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Optimal quantum circuits for general two-qubit gates
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In order to demonstrate nontrivial quantum computations experimentally, such as the synthesis of arbitrary
entangled states, it will be useful to understand how to decompose a desired quantum computation into the
shortest possible sequence of one-qubit and two-qubit gates. We contribute to this effort by providing a method
to construct aroptimal quantum circuit for a general two-qubit gate that requires at most 3 contratied-
(cNnoT) gates and 15 elementary one-qubit gates. Moreover, if the desired two-qubit gate corresponds to a
purely real unitary transformation, we provide a construction that requries at nmgb2and 12 one-qubit
gates. We then prove that these constructions are optimal with respect to the famihonfy-rotation,
z-rotation, and phase gates.
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I. INTRODUCTION iams proved that any) € SU(4) requires at most 8NOT's
and 16 elementary one-qub{R,,R/} gates, that anyU

It is known that anyn-qubit quantum computation can be : .
achieved using a sequence of one-qubit and two-qubit quane- SO4) (i.e., real gatgrequires at most ZNOTS and 12

tum logic gates[1,2]. However, even for two-qubit gates, Qne'qub't{Ry’Rz} gr;]ateds, and tkhat theje ci?nsiructlons;re_ op-
finding theoptimal circuit with respect to a particular family timal [9). Later, Shende, Markov, and Bullock reported simi-

of gates is not easfg]. This is unfortunate because, at the !a" esults on circuit complexity fod e SU(4), and special-
current time, quantum computer experimentalists can only?€d the complexity bounds depending on which families of
achieve a handful of gate operations within the coherenc@n€-qubit gates were being us¢ti0]. Fundamentally, all
time of their physical systemgl]. Without a procedure for th€Se results rest upon the decomposition of a genéral
optimal quantum circuit design, experimentalists might be€ SU(4) given in Refs[11,17 and used in the GQC quan-
unable to demonstrate certain quantum computational mileUm circuit compiler{13]. , _

stones even though they ought to be within reach. For ex- The r_emalnder of the_ paper is orgamzed_ as foIIows._After
ample, a current experimental goal is the synthesis of an{ptroducing some notation in Sec. Il, we discuss thagic
two-qubit entangled stat]. Although it is known, in prin-  Pasis[11] in Sec. Ill, and provgin Theorems 1 and)zts
ciple, how to synthesize any such std@i, the resulting MOSt important property, namely, that real entangling two-
quantum circuits can be suboptimal, requiring excessivélubit operations become nonentangling in the magic basis.
numbers of controlledNoT (CNOT) gates, if done injudi- We alsp prove(via the circuit shown in Fig. 1, f|rst' intro-
ciously[7]. The current solution to this problem uses rewriteduced in Ref[9]) that the magic basis transformations re-
rules to recognize and eliminate redundant gates. However, @iré at mosbnecnoT to implement them explicitly. This is

better solution would be to perform optimal design from theil contrast to Fig. 3 in Re{15], which require threenoTs.
outset. It turns out that this compact quantum circuit for the magic

In this paper we give a procedure for constructing an op_basis transformation is' the cornerstone of our subsequent
timal quantum circuit for achieving a general two-qubit constructions for generic two-qubit gates, and our proofs of
guantum computation, up to a global phase, which requireﬂqe'r opt_lmallty. In Sec. IV we presen? the first such construc-
at most 3cNOT gates and 15 elementary one-qubit gatesion, which proves that any two-qubit gate $0(4) can be
from the family{R,,R,}. We prove that this construction is implemented in 12 elementargi.e., R,,R,) gates and 2
optimal in the sense that there is no smaller circuit, using th&"NOTS. Theorem 4 extends this result to any two-qubit gate
same family of gates, that achieves this operation. In addil O(4) with determinant equal to -1, and proves that any
tion, we show that if the unitary matrix corresponding to ourSuch gate requires 12 elementary gates aod@rs. In Sec.
desired gate is purely real, it can be achieved using at most ¥ these results are generalized to the generic two-qubit gates
CNOT gates and 12 one-qubit gates. in U(4) and we provide an explicit construction that requires

