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We show that the security proof of the Bennett 1992 protocol over loss-free channel given by Tamaki,
Koashi, and ImotdPhys. Rev. Lett90, 167904(2003] can be adapted to accommodate loss. We assumed that
Bob’s detectors discriminate between single-photon states on one hand and vacuum state or multiphoton states
on the other hand.
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I. INTRODUCTION between single-photon states on one hand and vacuum state

or multiphoton states on the other hand. Under these assump-

Quantum key distributiotQKD) is one of the most inter- » i
esting topics in quantum information processing, which gtions, we show the unconditional security of the B92 proto

lows the senderAlice) and the receive(Bob) to share a col. The proof follows the idea in Ref10]. This paper is

. o . . organized as follows. In Sec. I, we propose the protocol
secret key with negligible leakage of information to an . -
eavesdroppe(Eve). This task is accomplished by making based on EDP with local filtering and CSS codi@s and we

. . reduce this to the B92 protocol. In Sec. Il we give the for-

use .Of the propertle§ O.f _quar_1tum _mechamcs, such as "fhula for the error estimations for EDP based on CSS code.

cloning theorem[1], indistinguishability of nonorthogonal Finallv. in Sec. IV we give the examples of the resultin

gquantum states, entanglement, and so[2jn The Bennett inaty, | ' we giv xampies o sufting

1992 (B92) protocol [3], where only two nonorthogonal performance, and the summary and discussion follow.

states are used, is thought to be secure due to the fact that

Eve cannot clone anpl d_istinguish the states det_ermini_stically. L. PROTOCOL BASED ON EDP AND ITS REDUCTION
Although the qualitative reason of the security is simple,

- . o . . TO THE B92 PROTOCOL

it is quite hard to show the quantitative security against so-

called coherent attack, which is the most general attack al- In this section, we introduce the protocol that will turn out

lowed by quantum mechanics. In Refd—6], the uncondi- to be secure and will reduce to the B92 protocol. In this

tional security of the Bennett-Brassard 198884) protocol  protocol, Alice first prepares a two-qubit nonmaximally en-

[7] is proven. Especially, in Ref$5,6] they show the secu- tangled states that can be written as

rity by showing the relationship between QKD and other 1

important protocols in quantum information, such as the en- - =

tanglement distillation protocol (EDP) [8] and the [¥)ne E(|OZ>A|¢O>B+ 1Ll ¢r)e) @)

Calderbank-Shor-Stean€CSS quantum error correcting .

codes[9]. Recently in Ref[10], the unconditional security &nd sends system B to Bob. HQL&LEMOXH(‘DJ““Q

of the B92 protocol has been proved by relating the B92i=0,1), where 0<a<1/v2, B=\1-a? and{|0y,|10} is

protocol to an EDH8] initiated by local filtering[11]. The & basis(X basig of the qubit. X basis andZ basis_are

assumptions of the proof are that Alice and Bob’s devices aréelated through the relationship)=[|00+(=1)![1,)]/v2.

perfect and the quantum channel is loss-free. To study the After receiving the state, Bob first performs the QND

unconditional security of B92 protocol over a lossy and(quantum nondemolition measurements that can be de-

noisy channel is interesting from the point of view of the scribed by the POVMpositive operator valued measyié]

guantum information theory, since the channel loss directly

affects the security of the B92 protocol. The proof based on Qs=TIs, 2
the equivalence between the security and EDPs gives us an
idea how to distill the Einstein-Podolsky-Ros¢EPR) state Q,=1-1Il, 3

from states that arise from the lossy a_n_d noisy chz?mnel. wherelly is the projector onto the single-photon space and
In this paper, we study the uncgndltlonal security o_f thew» eans the detection of vacuum state or multiphoton

