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What correlations are present in the ground state of a many-body Hamiltonian? We study the relationship
between ground-state correlations, especially entanglement, amthéngy gapbetween the ground and first
excited states. We prove several general inequalities which show quantitatively that ground-state correlations
between systems not directly coupled by the Hamiltonian necessarily imply a small energy gap.
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I. INTRODUCTION AE
= <2(1-F?, (1)

A central problem in physics is characterizing the ground e

state of a many-body Hamiltonian. Of particular interest is

the problem of understanding the correlations in the groundvhere AE is the energy gap, anH, is the total energy
states of such systems. As an outgrowth of that interest, thecale for the system, i.e., the difference between the maxi-
has recently been considerable work on understanding th®al and minimal energies of the Hamiltonian. The ratio of
nonclassicalcorrelations in the ground state, that is, thethe gap to the total energy scale is an appropriate dimen-
ground-state entanglemerome recent work on this prob- Sionless parameter for deciding whether a gap is small or
lem, with further references, includel—13 (see also Iarge_. Note_ that rescaling qf the Hamlltonlan corresponds
[14-17, and references therain physically just to a rescaling of time, so one can only

The purpose of the present paper is to prove some gener xpect results in terms of such a dimensionless parameter;

. L . . it does not make sense to say that a gap is “small” in any
inequalities relating the ground-state correlations and en: ;
absolute sense—one needs to compare it to another rel-

tapglement o the spectrum of the system Ham|lt'on|aln. W%vant energy scale. The inequality) tells us that as the
will prove that. the.eX|stence of long-range correlations in theoverlapF tends to 1, the gap size must vanish, compared
ground state implies a small energy gap between the groundl yhe total energy scale in the system, whenever the state
and first excited states of the system. Our use of long range, exhibits sufficiently strong correlations between sys-
here is a convenient euphemism; we mean simply correlaems 1 and 3.
tions between subsystems not directly coupled by the system Equation(1) is just one example of the sort of relation we
Hamiltonian. will prove. We will prove a variety of similar relations, for
To be more concrete, let us describe a specific example @fifferent situations. In particular, we will analyze more gen-
our results. Suppose we have a three-body system, with theral coupling schemes and consider the relationship of cor-
bodies labeled 1, 2, and 3. We suppose systems 1 and 2 afelations to the energies of low-lying states other than the
coupled, and systems 2 and 3 are coupled. Importantly, sy$irst excited state.
tems 1 and 3 araot directly coupled. This is the only as- Our investigations may be placed in several different con-
sumption we make about the system Hamiltonian. Suppose texts, including the theory of quantum phase transitions, re-
is some joint pure state of the three systems, possessing “sufiults from quantum many-body physics such as the Gold-
ficient correlations” between system 1 and 3, in a sense to bgione theorem, and the theory of entanglement developed
made precise later. Our goal is to relate the energy gap to th&ithin the burgeoning field of quantum information science.
overlapF=[(y| Eg)| betweeny and the ground staté&,) of We now briefly review the_s_e connections.
the system. Note that throughout the paper we interchange A duantum phase transitiqi8,19 is a qualitative change

between the two pure-state notations where convenient: with! the properti_es of the 9T°“”.d st_ate Of_ a Hamiltorfr&g_) as
a ket (|¢) and without(%). We will prove that a parameteg in the Hamiltonian is varied throughaitical
' point g.. The parameteg might, for example, be the value of

an external magnetic field applied to a system of spins. Near
a critical point, a system undergoing a second-order quantum

*Electronic address: hih@physics.uq.edu.au phase transition usually exhibits two related phenomena. The

"Electronic address: nielsen@physics.uq.edu.au; first phenomenon is truly long-range correlations in the
URL: http://www.qinfo.org/people/nielsen/ ground state, in the sense of correlations that decay only

*Electronic address: T.J.Osborne@bristol.ac.uk slowly with distance. The second phenomenon is a vanishing
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energy ga@\E— 0. These phenomena are expressed via thef the paper is devoted to generalizations and formalization
relations of the ideas in Sec. Il. Interestingly, the mathematics that
arises when generalizing formalizing the results of Sec. Il
) leads in a natural way to other problems of great physical
interest, and exploring these connections is a theme of the
In these relations¢ is the characteristic length scale on paEI)_(aré next section of the paper, Sec. Ill, sets up a general
which correlations occur in the systeiE is the energy gap, framework for our investigations, introducing a convenient
as before, andy andz are constants known asitical €xpo-  |anguage to describe complex interactions involving many
nents Remarkably, the exact values gfandz do not de-  pogies, and precisely framing the questions we address in
pend on the particular details of the microscopic interactiongp;g language. Section IV is the core of the paper, presenting
in the system, but only on a small number of system paramj series of general results connecting long-range ground-state
eters, such as dimensionality and symmetry; this phenonygrelations to the energy gap and other properties of the
enon is known as universality. The exponeris known as  |ow-lying states. Section V explores an intriguing connection
thedynamical critical exponentnd relates the way in which ot our results to the theory of quantum error-correcting

