
Error rate of a charge qubit coupled to an acoustic phonon reservoir

L. Fedichkin and A. Fedorov
Center for Quantum Device Technology, Department of Physics and Department of Electrical and Computer Engineering,

Clarkson University, Potsdam, New York 13699–5720, USA
(Received 13 July 2003; published 17 March 2004)

We analyze decoherence of an electron in a double dot due to the interaction with acoustic phonons. For
large tunneling rates between the quantum dots, the main contribution to decoherence comes from the phonon
emission relaxation processes, while for small tunneling rates, the virtual-phonon, dephasing processes domi-
nate. Our results show that in common semiconductors, such as Si and GaAs, the latter mechanism determines
the upper limit for the double-dot charge qubit performance measure.
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Recently, there has been a lot of interest in implementa-
tion of quantum logic gates by manipulating two-level elec-
tron systems in semiconductor quantum dots(artificial at-
oms) [1]. Several designs for coherent solid-state quantum
information processing have been suggested[2–4].
Quantum-dot architecture of a quantum computer is very at-
tractive because it is possibly scalable and the most compat-
ible with the recent microelectronics technology. However, it
is a great challenge to maintain a satisfactory level of coher-
ence of an electron in semiconductor to perform even el-
ementary quantum gates[5]. Hopefully, coherence can be
enhanced by encoding of the logical qubit states into a sub-
space of the electron states in a large quantum-dot array(ar-
tificial crystal) [6]. It is also noted that in a gate-engineered
structure of two coupled identical quantum dots one can con-
trol decoherence rates by several orders of magnitude[3].
Recent advances in technology of fabrication of double-dot
[7,8] and double-donor[4] qubits have been reported. Coher-
ent oscillations in double-dot qubit are observed[9]. It has
been demonstrated that scattering by phonons can signifi-
cantly influence electron transport through double-dot sys-
tem [10] and qubit dynamics during measurement[11]. In
this work, we analyze decoherence of an electron in a
double-dot potential due to acoustic phonons during one qu-
bit gate cycle.

We consider a single electron in the double-well potential
shown schematically in Fig. 1. Such a structure can be fab-
ricated as two gate-engineered quantum dots[7–9], whose
geometry is determined by the pattern of external metallic
gates and electric potential at them, or by the coupling the
two nearby phosphorus donors embedded in silicon[4]. The
resulting qubit is supposed to evolve in the basis spanned by
the statesu0l and u1l which describe the electron localized
around the left and right minima of the potential, respec-
tively. We assume that the parameters of the double-dot qubit
structure are selected appropriately and the temperature is
low enough such that the effects of the electron transitions to
the higher energy levels can be neglected. Investigation of
decoherence due to acoustic phonons is the primary goal of
our work. Below, we will present the model and describe the
two main mechanisms of decoherence. We will introduce the
appropriate approximations schemes, quantify the overall er-
ror rate, and discuss the ways to minimize it.

The Hamiltonian of the electron and the phonon bath is

H = He + Hp + Hep. s1d

Here qubit term in Hamiltonian is

He = − 1
2«Astdsx − 1

2«Pstdsz, s2d

wheresx and sz are the Pauli matrices. The parameters«A
and «P are controlled by the external metallic gates and
can be used to perform on demand single-qubit rotations.
These parameters determine the splitting« between the
ground state and the first excited state of the electron in
the energy basis. This splitting is given by«=Î«A

2 +«P
2.

The phonon term in the Hamiltonian is

Hp = o
q,l

"sqbq,l
† bq,l, s3d

wherebq,l
† andbq,l are the creation and annihilation opera-

tors of the phonons with the wave vectorq and polarization
l. For simplicity we consider isotropic acoustic phonons
with the linear dispersion law. The electron-phonon interac-
tion term isf12g

FIG. 1. Sketch of the qubit: single electron within double-well
potential.
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Hep= o
q,l

szsgq,lbq,l
† + gq,l

* bq,ld, s4d

wheregq,l is the coupling constant, which depends on the
specific configuration of the system and the type of the in-
teraction. Both the distanceL between quantum-dots centers
and their finite sizea will cutoff the effect of the electron-
phonon interaction at the tails of the phonon spectrum.

