond the dipole approximation means to retain at le
the first k-dependent term in the expansion exp(ik•r).1
1 i (k•r)2•••, which has a relative smallness of the order
k/h in the near-threshold domain. Thei (k•r) term gives rise
to magnetic dipole and electric quadrupole transition am
tudes. Due to the interference between the electric dipole
the electric quadrupole amplitudes in differential doub
photoionization cross sections, the nondipole effect turns
to be of the same order ask/h. In the case of the single
photoeffect the magnetic dipole amplitude is known to giv
vanishing contribution within the framework of the nonrel
tivistic description, due to the orthogonality of bound a
continuum wave functions@37–39#. Below we shall show
that a similar result is also valid for the doubleK-shell photo-
ionization.

The magnetic dipole transition is caused by the followi
interaction@37#:
03270
o
d
n

-

st

f

i-
nd
-
ut

a

ĝ5
i

2m

A4pa

A2v
„@k,e#•~ L̂1s!…, ~78!

whereL̂5@r,p̂# is the operator of the orbital angular mome
tum. For convenience we shall work in the coordinate rep
sentation. Assuming that thex andy axes are directed alon
the vectorsk and e, respectively, the operatorL̂ preserves
only its componentL̂z relative to thez axis. Then the orbital
part of the magnetic dipole transition amplitude correspo
ing to the graph in Fig. 1~a! reads

ik

2m

A4pa

A2v
E drdr1dr2cp1

* ~r!L̂zGC~r,r1 ;Ea!

3
1

r 12
cp2

* ~r2!c1s~r1!c1s~r2!. ~79!

The wave function of the ejected electron can be writ
in terms of the partial-wave decomposition@40#,

cp~r!5
2p

p (
l 50

`

i le2 id l (p)Rpl~r !(
m

YlmS r

r DYlm* S p

pD ,

~80!

whered l(p) are the phase shifts of the radial functionsRpl .
The latter are orthogonal and normalized according to

E
0

`

drr 2Rp8 l~r !Rpl~r !52pd~p82p!. ~81!

The wave functions~80! are normalized according to th
condition

E drcp8
* ~r!cp~r!5~2p!3d~p82p!, ~82!

which is usual for the continuous spectrum. The spher
functionsYlm(n) are eigenfunctions of the operatorL̂z .

The Coulomb Green’s function reads

GC~r,r8;Ea!5E dp

~2p!3

cp~r!cp* ~r8!

Ea2Ep
~83!

5E
0

` dp

2p (
l 50

`
Rpl~r !Rpl~r 8!

Ea2Ep

3(
m

YlmS r

r DYlm* S r8

r 8
D , ~84!

where the summation over the discrete spectrum is also
sumed. The partial-wave decomposition of Green’s funct
1/r 12 for the scalar Laplace equation is given by

1

r 12
54p(

l 50

`
1

~2l 11!

r ,
l

r .
l 11 (

m
YlmS r1

r 1
DYlm* S r2

r 2
D , ~85!

wherer ,5min$r1,r2% and r .5max$r1,r2%.
3-7
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With the aid of the normalization condition~81! and the
expansions~80!, ~84!, and~85!, the expression~79! takes the
form

ik

m

A4pa

A2v

~2p!3

p1p2
(
l 51

`
~21! l

~2l 11!

3ei [d l (p1)1d l (p2)]
I l~p1 ,p2!

Ea2Ep1

(
m

mYlmS p1

p1
DYlm* S p2

p2
D .

~86!

The radial integralI l(p1 ,p2), which is defined as

I l~p1 ,p2!5E
0

`

dr1r 1
2dr2r 2

2Rp1l~r 1!Rp2l~r 2!

3
r ,

l

r .
l 11

c1s~r 1!c1s~r 2!, ~87!

is symmetrical, i.e.,I l(p1 ,p2)5I l(p2 ,p1).
The orbital part of the magnetic dipole transition amp

tude corresponding to the exchange diagram in Fig. 1~c! is
derived in a similar manner. It reads

ik

m

A4pa

A2v

~2p!3

p1p2
(
l 51

`
~21! l

~2l 11!

