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We show that the security proof of the Bennett 1992 protocol over loss-free channel given by Tamaki,
Koashi, and Imoto[Phys. Rev. Lett.90, 167904(2003)] can be adapted to accommodate loss. We assumed that
Bob’s detectors discriminate between single-photon states on one hand and vacuum state or multiphoton states
on the other hand.
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I. INTRODUCTION

Quantum key distribution(QKD) is one of the most inter-
esting topics in quantum information processing, which al-
lows the sender(Alice) and the receiver(Bob) to share a
secret key with negligible leakage of information to an
eavesdropper(Eve). This task is accomplished by making
use of the properties of quantum mechanics, such as no-
cloning theorem[1], indistinguishability of nonorthogonal
quantum states, entanglement, and so on[2]. The Bennett
1992 (B92) protocol [3], where only two nonorthogonal
states are used, is thought to be secure due to the fact that
Eve cannot clone and distinguish the states deterministically.

Although the qualitative reason of the security is simple,
it is quite hard to show the quantitative security against so-
called coherent attack, which is the most general attack al-
lowed by quantum mechanics. In Refs.[4–6], the uncondi-
tional security of the Bennett-Brassard 1984(BB84) protocol
[7] is proven. Especially, in Refs.[5,6] they show the secu-
rity by showing the relationship between QKD and other
important protocols in quantum information, such as the en-
tanglement distillation protocol (EDP) [8] and the
Calderbank-Shor-Steane(CSS) quantum error correcting
codes[9]. Recently in Ref.[10], the unconditional security
of the B92 protocol has been proved by relating the B92
protocol to an EDP[8] initiated by local filtering[11]. The
assumptions of the proof are that Alice and Bob’s devices are
perfect and the quantum channel is loss-free. To study the
unconditional security of B92 protocol over a lossy and
noisy channel is interesting from the point of view of the
quantum information theory, since the channel loss directly
affects the security of the B92 protocol. The proof based on
the equivalence between the security and EDPs gives us an
idea how to distill the Einstein-Podolsky-Rosen(EPR) state
from states that arise from the lossy and noisy channel.

In this paper, we study the unconditional security of the
B92 protocol. We assume that Alice has a perfect single-
photon source, Bob’s polarization measurement is perfect
and he has a perfect single-photon counter that discriminates

between single-photon states on one hand and vacuum state
or multiphoton states on the other hand. Under these assump-
tions, we show the unconditional security of the B92 proto-
col. The proof follows the idea in Ref.[10]. This paper is
organized as follows. In Sec. II, we propose the protocol
based on EDP with local filtering and CSS codes[6], and we
reduce this to the B92 protocol. In Sec. III we give the for-
mula for the error estimations for EDP based on CSS code.
Finally, in Sec. IV we give the examples of the resulting
performance, and the summary and discussion follow.

II. PROTOCOL BASED ON EDP AND ITS REDUCTION
TO THE B92 PROTOCOL

In this section, we introduce the protocol that will turn out
to be secure and will reduce to the B92 protocol. In this
protocol, Alice first prepares a two-qubit nonmaximally en-
tangled states that can be written as

uClAB =
1
Î2

su0zlAuw0lB + u1zlAuw1lBd s1d

and sends system B to Bob. Hereuw jl;bu0xl+s−1d jau1xl
s j =0,1d, where 0,a,1/Î2, b;Î1−a2, and hu0xl , u1xlj is
a basissX basisd of the qubit. X basis andZ basis are
related through the relationshipu jzl=fu0xl+s−1d ju1xlg /Î2.

After receiving the state, Bob first performs the QND
(quantum nondemolition) measurements that can be de-
scribed by the POVM(positive operator valued measure) [2]

Qs = Ps, s2d

Qv = 1 − Ps, s3d

wherePs is the projector onto the single-photon space and
“v” means the detection of vacuum state or multiphoton
states. Thanks to this QND measurements, even if Eve sends
multiphoton states or vacuum state to Bob, Alice and Bob
can work only on the qubit pairs, provided that the outcome
is “s.” We also assume that, after this measurement, if the
outcome is s, Bob performs the “local filtering operation”
f11g on qubit B, described by the Kraus operator*Electronic address: tamaki_kiyoshi@soken.ac.jp
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Afil ;
g

b
sau0xlBk0xu + bu1xlBk1xud, s4d

where gP s0,1g. Note that if the channel is loss-free and
noiseless or Eve does nothing, this operation yields the maxi-
mally entangled state sEPR stated su0xlAu0xlB

