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The need to maximize the number of operations of a quantum bit within its decoherence time may require
the ratio of Rabi frequency to transition frequency to be large enough to invalidate the rotating-wave approxi-
mation. The state of the quantum bit under any initial condition then depends explicitly on the phase of the
driving field, resulting in driver-phase-correlated fluctuations and a violation of the rule that the degree of
excitation depends only on the pulse area. This is due to the interference of the excitations caused by the
corotating and counterrotating fields, and is a significant source of error, correctable only by controlling the
driver phase. We present a scheme for observing this effect under currently realizable parameters.
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In order to minimize the decoherence rate of a two-state
quantum bit(qubit) embodied in a massive particle, one of-
ten chooses to use low-energy transitions. In general, one is
interested in performing these transitions as fast as possible
[1–5] which demands a strong Rabi frequency. The ratio of
Rabi frequency to qubit transition frequency is therefore not
necessarily very small, thus invalidating the so-called
rotating-wave approximation(RWA). A key effect due to
violation of the RWA(VRWA) is the so-called Bloch-Siegert
shift [6–9] which is negligible in optical transitions, but is
manifested in nuclear magnetic resonance[10]. Here, we
show that VRWA leads to another important effect, which
can lead to controllable errors that are significant on the scale
of precisions envisioned for a functioning quantum computer
[11]. Specifically, we show that under VRWA the population
difference between the two levels of the quantum bit, with
any initial condition, depends explicitly on the phase of the
driving field at the onset of an excitation pulse, which is a
violation of the rule[6] that for a two-level system starting in
the ground state, the population difference is a function of
the integral of the field amplitude over the pulse duration and
does not depend on the phase of the field. We provide a
physical interpretation of this effect in terms of an interfer-
ence of the excitations caused by the corotating and counter-
rotating fields, and present a scheme for observing this effect
under currently realizable parameters.

To see the implication of this result, consider a scenario
where one has a qubit, initialized to the ground state, and
would like to prepare it to be in an equal superposition of the
ground and excited states. To this end, one would apply a
resonant pulse with an area ofp /2 starting at a timet= t0.
Under the RWA, one does not have to know what the abso-
lute phase of the field,fP, is at t0, and the population differ-
ence for the qubit would be zero. Under VRWA, however,
the desired excitation would only occur iffP=0. Otherwise,
the population difference would have a component varying
ash sins2fPd, whereh is a parameter that is proportional to
the ratio of Rabi frequency to transition frequency. Suppose
one has to apply this pulse to many such qubits, with a po-
tentially differentfP for each(e.g., because the pulses are
applied at different times or the qubits are spatially sepa-

rated), but with identical pulse areas. The population differ-
ence for the qubits will then exhibit a fluctuation, correlated
to their respective values offP. For a quantum computer,
this variation would represent a source of error. For some
experiments(e.g., Ref.[5]), the value ofh is already close to
0.01, so that the magnitude of this error is much larger than
the ultimate accuracys10−6d desirable for a large-scale quan-
tum computer[11] and must be controlled.

To illustrate this effect, we consider an ideal two-level
system where a ground stateu0l is coupled to a higher-energy
state u1l. We also assume that the 0↔1 transition is mag-
netic dipolar, with a transition frequencyv, and the magnetic
field is of the formB=B0 cossvt+fd. We now summarize
briefly the two-level dynamics without the RWA. In the di-
pole approximation, the Hamiltonian can be written as

Ĥ = ess0 − szd/2 + gstdsx, s1d

wheregstd=−g0fexpsivt+ ifd+c.c.g /2, si are the Pauli ma-
trices, ande=v corresponds to resonant excitation. The
state vector is written as

ujstdl = FC0std
C1std G . s2d

We perform a rotating-wave transformation by operating on

ujstdl with the unitary operatorQ̂, where

Q̂ = ss0 + szd/2 + expsivt + ifdss0 − szd/2. s3d

The Schrödinger equation then takes the formssetting"=1d

uj̃˙l=−iHstduj̃stdl where the effective Hamiltonian is given by

H̃ = astds+ + a*stds−, s4d

with astd=−sg0/2dfexps−i2vt− i2fd+1g, and in the rotating
frame the state vector is
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uj̃stdl ; Q̂ujstdl =FC̃0std

C̃1std
G . s5d

Now, one may choose to make the RWA, corresponding to
dropping the fast-oscillating term inastd. This corresponds
to ignoring effectsssuch as the Bloch-Siegert shiftd of the
order ofsg0/vd, which can easily be observable in an experi-
ment if g0 is largef6–10g. On the other hand, by choosingg0
to be small enough, one can make the RWA for any value of
v. We explore both regimes in this paper. As such, we find
the general results without the RWA.