A flurry of recent results on gate-count minimization for 15 elementary gates and&\oTs. Finally, in Sec. VI we
general two-qubit gates report similar findings to us. VidalPprove that our construction for generic two-qubit gates is
and Dawson proved that threaioTs are sufficient to imple-  optimal by showing that there is at least one gatéJid),
ment a general e SU(4) and that two-qubit controlled-

operations require at most twaNoT's [8]. Vatan and Will- 9—
—{sHa—
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"Electronic address: Colin.P.Williams@jpl.nasa.gov FIG. 1. A circuit for implementing the magic gafet.
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namely the two-qubitswap gate, which cannot be imple- 1 i 0 0
mented in fewer than threenoT's. -

M= 110 0 i 1

“V2lo 0 i -1

II. NOTATION 1 -i0 0

Throughout this paper we identify a quantum gate withThe circuit of Fig. 1 implements this transformation.
the unital’y matI’iX that defineS |tS Operation. We take rota- The fo”owing theorem presents the basic property of the
tions about thy andz axes, respectivelR,(6) andR,(a), as  magic basis. This result is already knowsee, e.g., Ref.
our elementary one-qubit gates; i.e., [19]), and we provide a proof for the sake of completeness.
Theorem 1For every real orthogonal matrid € SO(4),

9 0 . . : s oAt
cos’  sinZ the matrix ofU in the magic basis, i.eM-U- M’ is tensor

2 gl o product of two two-dimensional special unitary matrices. In
Ry(6) = 0 , Rla)= 0 el | other words, M -U-M" e SU(2) @ SU(2).
- sinE cosE Proof. We prove the theorem by showing that for every

A®B e SU(2) ® SU(2), we have M (A® B)M e SO(4). It
. . . .is well known that every matriA e SU(2) can be written as
However, we also have three special one-qubit gates: th

one-qubit identity matrix],, and the Hadamard gaté and ]tf?we productRZ(_a’)ARy(g)RZS(ﬁ),zforSchj)gea,,B,band 6. There-
the phase gats defined as ore any matrixA® B e SU(2) ® SU(2) can be written as a

product of the matrices of the forM® I, and1,® V, where

1/1 1 10 V is eitherR(6) or R(a@). Thus the proof is complete if

H= :( ) —< ) M Vel )M and M*(1,® V)M are inSO(4). Elementary
V2 algebra shows that this is the case.

We define twocNoOT gatescNOT1 a standardNoT gate with Since the mappingh® B~ M"(A®@B)M is one to one

the control on the top qubit and the target on the bottorrAnd the spaceSU(2) ® SU(2) and SO(4) have the same to-

qubit, andcNoT2 with the control and target qubits flipped. pological dimension, we conclude that this mapping is an
Thus isomorphism between these two spaces. [ |

Note that the above theorem is not true for all orthogonal

1 -1 “\0 i

1000 1000 matrices inO(4). In fact, for every matrixU e O(4), either
detfU)=1 for which the above theorem holds, or @&t
0100 0001 . .
CNOTL = , CNOT2= =-1 for which we have the following theorem.
0001 0010 Theorem 2For everyU e O(4) with de{U)=-1, the ma-
0010 0100 trix MUM" is a tensor product of two-dimensional unitary
. S , matrices and oneswap gate in the form of the following
We also use the two-qubit gassvap gate, which is defined decomposition: M -U- M- =(A® B) -swap- (1, o), where
as
A,BeU(2).
1000 Proof. First note that détnor)=—1 and detJ-cnoti)
0010 =1. Then M(cnom)M =(S ®S)swar(l,®0c,). Since
SWAP= CNOTL - CNOT2 - CNOTL = MUM™ =[ M (U -cnotl) M ]-[ M (cnoTl) M™], the theorem
0100 follows from Theorem 1. |
0001