3ei [d l (p1)1d l (p2)]
I l~p2 ,p1!

Ec2Ep2

(
m

mYlmS p2

p2
DYlm* S p1

p1
D .

~88!

Taking into account thatEa2Ep1
5Ec2Ep2

52v and using

the following property of the spherical functionsYlm*
5(21)mYl ,2m , one can see that the amplitudes~86! and
~88! cancel each other. The cancellation of amplitudes
scribing the absorption of the right- and left-polarized ph
tons, which correspond to the matrix elements of the ope
tors L̂65L̂x6 i L̂ y , can be proven in a similar manner. Th
orbital part of the magnetic dipole contribution vanishes a
in the separate graphs in Figs. 1~b! and 1~d!. This is easy to
verify, because the operatorL̂ of the orbital angular momen
tum results in differentiations with respect to angles, wh
the ground-state functionc1s is independent of angles.

Let us consider the magnetic-dipole transition amplitu
which is caused by the spin-dependent term of the interac
~78!. Since the matrix elementF(p2 ,f) is the same in ampli-
tudes corresponding to graphs in Figs. 1~a! and 1~b! @see
Eqs.~18! and ~38!#, it is sufficient to evaluate the following
matrix element:

i

2m

A4pa

A2v
~@k,e#•s!E df8

~2p!3

df1

~2p!3
^cp1

uf8&

3^f8uGC~Ea!uf1&^f11fuc1s&. ~89!
03270
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With the aid of the representation of Green’s function ana
gous to Eq.~83! and the normalization condition~82!, the
expression~89! takes the form

i

2m

A4pa

A2v
~@k,e#•s!E df1

~2p!3

^cp1
uf1&

Ea2Ep1

^f11fuc1s&.

~90!

The spin-dependent magnetic dipole contribution cor
sponding to the graph in Fig. 1~b! can be written as

i

2m

A4pa

A2v
~@k,e#•s!E df8

~2p!3

^cp1
uf82f&

Eb2E1s
^f8uc1s&.

~91!

Taking into account thatEa2Ep1
5E1s2Eb52v, one can

see that the contributions given by Eqs.~90! and~91! cancel
each other. The same occurs for the exchange diagram
Figs. 1~c! and 1~d!, respectively.

Concluding, we have shown that the magnetic dipole tr
sition amplitude describing the doubleK-shell photoioniza-
tion vanishes within the framework of the nonrelativist
consideration. In addition, since the spin operator chan
the symmetry of spin functions in the initial and final ele
tron states, the orbital contribution does not interfere w
that corresponding to the spin-dependent term in Eq.~1!. As
a result, the singlet-triplet transition turns out to be su
pressed by a factor of aboutk4/h4 in cross sections of the
process in the near-threshold domain. The derivation p
sented can be easily generalized for any singlet1S0 state.

V. DIFFERENTIAL AND TOTAL CROSS SECTIONS
FOR THE DOUBLE PHOTOIONIZATION

The basic quantity for describing the process under inv
tigation is the fivefold differential cross sectiond5s11, from
which all the angular and energy distributions for photoel
trons can be derived. The cross sections should be sum
over the final states of the system:

d5s1152pH uAu21(
m

uA m
t u2J dp1

~2p!3

3
dp2

~2p!3
d~Ep1

1Ep2
1I 2K2v!

5
m2p1p2

~2p!5 H uAu21
k2

4h2
uA tu2J dV1dV2dEp2

,

~92!

whereA and A t are defined by Eqs.~8! and ~73!, respec-
tively. It should be noted that the second term in Eq.~92! is
independent of the photon polarization.

For convenience we introduce dimensionless amplitud
L andL t, according to the following relation:
3-8
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uAu21
k2

4h2
uA tu25~4p!5

a3N 2

vh12 H uLu21
k2

4
uL tu2J .

~93!

