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Let S be the von Neumann entropy of a finite ensembleE of pure quantum states. We show thatS may be
naturally viewed as a function of a set of geometrical volumes in Hilbert space defined by the states and that
S is monotonically increasing in each of these variables. SinceS is the Schumacher compression limit ofE, this
monotonicity property suggests a geometrical interpretation of the quantum redundancy involved in the com-
pression process. It provides clarification of previous work in which it was shown thatS may be increased
while increasing the overlap of each pair of states in the ensemble. As a by-product, our mathematical
techniques also provide an interpretation of the subentropy ofE.
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I. INTRODUCTION

One of the most satisfying results of quantum-information
theory is Schumacher’s source coding theorem[1–5], which
says that a message of lengthK from a source of pure quan-
tum states with density matrixr can be compressed toKSsrd
qubits (asymptotically for largeK), whereSsrd is the von
Neumann entropy

Ssrd = − Trsr ln rd.

Conceptually we can associate the possibility of compression
with the presence of a degree of redundancy in the source.
Supposer1,r2 are the density matrices of two sources and

Ssr1d ø Ssr2d. s1d

Then the first source can be compressed further than the
second, so it has greater redundancy. If the two sources both
havek statesucil andufil, say, with the same probabilitiespi,
then this increased redundancy does not lie in the classical
probabilitiespi of emitting the states but in the properties of
the states themselves: it is true “quantum redundancy.” Intu-
itively, one expects that, if the statesucil are more similar to
each other than the statesufil, then the quantum redundancy
of the ucil will be greater. So if the pairwise overlaps of the
ucil are larger than those of theufil, i.e.,

ukciuc jlu ù ukfiuf jlu for all i, j , s2d

thenr1 should have more quantum redundancy thanr2, and
consequently Eq.s1d should hold. Jozsa and Schlienzf6g
showed this is indeed true for a source with two states. How-
ever, they produced a counterexample consisting of a set of
three statesufil in three dimensions and a slight perturbation
of themucil that has greater overlaps butlarger entropy. This
phenomenon raises the question of whether compression and
quantum redundancy can be understood ingeometrical
terms, i.e., in terms of the geometry of the source’s states in
Hilbert space. This question has also been recently raised in
Ref. f7g. In this paper we will establish a connection between
quantum redundancy and the volumes in Hilbert space de-
fined by the source states.

One reason the above example appears paradoxical is
that, in real three-dimensional geometry, the pairwise inner
products of three unit vectors determine the figure the vec-
tors make, up to an orthogonal transformation, and they also
determine the entropy in this real-valued setting. An analo-
gous result holds in complex geometry if the complex inner
product is specified, but not if only its absolute value, the
overlap, is given. In fact, taking into account the freedom in
specifying phase for a quantum mechanical state, it turns out
that there arefour real-valued degrees of freedom in speci-
fying three states in three complex dimensions up to a uni-
tary transformation(as will be shown shortly). Specifying
the three pairwise overlapsukc1uc2lu , ukc1uc3lu, andukc2uc3lu
therefore leaves a further degree of freedom that can be used
to adjust the entropy.

What is this extra degree of freedom for three states in
three (complex) dimensions? Here it is useful to introduce
the Gram matrixG, with entriesGij =Îpipjkci uc jl and the
matrix A with entriesaij =kci uc jl. G has the same eigenval-
ues as the density matrixr=opi ucilkciu (see Ref.[6]) so the
von Neumann entropy

Ssrd = − o xi ln xi s3d

can be computed from the eigenvaluesxi of the Gram matrix

G = 1 p1a11 Îp1p2a12
Îp1p3a13

Îp2p1a21 p2a22 Îp2p3a23

Îp3p1a31
Îp3p2a32 p3a33

2 .