IV. REALIZING TWO-QUBIT GATES FROM O (4)

We use the notation thél;(V) for the controlledv gate, Let U e SO(4). Then Theorem 1 shows tha!UM"
whereV e U(2). Throughout this paper we assume that for=po® B, where A,B ¢ SU(2). ThereforeU=M"(A® B)M.
the [;(V) gate the control qubit is the firgtop) qubit. There-  we use the circuit of Fig. 1 for computing the magic basis
fore transform M to obtain a circuit for computing the unitary
operationU. This circuit can be simplified by using the de-
(V) :<12 V)- compositionsS=€™R,(7/2) and H=0,R(m/2). Note that
1,® o, and thecNOT2 gates commute, and the overall phases
€™ ande”™* from SandS cancel out. Hence we obtain
the circuit of Fig. 2 for computing a general two-qubit gate
from SO(4). Thus we have proved the following theorem.
Theorem 3Every two-qubit quantum gate i80(4) can
be realized by a circuit consisting of 12 elementary one-qubit
lll. MAGIC BASIS gates and ZNOT gates.
A similar argument and Theorem 2 imply the following
There are different ways to define the magic basisconstruction for gates from®(4) with determinant equal to
[12,14,16. Here we use the definition used in Rdf4,16: -1.

In the special case of thg;(o,) gate, we use the notation
CZ. For any unitary matrixJ, we denote its inverse, i.e., the
conjugate transpose &f, by U".
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FIG. 2. A circuit for implementing a general transform in FIG. 4. A circuit for implementingN(a, B, v); first version.
SO(4), whereA,B € SU(2), S;=R/(7/2), andR,;=R(7/2).
; a a
Theorem 4 Every two-qubit quantum gate i®(4) with Vi= e'sz<— E) ‘RI2(B-a)]- RZ<E), )
determinant equal to —1 can be realized by a circuit consist-
ing of 12 elementary gates andc®oT gates and onewap  and

gate(see Fig. 3.

Next, we generalize these results to construct circuits for 0y(V,) = ei(w/4—y)[12 ® Rz<_ f)} . CNOTL -
gates inU(4). 2

o
V. REALIZING TWO-QUBIT GATES FROM U (4) X{ﬂz ® Ry<23‘ 5) " CNOTL -
It is known that everyJ e U(4) can be written as - o -
afor-2)o[w(z-28) =2}
U=(A1® A N(a,8,7) - (Az® Ay), (1) 2 2 2

whereA; e U(2) and (4)

By utilizing Egs.(2)—4), we can convert the circuit of Fig. 4
to the circuit of Fig. 5.

for a,B,veR (see, e.g., Refd.11,12,18). Note that ifU Now we focus on the sequencenoti-[l,QR,

e SU(4), then we can choose all operatioAsin Eq. (1) (=m/2)]-cnom1 of operations. We have the following identity:
from SU(2). Our construction is based on constructing an
optimal circuit for computingN(a, 8,v). To this end, we

first note thatD=M"-N-M is a diagonal matrix of the After applying this rule, the two consecutizaioT2 gates on

N(a,B,7) = exdi(aoy ® oy + Boy ® oy + yo,® 07)],

cnot1 -[1, ® R(6)] - cnomi =cnomz - [R6) ® 1,] - cNoTe.

form the right-hand side of the circuit reduce to the identity. Also
diag(e(@ B+ gila=By) dla+f=y grilatpy)) note that, on the left-hand side of the circuit, we can apply
' ' ' ' the rule

Therefore N(a, 8,7)=M-D-M". Utilizing the circuit of _
Fig. 1 for M, we get the circuit of Fig. 4 for computing [12® R(6)] - cnom = enom - [1, ® R,(6) ].

