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In order to demonstrate nontrivial quantum computations experimentally, such as the synthesis of arbitrary
entangled states, it will be useful to understand how to decompose a desired quantum computation into the
shortest possible sequence of one-qubit and two-qubit gates. We contribute to this effort by providing a method
to construct anoptimal quantum circuit for a general two-qubit gate that requires at most 3 controlled-NOT

(CNOT) gates and 15 elementary one-qubit gates. Moreover, if the desired two-qubit gate corresponds to a
purely real unitary transformation, we provide a construction that requries at most 2CNOT and 12 one-qubit
gates. We then prove that these constructions are optimal with respect to the family ofCNOT, y-rotation,
z-rotation, and phase gates.
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I. INTRODUCTION

It is known that anyn-qubit quantum computation can be
achieved using a sequence of one-qubit and two-qubit quan-
tum logic gates[1,2]. However, even for two-qubit gates,
finding theoptimalcircuit with respect to a particular family
of gates is not easy[3]. This is unfortunate because, at the
current time, quantum computer experimentalists can only
achieve a handful of gate operations within the coherence
time of their physical systems[4]. Without a procedure for
optimal quantum circuit design, experimentalists might be
unable to demonstrate certain quantum computational mile-
stones even though they ought to be within reach. For ex-
ample, a current experimental goal is the synthesis of any
two-qubit entangled state[5]. Although it is known, in prin-
ciple, how to synthesize any such state[6], the resulting
quantum circuits can be suboptimal, requiring excessive
numbers of controlledNOT (CNOT) gates, if done injudi-
ciously [7]. The current solution to this problem uses rewrite
rules to recognize and eliminate redundant gates. However, a
better solution would be to perform optimal design from the
outset.

In this paper we give a procedure for constructing an op-
timal quantum circuit for achieving a general two-qubit
quantum computation, up to a global phase, which requires
at most 3CNOT gates and 15 elementary one-qubit gates
from the family hRy,Rzj. We prove that this construction is
optimal, in the sense that there is no smaller circuit, using the
same family of gates, that achieves this operation. In addi-
tion, we show that if the unitary matrix corresponding to our
desired gate is purely real, it can be achieved using at most 2
CNOT gates and 12 one-qubit gates.

A flurry of recent results on gate-count minimization for
general two-qubit gates report similar findings to us. Vidal
and Dawson proved that threeCNOT’s are sufficient to imple-
ment a generalUPSUs4d and that two-qubit controlled-V
operations require at most twoCNOT’s [8]. Vatan and Will-

iams proved that anyUPSUs4d requires at most 3CNOT’s
and 16 elementary one-qubithRy,Rzj gates, that anyU
PSOs4d (i.e., real gate) requires at most 2CNOT’s and 12
one-qubithRy,Rzj gates, and that these constructions are op-
timal [9]. Later, Shende, Markov, and Bullock reported simi-
lar results on circuit complexity forUPSUs4d, and special-
ized the complexity bounds depending on which families of
one-qubit gates were being used[10]. Fundamentally, all
these results rest upon the decomposition of a generalU
PSUs4d given in Refs.[11,12] and used in the GQC quan-
tum circuit compiler[13].

The remainder of the paper is organized as follows. After
introducing some notation in Sec. II, we discuss themagic
basis[11] in Sec. III, and prove(in Theorems 1 and 2) its
most important property, namely, that real entangling two-
qubit operations become nonentangling in the magic basis.
We also prove(via the circuit shown in Fig. 1, first intro-
duced in Ref.[9]) that the magic basis transformations re-
quire at mostoneCNOT to implement them explicitly. This is
in contrast to Fig. 3 in Ref.[15], which require threeCNOT’s.
It turns out that this compact quantum circuit for the magic
basis transformation is the cornerstone of our subsequent
constructions for generic two-qubit gates, and our proofs of
their optimality. In Sec. IV we present the first such construc-
tion, which proves that any two-qubit gate inSOs4d can be
implemented in 12 elementary(i.e., Ry,Rz) gates and 2
CNOT’s. Theorem 4 extends this result to any two-qubit gate
in Os4d with determinant equal to −1, and proves that any
such gate requires 12 elementary gates and 3CNOT’s. In Sec.
V these results are generalized to the generic two-qubit gates
in Us4d and we provide an explicit construction that requires
15 elementary gates and 3CNOT’s. Finally, in Sec. VI we
prove that our construction for generic two-qubit gates is
optimal by showing that there is at least one gate inUs4d,
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namely the two-qubitSWAP gate, which cannot be imple-
mented in fewer than threeCNOT’s.