G has the characteristic equation

x3 − s1x
2 + s2x − s3 = 0, s4d

where thesi are the symmetric polynomial functions of the
eigenvalues, with s1=oxi =1, and s2=oi, jxixj, and s3
=x1x2x3. Expanding detsG− Ixd one finds that

s2 = o
i, j

pipjs1 − uaij u2d and s3 = p1p2p3 det A. s5d

SinceA can be written asA=BB†, whereB is the matrix
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1c11 c12 c13

c21 c22 c23

c31 c32 c33
2

of coordinatesci j of the statesucil in any orthonormal basis,
it follows that detA= udet Bu2, and we can regard detA as
the squared modulus of thecomplex volumespanned by the
ucil. Note also thats1−uaij u2d=detAi,j, whereAi,j is the sub-
matrix of A obtained by striking out rows and columns
having labels not in the sethi , jj. Thus we can likewise
regard 1−uaij u2 as the squared modulus of the complex
volume spanned byucil and uc jl. We can write the terms
of Eq. s5d that depend on the states as

a12 = detA1,2, a13 = detA1,3,
s6d

a23 = detA2,3, a123= detA,

ands2 ands3 then appear as positive linear combinations of
these volume variables. ThusSsrd is determined by the prob-
abilities pi and the four squared volumes in Eq.(6). If the
states are perturbed in such a way that three of these four
parameters are fixed but one of them varies, then the entropy
changes as intuition would dictate: increasingA12 (i.e., de-
creasing the overlap between states 1 and 2) increases the
entropy(decreases the redundancy), and increasing the vol-
ume (i.e., spreading the states apart) also increases the en-
tropy. In this sense we can regard the four parameters
a12,a13,a23,a123 as measures of quantum redundancy for
the set of states. This behavior of the entropy follows from a
theorem proved later, which tells us that]S/]si .0 for i
ù2. Consequently when none of thepi is zero (which we
shall assume throughout), ]S/]ai j =pipj ]S/]s2.0 and
]S/]a123=p1p2p3]S/]s3.0.

II. k STATES IN n DIMENSIONS

We now investigate the situation for any numberk of
states which span a space ofn dimensions(sokùn). We can
try to imitate in n dimensions the procedure that gave the
variables in Eq.(6). Let the states beucil with probabilitiespi
for i =1, . . . ,k. As above we introduce the Gram matrix with
entriesGij =Îpipjkci uc jl and theA matrix with entriesaij

=kci uc jl, both beingk3k matrices. The eigenvalues of the
Gram matrix are those of then3n density matrixr padded
out with k−n zeros [6]. Thus the characteristic equation
detsG−xId=0 for the Gram matrix fork states inn dimen-
sions has the form

s− 1dk−nxk−no
i=0

n

s− 1disn−ix
i = 0, s7d

wheresi is the ith elementary symmetric polynomial of the
eigenvaluesx1, . . . ,xn of the density matrix, defined by

s0 = 1, si = o
u1,¯,ui

xu1
¯ xui

for i = 1, . . . ,n. s8d

The ith symmetric polynomial may be expressed as

si = o
u1,¯,ui

pu1
¯ pui

au1,. . .,ui
, s9d

whereau1,. . .,ui
=detAu1,. . .,ui

and Au1,. . .,ui
is the submatrix of

the matrixA obtained by striking out all rows and columns
with labels not in the sethu1, . . . ,uij; i.e., Au1,. . .,ui

is the
i 3 i A matrix constructed from the subsethucu1

l , . . . ,ucui
lj

of the states. This follows becausesi is the coefficient of
s−xdk−i in detsG−xId, which is obtained by pickingk− i
elements on the diagonal, corresponding to rows
v1, . . . ,vk−i say, and, for each such choice ofv’s, con-
structing the determinant of the submatrixGu1,. . .,ui

of G,
whereu1, . . . ,ui is the complementary set to thev’s. Since
the Gram matrixG is related to the correspondingA ma-
trix by G=QAQ, where Q=diagsÎp1, . . . ,Îpkd, we get
det Gu1,. . .,ui

=pu1
¯pui

det Au1,. . .,ui
. Equations9d is then ob-

tained by summing over all sets ofu’s.
Note that, though the individual entries inAu1,. . .,ui

are de-
pendent on a choice of phase for the statesucil, au1,. . .,ui

is
invariant under phase choices. Furthermore,au1,. . .,ui

is real,
sinceAu1,. . .,ui

is Hermitian. Thusau1,. . .,ui
is a real-valued uni-

tary invariant, and the complete set of allau1,. . .,ui
for all sets

u1, . . . ,ui can be regarded as the analogues of the invariants
(6) in the casek=n=3. Also, as in the case ofk=n=3,
Au1,. . .,ui

=Bu1,. . .,ui
Bu1,. . .,ui

† , where Bu1,. . .,ui
is the i 3 i matrix

whose rows are the components of thei statesucu1
l , . . . ,ucui

l
(expanded in any choice of orthonormal basis in the span of
thesei states). Thusau1,. . .,ui

may be identified as the squared
modulus of the complex volume determined by
ucu1

l , . . . ,ucui
l.

