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Relation between entanglement measures and Bell inequalities for three qubits
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For two qubits in a pure state there exists a one-to-one relation between the entanglement (tleasure
concurrence®) and the maximal violation\ of a Bell inequality. No such relation exists for the three-qubit
analog ofC (the tangler), but we have found that numerical data is consistent with a simple set of upper and
lower bounds forr given M. The bounds om become tighter with increasingt, so they are of practical use.

The Svetlichny form of the Bell inequality gives tighter bounds than the Mermin form. We show that the
bounds can be tightened further if the tangle is replaced by an entanglement monotone that can identify both
the W state and the Greenberger-Horne-Zeilinger state.
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Bell inequalities test for the quantum entanglement of anative form of the three-qubit Bell inequality, due to Svetli-
state by comparing the maximally measured valeof a  chny[10-13; and(2) by using an alternative measuwseof
certain correlator with the maximal value allowed by local tripartite entanglement that we introduce in this paper, de-
realism[1]. For a pure state of two qubits, the Bell-CHSH fined by
(Clauser-Horne-Shimony-Holf2]) parameter/\/l:2\“"1TC2
is directly related to the degree of entanglem@nmtconcur-
rence C [0,1] of the state[3]. This relation is useful be-
cause, on the one handyl can be readily measured,
while on the other(C can be readily calculatefb]. In this
paper we investigate to what extent this relation has a thre
qubit analog.

The three-qubit analog of the concurrerites the tangle IM¥Y16 -1 < o= M¥32. (3)

7, introduced by Coffman, Kundu, and Wootté6. It quan-
tifies the irreducible tripartite entanglement through the for-(We use the symbois instead of< as these bounds are
mula inferred from numerical data, rather than derived analyti-
cally.)
T= Ci(Bc) - Cag—Cac. (@) Both o and 7 are entanglement monoton@seaning that

o . ~_ they cannot be increased on average by local operations and
The indicesA,B,C label the three qubits; the tangle is in- ¢lassical communicationTheir essential difference is that
variant under permutation of these indices. The concurrencgan detect tripartite entanglement of both the W and GHZ
Cag _refers to the mixed state of qubi#ésandB obtained af.ter types, while it is known that can only detect GHZ type
tracing out the degree of freedom of quiiit andCac IS entanglemenf14]. We recall that local operations on the W
defined similarly. The concurrenag,gc) describes the en- giate |¢)W:(|OOJ>+|010>+|1OO>)/\s"§ and the GHZ state
tanglement of qubif with the joint state of qubit® andC. |, . generate two distinct classes of irreducibly entangled
The tangler € [0, 1] equals 0 if one of the qubits is Separab|etripartite states. Whiler=1=0 for |)gnz, for | only o
from the other two. It equals 1 for the maximally entangled=4/9 isnonzero. In factg=0 if and only if one of the qubits
GHZ (Greenberger-Horne-Zeilinger[7]) state [¢)cnz  is separable from the other tw@-1 separability. This latter
=(/000 +|11D)/v2. property distinguishes the entanglement measure introduced

The best-studied generalization of the Bell-CHSH in-here from the one introduced by Meyer and Wallgdh,
equality to the case of three qubits is the one proposed bwhich is also nonzero for 2-1 separable states.

Mermin [8]. There exists no analytical formula that gives the  After this introduction, we now present our findings in
maximal violationM,, of the Mermin inequality for a given more detail.

pure state of three qubits, but it is not difficult to perform the  Pure states of three qubits constitute a five-parameter fam-
maximization numerically. For special one-parameter state#ly, with equivalence up to local unitary transformations.
of the form |¢)=cosa|000+sina|111), Scarani and Gisin This family has the representati¢hé]

[9found an approximate(but highly accurate relation

Ci(YZ) + C\z((XZ)
= C |- (2

o= min(
2

The minimization is over the permutatioXsY,Z of the qu-

é)_its A,B,C. We find the following bounds o for a given

maximal violation M g of the Svetlichny inequality:

I i ’/_ ’/_
My =max4/r,2V1-7) betweenr=sir? 2a and M,,. |49 = \ 110|000 +  1€]100) + V5| 10D) + V ug| 110
For more general states there is a range of valuesiath + Vg 11, (4)

the sameM,,. We have investigated this range numerically

and found that the data is well described by a simple pair oWith x; =0, Z; u;=1, and G< ¢ <. The labelsA, B, andC
upper and lower bounds for for any given M. The indicate the first, second, and third qubit, whieY,Z refer
bounds can be tightened in two way$) By using an alter- to an arbitrary permutation of these labels.
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The tangle(l) is given by 1_ - L 7

7= Apops. (5 0751
The squared concurrencesyy,=4 Detpy (with py T 05
=Try 7| )y the reduced density matpixake the form 0.25F
C,ZA(BC) = 4ug(pg + pz + pa), (6) 0 i
, 0.75F
Coiag) = 4rolms + 1g) +4A, D 5 st