B92 protocol. We assume t_hat.AI|ce has a perfect singlesiates. Thanks to this QND measurements, even if Eve sends

photon source, Bob's polarization measurement is perfecf, ,inhoton states or vacuum state to Bob, Alice and Bob

and he has a perfect single-photon counter that discriminatq;dn work only on the qubit pairs, provided that the outcome
is “s.” We also assume that, after this measurement, if the

outcome is s, Bob performs the “local filtering operation”
*Electronic address: tamaki_kiyoshi@soken.ac.jp [11] on qubit B, described by the Kraus operator
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Y (8) They run an EDP that can produng,, nearly perfect
A = E(a|0x>s<0x| + Bl Los(Ld), (49 EPR pairs if the estimation is correct.
(9) Alice and Bob each measures the EPR pairg basis

. . to obtain a shared secret key.
Where v<(0,1]. Note that _'f the.channel. IS Iqss-free and . In the following, we will reduce our protocol to the B92
noiseless or Eve does nothing, this operation yields the maxbrotocol. Before this reduction, we should briefly mention
mally ~entangled ~ state (EPR statp (100008 what Alice and Bob do experimentally in the B92 protocol.
+|1,0alL08)/ V2 with probability 2+*y* due to the fact that |5 the B92 protocol, Alice randomly prepares the single-
the initial state is also written a$¥)ap=p00al00s  photon polarization in the state) or |¢;) and sends the
+a|10a|108. Thus, the filtering operation withy=1is op-  gstate to Bob. After receiving the state, Bob performs mea-
timum one in this case. When channel is_ lossy and NoisYsrement described ngz_ Wheny=8 and Bob detects a
or Eve is present, the filtered states may include bit errorsgingle-photon state, this measurement effectively performs a
represented by  the  subspace  spanned  byg|arization measurement on the single-photon state in a ba-
{10)al108,1104/0)8}, and a phase error, represented bygig randomly chosen frofieo), [eo)} and{|e.),[en)}. In the
the subspace spanned 94|10, (10006} In order to  case wherey=1 and Bob detects a single-photon state, this
distill the EPR pairs, Alice and Bob run the EDP based onmeasurement effectively performs a general measurement
CSS cod€6] and after this EDP Alice and Bob measure which describes the optimum unambiguous state discrimina-
each in theZ basis of the EPR pairs so that they obtain atijon between ) and|e;) [12].
secure key. Note that the QND measurement followed by Thanks to Bob's perfect detector, if the outcome of the
the filtering Ay andZ-basis measurement is equivalent to QND measurement is s, then Bob’s states are projected onto
a measurementgg, described byFy=1?e1Xe,|/(28%),  the single-photon space. This projection requires two more
F1=12oo)eol/ (289, F1,=TI.—F}-F], and F,=1-F} steps in our proto_col cqmp'areq to tReotocol 1in Ref. [101.
_FI-EY.. where |¢>j>5a|0x>‘(‘1)jﬂ|1x>- Thus MIEE’JBZ i The benefit of this projection is that for the states projected

) e onto qubit pairs Alice and Bob can use the one-way EDP
the same measurement as in the B92 protocol with perfe¢ioseq on CSS codi]. In the context of QKD, this EDP

photon detector, andgg, corresponds to the generalized 5105 Alice to performz-basis measurements immediately
B92 protocol._ For convenience, I8}y, be the measure- fiar she has prepared the sthai®,; and Bob to perform
ments described by the set of the POVM elementsy 565 measurements immediately after he has performed
{Fg,F1,Faut- The following is the protocol that we want e filtering. Now Bob’s measurement is described\dy,.
to be shown secure and reduce to the generalized B9gjnce Bob performs the QND measurement before the mea-
protocol. surementM g, his measurement is equivalent to the mea-
surementMgd,. As a whole, the protocol has been reduced
into the protocol where Alice prepares and sekg$ or |¢;)
randomly and Bob performs thétgg, measurement. This

(1) Alice prepares the stal@),g, and she sends the sys- completes the reduction of our protocol into the generalized
tem B to Bob over a quantum channel. B92 protocol over lossy and noisy quantum channel.