Let x1, . . . ,xn be any probability distribution and letsi
=sisx1, . . . ,xnd for i =1, . . . ,n be the corresponding symmet-
ric polynomials. For any symmetric functionfsx1, . . . ,xnd
(e.g., the entropyS) we consider a change of variables from
the xi’s to the sj’s. Note that the probability conditionoxi
=1 corresponds tos1=1, and lifting this condition we getn
variables in each case. Then the Jacobian is readily seen to
be pi, jsxi −xjd, so the change of variables is valid if thexi’s
are all different. For simplicity we will work within this re-
striction but expect that our results will have suitable(finite)
limiting behavior for coincident valuesxi →xj. Furthermore
we will be interested primarily in partial derivatives]f /]si
for i ù2 (which haves1 held constant), so our results will
also remain valid if we impose the probability constraints1
=1=constant at the start. We have the following fundamental
property of the entropy.

Theorem 1.If S=−oxi ln xi is viewed as a function of the
symmetric polynomialss1, . . . ,sn then ]S/]sq.0 for q
=2, . . . ,n.

Two proofs of this theorem are given in Sec. V below
after a discussion of some of its fundamental consequences.

III. GEOMETRICAL INTERPRETATION OF QUANTUM
REDUNDANCY

Equation(9) gives an expression for the symmetric poly-
nomials si that is canonically determined by the state set
huc1l , . . . ,ucklj and probabilities p1, . . . ,pk. Thus from
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S=Sss1, . . . ,snd (with s1=1) we can view the von Neumann
entropy of the source in a natural way as being a function of
the probabilities and all the squared volumes
ai1i2

, . . . ,ai1i2. . .ik
. By theorem 1,]S/]sq.0 for qù2 and by

Eq. (9), eachsq is a positive linear combination of thea
variables, so we conclude that]S/]a.0 for each squared
volume variablea.

This suggests a geometrical interpretation of the quantum
redundancy in the ensemble of quantum states. If the prob-
abilities are held fixed and the states are deformed then the
change in entropy can be seen as an accumulation of mono-
tonic effects arising from the changes induced in each of the
squared volumesa. Since]S/]a.0 the set of these squared
volumes can be regarded as a geometric measure of the
quantum redundancy associated to a set of states alone.

Note, however, that, fork.3, there are morea’s than
degrees of freedom needed to fixk states up to overall uni-
tary equivalence. Indeed, letvsk,nd denote the number of
degrees of freedom in specifyingk states inn dimensions up
to unitary transformation. To specifyk states requiresks2n
−2d real parameters(as each state is defined only up to over-
all phase). The unitary groupUsnd has n2 parameters, but
because of the overall phase freedom in each state,U and
eixU have the same action for anyx. Thus, unitary action on
the states eliminatesn2−1 parameters from theks2n−2d,
giving vsk,nd=ks2n−2d−sn2−1d.

The following table showsvsk,nd for small values ofk
andn andkùn. The bracketed numbers are the total number
tsk,nd of termsau1,. . .,ui

, ignoring those withi .n, which are
zero since more thann states must be linearly dependent and
therefore have zero determinant. The numbers in brackets are
thereforetsk,nd=oi=2

n s k
i
d.

k n=2 n=3 n=4 n=5

2 1 (1)
3 3 (3) 4 (4)
4 5 (6) 8 (10) 9 (11)
5 7 (10) 12 (20) 15 (25) 16 (26)

For kø3 the two sets of numbers agree, so thea’s can be
used to parametrize the sets of states. Fork.3 there are
always too manya’s. Thus viewing the entropyS as a func-
tion of the tsk,nd a’s (for fixed probabilities) amounts to a
nontrivial extension ofS to a larger space of variables: not
everytsk,nd-tuple ofa values is geometrically realizable by
an ensemble ofk states inn dimensions, and when an actual
ensemble is deformed, thea variables are constrained to lie
on a surface of dimensionvsk,nd in the ambient space of
dimensiontsk,nd. But the virtue of this nonphysical exten-
sion of the number of parameters is that we are able to at-
tribute compressibility of the source to geometrical con-
structs, viz. thea’s. In any deformation of actual states, each
a varies positively or negatively and the compressibility var-
ies by a corresponding accumulation of monotonic positive
and negative effects.

