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Towards a geometrical interpretation of quantum-information compression
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Let S be the von Neumann entropy of a finite ensemblef pure quantum states. We show tisamay be
naturally viewed as a function of a set of geometrical volumes in Hilbert space defined by the states and that
Sis monotonically increasing in each of these variables. S8isghe Schumacher compression limit&fthis
monotonicity property suggests a geometrical interpretation of the quantum redundancy involved in the com-
pression process. It provides clarification of previous work in which it was showrSthady be increased
while increasing the overlap of each pair of states in the ensemble. As a by-product, our mathematical
techniques also provide an interpretation of the subentrogy of
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I. INTRODUCTION One reason the above example appears paradoxical is
that, in real three-dimensional geometry, the pairwise inner
products of three unit vectors determine the figure the vec-
tors make, up to an orthogonal transformation, and they also
determine the entropy in this real-valued setting. An analo-
gous result holds in complex geometry if the complex inner
product is specified, but not if only its absolute value, the
overlap, is given. In fact, taking into account the freedom in
S(p)=-Tr(p In p). specifying phase for a quantum mechanical state, i't turns (_)ut
that there ardour real-valued degrees of freedom in speci-
Conceptually we can associate the possibility of compressiofying three states in three complex dimensions up to a uni-
with the presence of a degree of redundancy in the sourcéary transformationas will be shown shortly Specifying
Supposep,,p, are the density matrices of two sources and the three pairwise overlap&yi| )|, [(1]¥3), and|(y,] ¥3)]|
therefore leaves a further degree of freedom that can be used
S(p1) < S(py). (1) to adjust the entropy.
What is this extra degree of freedom for three states in
ree (compley dimensions? Here it is useful to introduce

One of the most satisfying results of quantum-information
theory is Schumacher’s source coding theof@rb], which
says that a message of lendtHrom a source of pure quan-
tum states with density matrixcan be compressed KS(p)
qubits (asymptotically for largeK), where S(p) is the von
Neumann entropy

Then the first source can be compressed further than th
second, so it has greater redundancy. If the two sources bo(E . . . o
havek stateg ;) and|¢;), say, with the same probabilitigs E e Gram matrixG, with entries Gy = vpip(;| ) and the
then this increased redundancy does not lie in the classicA1atrix A with entriesay; =(¢4| ¢). G has the same eigenval-
probabilitiesp; of emitting the states but in the properties of UeS as the density matrpe=p; | 4| (see Ref[6]) so the
the states themselves: it is true “gquantum redundancy.” Intuvon Neumann entropy

itively, one expects that, if the stathg) are more similar to

each other than the statgs), then the quantum redundancy S(p)=-2x Inx 3
of the ;) will be greater. So if the pairwise overlaps of the

) are larger than those of the), i.e can be computed from the eigenvaluesf the Gram matrix
i i/y 1.C.,

Kl = Kol forallilj, 2 Prf WPPfiz 1 PiPatis

G=| Vpop1321  P2322  VPoP3dys
then p; should have more quantum redundancy thgnand — —
consequently Eq(1) should hold. Jozsa and Schlief@] VP3P1da1 VPsPaBsz  Padas
showed this is indeed true for a source with two states. HOWG has the characteristic equation
ever, they produced a counterexample consisting of a set of
three states;) in three dimensions and a slight perturbation -5+ sx-5=0, (4)
of them|¢;) that has greater overlaps Hatger entropy. This . . .
phenomenon raises the question of whether compression ampere thes, are Fhe s_ymm_etnc polynolmal functions of the
guantum redundancy can be understood g@ometrical Elgenvalues, withs,;=2x=1, and $,=2<xx;, and sg
terms, i.e., in terms of the geometry of the source’s states in X1X%2Xs. Expanding deGG-Ix) one finds that
Hilbert space. This question has also been recently raised in _ 2 _
Ref.[7]. In this paper we will establish a connection between 2= g Pip(1-fay[*) and s3=pypops detA. ()
quantum redundancy and the volumes in Hilbert space de- .
fined by the source states. SinceA can be written a®\=BB', whereB is the matrix
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of coordinates);; of the statesys) in any orthonormal basis,
it follows that detA=|detB|?, and we can regard dét as
the squared modulus of tlemmplex volumspanned by the
|i). Note also thatl-|a;|?) =detA j, whereA; is the sub-