(2) Bob performs the QND measurement described by pue to this equivalence, it is sufficient to prove the secu-
{Qs,Q.}, and he publicly announces the outcome. They takeity of the protocol for the security analysis of the B92 pro-

Protocol

notes of the outcome. _ tocol. The most important part in the quantitative security
(3) Alice and Bob repeats the stef§ and(2) 2N times.  analysis of our protocol is to estimate phase errors and bit
Let 2LN be the number of outcomes that resulted in v. errors in the stef§7). If this estimation is not exponentially

(4) Alice and Bob discard all the pairs whose outcomes ofreliable, then in the protocol Alice and Bob cannot distill the
the QND measurement are v. By public discussion, Alice andtate sufficiently close to EPR state so that the protocol is not
Bob randomly permute the positions of the remaining 2 secure[5,6]. In the following section, we will give the for-
~L)N pairs. mula to estimate the bit errors and phase errors.

(5) For the first(1-L)N pairs (check pairg Alice mea-
sures system A in th& basis, and Bob performs measure-
ment Mg, on his system. By public discussion, they jj. PHASE ERROR ESTIMATION FROM THE BIT ERROR
determine the numben,,, of errors in which Alice found
0 and Bob’s outcome was 1 or Alice found 1 with Bob’s In this section, we consider the error estimations in the
outcome O. step(7) of the protocol. Thanks to Bob’s perfect detector, the

(6) For the second1-L)N pairs (data pairy Bob per- filtered states are qubit states, which allows us to directly
forms the filteringAq; on each of his qubits, and announcesapply some inequalities from R€fL0].
the total numbeng and the positions of the qubits that have  First, note that bit errorsy; in the data pairs could be
passed the filtering. determined if Alice measures those pairs4nbasis, Bob

(7) FromL, ng,,, andng, they estimate an upper bound for performs measurememtt,, onto those pairs, and they
the number of bit errors,; and an upper bound for the compare their results. Thus, the bit error rate in the check
number of phase errorsg,, in then; pairs. If these bounds pairs and the bit error rate in the data pairs are determined by
are too large, they abort the protocol. the same measurements. Furthermore thanks to the random
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permutation in steg4), we can apply the classical probabil- we need to relatany/(mg;+myg) to ngy/(Ngi+nyg). This
ity estimation so that we obtain relation cannot be obtained by classical arguments, since
I'py and [0)A|1,)g are nonorthogonal. In Refl0], the
[Moit =~ Nerf = (1 ~L)Ney. ®) Lu:)tjg]ors c|0|>f]sAi|d(xarBthe qubits thagt are invariant under the
For any strategy by Eve, the probability of violating this random permutation in the limit of large number. Then
inequality is asymptotically less than éx1—L)Ne3]. they showed that when we consider the measurement out-
Since the POVM elements that give the bit error rate orcOMes onto such qubits, we are allowed to regard the qu-
the filtered statedl,; and phase error rate on the filtered bits as if they arose from the independently and identically
statesIT,, do not commute[13], the classical probability distributed quantum source. Their argument can be di-
argument cannot be applied to the estimation of the phaskectly applied to our case, since in step of the protocol
errors from the bit errors. For the estimation, let us performwe have also applied the random permutation. Thus, we
the gedanken measurements in thig)a|j.)s basis (i can m_ake use of the exponentially reliable inequality de-
=0,1,j’=0,1,V), and let the numbers;, of the pairs found rived in Ref.[10] as
in the stateliyaljys. Here we definen,, as the outcome
where Alice obtains the bit valuieand Bob obtains vacuum
or multiphoton states. As far as we consider the measurement SIr?(6 — ) — e; < sirfey < sir(6, + 6) + eg (11)
outcomes of the POVM elements that are diagonal with re-
spect tdlialj, e basis, we are allowed to apply the classical
argument for the estimation. Thus, we have the following

inequalities: for 1=0,1,where all the angles are defined[, 7/2] by the

relations  nyy/(Nyg+Ngg) =SirPhy,  Ngy/ (Ngg+Nyg) =Sirke;,

— i — i 2
‘ g[az(noﬁ nyo) + BNgy + Ny)] - Nt | < (1= L)Ney, r:néil:?((r;lﬁ Moo) =Sirf g, Moy/ (Mg +My) =sirfe;, and «
6) The Eqgs(5)—11), together with the relatiokn;, =N and