the energy gap vanishes to the way long-range correlationsydes. Finally, Sec. IV concludes with a discussion of open
emerge near the critical point. In particular, we see fhit  gyestions.

« &% so that, provided the critical exponenis positive, the

energy gap and the correlation length behave inversely to

one another; as the gap becomes small, the correlation length IIl. INVITATION: A TOY MODEL
becomes large, and vice versa.

Clearly, the study of the dynamical critical exponeititas We begin with a toy model WhiCh. iIIus_trates in a simplg
much in common with the questions we are pursuing hereS€tting many of the important physical ideas developed in

However, there are many significant differences. In particu-more detail later in the paper. Our purpose in presenting

lar, work on quantum phase transitions usually requiredn€Se ideas first in a simple form is to keep the underlying
working in the thermodynamic limit of an infinite number of Physical ideas distinct from some of the mathematical com-

systems and often requires additional symmetry assumptionE:f”(r';['es Olf later se(r:]tlons._ K(Tep n r?lnq_, howeverl, that some
such as translational invariance. Although numerous physica‘a these later mart1 em:;ﬂcg Icompbtlaxmes rk(]avea.surprlsmg
examples have suggested that it is generally true that corr&NNections to other physical problems whose importance

lations decay exponentially with the size of the energy gap, jnay not be apparent in the simplified setting discussed in

is only relatively recently that a general proof of this fact hasthiS Section.

been provided20], for systems in the thermodynamic limit. ~ Our toy model is a system of three_qub(lkpm-% systems

In contrast, our results apply for any many-body quantunanged in a line. We label the qubits 1, 2, and 3. Suppose
system, whether in the thermodynamic limit or not, and doth® qubits are coupled by a Hamiltoni&h which contains
not require any additional symmetry assumptions, such a@nly nearest-neighbor interactions and so can be writen
translational invariance. Thus, our results complement thosg H12+Has Note that single-qubit contributions to  the
obtained in the study of quantum phase transitions. Hamiltonian can be included in the '|nteract|d|1§2 andH,s.

Another context for our work is a classic result from FOr our purposes all that matters is that there are not cou-
quantum many-body physics, the nonrelativistic Goldstond!ings between qubits 1 and 3. Suppose the ground state of
theorem[21-23 (see Chap. 9 of24] for a review, which H, |[Ep), is nondegenerate, with corresponding ground—s_tate
shows that diverging correlations imply a vanishing energye"€rgyEo. Suppose the gap to the energy of the first excited
gap. However, as with the case of work on quantum phasgtate ISAE. . _
transitions, these results are complementary to ours, in that HOW entangled are qubits 1 and 3 in the ground &g
they rely on having infinite systems and typically require W& Will prove that in order for qubits 1 and 3 to approach
additional symmetry assumptions. m_axm_"nal entanglemerjt,.the g&E must approach zero. We

An intriguing aspect of our results is that they make con-Will give only a heuristic argument for now, with general
siderable use of techniques developed in the new field dproofs to follow later. Notes, in particular, that while the
quantum information scienceespecially techniques devel- following argument applies for maximal entanglement be-
oped for the study of entanglement. Thus, our paper illusiWeen qublts 1 and 3, the results of subseqL_Jent sections can
trates a general idea discussed elsewtire3,27-29 (see € applied to more general types of correlation.
also [30]), namely, that quantum information science may Ve begin by observing that, since qubits 1 and 3 are
provide tools and perspectives for understanding the propef€arly maximally entangled, then
ties of complex quantum systems, complementary to the ex-
isting tools used in quantum many-body physics. [Eo) = |¢) = [ME)13l )2, ©)

We begin the paper in Sec. Il with a simple, easily under- . . .
stood toy model that illustrates many of the main physical\/\/here“\/IE> is some maximally entangled two-qubit state,