3

matrix of A obtained by striking out rows and columns

having labels not in the sdi,j}. Thus we can likewise

regard 14a;/*> as the squared modulus of the complex

volume spanned bj;) and|i;). We can write the terms
of Eq. (5) that depend on the states as

1o = detAl‘z, a13= detAlvg,

(6)

o3 = detA2'3, d193= detA,
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S = 2 pul' o puiaul,...,uia 9

up<--+<y;
whereauly__,'ui:detAuly_,_,ui andAulv___'ui is the submatrix of
the matrixA obtained by striking out all rows and columns
with labels not in the sefuy,....u}; i.e., A, is the
i Xi A matrix constructed from the subsg,,), ... |¥)}
of the states. This follows becauseis the coefficient of
(=x)*" in de{G-xl), which is obtained by picking-i
elements on the diagonal, corresponding to rows
v1,---,Uki Say, and, for each such choice ofs, con-
structing the determinant of the submat(Bgl,wui of G,
whereu, ... ,u; is the complementary set to thés. Since
the Gram matrixG is related to the;:orres;pndidg ma-
trix by G=QAQ, where Q=diagVps,...,VpPo), we get
detGy . .y =Py, -PydetA, . Equation(9) is then ob-
tained by summing over all sets afs.

Note that, though the individual en'[riesm,l,___,ui are de-

ands, ands; then appear as positive linear combinations Ofpendent on a choice of phase for the stdtgs Qu,,...u is

these volume variables. Th&p) is determined by the prob-
abilities p; and the four squared volumes in E®). If the

states are perturbed in such a way that three of these fo
parameters are fixed but one of them varies, then the entro

changes as intuition would dictate: increasig (i.e., de-

creasing the overlap between states 1 apdh@reases the
entropy (decreases the redundancsnd increasing the vol-
ume (i.e., spreading the states apaaitso increases the en-

invariant under phase choices. Furthermauf@l,mui is real,
sinceA, ., is Hermitian. Thusy, _ , is a real-valued uni-

géry invariant, and the complete set of &Ul,...,ui for all sets
L}/ ,...,U; can be regarded as the analogues of the invariants

(6) in the casek=n=3. Also, as in the case df=n=3,
v =Bu, uBl . whereB, ., is theixi matrix

whose rows are the components of tretatesyy, ), ... .|y

tropy. In this sense we can regard the four parameteréeXpanded in any choice of orthonormal basis in the span of
a10, 043, A3, A3 S Measures of quantum redundancy forthesei states. TI”IUSCKUl,“”ui may be identified as the squared

the set of states. This behavior of the entropy follows from amodulus

theorem proved later, which tells us thé®/ds >0 for i
=2. Consequently when none of tipg is zero (which we
shall assume throughout 9S/da;j=p;p;dS/ds,>0 and
ISl da193=P1PoP3d S/ 9s3> 0.

Il. kK STATES IN n DIMENSIONS

We now investigate the situation for any numbernof
states which span a spacernflimensiongsok=n). We can

of the complex volume determined by
W)y
Let X4, ...,X, be any probability distribution and leg
=s(Xq, ... Xy fori=1,... n be the corresponding symmet-

ric polynomials. For any symmetric functiof(x,, ... ,x,)
(e.g., the entropys) we consider a change of variables from
the x’'s to the s;'s. Note that the probability conditio&x;

=1 corresponds tg;=1, and lifting this condition we get
variables in each case. Then the Jacobian is readily seen to
be Ili-j(xi—X;), so the change of variables is valid if tkgs

try to imitate inn dimensions the procedure that gave theare all different. For simplicity we will work within this re-

variables in Eq(6). Let the states bg;) with probabilitiesp;
fori=1,... k. As above we introduce the Gram matrix with
entriesGij:\prj((/;in) and theA matrix with entriesa;;
=(¢i| ), both beingk X k matrices. The eigenvalues of the
Gram matrix are those of thex n density matrixp padded
out with k—n zeros[6]. Thus the characteristic equation
def{G—-xl)=0 for the Gram matrix fok states inn dimen-
sions has the form