2m;=(1-L)N can be used to derive the formula for the
estimation of the phase error from bit error. In the following
< (1-L)Ne, (77 Wwesetg—0(i=1,2, = .9 by taking the limitN— 0 so that
Egs.(5)—<10) are now linear equations.

which are violated with probability asymptotically less than Ve first consider the special case for the B92 protocol

exd-2(1-L)N&2] and exp-2(1-L)Ne2], respectively where bit error rate in the filtered qubits is zero while the
Similarly, sincé neither the noisy ch;hnel nor Eve Canphase error rate in the qubits is not zero. Eve can accomplish

. ; this by using channel loss. From;=0, i.e., m;;=my;=0,
touch the qubits held by Alice, we have one can easily find that far, /N=2a292(1-L),

‘ Ig(aznm + B2Ng1) = Ny

|a®N = (no+ nyq + Ngy)| < Ney, (8)
with probability of violation asymptotically less than ,
— . L
exp(-2Nej) - - . N\ =5 for L<p?-a?
In order to represent the bit error in the check pairs in max —2 Br-a?1-L
terms of gedanken measurements, we introduce the global
gedanken measurements in the bdﬁ@ (i=0,1,j=0,1
and the number of the corresponding measurement outcomes
m;, where |)=(=1)"8ligaljve+(=1""*Va|(i+1),0al(] o T _
+1),)g. Here the summation is taken modulo 2. Since theThe limiting loss rates“—a coincides with the case where

POVM element for the bit error is diagonal with respect toEve employs optimum unambiguous state discrimination
the|I';) basis[12], we have measurementl3]. In this attack, if she obtains the conclu-

sive outcome, then she sends the corresponding state to Bob,

N (12
U7 \=12 for L>p?-a?

Y (my+ Mop) = Ner| =< (1~ L)Ne 9) otherwise she does not.
gt el = 5 Next we consider the general case. The relationship can
be obtained by solving the equations that we have mentioned
which is violated with probability asymptotically less than jyst above. After straightforward calculations, we find the
ex-2(1-L)Ne]. implicit constraint
Since {|T'op.|"10} and {|09al108.|104l00e} Span the
same subspace, we can relatg,+ my; andn,o+ny; by the
classical probability estimate as >

B
|(Myo+ Mog) = (Ngo+ Noy)| < (1 ~L)Ne, (10) ?|nf" = 2Nert = N (),

which is violated with probability asymptotically less than
exd—(1-L)Néi]. For the estimate of the phase error rate
in the data qubit from the bit error rate in the check qubit,where
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L, \? o 1
o~ p? 2 06 : p=0.01
5 5 ) Lo 2 Lg 04}.
+\/(1_X_L0) _<B_a _A+a2_ﬂ2> s 0.2 \\\- ————— —‘:/
02 04 06 08 1
2
A =[(B¥")ngIN = 22B)I(B* = o?), (@ Keolo. )]
1
X = (B1)2nN = (B> - a?)A, 89g] . L=05
% 0.6 N p=001
Lo = any/N+ g%ng,/IN, E 0.4 A
0.2 T -
L1 = a’no/N+ Aoy /N. (13 02 04 06 08 1
Here,x—-L; and 1-x-L, are equal tdn;g+ng;)/N and(ngg () |<‘1Po|<"1>|2

+n;1) /N, respectively, so that they must be positive. Com- . - .
bining these positivity constraints with the positivities inside ~ FIG. 1. The estimated phase error refg/ng (dot-dashed ling
the square roots, we haug+|-A+L,/a?- B4 <x<1-L, the actual phase error raiolid line), and bit error rat¢dotted ling
—|~A=a?+ B2+Lo/ o®~ B?|. We can easily confirm that these in case ofp=0.01.(a) is for L=0 and(b) is for L=0.5. We assume
equations are the same as equations in Red} where y that quantum channel is a depolarizing channel with loss.