All momenta on the right-hand side of Eq.~93! are supposed
to be expressed in units ofh5maZ. For example, the di-
mensionless momentum of a photon isk5k/h. Introducing
as well dimensionless energies for the incoming photon,«g
5v/I , and for both outgoing electrons,« l5Epl

/I ( l 51,2),

whereI 5h2/(2m), one obtains

d5s115
27aa0

2

Z4«gx
H uLu21

k2

4
uL tu2J dV1dV2d«2 . ~94!

Here L5(e•n1)F11(e•n2)F2 , Fl5Fl1F l1F̃ l1F̃ l

( l 51,2), L t5F1F2F̃2F̃, and a051/(ma) denotes
the Bohr radius. In Eq.~94!, the factor x is given by
x5@12exp(22pt1)#@12exp(22pt2)#, where t151/A«1

51/A«g2«222 and t251/A«2. It is interesting to note
that the amplitudesL andL t being expressed in terms of th
dimensionless quantities, such as energies and mom
now depend on the nuclear charge numberZ via the photon
momentumk5aZ«g/2, which serves as a quantitative me
sure of the nondipolarity. The latter is due to the mutu
interplay between two input parameters,Z and«g .

In the following, we shall restrict to the dipole domain
photon energies, where the contribution of the second term
brackets of Eq.~94! can be neglected. However, we keep
complete dependence upon the vectork in the amplitudeL.
This allows us to go beyond the dipole approximation and
calculate a contribution to differential and total cross secti
of the process arising from the photon momentum in
dipole regime. In the case of unpolarized photons, the a
aging of the cross section~94! over the polarizations of the
incoming photon results in a replacement ofuLu2 by

uLu25 1
2 $uF 1u2sin2u11uF 2u2sin2u212Re~F1F2* !

3~cosu122cosu1cosu2!%, ~95!

whereu i are angles between the vectorsk and pi ( i 51,2).
The angleu12 is that enclosed by the vectorsp1 andp2.

The energy distribution of the emitted electrons can
found after integration of Eq.~94! over the angles. The de
pendence of the amplitudesFl ( l 51,2) upon the azimutha
angle results only through the function cosu125cosu1cosu2
1sinu1sinu2cos(w22w1). One may introduce a relative ang
w5w22w1 instead of the anglew2. This eliminates all de-
pendence onw1 and leads to a factor 2p after the angular
integration. ThendV1dV252p sinu1du1sinu2du2dw. The
anglew varies from 0 to 2p. However, it is easy to verify
that the relation

E
0

2p

dw f ~cosu12!52E
0

p

dw f ~cosu12! ~96!

holds for any functionf (cosu12). Accordingly, the energy
distribution simplifies to
03270
ta,
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ds11

d«2
5

210ps0

3Z4«g

G~«2 ,«g ;k!, ~97!

G~«2 ,«g ;k!5
3

4pxE0

p

du1sinu1E
0

p

du2sinu2E
0

p

dw

3$uF 1u2sin2u11uF 2u2sin2u2

12Re~F1F2* !sinu1sinu2cosw%, ~98!

wheres05apa0
2. Due to a complicated dependence of t

amplitudes upon the angles, the further integrations in
~98! can be performed only numerically.

We denote the total energy of both outgoing electrons
«5«11«25«g22. The double-photoionization thresho
corresponds to the photon energy«g

th52. To obtain the total
cross section, Eq.~97! should be further integrated over th
energy«2 from 0 to«/2 ~or, equivalently, over the energy«1
from «/2 to «):

s11~«g ;k!5s0

210p

3Z4
Q~«g ;k!, ~99!

Q~«g ;k!5
1

«g
E

0

«/2

d«2G~«2 ,«g ;k!. ~100!

In the dipole approximation (k50), the amplitudesF1
andF2 depend only on the angleu12 via cosu12. In this case
the expression~98! can be further simplified to

G~«2 ,«g ;0!5E
0

p

du12sinu12$uF 1u21uF 2u2

12Re~F1F2* !cosu12%. ~101!

Moreover, the quantityQ(«g ;0) becomes independent ofZ.
The same holds true for the whole helium isoelectronic
quence. Accordingly, up to leading order of the expans
over 1/Z the productZ4s11 does not depend onZ within the
dipole approximation only. The corresponding expression
the cross sections1 of the singleK-shell photoionization
derived without taking into account the electron-electron
teraction is well known@31#:

s1~«g ;0!5s0

210p

3Z2
H~«g ;0!, ~102!