+ u1xlAu1xlBd /Î2 with probability 2a2g2 due to the fact that
the initial state is also written asuClAB =bu0xlAu0xlB
+au1xlAu1xlB. Thus, the filtering operation withg=1 is op-
timum one in this case. When channel is lossy and noisy,
or Eve is present, the filtered states may include bit errors,
represented by the subspace spanned by
hu0zlAu1zlB, u1zlAu0zlBj, and a phase error, represented by
the subspace spanned byhu0xlAu1xlB, u1xlAu0xlBj. In order to
distill the EPR pairs, Alice and Bob run the EDP based on
CSS codef6g and after this EDP Alice and Bob measure
each in theZ basis of the EPR pairs so that they obtain a
secure key. Note that the QND measurement followed by
the filtering Afil andZ-basis measurement is equivalent to

a measurementMB92
L,g described byF0

g=g2uw1̄lkw1̄u / s2b2d,
F1

g=g2uw0̄lkw0̄u / s2b2d, Fnull
g =Ps−F0

g−F1
g, and Fv=1−F0

g

−F1
g−Fnull

g , where uw j̄l;au0xl−s−1d jbu1xl. Thus MB92
L,b is

the same measurement as in the B92 protocol with perfect
photon detector, andMB92

L,g corresponds to the generalized
B92 protocol. For convenience, letMB92

g be the measure-
ments described by the set of the POVM elements
hF0

g ,F1
g ,Fnull

g j. The following is the protocol that we want
to be shown secure and reduce to the generalized B92
protocol.

Protocol

(1) Alice prepares the stateuClAB, and she sends the sys-
tem B to Bob over a quantum channel.

(2) Bob performs the QND measurement described by
hQs,Qvj, and he publicly announces the outcome. They take
notes of the outcome.

(3) Alice and Bob repeats the steps(1) and(2) 2N times.
Let 2LN be the number of outcomes that resulted in v.

(4) Alice and Bob discard all the pairs whose outcomes of
the QND measurement are v. By public discussion, Alice and
Bob randomly permute the positions of the remaining 2s1
−LdN pairs.

(5) For the firsts1−LdN pairs (check pairs), Alice mea-
sures system A in theZ basis, and Bob performs measure-
ment MB92

g on his system. By public discussion, they
determine the numbernerr of errors in which Alice found
0 and Bob’s outcome was 1 or Alice found 1 with Bob’s
outcome 0.

(6) For the seconds1−LdN pairs (data pairs), Bob per-
forms the filteringAfil on each of his qubits, and announces
the total numbernfil and the positions of the qubits that have
passed the filtering.

(7) FromL, nerr, andnfil , they estimate an upper bound for
the number of bit errorsnbit and an upper bound for the
number of phase errorsnph, in thenfil pairs. If these bounds
are too large, they abort the protocol.

(8) They run an EDP that can producenkey nearly perfect
EPR pairs if the estimation is correct.

(9) Alice and Bob each measures the EPR pairs inZ basis
to obtain a shared secret key.

In the following, we will reduce our protocol to the B92
protocol. Before this reduction, we should briefly mention
what Alice and Bob do experimentally in the B92 protocol.
In the B92 protocol, Alice randomly prepares the single-
photon polarization in the stateuw0l or uw1l and sends the
state to Bob. After receiving the state, Bob performs mea-
surement described byMB92

L,g . Wheng=b and Bob detects a
single-photon state, this measurement effectively performs a
polarization measurement on the single-photon state in a ba-
sis randomly chosen fromhuw0l , uw̄0lj andhuw1l , uw̄1lj. In the
case whereg=1 and Bob detects a single-photon state, this
measurement effectively performs a general measurement
which describes the optimum unambiguous state discrimina-
tion betweenuw0l and uw1l [12].