IV. MINIMAL SETS OF MONOTONIC PARAMETERS?

Since tsk,nd.vsk,nd for k.3, it is interesting to ask
whether we can find some alternative set of parameters
b1, . . . ,bvsk,nd which is in 1-1 correspondence with the set of
k states and has some of the desirable properties possessed
by thea’s in the casekø3. In particular, to make a connec-
tion with the phenomenon of compression, we would like the
monotonicity property]S/]bi .0 to hold for any choice of
probabilitiespi. Intuitively, this means that we can regard the
b’s as measures of quantum entropy.

Consider the casek=n=4. Here the set of states is nine
dimensional, whereas there are 11a’s. Can we perhaps keep
some of thea’s, taking, say, the overlap-related termsai j as
b1, . . . ,b6, and adding a further 3b’s? [For instance, one
might consider adding the three distances between subspaces
generated by disjoint pairs of the four states, i.e.,ds12,34d,
ds13,24d, andds14,23d, wheredsi j ,kld is some measure of
the distance between the subspace spanned byucil , uc jl and
that spanned byuckl , ucll.] However, it turns out thatanyset
of parameters that includes the six termsai j cannot have the
desired monotonicity property. To see this, writer ij = uaij u and
define u=argsa12a23a31d, v=argsa14a21a42d, and w
=argsa13a34a41d. Then we can write all thea’s in terms of the
six r ij ’s and u, v, andw, giving nine parameters in all. For
instance,a123=1−r12

2 −r23
2 −r31

2 +2r12r23r31cosu.
Now pick one of thebi for i .6, and call itx. Taking the

partial derivative with respect tox, the fact thatb1, . . . ,b6
are constant implies]s2/]x=0 [since by Eq.(9) s2 is a func-
tion only of b1, . . . ,b6]. Furthermore, if we choose a set of
states withr ij .0 for all i , j andu=v=w=p /2 we find

] s3/] x = − 2sp1p2p3dsr12r23r31dux − 2sp1p2p4dsr14r21r42dvx

− 2sp1p3p4dsr13r34r41dwx + 2sp2p3p4dsr23r34r42d

3sux + vx + wxd.

Suppose the first three terms in the above expression for
]s3/]x are positive. Sinceb1, . . . ,b6 are real and positive,
this meansux,0,vx,0,wx,0. So the fourth term is nega-
tive. By taking p1 small enough, we can ensure that
]s3/]x,0 and also that]s4/]x is sufficiently small to ensure
that the term with q=3 dominates the sum]S/]x
=os]S/]sqds]sq/]xd. So ]S/]x,0 and monotonicity fails.
Suppose on the other hand that at least one of the first three
terms is negative, the term withux say, soux.0. Then tak-
ing p4 small enough leads to the same conclusion.

This result suggests that it may be difficult to construct a
minimal set ofvsk,nd monotonic parameters which also has
a simple geometrical interpretation, thus further underlining
the benefits of considering the nonminimal parameter set dis-
cussed in Sec. III.

V. TWO PROOFS OF THEOREM 1

We give here two proofs of the theorem that]S/]sq.0
for 2øqøn.

First proof. We will prove a slightly stronger result, giv-
ing a positive lower bound for]S/]sq [see Eq.(19)]. Note
first that the xi can be implicitly defined as functions
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xiss1, . . . ,snd of the symmetric polynomialssi by

o
i=0

n

s− 1dn−isn−ix
i = 0 s10d

swith s0=1d. Differentiating this equation with respect tosq,
we get

] xk

] sq
Fo

i=0

n

s− 1dn−isn−iixk
i−1G + s− 1dqxk

n−q = 0. s11d

Since the expression in square brackets is the derivative of
Psx−xid with x set toxk, we have