Coiam = Auolpp + ) + 4A, (8) 0251 o ]

with the definition A= g g+ pppis— 2 propispra) V2 COS b. I R (Y S R ¥ R

Each of the four quantitie$5)—(8) is an entanglement My, /2 M /4

monotone[14,17]. . _ ) .
The quantitys defined in Eq.(2) can equivalently be FIG. 1. Numerically determined Mermii\,,) and Svetlichny

written as (Mg) parameters for the three-parameter sidié). A range of
values for the entanglement measureand o corresponds to the
o= 2(r+ min CZ xy) = ’T+ min CXZ+C 2, (9) same value ofMy, or Mg. The solid curves are the upper and

lower boundg15) and(16). The dotted line indicates the maximum
as follows from the identity18] 7=Cj YZ)+C Yx2) Ci(XY> value obtainable with local variable theories.
- 2C4,. One sees that® r<o<1. Most importantly, since

7 and minC3yy, are positive entanglement monotones, The maximization over the two unit vectoasa’ can be
their sumo is an entanglement monotone as wdl9]. If done separately and analytically. The maximization over the
one of the qubitgZ) is separable from the other two, then remaining four unit vectors was done numerically. Before
7=0=Czxy)0 0=0. The converse is also true:df=0 then showing results for the full five-parameter family of states
Czxy)=0 for some permutatioX, Y, Z of the qubits, so one (4), it is instructive to first consider the three-parameter sub-

qubit is separable from the other two. family
Bell inequalities for three qubits are constructed from the
correlator |®) = cosé, (1)<1 > (1>
0/\0/\0
E(a,b,c) =(yj(a-0)® (b-0) ® (C- . 10
(abo)=(yl(a-o)® (b-o) @ (c-o)|¢p). (10 | 0\ /cos6, \ [ cosé,
Herea,b,c are real three-dimensional vectors of unit length +sin6, 1/\sineg, /\sine ' (14
that define a rotation of the Pauli matrices=(oy,0y,0,). 2 3
One chooses a pair of vectaasa’, b,b’, andc,c’ for each  with real angless,. These states are all in the GHZ class, so
qubit and takes the linear combinations for the moment we avoid the complication introduced by the
_ , , , el W class. The physical significance of states of the f@i)
£=E(ab,c’) +E(ab’,c) +E(@’b,c) -E@,b',c’), is that they are generated in optid&2] or electronic[23]
(11) schemes to produce three-particle entanglement from two in-
dependent entangled paifdlotice that the second and third
& =E(a’,b’,c) +E@@,b,c’) +E(a,b’,c’) - E(a,b,c). qubits become separable upon tracing over the first qubit.
For any state of the fornil4) picked at random, we cal-
(12) culate the two entanglement monotoneand o, and com-

Mermin’s inequality[8] reads|&| <2, while Svetlichny’s ~ pute numerically the Mermin and Svetlichny parameters de-
inequality[10-13 is |£-&'|<4. We define the Mermin and fined in Eq.(13). Results are plotted in Fig. 1. The numerical

Svetlichny parameters data fill a region bound by

My =maxe], Mg=maje-¢'l. (13) ma{1-tM%,0:i M2 -1) = o< M2, (15
The maximization is over the six unit vectoad,c,a’,b’,c’
for a given statéy). The largest possmle value is reached for |1l6/\/1§— 1| <T10= éMg (16)

the GHZ state(M,,=4 and Mg=4.2). The W state has

My =3.05 and Ms=4.35. Any violation of the Svetli- These bounds on, o do not have the status of exact analyti-
chny inequality implies irreducible tripartite entangle- cal results(hence the symbaok), but they are reliable rep-
ment. In contrast, states in which one qubit is separableesentations of the numerical dd@4]. Note that the same
from the other two may still violate the Mermin inequal- violation of the Svetlichny inequality gives a tighter lower
ity, up to &= 2.2. For both inequalities, there exist pure bound onz,o than the Mermin inequality gives due to the
entangled states that do not violate thga20,21. fact that 2-1 separable states are eliminated.
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I— —— L B/ [ L R R R~ states(4), which also contain states in the W class. We see
0.75'_ - from Fig. 2 that the boundgl5) and (16) still apply to o.
L B However, the tangle drops below the previous lower bound
T 0.5+ - due to the fact that it cannot distinguish W states from sepa-
I N rable states.
0.25- L .
I I In conclusion, we have constructed an entanglement
0 monotoneo for three qubits which, unlike the tangke can
I B detect entanglement of both the GHZ and W types. We have
0'75__ - investigated numerically the relation between the entangle-
o 05- L ment measures, 7 and the maximal violation of Bell in-
- B equalities(both of the Mermin and Svetlichny formThe
0.25- sl B s upper and lower bounds reported here have already been put
0' AN . A to use in the design of a protocol for the detection of tripar-
1 14 18 08 1 12 1.4 tite entanglement in the Fermi sg23]. Alternatively, if one
My /2 M/ 4 wants to do better than a bound, one could use the interfero-

metric circuit proposed recently for the tand5], which,

FIG. 2. Same as Fig. 1, but now for the general five-paramete{Nith a small modification, can be used to measuras well.
state(4).
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