Thanks to Bob’s perfect detector, if the outcome of the
QND measurement is s, then Bob’s states are projected onto
the single-photon space. This projection requires two more
steps in our protocol compared to theProtocol 1in Ref. [10].
The benefit of this projection is that for the states projected
onto qubit pairs Alice and Bob can use the one-way EDP
based on CSS code[6]. In the context of QKD, this EDP
allows Alice to performZ-basis measurements immediately
after she has prepared the stateuClAB and Bob to perform
Z-basis measurements immediately after he has performed
the filtering. Now Bob’s measurement is described byMB92

g .
Since Bob performs the QND measurement before the mea-
surementMB92

g , his measurement is equivalent to the mea-
surementMB92

L,g . As a whole, the protocol has been reduced
into the protocol where Alice prepares and sendsuw0l or uw1l
randomly and Bob performs theMB92

L,g measurement. This
completes the reduction of our protocol into the generalized
B92 protocol over lossy and noisy quantum channel.

Due to this equivalence, it is sufficient to prove the secu-
rity of the protocol for the security analysis of the B92 pro-
tocol. The most important part in the quantitative security
analysis of our protocol is to estimate phase errors and bit
errors in the step(7). If this estimation is not exponentially
reliable, then in the protocol Alice and Bob cannot distill the
state sufficiently close to EPR state so that the protocol is not
secure[5,6]. In the following section, we will give the for-
mula to estimate the bit errors and phase errors.

III. PHASE ERROR ESTIMATION FROM THE BIT ERROR

In this section, we consider the error estimations in the
step(7) of the protocol. Thanks to Bob’s perfect detector, the
filtered states are qubit states, which allows us to directly
apply some inequalities from Ref.[10].

First, note that bit errorsnbit in the data pairs could be
determined if Alice measures those pairs inZ basis, Bob
performs measurementMB92

g onto those pairs, and they
compare their results. Thus, the bit error rate in the check
pairs and the bit error rate in the data pairs are determined by
the same measurements. Furthermore thanks to the random
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permutation in step(4), we can apply the classical probabil-
ity estimation so that we obtain

unbit − nerru ø s1 − LdNe1. s5d

For any strategy by Eve, the probability of violating this
inequality is asymptotically less than expf−s1−LdNe1

2g.
Since the POVM elements that give the bit error rate on

the filtered statesPbit and phase error rate on the filtered
statesPph do not commute[13], the classical probability
argument cannot be applied to the estimation of the phase
errors from the bit errors. For the estimation, let us perform
the gedanken measurements in theuixlAu jx8lB basis si
=0,1,j8=0,1,vd, and let the numbersnij 8 of the pairs found
in the stateuixlAu jx8lB. Here we defineniv as the outcome
where Alice obtains the bit valuei and Bob obtains vacuum
or multiphoton states. As far as we consider the measurement
outcomes of the POVM elements that are diagonal with re-
spect touixlAu jx8lB basis, we are allowed to apply the classical
argument for the estimation. Thus, we have the following
inequalities:

U g2

b2fa2sn00 + n10d + b2sn01 + n11dg − nfilU ø s1 − LdNe2,

s6d

U g2

b2sa2n10 + b2n01d − nphU ø s1 − LdNe3, s7d

which are violated with probability asymptotically less than
expf−2s1−LdNe2

2g and expf−2s1−LdNe3
2g, respectively.

Similarly, since neither the noisy channel nor Eve can
touch the qubits held by Alice, we have

ua2N − sn10 + n11 + n1vdu ø Ne4, s8d

with probability of violation asymptotically less than
exps−2Ne4

2d.
In order to represent the bit error in the check pairs in

terms of gedanken measurements, we introduce the global
gedanken measurements in the basisuGi jl si =0,1,j =0,1d
and the number of the corresponding measurement outcomes
mij , where uGi jl;s−1di jbuixlAu jxlB+s−1dis j+1dausi +1dxlAus j
+1dxlB. Here the summation is taken modulo 2. Since the
POVM element for the bit error is diagonal with respect to
the uGi jl basis[12], we have