One can show that for the interaction of an electron bound
in a gate-engineered Gaussian-shaped double dot with defor-
mation phonons, the coupling constant is

gq = iqJS "

2rqsV
D1/2

e−iq·R−a2q2/4sinsq ·L /2d, s5d

whereJ is the deformation potential,s is the speed of sound,
r is the density of the crystal,V is normalizing volume, and
R is the coordinate of the middle point of the double dot. For
crystal structures with inversion symmetry, such as Si, there
is no additional interaction due to the piezopotential. For
crystals of the symmetry classTd, such as GaAs, the piezo-
electric phonon coupling is

gq,l = − S "

2rqsV
D1/2

Me−iq·R−a2q2/4 3 sj1e2e3 + j2e1e3

+ j3e1e2dsinsq ·L /2d, s6d

where ei =qi /q, j is the polarization vector, andM is the
piezoconstant of the substrate.

For a double-donor system composed of two coupled
hydrogen-like dopant impurity states, e.g., for two phos-
phorus atoms embedded in silicon, the following expression
for the coupling constant with the deformation phonons was
obtained

gq = iqJS "

2rqsV
D1/2 e−iq·R

s1 + a2q2/4d2sinsq ·L /2d. s7d

The interaction term(4) leads to decoherence of the qubit.
The resulting loss of coherence is some functional of«Astd
and«Pstd. Here we consider two representative cases of the
single-qubit gate functions and derive estimates for the error
rate due to phonons. First, we consider the relaxation of an
electron during the NOT gatessxd, implemented by setting
«Astd=«;const and«Pstd=0 in the Hamiltonian(2), for the
time interval (cycle time of the quantum computer) Dt
=p" /«. Second, we consider the decoherence of an electron
during thep-phase-rotation gatesszd, implemented by set-
ting «Astd=0 and«Pstd=«;const for the same time interval
Dt=p" /«.

To evaluate the relaxation of a double-dot qubit due to
acoustic phonons, we will follow[3,10,13]. We assume that
the temperature is low compared to energy gaps of the sys-
tem. Therefore we consider the qubit at zero temperature.
The major parameter of dots influencing the interaction with
phonons is their sizea. For gate-engineered quantum dots
the actual shape of wave function of confined electron can
vary. We consider Gaussian-shaped dots in which electron
wave function is Gaussian(Csr d,expf−r2/ s2a2dg). With

these assumptions, the following result for the relaxation rate
due to the interaction with deformation phonons can be ob-
tained,

GDA =
J2k3

4prs2"
exps− a2k2/2dS1 −

sinskLd
kL

D , s8d

wherek=« / ss"d is the wave vector of the emitted phonon.
For the piezoelectric type of interaction, we get

GPA =
M2

20prs2"L5k4exps− a2k2/2d„skLd5 + 5kLf2skLd2

− 21gcosskLd + 15f7 − 3skLd2gsinskLd…. s9d

In double phosphorus dopant structures in silicon, the re-
laxation rate due to the deformation phonons for the
hydrogen-like impurity states is

GIDA =
J2

4prs2"

k3

s1 + a2k2/4d4S1 −
sinskLd

kL
D . s10d

If the wavelength of the phonon to be emitted is high enough
compared to the size of dots,a, and the distance between the
dots,L, i.e.,

ak! 1; Lk ! 1, s11d

which is often the case in present-day heterostructures, then
the following approximate expressions are valid:

GDA = GIDA =
J2L2«5

24prs7"6 s12d

and

GPA =
M2L2«3

120prs5"4 . s13d

Right after the implementation of the NOT gate the den-
sity matrix in the energy basishu+l , u−lj, where u± l
=su0l± u1ld /Î2, will be [14]

S 1 − r−−s0de−GDt r+−s0de−sG/2−i«/"dDt

r−+s0de−sG/2+i«/"dDt r−−s0de−GDt D , s14d

wherer±±s0d are the elements of the electron density matrix
before the implementation of the NOT gate and the param-
eterG should be taken from Eqs.s8d to s10d, respectively.

We now consider the implementation of the phase gate. In
this case, decoherence emerges as pure dephasing. There is
no relaxation because the interaction term(4) commutes with
the electron term in the Hamiltonian(2). The basishu0l , u1lj
coincides with the energy basis of the electron. For evalua-
tion of the dephasing rate we used the general analytical
expression for the density operator of the electron in the
boson bath given in[15,16],

r = S r00s0d r01s0de−B2sDtd+i«Dt/"

r10s0de−B2sDtd−i«Dt/" r11s0d
D . s15d

Thus, the evolution of the system is determined by the spec-
tral functionBstd f15,17g, which in our case is expressed as
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B2std =
8