II. NOTATION

Throughout this paper we identify a quantum gate with
the unitary matrix that defines its operation. We take rota-
tions about they andz axes, respectively,Rysud andRzsad, as
our elementary one-qubit gates; i.e.,

Rysud =1 cos
u

2

− sin
u

2

sin
u

2

cos
u

2
2, Rzsad = Seisa/2d

0

0

e−isa/2d D .

However, we also have three special one-qubit gates: the
one-qubit identity matrix,12, and the Hadamard gateH and
the phase gateS defined as

H =
1
Î2

S1

1

1

− 1
D, S= S1

0

0

i
D .

We define twoCNOT gates,CNOT1 a standardCNOT gate with
the control on the top qubit and the target on the bottom
qubit, andCNOT2 with the control and target qubits flipped.
Thus

CNOT1 =1
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
2, CNOT2 =1

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
2 .

We also use the two-qubit gateSWAP gate, which is defined
as

SWAP= CNOT1 · CNOT2 · CNOT1 =1
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
2 .

We use the notation the∧1sVd for the controlled-V gate,
whereVPUs2d. Throughout this paper we assume that for
the∧1sVd gate the control qubit is the firststopd qubit. There-
fore

∧1sVd = S12
V D .

In the special case of the∧1sszd gate, we use the notation
CZ. For any unitary matrixU, we denote its inverse, i.e., the
conjugate transpose ofU, by U* .

III. MAGIC BASIS

There are different ways to define the magic basis
[12,14,16]. Here we use the definition used in Refs.[14,16]:

M =
1
Î21

1 i 0 0

0 0 i 1

0 0 i − 1

1 − i 0 0
2 .

The circuit of Fig. 1 implements this transformation.
The following theorem presents the basic property of the

magic basis. This result is already known(see, e.g., Ref.
[19]), and we provide a proof for the sake of completeness.

Theorem 1.For every real orthogonal matrixUPSOs4d,
the matrix ofU in the magic basis, i.e.,M ·U ·M* is tensor
product of two two-dimensional special unitary matrices. In
other words,M ·U ·M* PSUs2d ^ SUs2d.

Proof. We prove the theorem by showing that for every
A^ BPSUs2d ^ SUs2d, we haveM*sA^ BdMPSOs4d. It
is well known that every matrixAPSUs2d can be written as
the productRzsadRysudRzsbd, for somea ,b, and u. There-
fore any matrixA^ BPSUs2d ^ SUs2d can be written as a
product of the matrices of the formV^ 12 and12 ^ V, where
V is either Rysud or Rzsad. Thus the proof is complete if
M*sV^ 12dM andM*s12 ^ VdM are inSOs4d. Elementary
algebra shows that this is the case.

Since the mappingA^ B°M*sA^ BdM is one to one
and the spacesSUs2d ^ SUs2d andSOs4d have the same to-
pological dimension, we conclude that this mapping is an
isomorphism between these two spaces. j

Note that the above theorem is not true for all orthogonal
matrices inOs4d. In fact, for every matrixUPOs4d, either
detsUd=1 for which the above theorem holds, or detsUd
=−1 for which we have the following theorem.

Theorem 2.For everyUPOs4d with detsUd=−1, the ma-
trix MUM* is a tensor product of two-dimensional unitary
matrices and oneSWAP gate in the form of the following
decomposition:M ·U ·M* =sA^ Bd ·SWAP·s12 ^ szd, where
A,BPUs2d.

Proof. First note that detsCNOT1d=−1 and detsU ·CNOT1d
=1. Then MsCNOT1dM* =sS* ^ S*dSWAPs12 ^ szd. Since
MUM* =fMsU ·CNOT1dM*g ·fMsCNOT1dM*g, the theorem
follows from Theorem 1. j

IV. REALIZING TWO-QUBIT GATES FROM O „4…

Let UPSOs4d. Then Theorem 1 shows thatMUM*

=A^ B, where A,BPSUs2d. ThereforeU=M*sA^ BdM.
We use the circuit of Fig. 1 for computing the magic basis
transformM to obtain a circuit for computing the unitary
operationU. This circuit can be simplified by using the de-
compositionsS=eip/4Rzsp /2d and H=szRysp /2d. Note that
12 ^ sz and theCNOT2 gates commute, and the overall phases
eip/4 and e−ip/4 from S and S* cancel out. Hence we obtain
the circuit of Fig. 2 for computing a general two-qubit gate
from SOs4d. Thus we have proved the following theorem.