] xk

] sq
=

s− 1dq+1xk
n−q

p
iÞk

sxk − xid
. s12d

From the chain rule, for any functionf of the sq,

] f

] sq
= o

k=1

n
] f

] xk

] xk

] sq
. s13d

Taking f =s1 we get

o
k=1

n
xk

n−q

p
iÞk

sxk − xid
= 0 if 2 ø q ø n. s14d

Then, takingf =S=−oxk ln xk sand assuming that allxk.0d
gives

] S

] sq
= s− 1dqo

k=1

n
xk

n−qs1 + ln xkd

p
iÞk

sxk − xid
, s15d

which in view of Eq.s14d implies

] S

] sq
= s− 1dqo

k

xk
n−q ln xk

p
iÞk

sxk − xid
for 2 ø q ø n. s16d

Define

Wqsad = s− 1dqo
k

sxk + adn−q lnsxk + ad

p
iÞk

sxk − xid
,

so Wqs0d=]S/]sq. Then

Wqsad = s− 1dqan−qo
k

s1 + xk/adn−q lns1 + xk/ad

p
iÞk

sxk − xid
,

where we have omitted a term with factor lnsad since Eq.
s14d implies that this term is zero. Using Eq.s14d again,
we can approximateWqsad for large a by the term inxk

n−1

in the expansion ofs1+xk/adn−q lns1+xk/ad, giving

Wqsad . s− 1dqa1−q

3fcoefficient ofxn−1 in s1 + xdn−q lns1 + xdg

= a1−qE
0

1

yq−2s1 − ydn−qdy

→ 0 asa → ` for 2 ø q ø n.

Using Eq.s14d again we find

] Wqsad
] a

= − sn − qdWq+1sad, s17d

for 2øq,n, and applying Eq.s14d to the seta,x1, . . . ,xn

] Wnsad
] a

= − 1/p sa + xkd. s18d

Using Pk=1
n sa+xkdø sa+1/ndn in the preceding equation,

Wnsxd ù E
x

` da

sa + 1/ndn =
1

sx + 1/ndn−1sn − 1d
,

so ]S/]sn=Wns0dùnn−1/ sn−1d.
Equation(17) for q=n−1 then implies

Wn−1sxd =E
x

`

Wnsaddaù E
x

` da

sn − 1dsa + 1/ndn−1

=
1

sx + 1/ndn−2sn − 1dsn − 2d
,

so]S/]sn−1=Wns0dùnn−2/ sn−1dsn−2d. And continuing this
way we find

] S/] sn−q+1 ù
nn−q

qSn − 1

q
D . s19d

So all the partial derivatives are bounded away from zero,
which proves the theorem.

Second proof. A second proof involves using a theorem
from numerical analysis—the so-called Hermite-Gennochi
theorem[10]—to replace the explicit derivation above from
Eq. (16) onwards.(This theorem was also used in Ref.[8],
end of Appendix A.) Thus we begin as above, deriving the
expression in Eq.(16) for ]S/]sq.

Now if fsxd is any function whose values are known only
at n points x1, . . . ,xn then there is a unique polynomial of
degreen−1, the Lagrange interpolating polynomial, that
agrees with the function at these points. The coefficient of
xn−1 is called the Newton divided difference off and has
standard explicit formulaoi fsxid /PkÞisxk−xid. Thus Eq.(16)
states that]S/]sq the Newton divided difference for the func-
tion fsxd=s−1dqxn−q ln x. Now the Hermite-Gennochi theo-
rem asserts that the Newton divided difference is also given
by the integral over the probability simplexhsp1, . . . ,pnd :pi

ù0,oipi =1j of f sn−1dsp1x1+¯pnxnd where f sn−1d is the
sn−1dth derivative of f. Taking f to be s−1dqxn−q ln x it is
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straightforward to check thatf sn−1dsxd.0 for all 0,x,1.
Hence the integral over the probability simplex is positive
and we get]S/]sq.0.

VI. A REMARK ON SUBENTROPY

It is curious that our proof of the theorem that the entropy
is an increasing function of the symmetric functionssq (Sec.
V) depends upon an algebraic expression closely related to a
quantity called the subentropy. Given any density matrixr,
the subentropyQsrd [8] is the greatest lower bound on the
accessible information of any ensemble of pure states
uf1l , . . . ,ufml with probabilities p1, . . . ,pm, for which r
=opiufilkfiu. In terms of the eigenvaluesx1, . . . ,xn of r (or
indeed for any classical probability distribution) the suben-
tropy can be written