H~«g ;0!5
1

«g
4

exp~24t cot21t!

@12exp~22pt!#
, ~103!

wheret51/A«g21. The rigorous QED calculations of cros
sections describing the single photoionization and the sin
ionization with excitation in the next-to-leading order of pe
turbation theory in 1/Z are presently not available. The rat
R of double-to-single ionization cross sections, which is u
ally measured experimentally, is given by
3-9
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R~«g!5
s11~«g ;0!

s1~«g ;0!
5

1

Z2

Q~«g ;0!

H~«g ;0!
. ~104!

The universal scaling forZ2R(«g) appears again in leadin
order of the perturbation theory with respect to the param
1/Z, if one setsk50 only.

VI. NUMERICAL RESULTS AND DISCUSSION

In the evaluation of matrix elements, differentiations i
volved have been performed analytically with the aid of t
computer algebra systemMATHEMATICA . For subsequent nu
merical integrations, the standard Gauss-Kronrod method
been employed. To achieve stable results, some of the
grals over the interval@0,1# were performed along differen
contours, such as ellipse, semiellipse, or semicircle, in
complex plane. In the case of equal electron momenta,
contributions from both direct and exchange Feynm
graphs coincide with each other, although their functio
dependences seem to be different. Assumingp15p2, we
made these additional cross-checks of the quality of the
merical integrations.

In Fig. 2, we compare the universal quantityZ4s11 ob-
tained in dipole approximation with numerical results of R
@19#. As can be seen, the curves lie relatively close to e
other, although they are not identical. The contributions
s11 due to the two-photon exchange graphs turn out to
relatively small. It should be noted that the curves
Z4s11 calculated by Kheifets and Bray@19# show a slight
dependence onZ even in the dipole approximation. This oc
curs because of the necessity to take into account nex
leading order terms~in the sense of perturbation theory! and
in order to adjust the threshold energies for each partic
ion. In Fig. 3, the universal ratioZ2R(«g) is depicted, which

FIG. 2. The universal quantityZ4s11 is calculated in dipole
approximation as a function of the scaled excess energyE5Ep1

1Ep2
. Numerical results for He, Li1, and O61 have been obtained

by Kheifets and Bray within the framework of the convergent clo
coupling formalism using the 20-parameter Hylleraas ground-s
wave functions@19#.
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is valid for moderate values ofZ>2 @41#. Accounting for the
electron-electron interaction to the final state results in s
nificant corrections to the total cross section of the dou
photoionization. However, the individual contributions
each diagram are gauge dependent. Note also that
maxima of the curvesZ4s11 and Z2s11/s1 peak at dif-
ferent values of the photon energy«g . The curveZ4s11

reaches its maximum at about«g.2.5, while the ratio
Z2s11/s1 becomes extremal at about«g.4 ~see Fig. 3!.

In Ref. @41#, our numerical results for the ratioR given by
Eq. ~104! have been compared with most recent measu
ments performed for the ratio in helium@4–6#. Accounting
for electron-electron interaction corrections tos1 as well as
accounting for the single photoionization with excitation tu
out to be more essential than accounting for two-photon
change graphs tos11. The fast convergence of the pertu
bation theory over 1/Z in entire nonrelativistic domain is
connected with the smallness of coefficients of the exp
sion, which accelerates the convergence for any small va
of Z>2. One can also mention here similar example fro
QCD, where the expansion over 1/Nc for the number of
quark colorsNc53 is known to converge by an order o
magnitude due to appearance of the additional factorp
@42#.