Theorem 3.Every two-qubit quantum gate inSOs4d can
be realized by a circuit consisting of 12 elementary one-qubit
gates and 2CNOT gates.

A similar argument and Theorem 2 imply the following
construction for gates fromOs4d with determinant equal to
−1.
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Theorem 4. Every two-qubit quantum gate inOs4d with
determinant equal to −1 can be realized by a circuit consist-
ing of 12 elementary gates and 2CNOT gates and oneSWAP

gate(see Fig. 3).
Next, we generalize these results to construct circuits for

gates inUs4d.

V. REALIZING TWO-QUBIT GATES FROM U „4…

It is known that everyUPUs4d can be written as

U = sA1 ^ A2d ·Nsa,b,gd · sA3 ^ A4d, s1d

whereAj PUs2d and

Nsa,b,gd = expfisasx ^ sx + bsy ^ sy + gsz ^ szdg,

for a ,b ,gPR ssee, e.g., Refs.f11,12,18gd. Note that if U
PSUs4d, then we can choose all operationsAj in Eq. s1d
from SUs2d. Our construction is based on constructing an
optimal circuit for computingNsa ,b ,gd. To this end, we
first note thatD=M* ·N·M is a diagonal matrix of the
form

diagseisa−b+gd,e−isa−b−gd,eisa+b−gd,e−isa+b+gdd.

Therefore Nsa ,b ,gd=M ·D ·M* . Utilizing the circuit of
Fig. 1 for M, we get the circuit of Fig. 4 for computing
Nsa ,b ,gd. Note thatsS^ Sd ·D ·sS* ^ S*d=D. Then we sub-
stitute the right-hand side Hadamard gate of Fig. 4 by three
gates, using the following identity:12 ^ H=CNOT1·s12

^ Hd ·CZ. Now, the matrixD1=CZ·D is a diagonal matrix,
and

s12 ^ Hd ·D1s12 ^ Hd = ∧1sV2d · s12 ^ V1d, s2d

where

V1 = Seig cossa − bd
ieig sinsa − bd

ieig sinsa − bd
eig cossa − bd

D ,

V2 = Sie−2ig sin 2b

e−2ig cos 2b

e−2ig cos 2b

ie−2ig sin 2b
D .

We have the following decompositions forV1 and ∧1sV2d
ssee also Ref.f7gd:

V1 = eigRzS−
p

2
D ·Ryf2sb − adg ·RzSp

2
D , s3d

and

∧1sV2d = eisp/4−gdF12 ^ RzS−
p

2
DG · CNOT1 ·

3F12 ^ RyS2b −
p

2
DG · CNOT1 ·

3HRzS2g −
p

2
D ^ FRySp

2
− 2bD ·RzSp

2
DGJ .

s4d

By utilizing Eqs.s2d–s4d, we can convert the circuit of Fig. 4
to the circuit of Fig. 5.

Now we focus on the sequenceCNOT1·f12 ^ Rz

s−p /2dg ·CNOT1 of operations. We have the following identity:

CNOT1 · f12 ^ Rzsudg · CNOT1 = CNOT2 · fRzsud ^ 12g · CNOT2.

After applying this rule, the two consecutiveCNOT2 gates on
the right-hand side of the circuit reduce to the identity. Also
note that, on the left-hand side of the circuit, we can apply
the rule

f12 ^ Rzsudg · CNOT1 = CNOT1 · f12 ^ Rzsudg.

Thus the circuit of Fig. 5 can be converted to the circuit of
Fig. 6. Note that the operation defined by this circuit has
determinant equal to −1, thus we need to add a globaleisp/4d

phase to get the special unitary operationNsa ,b ,gd exactly.
Now utilizing the circuit of Fig. 6 and the canonical decom-
position s1d we could get a circuit to realize the operation
UPUs4d. Note that in this process, the left- and right-hand
side operationsRzsp /2d andRzs−p /2d of Fig. 6 will be “ab-
sorbed” by adjacentAj. The final result is the circuit of Fig.
7, and we have proved the following theorem.