Qsrd = − o
k

xk
n ln xk

p
iÞk

sxk − xid
,

which would correspond to our Eq.s16d if we could putq
=0 in that formula. For this to make sense, we need to intro-
duce a variable which plays the role ofs0, i.e., a coefficient
of the termxn in Eq. s10d. We therefore define

t1 =
1

s1
, t2 =

s2

s1
, . . . , tn =

sn

s1
,

and divide Eq.s10d through bys1 to obtain

t1x
n − xn−1 + ¯ + s− 1dqtqx

n−q + ¯ + s− 1dntn = 0. s20d

This equation defines the rootsxi in terms oft1, . . . ,tn. Fol-
lowing the same method used to derive Eq.s16d, we can
carry out an implicit differentiation with respect tot1, noting
that the equivalent of the expression in square brackets in Eq.
s11d is now the derivative byx of s1/s1dPsx−xid with x set to
xk. This gives

] xk

] t1
= −

xk
ns1

p
kÞi

sxk − xid

and

] S

] t1
= s1o

k

s1 + ln xkdxk
n

p
kÞi

sxk − xid
. s21d

Finally, applying the chain rule]f /]t1=oks]f /]xkds]xk/]t1d
to f =s1, and noting that]s1/]t1=−s1

2, we obtain the identity

o
k=1

n
xk

n

p
kÞi

sxk − xid
= s1,

so Eq.s21d can be written

] S

] t1
= s1ss1 − Qd.

If x1, . . . ,xn is a probability distribution, sos1=1, then we get
]S/]t1=1−Q. Thus we have proved the following.

Theorem 2. Let S=−oxi ln xi be the Shannon entropy
function defined onhsxi , . . . ,xnd :xi .0 all ij (i.e., we lift the
probability conditionoxi =1). If S is viewed as a function of
t1=1/s1,t2=s2/s1, . . . ,tn=sn/s1 then at points withs1=oxi
=1 the subentropy is given byQsx1, . . . ,xnd=1−]S/]t1.

Note that the above mathematical characterization of sub-
entropy applies equally well withinclassical information
theory(as it is a derivative property of the Shannon entropy
function), in contrast to all previous work on subentropy
[8,9] where it relates only toquantummechanical consider-
ations(especially the theory of information gain from quan-
tum measurements).

Finally we also note that there are other possible ways of
getting a nontrivial coefficient ofxn in Eq. (10). For example,
instead of dividing through bys1 we could divide through
by sn and introduce the variablesrq=ssn−qd /sn

=qth symmetric polynomial of 1/x1, . . . ,1 /xn. We then get
the equation

1

sn
psxd = rnx

n + ¯ + s− 1dqrn−qx
n−q + ¯ + s− 1dn

= sx/x1 − 1d ¯ sx/xn − 1d = 0

leading to an alternative characterization of subentropyQ as

] S

] rn
= snss1 − Qd

and the condition forx1, . . . ,xn to be a probability distribu-
tion is nows1=rn−1/ rn=1, i.e.,rn=rn−1.

VII. DISCUSSION

The problem we have addressed in this paper is whether
there are real-valued functionsaq of k states inn dimensions
that together characterize those states up to a unitary trans-
formation and are also “measures of quantum redundancy”
in the sense that]S/]aq.0 for eachaq. In other words,
increasing onea while holding the others fixed increases the
entropy S and hence reduces the redundancy of the set of
states. We would also like theaq to have an interpretation in
terms of the Hilbert space geometry of the states.

We use the term “quantum redundancy” here because we
require that]S/]aq.0 holds for any choice of probabilities
pi of the statesucil, and thepi can be thought of as embody-
ing the classical aspect of redundancy. Of course, one might
ask whether there are joint functions of the states and their
probabilities that characterize the entropy, and one example
of this is the “perimeter” considered recently by Hartley and
Vedral [11]. The question then is why one such function
should be preferred to another; after all, the symmetric func-
tions sq trivially determine the entropy via the characteristic
equation(7). The functions in Ref.[11] are motivated by the
possibility of experimental measurement whereas our con-
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siderations are motivated by a desire to geometrically char-
acterize a notion of quantum redundancy in quantum infor-
mation compression.

Our main conclusion is that there is a natural set of mea-
sures(in our sense) for sets of two or three states, but for
four or more states the corresponding parameters—the deter-
minants of square submatrices of the matrix
skciuc jld—outnumber the degrees of freedom in the sets of
states, and the more obvious ways of carrying over the re-
sults from two or three states fail. Nevertheless the simple
geometrical interpretation of these parameters, in terms of

Hilbert space volumes defined by the states, makes it appeal-
ing to consider an extension of the entropy function to the
full space of these variables, and the entropy of any physical
ensemble of states then appears as a special case satisfying
some extra algebraic constraint equations.
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