From Eqs.(4) and (5), one gets two coupled differential
equations

C̃
˙

0std = − sg0/2df1 + exps− i2vt − i2fdgC̃1std, s6ad

C̃
˙

1std = − sg0/2df1 + exps+ i2vt + i2fdgC̃0std. s6bd

We assumeuC0stdu2=1 to be the initial condition and proceed
further to find an approximate analytical solution of Eq.(6).
Given the periodic nature of the effective Hamiltonian, the
general solution to Eq.(6) can be written in the form

uj̃stdl = o
n=−`

` Fan

bn
Gexpfns− i2vt − i2fdg. s7d

Inserting Eq.s7d into Eq. s6d and equating coefficients with
same the frequencies, one gets for alln,

ȧn = i2nvan + ig0sbn + bn−1d/2, s8ad

ḃn = i2nvbn + ig0san + an+1d/2. s8bd

Here, the coupling betweena0 andb0 is the conventional one
present when the RWA is made. The couplings to the nearest
neighbors,a±1 andb±1, are detuned by an amount 2v and so
on. To the lowest order insg0/vd, we can ignore terms with
unu .1, thus yielding a truncated set of six equations

ȧ0 = ig0sb0 + b−1d/2, s9ad

ḃ0 = ig0sa0 + a1d/2, s9bd

ȧ1 = i2va1 + ig0sb1 + b0d/2, s9cd

ḃ1 = i2vb1 + ig0a1/2, s9dd

ȧ−1 = − i2va−1 + ig0b−1/2, s9ed

ḃ−1 = − i2vb−1 + ig0sa−1 + a0d/2. s9fd

We considerg0 to have a time dependence of the form
g0std=g0Mf1−exps−t /tswdg, where the switching time con-
stant tsw@v−1,g0M

−1 . We can solve these equations by em-
ploying the method of adiabatic elimination, which is valid
to first order inh;sg0/4vd. Note thath is also a function of
time and can be expressed ashstd=h0f1−exps−t /tswdg,

whereh0;sg0M /4vd. We consider first Eqs.(9e) and(9f). In
order to simplify these two equations further, one needs to
diagonalize the interaction betweena−1 and b−1. Definem−
;sa−1−b−1d andm+;sa−1+b−1d, which now can be used to
reexpress these two equations in a symmetric form as

ṁ− = − is2v + g0/2dm− − ig0a0/2, s10ad

ṁ+ = − is2v − g0/2dm+ + ig0a0/2. s10bd

Adiabatic following then yields(again, to lowest order inh)
m−<−ha0 and m+<ha0, which in turn yieldsa−1<0 and
b−1<ha0. In the same manner, we can solve Eqs.(9c) and
(9d), yielding a1<−hb0 andb1<0.

Note that the amplitudes ofa−1 andb1 are vanishing(each
proportional toh2) to lowest order inh and thereby justify-
ing our truncation of the infinite set of relations in Eq.(9). It
is easy to show now

ȧ0 = ig0b0/2 + iDstda0/2, s11ad

ḃ0 = ig0a0/2 − iDstdb0/2, s11bd

whereDstd=g0
2std /4v is essentially the Bloch-Siegert shift.

Equation(11) can be thought of as a two-level system ex-
cited by a field detuned byD. For simplicity, we assume that
this detuning is dynamically compensated for by adjusting
the driving frequencyv. This assumption does not affect the
essence of the results to follow, since the resulting correction
to h is negligible. With the initial condition of all the popu-
lation in u0l at t=0, the only nonvanishing(to lowest order in
h) terms in the solution of Eq.(9) are

a0std < cosfg08stdt/2g, b0std < i sinfg08stdt/2g,

a1std < − ih sinfg08stdt/2g, b−1std < h cosfg08stdt/2g,

where

g08std = 1/tE
0

t

g0st8ddt8 = g0f1 − st/tswd−1 exps− t/tswdg.