Theorem 5.Every two-qubit quantum gate inUs4d can be
realized, up to a global phase, by a circuit consisting of 15
elementary one-qubit gates and 3CNOT gates.

The construction given in Theorem 5 isoptimal. To prove
this it is sufficient to place a lower bound on the number of
CNOT gates needed to implement a generic two-qubit gate.
This is because Ref.[15] already shows that we need at least

FIG. 3. A circuit for implementing a transform inOs4d determi-
nant equal to −1, whereA,BPSUs2d, S1=Rzsp /2d, and R1

=Rysp /2d.

FIG. 4. A circuit for implementingNsa ,b ,gd; first version.

FIG. 5. A circuit for implementingNsa ,b ,gd; second version.
Here S1=Rzsp /2d, S2=Rzs2g−p /2d, T1=Rysp /2−2ad, and T2

=Rys2b−p /2d.

FIG. 2. A circuit for implementing a general transform in
SOs4d, whereA,BPSUs2d, S1=Rzsp /2d, andR1=Rysp /2d.
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15 elementary one-qubit gates to implement a generic two-
qubit gate. So we need only concern ourselves with the mini-
mum required number ofCNOT gates. We prove in the next
section that threeCNOT gates are needed in the general case.

We wish to emphasize that our decomposition isconstruc-
tive. To see this, note that we can use Kraus and Cirac’s
methods[12] to decompose any desired two-qubit gate into
the form given by Eq.(1). All parameters in this decompo-
sition may be determined constructively. Thereafter, it only
remains to reduce theNsa ,b ,gd matrix to an explicit quan-
tum circuit. This we can do immediately using the circuit
template in Fig. 6. By concatenating these two processes we
can find the optimal circuit for any generic two-qubit opera-
tion constructively.

VI. THREE CNOT GATES ARE NEEDED

To show that the construction of Theorem 5 is optimal, we
prove that there is at least one gate inUs4d, namely the
two-qubit SWAP gate, a real unitary matrix having a determi-
nant of −1, which requires no less than threeCNOT gates.

In the proof of the following theorem we utilize the notion
of entangling powerintroduced in Ref.[17]. For a unitary
operationUPUs4d, the entangling power ofU is defined as

EPsUd = average
uc1l^ uc2l

fEsUuc1l ^ uc2ldg,

where the average is over all product statesuc1l ^ uc2lPC2

^ C2 distributed according to the uniform distributionsin
general, we can define EP with regards to any distribution,
but here we only consider the uniform distributiond. In the
above formulaE is the linear entropyentanglement measure
defined foruclPC4 as follows:

Esucld = 1 − tr1r2,

wherer=tr2uclkcu and trj denotes the result of tracing out
the j th qubit. Note that 0øEsucldø

3
4, and the lower or

upper bound is obtained ifucl is a product state or a maxi-
mally entangled state, respectively. In Ref.f17g the fol-
lowing simple formula for calculating EP is presented:

EPsUd =
5

9
−

1

36
fkU^2,T1,3U

^2T1,3l

+ ksSWAP·Ud^2,T1,3sSWAP·Ud^2T1,3lg,

where the Hilbert-Schmidt scalar productkA,Bl is defined as
kA,Bl=trsA†Bd and the permutationT1,3 on C2 ^ C2 ^ C2

^ C2 is the transpositionT1,3ua,b,c,dl= uc,b,a,dl on the
system of four qubits.

We will utilize the following basic properties of the func-
tion EP:

(i) For everyUPUs4d we have 0øEPsUdø
2
9.

(ii ) For everyA,BPUs2d we have EPsA^ Bd=0.
(iii ) For everyUPUs4d and A,BPUs2d we have EPfsA

^ Bd ·Ug=EPfU ·sA^ Bdg=EPsUd.
(iv) EPsUd=EPsU*d.
(v) EPsCNOTd= 2

9 and EPsSWAPd=0.
We will also use the simple fact thatSWAP cannot be written
asSWAP=A^ B, where,A,BPUs2d.

Theorem 6.To compute theSWAPat least threeCNOT gates
are needed.