- - g . ¢) is a single-qubit state, and subscripts indicate which
ideas of the paper in a heuristic way. Much of the remamdelSystems the states are associated with. But Sifige

~|¢) the expectation energy fdi) must also be close
1See[25,2@ for reviews and further references. to Eo,

1
E * |g - gc|77, AE x |g - gc|Z7]'
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(YH|y) = Ey. (4) sponding vertices. So, for example, the HamiltoAia
=XXI+ZIZ corresponds to a graph with vertices 1,2,3, and

Next, let|ME’) be a two-qubit maximally entangled state €dges(1,2,{1,3}.

orthogonal to|ME) and define|i,)=|ME’)14¢),. Note More generally, if some terms in the Hamiltonian couple
that |¢,) is orthogonal to|y), and in view of Eq.(3) it ~ More than two bodies, then we can associate with that

; ; Hamiltonian ahypergraph A hypergraph consists of the set
haltys I h | .
must be true t L) is approximately orthogonal i) \/ of vertices, together with a collection d¢fyperedges E

It follows that |, ) can be expressed, approximately, as aE Sdung
iy . ; - ach hyperedge i is just a subset of/, and represents a
superposition of states with energiEsand higher, where couplinéptermgbetweerjl the corresponding sysl'?ems. So, for

E;F;thtg?ioenniggeyrg? ftct|]n§ f>|rrs;uzct:tee(;tsltea;&l'_rherefore theexample, the Hamiltoniatd =XXI+ZIZ+YY Z corresponds
l .

to a hypergraph with vertices 1,2,3 and hyperedges
{1,2,{1,3}, and{1,2,3.
We call a hypergraps=(V,E) a coupling topologyvhen
. . _ . it is associated with a quantum system in this way. We say
These small corrections can, in principle, be negative, angLat a HamiltonianH respects the coupling topology (&
we wiI_I see that thisn_wstbe the case, in order to be consis- every coupling irH corresponds to a hyperedgeGn We do
tent with the reasoning below. . . not require every hyperedge i@ to have a corresponding
Next, observe that the expectation energies|fr and coupling inH. So, for example, the three-qubit Hamiltonian
|¢,) are the same, H=XXI+ZIZ respects the coupling topology of the hyper-
graph with vertices 1, 2, 3 and hyperedd#s2},{1, 3}, and
(WH|) = (g Ry ). (6)  {1,2,3, even though there is no term coupling qubits 1, 2,
and 3 simultaneously.
To see this, observe tha#{HJ¢)=(y, [Hizi,), since the Note that there is an apparent ambiguity in this definition,
reduced density matrices fgrand, areidenticalon the since a given Hamiltonian can be decomposed in more than
system 12. A similar argument shows that the contribution tne way, e.g.,H=XXI+IXX=XXM,+M_XX, where M,
the expectation energy from,; is the same from bothy ~ =|+X. We resolve this ambiguity by saying thetrespects
and ¢, . Combining these results gives E@®). the coupling topologys if there issomedecomposition of
To complete the argument, observe that E4$3{6) can  which respects that coupling topology.
be consistent only iE,~ E; +small corrections, and thus the  With this language we can now give a precise statement
energy gap must itself be small. of the problem we are interested in. In fact, it is useful to
Summarizing, the presence of nearly maximal groundconsider two different forms of the problem. The simpler
state entanglement between sites which do not directly inteform is as follows.
act allows us to construct a state tkatis almost orthogonal Exact ground-state problentet ¢ be a quantum state of
to the ground state, and thus must have energy of @pat  some many-body system. We think @fas atarget statethat
higher; but(b) looks locally very much like the ground state, we desire to be thexactground state. Suppose the system
and thus must have energy approximatély The only way  Hamiltonian H respects the coupling topologg=(V,E).
these two facts can simultaneously be true is if the energgiven thaty is an exact ground state &f, what does this
gap is comparable in size to the corrections used in our aAmply about the level spacings ¢i? In particular, do the
proximations. Making this argument precise, and generalizcoup"ng topologyG and the correlations present gnimply
ing it further, is the subject of subsequent sections. anything about the level spacings of the systamependent
of the specific details offi?
We will show that the answer to this question is “yes.” An
example of the sort of answer we will give is as follows.