We have verified this solution via numerical integration of
Eq. (6) as shown later. Inserting this solution into Eq.(6) and
reversing the rotating-wave transformation, we get the fol-
lowing expressions for the components of Eq.(2):

C0std = cosfg08stdt/2g − 2hS sinfg08stdt/2g, s12ad

C1std = ie−isvt+fdhsinfg08stdt/2g + 2hS* cosfg08stdt/2gj,

s12bd

where we have definedS;si /2dexpf−is2vt+2fdg. To low-
est order inh, this solution is normalized at all times. Note
that if one wants to carry this excitation on an ensemble of
atoms using ap /2 pulse and measure the population of the
state u1l after the excitation terminates[at t=t when
g8stdt /2=p /2], the result would be an output signal given
by
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uC1„g08std,f…u2 =
1

2
f1 + 2h sins2ftdg, s13d

where we have defined the phase of the field att=t to be
ft;vt+f. This signal contains information of both the am-
plitude and phase of the driving field.

This result can be appreciated best by considering an ex-
perimental arrangement of the type illustrated in Fig. 1. Con-
sider, for example, a collection of87Rb atoms, caught in a
dipole force trap, where the statesu0l;52S1/2: uF=1,m=1l
and u1l;52S1/2: uF=2,m=2l form the two-level system.
These states differ in frequencies by 6.683 47 GHz. When
illuminated by resonant right-circularly polarized light at a
frequency of 3.84431014 Hz, stateu1l couples only to the
stateu2l;52P3/2: uF=3,m=3l, which in turn can decay only
to stateu1l. This cycling transition can thus be used to pump
the system into stateu1l. When a right-circularly polarized
microwave field at 6.683 47 GHz is applied, stateu1l couples
only to stateu0l, even when the RWA approximation breaks
down. The strong-coupling regime(e.g., h0 of the order of
0.1) can be reached, for example, by using a superconduct-
ing, high-Q s1010d microwave cavity[12]. The theoretical
model developed above is then a valid description of the
coupling betweenu0l and u1l.

The strong microwave field is turned on adiabatically with
a switching time constanttsw, starting att=0. After an inter-
action time oft, chosen so thatg08stdt=p /2, the population
of stateu1l can be determined by coupling this state to the
stateu2l with a short(faster than 1/v and 1/g0M) laser pulse
and monitoring the resulting fluorescence[13].

We have simulated this process explicitly for the follow-
ing parameters:v=2p36.683 473109 sec−1, g0M =0.1, and
tsw=0.1. These numbers are easily achievable experimen-
tally. The laser pulse widthtLP is chosen to be 10−12 sec in
order to satisfy the constraint thattL!1/v andtL!1/g0M.

In order to optimize the signal, the laser Rabi frequencyVL
is chosen to be such thatVLtL=p, so that all the populations
of stateu1l are excited to stateu2l at the end of the pulse. For
the cycling transition(1-2) and a pulse focused to an area of
25 mm2, the power needed for achieving this Rabi frequency
is 1.2 W, which is achievable experimentally. After the laser
pulse is turned off, the fluorescence is collected for a dura-
tion longer than the spontaneous-decay lifetimes32 nsecd of
state u2l. Under this condition, our simulation verifies that
the detector signal is essentially proportional to the popula-
tion of stateu1l, as given by Eq.(13), with the proportional-
ity constant determined by the efficiency of the detection
system. If 106 atoms are used(a number easily achievable in
a dipole trap), the signal-to-noise ratio can be more than 100
for the parameters considered here, assuming a detector solid
angle of 0.1p and a quantum efficiency of 0.8. In Fig. 2(a),
we have shown the evolution of the excited-state population
as a function of the interaction timet using the analytical
expression of Eq.(12). Under the RWA, this curve would
represent the conventional Rabi oscillation. However, we no-
tice here some additional oscillations, which are magnified
and shown separately in Fig. 2(b), produced by subtracting
the conventional Rabi oscillation(sin2fg08st)t /2gd from
Fig. 2(a). That is, Fig. 2(b) corresponds to what we
call the Bloch-Siegert oscillation (BSO), given by
h sinfg08stdtgsins2ftd. The dashed curve(c) shows the time
dependence of the Rabi frequency. These analytical results
agree closely with the results obtained via direct numerical
integration of Eq.(7). Consider next a situation where the
interaction timet is fixed so that we are at the peak of the
BSO envelope. The experiment is now repeated many times,
with a different value off each time. The corresponding
population ofu1l is given byh sins2ftd and is plotted as a
function of f in the inset of Fig. 2. This dependence of the