Proof. We construct a proof by contradiction. Suppose
that there is a circuit computingSWAP and consists of less
than threeCNOT gates. We consider two possible cases.

Case 1. Suppose thatSWAP is computed by a circuit con-
sisting of twoCNOT gates. We substitute eachCNOT gate by a
small subcircuit in terms of CZ(controlled-sz) gate; i.e.,

CNOT = s12 ^ Hd · CZ ·s12 ^ Hd.

Then by utilizing the following commutation rules,

CZ ·f12 ^ Rzstdg = f12 ^ Rzstdg · CZ,

CZ ·fRzstd ^ 12g = fRzstd ^ 12g · CZ,

we obtain the simplified circuit of Fig. 8 for computing the
SWAP gate. Note that in this figure we choose the top(first)
qubit as the control qubit for the CZ gates, but we could
choose the other qubit as the control qubit as well, since the
action of the CZ gate is not change by switching the control
and target qubits. Now, let

U = CZ ·fRysad ^ Rysbdg · CZ.

Then

EPsUd = EPsSWAPd

=
1

18
f3 − coss2ad − coss2bd

− coss2adcoss2bdg = 0.

FIG. 6. A circuit for implementingNsa ,b ,gd; third version.
A global eisp/4d phase is missing here.

FIG. 7. A circuit for implementing a transform inUs4d.

FIG. 8. A circuit consisting of twoCNOT gates in terms of CZ
gates.
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Thereforea,bP h0,pj. Thus we have the following four
possible cases for the unitary operationU:

(i) if a=b=0, thenU=12;
(ii ) if a=0,b=p, thenU=sz^ Ryspd;
(iii ) if a=p ,b=0, thenU=Ryspd ^ sz;
(iv) if a=b=p, thenU=−sx ^ sx.

In each case, we conclude thatSWAP=V1 ^ V2, for some
V1,V2PUs2d, which is a contradiction.

Case 2.Suppose that SWAP is computed by a circuit con-
sisting of only oneCNOT gate; for example,

SWAP= sA1 ^ A2d · CNOT1 ·sA3 ^ A4d,

whereAj PUs2d. Then EPsSWAPd=EPsCNOTd, which again is
a contradiction. j

VII. CONCLUSION

In this paper we prove tight bounds on the numbers of
one-qubit gates andCNOT gates needed to implement generic
two-qubit quantum computations. In addition, we give a con-
structive procedure for finding such decompositions, which
uses the Kraus–Cirac decomposition to find the core entan-
gling operation underlying the two-qubit gate, i.e.,
Nsa ,b ,gd, and then substitutes the discovered parameter
values into an equivalent circuit template forNsa ,b ,gd as
shown in Fig. 6. The net result is an explicit circuit for any
desired two-qubit unitary operation that uses at most 3
CNOT’s and 15 elementaryy- or z-single qubit rotations.

We point out that it is possible to decompose a desired
unitary operation into many different families of quantum
gates. For example, the basis of all one-qubit gates aug-
mented withCNOT was first studied in Ref.[2], and was
shown to be capable of implementing anyn-qubit unitary
operationexactly. This scheme has the advantage that only a

single, fixed, type of two-qubit gate need be built. Similar
schemes are known that use different fixed entangling opera-
tions such asiSWAP gates(in superconducting quantum com-
puting) and ÎSWAP gates(in spintronic quantum computing).
In addition, other decompositions are possible that use pa-
rametrized two-qubit gates. These may lead to more efficient
factorizations in special cases, but also make for a more
complicated quantum computer architecture.

The motivation for our work comes from the fact that it is
still very difficult, experimentally, to implement multiple
quantum gates. Thus, in order to attain near term experimen-
tal milestones, it will be important to minimize the number
of gates they require. Although our scheme yields minimal
circuits for generic two qubit operations, further reductions
are still possible in certain special cases. We therefore aug-
ment our procedure with rewrite rules, to find even simpler
circuits if they exist. Hence our new construction brings cer-
tain state synthesis tasks within the grasp of experimentalists.

In addition, as quantum circuits for(arbitrary) n-qubit op-
erations are always expressed in terms of a sequence of one-
qubit and two-qubit gates, by designing component two-
qubit operations minimally, we can sometimes improve the
efficiency of implementingn-qubit computations.
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