(- DX (- 1)is, X =0,
i=0

)

wheres is theith elementary symmetric polynomial of the
eigenvaluesq, ... X, of the density matrix, defined by

p)

Uy <---<y;

=1, s= Xy, »0Xy fori=1,...n. (8)

Theith symmetric polynomial may be expressed as

striction but expect that our results will have suitaflaite)
limiting behavior for coincident valueg — x;. Furthermore
we will be interested primarily in partial derivatives/ds

for i=2 (which haves; held constant so our results will
also remain valid if we impose the probability constraspt
=1=constant at the start. We have the following fundamental
property of the entropy.

Theorem 1If S=-2x; In x; is viewed as a function of the
symmetric polynomialss, ... ,s, then dS/ds;>0 for q
=2,....n

Two proofs of this theorem are given in Sec. V below
after a discussion of some of its fundamental consequences.

III. GEOMETRICAL INTERPRETATION OF QUANTUM
REDUNDANCY

Equation(9) gives an expression for the symmetric poly-
nomials s that is canonically determined by the state set
{lg), ... |¢dt and probabilities p;,...,p. Thus from
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S=<si, ... ,S,) (with s;=1) we can view the von Neumann IV. MINIMAL SETS OF MONOTONIC PARAMETERS?
entropy of the source in a natural way as being a function of

the probabilites and all the squared VOlumeSwhether we can find some alternative set of parameters
@y -0y iy By theorem 195/0s,>0 forq=2and by 5 = "5 “\which is in 1-1 correspondence with the set of
Eq. (9), eachs, is a positive linear combination of the | giates and has some of the desirable properties possessed
variables, so we conclude thas/Jda>0 for each squared py the os in the casek=<3. In particular, to make a connec-
volurr_le variablec. o ) tion with the phenomenon of compression, we would like the
This suggests a geometrical interpretation of the quanturghonotonicity property?S/dg,>0 to hold for any choice of
redundancy in the ensemble of quantum states. If the prolyropabilitiesp;. Intuitively, this means that we can regard the
abilities are held fixed and the states are deformed then thg's as measures of quantum entropy.
change in entropy can be seen as an accumulation of mono- Consider the cask=n=4. Here the set of states is nine
tonic effects arising from the changes induced in each of thelimensional, whereas there are @%. Can we perhaps keep
squared volumesa. SincedS/ da> 0 the set of these squared some of thex's, taking, say, the overlap-related teragg as
volumes can be regarded as a geometric measure of th#®,...,B8s and adding a further @'s? [For instance, one
guantum redundancy associated to a set of states alone. might consider adding the three distances between subspaces
Note, however, that, fok> 3, there are morer's than  generated by disjoint pairs of the four states, id¢12,34,
degrees of freedom needed to ksstates up to overall uni- d(13,24, andd(14,23, whered(ij ,kl) is some measure of
tary equivalence. Indeed, letk,n) denote the number of the distance between the subspace spanngdibyy;) and
degrees of freedom in specifyingstates im dimensions up ~ that spanned b, [).] However, it turns out thaany set
to unitary transformation. To specify states requirek(2n  Of parameters that includes the six termscannot have the
-2) real parameteréas each state is defined only up to over-desired monotonicity property. To see this, wrifes |ay;| and
all phase. The unitary groupJ(n) hasn? parameters, but J€fine  u=arg@aasy), U:?rqal“aﬂ?“?)' and w
because of the overall phase freedom in each statand :_arg?13a34a41). Then we can write all the’s in terms of the
€*U have the same action for amy Thus, unitary action on six ry's andu, v, andw, giving nine parameters in all. For