"2o
q,l

ugq,lu2

s2q2 sin2sqt

2
. s16d

By performing the summation in Eq.s16d, we get the spec-
tral functions determining the density matrices after the
p-phase rotation of both the qubits made of double dots with
deformation and piezoelectric electron-phonon interaction,
and of double-impurity qubit states, respectively,

BDA
2 =

J2

2p2rs3a2"
, s17d

BPA
2 =

M2L2F1 − expS−
a2p2

2L2 D +
3a2

L2 E1Sa2p2

2L2 DG
60p2rs3a2"

,

s18d

BIDA
2 =

J2

3p2rs3a2"
. s19d

HereE1szd=ez
`t−1e−tdt. Expressionss17d–s19d were obtained

by using an additional observation that the duration of the
qubit phase rotation is large compared to the phonon transit
time Dt@a/s. This condition holds for the GaAs and Si
structures considered.

To analyze the double-dot qubit architecture with respect
to the fault-tolerant quantum computing criteria[18], one
should be able to estimate the error generated during the
“clock” time of the quantum computerDt. To quantify the
error due to decoherence, we use the approach of Ref.[19].
We consider the norm of the deviation operators,

sstd = rstd − ridealstd, s20d

where the “ideal” evolution is defined as that at zero inter-
action with the environment,

ridealstd = e−iHet/"rs0deiHet/". s21d

The error is characterized[19] by the value

Dstd = sup
rs0d

sisst,rs0ddild, s22d

which is the maximal norm of the deviation operator over all
the possible initial density operators of the electronrs0d. For
fault-tolerant computation we need to satisfy the condition
DsDtdøOs10−4d f18g. For the density operators after the
NOT and phase gates given by Eqs.s14d and s15d, the
corresponding errorsDA,DP can be expressed in a com-
pact and elegant form as

DAsDtd = 1 −e−GDt, s23d

DPsDtd = 1
2s1 − e−B2sDtdd. s24d

To evaluate the single-gate error rate we take the maximum
of the two gate errors considered which are typical single-
qubit gates in quantum algorithms. The error rate per each
step can be estimated as the largest of the above errors

DsDtd = max„DAsDtd,DPsDtd…. s25d

The obtained error rates for GaAs and Si quantum dots are
shown in Fig. 2. It should be noted that dephasing appears to
be the limiting factor of fault tolerance of this type of qubits.
For a qubit made of impurity states, the corresponding spec-
tral function s19d determining its dephasing rate is, in fact,
material constant and cannot be changed significantly. Still,
phonon decoherence can be reduced by the change of pho-
non spectrum with the help of phonon cavitiesf7,21g. Gate-
engineered quantum dots show better coherence. Moreover,
their performance can be improved because their geometric
parameters are flexible.

In conclusion, we evaluated error rates in semiconductor
charge qubits. The error rates were quantified by the maxi-
mal operator norm of qubit density matrix deviation. Our
results show that the expected error rate due to acoustic
phonons may be a major factor limiting qubit performance.
For double-phosphorus impurity states in silicon it is of the
order of the fault-tolerance threshold for quantum computa-
tion. Larger gate-engineered double quantum dots both in Si
and GaAs, with parameters close to those in modern experi-
ments[4,8,9], can be controlled more coherently. Realization

FIG. 2. Error rate estimate per cycle due to electron-phonon
interaction as a function of the cycle timeDtsDt=p" /«d. The dis-
tance between the dot centers wasL=50 nm for all the cases con-
sidered. For all the gate-engineered quantum dots, the effective ra-
dius wasa=25 nm. The parameters for the GaAs dots wereJ
=7 eV, s=5.143103 m/s, r=5.31 g/cm3, M =ee14/ se0kd, where
e14=0.16 C/m2, k=12.8 [20]. As in Ref. [13], for silicon the fol-
lowing parameters were used:a=3 nm for phosphorus impurity
states, effective deformation potentialJ=3.3 eV, s=9.0
3103 m/s, r=2.33 g/cm3. The results are shown as follows:(1)
the double-donor structure in silicon;(2) decoherence in GaAs due
to piezointeraction;(3) the contribution to decoherence due to de-
formation interaction in GaAs;(4) the gate-engineered dots in Si.
The dashed lines denoteDA, the dotted lines denoteDP, and the
solid lines areD. The relaxation rate for the double-donor structure
in silicon is not seen because it is very small in the given range of
times.
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of those qubits would be a significant step toward the imple-
mentation of a full-scale solid-state quantum computer.
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