In Fig. 4, the energy distributions are presented for h
umlike molybdenum with respect to the energy of one of
outgoing electrons, without distinguishing between fast a
slow particles. In each event of the double photoionizati
both electrons, the fast and the slow one, leave an atom p
wise. In virtue of the energy-conservation law, the exc
energy« is fixed by the energy«g of the incident photon,
taking into account the reduction by the ionization ener
Furthermore, the number of slow electrons is equal to
number of fast electrons. These two circumstances lea
the symmetry of the energy distributions relative to the c
ter point «/2 of the energy interval. Since the doubl
photoionization cross section is quite close to its maxim

-
te

FIG. 3. Different contributions to the universal ratioZ2R(«g) of
double-to-single photoionization cross sections calculated in C
lomb gauge fork50 according to Eq.~104!. Dashed line, contri-
bution due to the Feynman diagrams in Figs. 1~a! and 1~c! only;
solid line, total contribution of all diagrams.
3-10
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at the photon energy«g52.4, the energy distribution of th
emitted electrons lies in this case higher than that at«g
52.8 ~see Fig. 4!. In addition, the energy dependence tur
out to be rather weak in the vicinity of the doubl
photoionization threshold. The comparable contributions
the cross section arise from the emission of electrons w
arbitrary energy sharing. However, increasing the photon
ergy «g further, it becomes distributed very nonuniform
among the outgoing electrons@43#, although employment o
the dipole approximation may be still adequate.

In Ref. @43#, we have presented the angular distributio

FIG. 4. The energy distributions are calculated for heliuml
molybdenum with respect to the energy of one of the ejected e
trons. The energy parameter«8 is either«1 or «2, taking into ac-
count that one does not distinguish between fast and slow elect
The curves are obtained within the dipole approximation and
yond. The normalization coefficient is given byA5s0/Z4, where
s05apa0

250.642 Mb witha051/(ma) being the Bohr radius.

FIG. 5. The angular distributions of fast electrons are calcula
for heliumlike molybdenum within the dipole approximation. Th
normalization factorA is the same as in Fig. 4. The angleu1 is that
between the vectorsk and p1 , anddV1 is the solid angle of fast
electrons.
03270
o
th
n-

s

for the fast and slow electrons, calculated for heliumli
neon and calcium with taking into account the complete
pendence upon the photon momentum corresponding to
energy«g58. The results are compared with those obtain
within the dipole approximation. As a limiting case, we ha
also calculated the angular distributions for heliumlike m
lybdenum@see Figs. 5–8#. The photon energies have bee
chosen to be«g52.4 and«g52.8, which correspond to pho
ton momentak50.37 andk50.43, respectively. Although
the accuracy of our calculations in Mo401 can be estimated
to be of about 10% due to relativistic corrections omitted

c-

ns.
-

d

FIG. 6. The angular distributions of slow electrons are cal
lated for heliumlike molybdenum within the dipole approximatio
The angleu2 is that between the vectorsk andp2, anddV2 is the
solid angle of slow electrons. The normalization factorA is the
same as in Fig. 4.

FIG. 7. The angular distributions of fast electrons are calcula
for heliumlike molybdenum beyond the dipole approximation. T
momentumk of an incoming photon is determined by the chos
photon energy«g52.4 or «g52.8 and the nuclear charge numb
Z542 according tok5aZ«g/2. The notations are the same as
Fig. 5.
3-11
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the present investigation, the nondipole effects become
much more pronounced already in the vicinity of the doub
ionization threshold.

Within the dipole approximation, the angular distributio
for both ejected electrons are symmetric with respect to
plane perpendicular to the photon beam. Although the pho
momentumk is completely neglected within the dipole a
proximation, the polarization vectore defines a distinguish
ing direction for the preferred ejection of electrons. T
curves become asymmetrical, if one accounts for a nonz
momentum of the incident photon. The nondipole terms g
rise to positive~negative! contributions to the cross sectio
for the electron emission in forward~backward! direction.
Accordingly, both electrons are preferably ejected in the f
ward hemisphere (u1 ,u2,p/2). Moreover, in double photo
ionization, the electrons can leave an atom in forward a
backward directions relative to the incident photon. Nev
theless, a simultaneous ejection of both electrons along
direction of the photon beam (u15u250, or u15u25p, or

FIG. 8. The angular distributions of slow electrons are cal
lated for heliumlike molybdenum beyond the dipole approximati
The notations are the same as in Fig. 6.
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u150 andu25p, or u15p and u250) is forbidden. This
can be seen directly from the relation~95!, which vanishes in
these particular cases. Note that for the single photoeff
the electron emission in forward and backward directio
cannot occur within the framework of the nonrelativistic d
scription.