2° instance @y 3= 1-12,~ 2.~ 2,4 2r | of yr 3;COSU.
the states eliminates®-1 parameters from th&(2n-2), Ins 123 12 "23 7317 < 12123 31~+2" .
= : > :
giving v(k.n) =k(2n-2)~ (- 1). Now pick one of theg; for i>6, and call itx. Taking the

) partial derivative with respect tg, the fact thatg,, ... ,B¢
The following table shows (k,n) for small values ok ;e constant impliegs,/ 9x=0 [since by Eq(9) s, is a func-
andn andk=n. The bracketed numbers are the total numbekjon only of g;, ...,8s]. Furthermore, if we choose a set of
m(k,n) of termsay, ., ignoring those with >n, which are  states withr;; >0 for all i,j andu=v=w=/2 we find
zero since more tham states must be linearly dependent and
therefore have zero determinant. The numbers in brackets ard 599X = = 2(P1P2P3) (126 23 31) Ux = 2(P1P2Pa) (I 1a 217 42)Ux

Since 7(k,n)>uv(k,n) for k>3, it is interesting to ask

thereforer(k,n) = {L,(}). = 2(P1P3P4) (1137 34" 4) W + 2(P2P3P4) (231 347 42)

k n=2 n=3 n=4 n=>5 XUy + vy +Wy).

> 1(1) Suppose the first three terms in the above expression for
dsz/ dx are positive. Sincesy, ... ,Bg are real and positive,

3 303 44 this meanal, <0,v,<0,w,<0. So the fourth term is nega-

4 5 (6) 8 (10 9 (11) tive. By taking p; small enough, we can ensure that

5 7 (10 12 (20 15 (25) 16 (26)  ds3/ 9x<<0 and also thads,/ dx is sufficiently small to ensure

that the term with q=3 dominates the sumdS/ax

For k=3 the two sets of numbers agree, so thie can be  =2(9S/dsy)(ds4/ X). So dS/dx<0 and monotonicity fails.
used to parametrize the sets of states. Eor3 there are Suppose on the other hand that at least one of the first three
always too manyr’'s. Thus viewing the entropg as a func-  (€rms is negative, the term witl say, sou,>0. Then tak-
tion of the #(k,n) a’s (for fixed probabilities amounts to a "9 P4 small enough leads to the same conclusion.
nontrivial extension ofS to a larger space of variables: not .T_h|s result suggests that |t_may be difficult t(.) construct a
every 7(k,n)-tuple of « values is geometricall realizabl;a b minimal set ofv(k,n) monotonic parameters which also has

ymK, bl oil?t o di ge d yh yl a simple geometrical interpretation, thus further underlining
an ensemble ok states Im dimensions, and when an actual ¢ penefits of considering the nonminimal parameter set dis-
ensemble is deformed, thevariables are constrained to lie

_ - ' ' cussed in Sec. lll.
on a surface of dimension(k,n) in the ambient space of
dimensionz(k,n). But the virtue of this nonphysical exten-
sion of the number of parameters is that we are able to at-
tribute compressibility of the source to geometrical con- e give here two proofs of the theorem thi/ ds,> 0
structs, viz. thex's. In any deformation of actual states, eachfor 2<q=<n.
a varies positively or negatively and the compressibility var-  First proof. We will prove a slightly stronger result, giv-
ies by a corresponding accumulation of monotonic positiveing a positive lower bound fo#S/ ds, [see Eq.(19)]. Note
and negative effects. first that the x; can be implicitly defined as functions

V. TWO PROOFS OF THEOREM 1
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xi(sy, ...,S,) of the symmetric polynomials, by

n

> (-)™is, X =0 (10

i=0

(with s,=1). Differentiating this equation with respect $
we get

Z’S(:[%( D™, ixio }( DHI=0.  (11)

PHYSICAL REVIEW A69, 032304(2004)

Wy(a) = (- )%™

X [coefficient of X"t in (1 +x)" 9 In(1 +x)]
1
=a'™ J yTA(1 -y)"dy
0
—Qasa—xfor2=qg=n.
Using Eq.(14) again we find

aW(a)
Jda

—(N—QYWg1(a), (17)