FIG. 1. Schematic illustration of an experimental arrangement
for measuring the phase dependence of the population of the excited
stateu1l: (a) The microwave field couples the ground statesu0ld to
the excited statesu1ld. A third level, u2l, which can be coupled tou1l
optically, is used to measure the population ofu1l via fluorescence
detection.(b) The microwave field is turned on adiabatically with a
switching time constanttsw, and the fluorescence is monitored after
a total interaction time oft.

FIG. 2. Illustration of the Bloch-Siegert oscillation(BSO): (a)
the population of stateu1l, as a function of the interaction timet,
showing the BSO superimposed on the conventional Rabi oscilla-
tion; (b) the BSO oscillation(amplified scale) by itself, produced by
subtracting the Rabi oscillation from the plot in(a); and(c) the time
dependence of the Rabi frequency. Inset: BSO as a function of the
absolute phase of the field.
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population ofu1l on the initial phasef (and, therefore, on the
final phaseft) makes it possible to measure these quantities.

Note, of course, that the speed of the detection system is
limited fundamentally by the spontaneous decay rate
g−1 (,32 nsec in this case) of stateu2l. As such, it is impos-
sible in this explicit scheme to monitor the phase of the
microwave field on a time scale shorter than its period. If one
were interested in monitoring the phase of a microwave field
of a lower frequency(so thatv−1@g−1), it would be possible
to track the phase on a time scale much shorter than its
period. One possible set of atomic levels that can be used for
this purpose is the Zeeman sublevels(e.g., those of the
52S1/2:F=1 hyperfine level of87Rb atoms), where the energy
spacing between the sublevels can be tuned by a dc magnetic
field to match the microwave field to be measured. However,
the number of sublevels that get coupled is typically more
than 2. A simple extension of our theoretical analysis shows
that the signature of the phase of the microwave field still
appears in the population of any of these levels and can be
used to measure the phase. More generally, the phase signa-
ture is likely to appear in the population of the atomic levels,
no matter how many levels are involved, as long as the Rabi
frequency is strong enough for the RWA to break down.

A recent experiment by Martiniset al. [5] is an example
where a qubit is driven very fast. In this experiment, a qubit
is made using the two states of a current-biased Josephson
junction, the resonance frequency isv=6.9 GHz, and the
Rabi frequency isg=80 MHz. If this experiment is carried
out without keeping track of the phase of the driving field,
the degree of qubit excitation will fluctuate due to the BSO,
leading to an error which is of the order ofg/v=0.01—i.e.,

nearly 1%. This error is much larger than the permissible
error rate of 10−6 for an error-correcting quantum computer
that would consist of 106 qubits [11]. In order to eliminate
the BSO-induced error, one can design the driving system
such that the phase is measured, e.g., by using an auxiliary
cluster of bits located close to the qubit of interest, at the
onset of the qubit excitation, and the measured value of the
phase is used to determine the duration of the excitation
pulse, in order to ensure the desired degree of excitation of
the qubit[14,15]. Finally, we point out that by making use of
distant entanglement, the BSO process may enable teleporta-
tion of the phase of a field that is encoded in the atomic state
amplitude, for potential applications to remote frequency
locking [16–19].

In conclusion, we have shown that when a two-level
atomic system is driven by a strong periodic field, the Rabi
oscillation is accompanied by another oscillation at twice the
transition frequency, and this oscillation carries information
about the absolute phase of the driving field. One can detect
this phase by simply measuring only the population of the
excited state. This leads to a phase-correlated fluctuation in
the excitation of a qubit and violation of the rule that the
degree of excitation depends only on the pulse area. We have
shown how the resulting error may be significant and must
be controlled for low-energy fast qubit operations.
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