N(a,B,7). Note that(S® S)-D-(S ®S)=D. Then we sub- Thus the circuit of Fig. 5 can be converted to the circuit of
stitute the right-hand side Hadamard gate of Fig. 4 by thre¢rig. 6. Note that the operation defined by this circuit has
gates, using the following identity:l,®@ H=cnom-(l,  determinant equal to —1, thus we need to add a gletyaf
®H)-CZ. Now, the matriXD,=CZ-D is a diagonal matrix, phase to get the special unitary operatidfar, 3, y) exactly.
and Now utilizing the circuit of Fig. 6 and the canonical decom-
position (1) we could get a circuit to realize the operation

(I ®H) D1l ® H) =[h(Vo) - (1@ V), @ ye U(4). Note that in this process, the left- and right-hand
where side operation&,(7/2) andR,(—/2) of Fig. 6 will be “ab-
i o sorbed” by adjacend;. The final result is the circuit of Fig.
_ (e’cos(a -p) €7 sina-p) ) 7, and we have proved the following theorem.
1" \ie"sina-B) €7coda-p) )’ Theorem 5Every two-qubit quantum gate id(4) can be

realized, up to a global phase, by a circuit consisting of 15
ie27sin 28 e€%7cos B elementary one—_qubit.gate_s anctSoT gates.
Vo= _y oy . The construction given in Theorem 5aptimal To prove
e“Ycos 2B ie“’sin2B C -
this it is sufficient to place a lower bound on the number of
We have the following decompositions f&f; and [;(V,) ~ CNOT gates needed to implement a generic two-qubit gate.
(see also Refl.7]): This is because Reff15] already shows that we need at least

>[5
- | E}--omefie

Fan)

D
7

FIG. 3. A circuit for implementing a transform i@(4) determi- FIG. 5. A circuit for implementingN(«, 8, y); second version.
nant equal to -1, whereA,Be SU2), S;=R,(7/2), and R, Here S,=R/(7/2), S,=R/(2y-m/2), T;=R/(7/2-2a), and T,
=Ry(7/2). =R/(28-/2).
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FanY

FIG. 6. A circuit for implementingN(a,8,y); third version. FIG. 8. A circuit consisting of twaNoT gates in terms of CZ
A global €™ phase is missing here. gates.
15 elementary one-qubit gates to implement a generic two- ERU) = 5 i[(UM T, U%2T, 9
qubit gate. So we need only concern ourselves with the mini- "9 36 L3 L
mum required number afNOT gates. We prove in the next 92 02
section that threeNoT gates are needed in the general case. *{(swap - U)™, Ty g(swap- U)™°Ty 9],

_ We wish to emphasize that our decompositiondsstruc-  yhere the Hilbert-Schmidt scalar produét, B) is defined as
tive. To see this, note that we can use Kraus and Clrac’% B)=tr(A'B) and the permutatiorl; 5 on (2@ (2 (2
) - 1,

methods[12] to decompose any desired two-qubit gate into_ ', ". S -

the form given by Eq(1). All parameters in this decompo- fgtelri Lr}efgaar\nslf)l;)itssltlonﬂ,ﬁa,b,c,d>—|c,b,a,d> on the
sition may be determined constructively. Thereafter, it only yWe will utilizeqthe fdllowin basic properties of the func-
remains to reduce thd(a, 8,y) matrix to an explicit quan- tion EP- 9 prop

tum circuit. This we can do immediately using the circuit (i) For everyU e U(4) we have OsEP(U)sé.

template in Fig. 6. By concatenating these two processes we 2
can find the optimal circuit for any generic two-qubit opera- (i) For everyA,B e U(2) we have ERA® B)=0.

tion constructively. (iii) For everyU e U(4) andA,B e U(2) we have ERA
®B)-U]=EHU-(A® B)]=ERU).
VI. THREE cNoT GATES ARE NEEDED (iv) ERU)=ERU").

(V) EP(CNOT)=§ and ERswap)=0.

To show that the construction of Theorem 5 is optimal, weWe will also use the simple fact thatvap cannot be written
prove that there is at least one gatelit4), namely the asswar=A® B, where,A,B e U(2).
two-qubit SwAP gate, a real unitary matrix having a determi- ~ Theorem 6To compute theswap at least threeNoT gates
nant of -1, which requires no less than theoT gates. are needed.

In the proof of the following theorem we utilize the notion ~ Proof. We construct a proof by contradiction. Suppose
of entangling poweiintroduced in Ref[17]. For a unitary that there is a circuit computingwApP and consists of less
operationU e U(4), the entangling power dfl is defined as than threecNOT gates. We consider two possible cases.