Since the expression in square brackets is the derivative of

IT(x—x;) with x set tox,, we have

Ix (= )P

= . (12
I% T (x—x)
ik
From the chain rule, for any functiohof the s,
af & af ax
— =3 —=X (13
ISy k=1 9% ISy
Taking f=s; we get
n n—q
— =0 if2=qg=n. (14
ke 1 (%= X;)
ik

Then, takingf =S=-2x, In x, (and assuming that ak. > 0)
gives

- = (_ )qz qu(l—-l-lnxk) (15)
I = | (X = %)

i#k

which in view of Eq.(14) implies

X!
__(_ s Sk Tk 1N X for2<q<n. (16)
Sq k H(Xk XI

i#k

Define

+a)" % In(x + a)

H (%= %)

i#k

W@ = (- 13 O

$0Wy(0)=0S/ ds,. Then

-y (1 +x/2)"%In(1 +x/a)

k H (Xk XI

i#k

Wq(@) = (- 1)%

where we have omitted a term with factordn since Eq.
(14) implies that this term is zero. Using E¢L4) again,

we can approximat&V,(a) for largea by the term inxg~*
in the expansion ofl+x,./a)" % In(1+x./a), giving

for 2=<q<n, and applying Eq(14) to the seta,xq, ... X,

ﬂW(a)
Jda

-1/TT @+xy. (18)

Using IT}_,(a+x) < (a+1/n)" in the preceding equation,

1

Wh = @+ 1" (x+1n)"Hn-1)’

S0 S/ 9s,=W,(0)=n""t/(n-1).
Equation(17) for g=n-1 then implies

da
« (n=1@a+1n?

Wi a(x) = f “W.(aida=

1
T (x+ 1" 2n-1)(n-2)’

S0 S/ ds,-1=W,(0)=n""2/(n-1)(n-2). And continuing this
way we find

n"d

0998y g1 = ﬁ (19
(")
q

So all the partial derivatives are bounded away from zero,
which proves the theorem.

Second proofA second proof involves using a theorem
from numerical analysis—the so-called Hermite-Gennochi
theorem[10]—to replace the explicit derivation above from
Eq. (16) onwards.(This theorem was also used in R§8],
end of Appendix A) Thus we begin as above, deriving the
expression in Eq(16) for 9S/ds;.

Now if f(x) is any function whose values are known only
at n points x4, ... X, then there is a unique polynomial of
degreen-1, the Lagrange interpolating polynomial, that
agrees with the function at these points. The coefficient of
x"1 is called the Newton divided difference éfand has
standard explicit formul&;f(x;)/I1,.;(x—X;). Thus Eq.(16)
states tha#S/ ds, the Newton divided difference for the func-
tion f(x)=(-1)%""%In x. Now the Hermite-Gennochi theo-
rem asserts that the Newton divided difference is also given
by the integral over the probability simpldkp;, ...,p,) :p;
=0,%p =1} of f"D(px;+---px,) where {7V is the
(n—=1)th derivative off. Taking f to be (-1)%"91In x it is
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straightforward to check that™(x)>0 for all 0<x<1. d
Hence the integral over the probability simplex is positive ﬁ_tl =8,(8,-Q).
and we gewS/ ds;>0.
If Xq,...,%,is a probability distribution, se;=1, then we get
dS/ dt;=1-Q. Thus we have proved the following.
Theorem 2 Let S=-2x; In x; be the Shannon entropy
It is curious that our proof of the theorem that the entropyfunction defined of(x;, ... x,):x>0 all i} (i.e., we lift the
is an increasing function of the symmetric functizggSec. ~ probability conditionZx;=1). If Sis viewed as a function of
V) depends upon an algebraic expression closely related tota=1/s;,1,=%,/Sy, ... 1,=S,/s; then at points withs, =X,
quantity called the subentropy. Given any density magtix =1 the subentropy is given bQ(xy, ... ,X,)=1-3S/dt;.
the subentropyQ(p) [8] is the greatest lower bound on the  Note that the above mathematical characterization of sub-
accessible information of any ensemble of pure stategntropy applies equally well withirclassical information
[¢0), ... .| with probabilities p,...,py for which p theory(as it is a derivative property of the Shannon entropy
=3pi|d){il. In terms of the eigenvalues, ... x, of p (or function), in contrast to all previous work on subentropy
indeed for any classical probability distributiothe suben-  [8,9] where it relates only tgquantummechanical consider-