Considering doubleK-shell photoionization in neutral at
oms, the wave functions and Green’s functions possess
sentially a non-Coulomb behavior. Accordingly, numeric
calculations require the use of the Hartree-Fock method
ready in zeroth approximation. Formally, the screening eff
can be simulated by replacing the true nuclear charge n
ber Z in Eq. ~104! by an effective valueZeff . The latter can
be defined by equating the experimental potentialI expt for
single K-shell ionization and the effective one, that is,I expt

5m(aZeff)
2/2. In Table I, we present a comparison of o

predictions for neutral atoms with available experimen
data. The significant disagreement for the nickel atom se
to be just due to high uncertainties of the results, both th

-
.

FIG. 9. A comparison between the theoretical and experime
ratios of double-to-singleK-shell photoionization cross sections
neutral calcium. Experimental data are taken from Ouraet al. @14#.
e

TABLE I. For various neutral atoms, the nuclear charge numbersZ, the experimental energiesv of an
incident photon, the experimental potentialsI expt for single K-shell ionization@44#, dimensionless photon
energies«g , effective valuesZeff for the nuclear charge, and the theoretical and experimental ratiosR(«g) of
double-to-singleK-shell ionization cross sections are tabulated. The photon energiesv are calibrated in units
of the experimental ionization potentialsI expt. The theoretical ratiosR(«g) are calculated using the effectiv
valuesZeff according to Eq.~104!.

Neutral v I expt R(«g)
atom Z ~keV! ~keV! «g Zeff This work Experiment Reference

Ne 10 5 0.87 5.75 8.0 0.2831022 0.32(4)31022 @13#

Ti 22 17.4 4.97 3.50 19.11 0.5131023 0.5331023 @10#

Cr 24 17.4 5.99 2.90 20.98 0.3731023 0.3831023 @10#

Fe 26 17.4 7.12 2.44 22.88 0.2331023 0.2431023 @10#

Ni 28 17.4 8.34 2.09 24.76 0.5131024 1.131024 @10#

Cu 29 20 8.99 2.22 25.70 1.131024 1.3(3)31024 @12#

Mo 42 50 20.01 2.50 38.35 0.8731024 3.4(6)31024 @11#
3-12
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retical and experimental. The ratioR(«g) here is extremely
sensitive to the photon energy, because the latter is v
close to the threshold energy. It should be noted that
experimental uncertainty in Ni has been estimated to be
about 30%@10#. In the case of molybdenum, the deviatio
may be connected with relativistic effects, for example, w
the spin-orbit interaction, which have been neglected in
present consideration. Another possible explanation migh
higher error bars rather than those quoted in Ref.@11#. From
the comparison with the measurements performed on Ca
and V in Ref.@14# one can see that theoretical calculatio
underestimate the corresponding experimental curves.
discrepancies exceed the experimental uncertainties an
crease up to about 30% beyond the maxima of photoion
tion double-to-single ratios. The reason for this so far is
clear. The satisfactory agreement has been found only in
case of Ca just above the threshold~see Fig. 9!.

Concluding, we have investigated the doubleK-shell
photoionization for heliumlike ions and neutral atoms w
moderateZ values, taking into account the leading orders
1/Z and aZ expansions. QED perturbation theory with r
.A

.
u,
g,
en

nd

,

Sc

,

.
a
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Ti,
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spect to the parameter 1/Z shows a fast convergence in th
entire nonrelativistic domain forZ>2. The electric dipole
approximation can become inadequate for the descriptio
angular distributions in a quite wide domain of nonrelativ
tic photon energies. Because of a nonzero photon mom
tum, the number of electrons leaving an atom in the forw
direction with respect to the photon beam becomes lar
than the number of electrons ejected in backward direct
Going beyond the leading-order consideration requires a
orous QED treatment.
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