U g2

b2sm11 + m01d − nerrU ø s1 − LdNe5, s9d

which is violated with probability asymptotically less than
expf−2s1−LdNe5

2g.
Since huG01l , uG10lj and hu0xlAu1xlB, u1xlAu0xlBj span the

same subspace, we can relatem10+m01 and n10+n01 by the
classical probability estimate as

usm10 + m01d − sn10 + n01du ø s1 − LdNe6, s10d

which is violated with probability asymptotically less than
expf−s1−LdNe6

2g. For the estimate of the phase error rate
in the data qubit from the bit error rate in the check qubit,

we need to relatem01/ sm01+m10d to n01/ sn01+n10d. This
relation cannot be obtained by classical arguments, since
uG01l and u0xlAu1xlB are nonorthogonal. In Ref.f10g, the
authors consider the qubits that are invariant under the
random permutation in the limit of large number. Then
they showed that when we consider the measurement out-
comes onto such qubits, we are allowed to regard the qu-
bits as if they arose from the independently and identically
distributed quantum source. Their argument can be di-
rectly applied to our case, since in steps4d of the protocol
we have also applied the random permutation. Thus, we
can make use of the exponentially reliable inequality de-
rived in Ref. f10g as

sin2sul − ud − e7 ø sin2fl ø sin2sul + ud + e8 s11d

for l =0,1,where all the angles are defined inf0,p /2g by the
relations n11/ sn11+n00d=sin2u0, n01/ sn01+n10d=sin2u1,
m11/ sm11+m00d=sin2f0, m01/ sm01+m10d=sin2f1, and a2

=sin2u.
The Eqs.(5)–(11), together with the relationonij 8=N and

omij =s1−LdN can be used to derive the formula for the
estimation of the phase error from bit error. In the following
we setei →0 si =1,2, . . . ,8d by taking the limitN→` so that
Eqs.(5)–(10) are now linear equations.

We first consider the special case for the B92 protocol
where bit error rate in the filtered qubits is zero while the
phase error rate in the qubits is not zero. Eve can accomplish
this by using channel loss. Fromnbit=0, i.e., m11=m01=0,
one can easily find that fornfil /N=2a2g2s1−Ld,

maxSnph

nfil
D5=

a2

b2 − a2

L

1 − L
for L ø b2 − a2

ù1/2 for L . b2 − a2.

s12d

The limiting loss rateb2−a2 coincides with the case where
Eve employs optimum unambiguous state discrimination
measurementf13g. In this attack, if she obtains the conclu-
sive outcome, then she sends the corresponding state to Bob,
otherwise she does not.

Next we consider the general case. The relationship can
be obtained by solving the equations that we have mentioned
just above. After straightforward calculations, we find the
implicit constraint

b2

g2 unfil − 2nerru ø Na bfsxd,

where
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fsxd ;Îsx − L1d2 − S− D +
L1

a2 − b2D2

+Îs1 − x − L0d2 − Sb2 − a2 − D +
L0

a2 − b2D2

,

D ; fsb2/g2dnfil /N − 2a2b2g/sb2 − a2d,

x ; sb2/g2d2nph/N − sb2 − a2dD,

L0 ; a2n1v/N + b2n0v/N,

L1 ; a2n0v/N + b2n1v/N. s13d

Here,x−L1 and 1−x−L0 are equal tosn10+n01d /N and sn00

+n11d /N, respectively, so that they must be positive. Com-
bining these positivity constraints with the positivities inside
the square roots, we haveL1+ u−D+L1/a2−b2uøxø1−L0
− u−D−a2+b2+L0/a2−b2u. We can easily confirm that these
equations are the same as equations in Ref.[10] where g
=b and the channel has no loss, i.e.,L0=L1=0. Equation
(13) gives us the possible parameter sethnerr,nphj for fixed
a ,g ,L0,L1,L, andnfil . By taking the optimum ratio between
L0 and L1 with respect tonph for given nerr, nfil , andL, we
obtain an upper boundn̄ph on the number of phase errorsnph,
as a function of the observed valuesnerr, nfil , andL, and the
chosen parametersa andg.

IV. EXAMPLES AND CONCLUSION

In this section, at first we give the examples of the phase
error estimation and resulting performance of the B92 proto-
col.