VI. AREMARK ON SUBENTROPY

tropy can be written ations(especially the theory of information gain from quan-
tum measurements
Xg In X Finally we also note that there are other possible ways of
Qlp) =~- > =, getting a nontrivial coefficient of" in Eq. (10). For example,
k il;[k(xk—xi) instead of dividing through bg, we could divide through

by s, and introduce the variablesr,=(s,—q)/s,

which would correspond to our E4L6) if we could putq ~ =dth symmetric polynomial of 4y, ..., 1/, We then get
=0 in that formula. For this to make sense, we need to introth€ eguation
duce a variable which plays the role gf i.e., a coefficient

1

of the termx" in Eq. (10). We therefore define ;p(x) =rxt+ e (DI X e (= D)

f=t =2 (=5 =(Xx = 1) (K, ~ 1) =0

1— [} 2= 3 vy n— ]

S1 S1 S1 leading to an alternative characterization of subentiQpgs
and divide Eq(10) through bys, to obtain JS
r Sh(s1— Q)
X" =X+ (- D)UY e+ (- D), =0, (20) n

) ] ] ) and the condition fox, ... ,x, to be a probability distribu-
This equation defines the rootsin terms ofty, ... .th. Fol- tion is nows,=r,_1/r,=1, i.e.,ry=r_..

lowing the same method used to derive Ef), we can
carry out an implicit differentiation with respect tg noting

that f[he equivalent_ of t_he expression in square _brackets in Eq. VII. DISCUSSION
(11) is now the derivative by of (1/s;)I1(x—X;) with x set to
X. This gives The problem we have addressed in this paper is whether
there are real-valued functioasg of k states im dimensions
IX XSt that together characterize those states up to a unitary trans-
a_tl =" m formation and are also “measures of quantum redundancy”
oy koA in the sense tha#S/day>0 for eachay. In other words,
increasing oner while holding the others fixed increases the
and entropy S and hence reduces the redundancy of the set of
states. We would also like the, to have an interpretation in
9S (1 +In X)X terms of the Hilbert space geometry of the states.
— =52 . (21) We use the term “quantum redundancy” here because we
Y k H (X=X require that¥S/ day >0 holds for any choice of probabilities
ki p; of the states$y;), and thep; can be thought of as embody-

ing the classical aspect of redundancy. Of course, one might
ask whether there are joint functions of the states and their
probabilities that characterize the entropy, and one example
of this is the “perimeter” considered recently by Hartley and

Finally, applying the chain rul@f/dt;=2,(3f/ 9x,) (%[ dt1)
to f=s,;, and noting thats,/dt,=-s2, we obtain the identity

é X -5 Vedral [11]. The question then is why one such function
o1 [T (- x) b should be preferred to another; after all, the symmetric func-
ki tions s, trivially determine the entropy via the characteristic
equation(7). The functions in Ref{11] are motivated by the
so Eq.(21) can be written possibility of experimental measurement whereas our con-

032304-5



G. MITCHISON AND R. JOZSA PHYSICAL REVIEW A69, 032304(2004

siderations are motivated by a desire to geometrically charHilbert space volumes defined by the states, makes it appeal-

acterize a notion of quantum redundancy in quantum inforing to consider an extension of the entropy function to the

mation compression. full space of these variables, and the entropy of any physical
Our main conclusion is that there is a natural set of meaensemble of states then appears as a special case satisfying

sures(in our sensgfor sets of two or three states, but for some extra algebraic constraint equations.

four or more states the corresponding parameters—the deter-

minants of square submatrices of the matrix

((th]4;))—outnumber the degrees of freedom in the sets of ACKNOWLEDGMENT
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