=B and the channel has no loss, i.eg=L;=0. Equation o

(13) gives us the possible parameter &@g,,n,} for fixed  [¢o| #1)|? L, andp, and plotG optimized over{(go|¢1)[* as
a,v,Lo,L1,L, andng. By taking the optimum ratio between a function ofp. The optimum value of ¢o| ¢1)|? is shown in

Lo andL; with respect tony, for given ng,, ng, andL, we  Fig. 2(b). Since the optimization of the ratio betweknpand
obtain an upper boung,, on the number of phase erraig, L, is complicated, we have optimized the ratio numerically.
as a function of the observed values, ng, andL, and the  From Fig. Za), it is seen that the B92 protocol as described

chosen parametes and vy. here is secure up tp~0.034 (in the case ofL=0), p
~0.023(in the case 0f.=0.2), andp~ 0.012(in the case of
IV. EXAMPLES AND CONCLUSION L=0.5. The use of thegeneral B92 measurement, ie.l

yields the higher secret key gain, however this does not

In this section, at first we give the examples of the phasehange the cutoff of the gain nor the optimum angle in Fig.
error estimation and resulting performance of the B92 proto2(b). This is again because of the fact that the cutoff is de-
col. termined by the error rate normalized by.

To illustrate the accuracy of the phase error estimation |n the BB84 protocol or six-state protocdl5], thanks to
and security performance of the B92 protocol, we assignhe randomly chosen conjugate bases, phase error estimation
values to the observable data as they would arise from & more precise than that in the B92 protocol. The poor esti-
depolarizing quantum channel with loss, i.e., the state mation in the B92 protocol makes this protocol more vulner-
evolves into LIV)(V|+(1-L)[(1-p)p+Zi=y.0ipoil, where  able to eavesdropping. Actually, it is known that the BB84
[V) is the vacuum state, is the loss rate of quantum channel,

p is the depolarizing rate, ang is the Pauli matrix. In Fig. 0.5
1, we show the upper bound of the estimated phase error 04} B
rate, the actual phase error rate, and bit error rate for the case G 035 T=B
(8 p=0.01L=0 and(b) p=0.01L=0.5. These figures are 02
independent ofy, since we plot the phase error rates normal- 0.1
ized byng so that the prefactoB?/+? is canceled. In each
figure, it is seen that whef{e,| ¢1)|> becomes smaller, the @
estimation of the phase errors becomes poorer. On the other 0.7
hand, larger values [fo,| ;)| make the signal more vul- = 0
nerable to noise and loss. Furthermore, due to the loss, the = 03
estimation in(b) is poorer than that iia), especially in the = =
region for small{eg| ¢1)|? 01
Since Alice and Bob apply random permutation in the 001 0.0z 0.03 p°~°4
protocol, the achievable length of the final key is given by ®)
Niey= it [1=h(ngie/ ) ~h(npn/ N )] [10,14, when ngy/ng FIG. 2. (a) The optimum key generation ra@ for the casey

<1/2. Hereh(p) =-p log,p—(1-p)log,(1-p). The positiv- =g and(b) the optimum value of(¢y| 1)|2. Here we assume that

ity of n,e, means that Alice and Bob generate a secure key. lthe quantum channel is the depolarizing channel with loss. The
Fig. 2(a), we have numerically calculated the key generationdotted line, the dot-dashed line, and solid line represent the case
rate G=n,, /N in the case ofy=p for the fixed value of whereL=0,L=0.2, andL=0.5, respectively.
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protocol and six-state protocol are secure up t00.165[6] our result to their result directly. We leave this problem for
andp~0.1905[16] corresponding to bit error rates of 11% future studies. Another interesting problem is to consider the
and 12.7%, respectively. case where Bob’s detector is not perfect. In this case, some
In summary, we have shown that the security proof of thefiltered states may remain vacuum state or multiphoton states
B92 protocol over loss-free chann0] can be adapted to so that our proof cannot be directly applied. The security
lossy and noisy channels assuming Bob’s detector that diggnalysis of the B92 protocol with coherent state is another
criminates between single-photon states on one hand angeresting problem. We hope our study is helpful for solving

vacuum state or multiphoton states on the other hand. Wg,ese problems and we leave them for future studies.
have derived the general formula for the estimation of the

phase errors from bit errors. We have also shown that the
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