To illustrate the accuracy of the phase error estimation
and security performance of the B92 protocol, we assign
values to the observable data as they would arise from a
depolarizing quantum channel with loss, i.e., the stater
evolves intoLuVlkVu+s1−Ldfs1−pdr+oi=x,y,zsirsig, where
uVl is the vacuum state,L is the loss rate of quantum channel,
p is the depolarizing rate, andsi is the Pauli matrix. In Fig.
1, we show the upper bound of the estimated phase error
rate, the actual phase error rate, and bit error rate for the case
(a) p=0.01,L=0 and (b) p=0.01,L=0.5. These figures are
independent ofg, since we plot the phase error rates normal-
ized by nfil so that the prefactorb2/g2 is canceled. In each
figure, it is seen that whenukw0uw1lu2 becomes smaller, the
estimation of the phase errors becomes poorer. On the other
hand, larger values ofukw0uw1lu2 make the signal more vul-
nerable to noise and loss. Furthermore, due to the loss, the
estimation in(b) is poorer than that in(a), especially in the
region for smallukw0uw1lu2.

Since Alice and Bob apply random permutation in the
protocol, the achievable length of the final key is given by
nkey=nfil f1−hsnbit /nfil d−hsn̄ph/nfil dg [10,14], when n̄ph/nfil

ø1/2. Herehspd;−p log2p−s1−pdlog2s1−pd. The positiv-
ity of nkey means that Alice and Bob generate a secure key. In
Fig. 2(a), we have numerically calculated the key generation
rate G;nkey/N in the case ofg=b for the fixed value of

ukw0uw1lu2, L, andp, and plotG optimized overukw0uw1lu2 as
a function ofp. The optimum value ofukw0uw1lu2 is shown in
Fig. 2(b). Since the optimization of the ratio betweenL0 and
L1 is complicated, we have optimized the ratio numerically.
From Fig. 2(a), it is seen that the B92 protocol as described
here is secure up top,0.034 (in the case ofL=0), p
,0.023(in the case ofL=0.2), andp,0.012(in the case of
L=0.5). The use of thegeneral B92 measurement, i.e.,g=1
yields the higher secret key gain, however this does not
change the cutoff of the gain nor the optimum angle in Fig.
2(b). This is again because of the fact that the cutoff is de-
termined by the error rate normalized bynfil .

In the BB84 protocol or six-state protocol[15], thanks to
the randomly chosen conjugate bases, phase error estimation
is more precise than that in the B92 protocol. The poor esti-
mation in the B92 protocol makes this protocol more vulner-
able to eavesdropping. Actually, it is known that the BB84

FIG. 1. The estimated phase error raten̄ph/nfil (dot-dashed line),
the actual phase error rate(solid line), and bit error rate(dotted line)
in case ofp=0.01.(a) is for L=0 and(b) is for L=0.5. We assume
that quantum channel is a depolarizing channel with loss.

FIG. 2. (a) The optimum key generation rateG for the caseg
=b and (b) the optimum value ofukw0uw1lu2. Here we assume that
the quantum channel is the depolarizing channel with loss. The
dotted line, the dot-dashed line, and solid line represent the case
whereL=0, L=0.2, andL=0.5, respectively.
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protocol and six-state protocol are secure up top,0.165[6]
and p,0.1905[16] corresponding to bit error rates of 11%
and 12.7%, respectively.

In summary, we have shown that the security proof of the
B92 protocol over loss-free channel[10] can be adapted to
lossy and noisy channels assuming Bob’s detector that dis-
criminates between single-photon states on one hand and
vacuum state or multiphoton states on the other hand. We
have derived the general formula for the estimation of the
phase errors from bit errors. We have also shown that the
boundary loss rate at which Eve can induce phase errors
freely without inducing bit errors coincides with the case
where Eve employs the optimum unambiguous state dis-
crimination measurement. Finally, we have shown the ex-
amples of the security assuming the quantum channel is the
depolarizing quantum channel with loss.

It is an interesting problem to compare our results to the
case where Eve performs only individual attack. For the B92
protocol with loss, the security is estimated in Ref.[17].
However in that paper, it is assumed that Alice and Bob
employ error discarding protocol so that we cannot compare

our result to their result directly. We leave this problem for
future studies. Another interesting problem is to consider the
case where Bob’s detector is not perfect. In this case, some
filtered states may remain vacuum state or multiphoton states
so that our proof cannot be directly applied. The security
analysis of the B92 protocol with coherent state is another
interesting problem. We hope our study is helpful for solving
these problems and we leave them for future studies.
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