Case 1 Suppose thatwap is computed by a circuit con-
sisting of twoCNOT gates. We substitute eachoT gate by a

ERU) = %Vg@%EE(UWD ® )], small subcircuit in terms of CZcontrolleds,) gate; i.e.,
1 2

cnot= (I, ® H) - CZ -(I, ® H).
where the average is over all product stdigg ® |4,) e 2
®(? distributed according to the uniform distributigin
general, we can define EP with regards to any distribution, CZ-[1,® R()]=[1,® R(t)] - CZ,
but here we only consider the uniform distributioin the
above formuleE is the linear entropgntanglement measure

Then by utilizing the following commutation rules,

defined for|y) e C* as follows: CZ [R(t) ® L] =[R/t) ® 1,] - CZ,
we obtain the simplified circuit of Fig. 8 for computing the
E(ly)) =1 - tryp?, SWAP gate. Note that in this figure we choose the ttst)

qubit as the control qubit for the CZ gates, but we could
choose the other qubit as the control qubit as well, since the

wherep=tr,|i)(y| and ty denotes th(g result of tracing out gction of the CZ gate is not change by switching the control
the jth qubit. Note that & E(|y))<3, and the lower or gang target qubits. Now, let

upper bound is obtained ff) is a product state or a maxi-
mally entangled state, respectively. In Rgt7] the fol- U=CZ [R(a) ® R(b)]-CZ

lowing simple formula for calculating EP is presented: Then

2(t1 D |_'4_q_}—— EP(U) = ER(swap)
1
_|R’y(t21_€9_|Ry (taj— = EB - cog2a) — cog2b)

FIG. 7. A circuit for implementing a transform id(4). - cog2a)cog2b)]=0.
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Thereforea,be{0,#}. Thus we have the following four single, fixed, type of two-qubit gate need be built. Similar

possible cases for the unitary operatidn schemes are known that use different fixed entangling opera-
(i) if a=b=0, thenU=1,; tions such asswap gates(in superconducting quantum com-
(i) if a=0,b=m, thenU=0,8R (), puting) and Jswap gates(in spintronic quantum computing
(iii) if a=7,b=0, thenU=R(m) ® 0, In addition, other decompositions are possible that use pa-
(iv) if a=b=1r, thenU=-0,® o,. rametrized two-qubit gates. These may lead to more efficient
In each case, we conclude thawar=V,®V,, for some factorizations in special cases, but also make for a more
V,,V, e U(2), which is a contradiction. complicated quantum computer architecture.
Case 2Suppose that SWAP is Computed by a circuit con- The motivation for our work comes from the fact that it is
sisting of only onecNOT gate; for example, still very difficult, experimentally, to implement multiple
quantum gates. Thus, in order to attain near term experimen-
swAP= (A ® Ay) -cNoTl - (Ag ® Ay), tal milestones, it will be important to minimize the number

of gates they require. Although our scheme yields minimal
circuits for generic two qubit operations, further reductions
are still possible in certain special cases. We therefore aug-
ment our procedure with rewrite rules, to find even simpler
circuits if they exist. Hence our new construction brings cer-
In this paper we prove tight bounds on the numbers ofain state synthesis tasks within the grasp of experimentalists.
one-qubit gates andNOT gates needed to implement generic N addition, as quantum circuits fearbitrary) n-qubit op-
two-qubit quantum computations. In addition, we give a con-£rations are always expressed in terms of a sequence of one-
structive procedure for finding such decompositions, whicHubit and two-qubit gates, by designing component two-
uses the Kraus—Cirac decomposition to find the core entarfiubit operations minimally, we can sometimes improve the
gling operation underlying the two-qubit gate, i.e., efficiency of implementing-qubit computations.
N(«,B,v), and then substitutes the discovered parameter
values into an equivalent circuit template MNf«,3,7y) as

whereA; e U(2). Then ERswap) =ER(cnoT), which again is
a contradiction.

VIl. CONCLUSION

shown in Fig. 6. The net result is an explicit circuit for any ACKNOWLEDGMENTS
desired two-qubit unitary operation that uses at most 3
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