This section introduces a framework for generalizing and>UPPOSey us an exact ground state of a Hamiltonien
formalizing the ideas of the previous section. We first intro-"€SPecting the coupling topolody. Then the ground state of
duce some general language for describing interactions i IS at leastm-fold degenerate, whema is an integer deter-
many-body quantum systems, then use this language to pr8lined solely by(@) the coupling topology antb) the prop-
cisely state the main questions addressed through the remaf@ties ofi. In particular, we will see than is closely related
der of the paper. we conclude with an overview of our an-0 long-range correlations ing, where by long range we
swers to these questions. mean correlations between systems not directly coupled

In the previous section we considered three interactingy G: i )
qubits, with the restriction that the first and third qubits do It is important that the degeneraayis determined solely
not interact. It is helpful to introduce some language to dePY properties of5 and: the particular details of the Hamil-
scribe more general interactions. tonianH do not matter, beyond the topology of the interac-

Suppose we have a general many-body system, with con{lons. Even given the ab|I|t_y to engineer arbitrary designer
ponents labeled 1, ..N, We can regard these labels as a setiamiltonians, the fact thaf is an exact ground state ai
of verticesV for a graph. Given a two-body Hamiltonian for
that system, we can naturally associate with each coupling®we usel,X,Y,Z to denote the four Pauli matrices and omit ten-
between bodies arundirecteg edge between the corre- sor product signs for notational brevity.

(¢, |H|y,) = E; + (small corrections (5)

IIl. FRAMEWORK
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the coupling topology guarantees amfold degeneracy in Recall that P, is the projector onto the ground-state
the ground state. eigenspace, and that the overlap betwéeand the ground

More interesting and general than the study of exacttate isF=({Pg|¢). Assuming that->0, we define/Ey)
ground states is the study of how the coupling topology ando be the(normalized ground state onto whick projects.
correlations iny affect the ability toapproximatey as a  Explicitly, we define|Eq) = Pq|i)/{¢APo|). It will be con-
ground state. This question is captured by the followingyenient to label the energy levels Bg<E,<---, and to let
problem. Emax b€ the largest energy level. Note that the energy levels

Approximate ground-state problerhet ¢ be a quantum  gre not assumed to be distinct, so, for example, if the ground
state of some many-body system. Suppose the system Hamirate is doubly degenerate then we will hag=E;. We
tonian H respects the coupling topolog$=(V,E). Given  choosdE,),|E,), ... sothat|Ey),|Ey), ... forms an orthonor-
that the overlap betweery and the ground state i€  mal eigenbasis of energy eigenstates in the obvious way. We
= \(IPo|4), whereP, projects onto the ground-state eigens-|et E,y,=E,,.E, be the total energy scale for the system.
pace, what does this imply about the level spacingd®fin With this nomenclature, we are now ready to proceed to
particular, do the coupling topolody, the overlag-, and the  the statement and proof of our main theorem. The key to the
correlations present igy imply anything about the level spac- proof of the theorem is a lemma from linear algebra. The
ings of the systemindependenof the specific details dfl?  lemma is easy to state, and the result is rather obvious, yet all

We will obtain solutions to this problem similar to those the proofs we are aware of make use of surprisingly sophis-
obtained for the exact ground-state problem. For examplejcated ideas. The result appears to be little known but is
supposeys has overlag= with the ground state of a Hamil- useful in many contexts. It appeared as B@J) in a set of
tonianH respecting the coupling topolody. We will prove  unpublished lecture notg81].

an inequality relating the gapE to the overlapF and a Lemma 1Let A andB be Hermitian matrices. Then
measureC of long-range correlation in the system. This in- . . | ,

equality will enable us to prove that &— 1 the presence of AMA)*-N(B)! < tr(AB) < N(A)' - N(B)", (7)
long-range correlations in the system forces the energy ga\ﬁ/here)\(M) denotes the vector whose entries are the eigen-

to vanish. . ) .
. . . . e
In the next two sections we will obtain several solutlonsvalues of the matriM, v*(v') is the vector whose entries are

to the approximate ground-state problem, applicable in dif-fjhe ent(rjles_ 0{% reélrrall%ged Into descgndtlmgscendmg or-
ferent contexts. Interestingly, one of these solutions—in €, and - 1S the tuclicean Inner product. I
Proof. We work in a basis in whicl is diagonal, with its

some sense the strongest—involves quantum error-correctineq | the di Lentri f th i ati
codes, as discussed in Sec. V. eigenvalues the diagonal entries of the matrix representation
in that basis. Then

IV. GENERAL THEORY
_ o _ _ tr(AB) = X A;;Bj; = \(A) - diagB), (8)

SupposeH is a Hamiltonian respecting the coupling to- j
ologyG=(V,E), and# is a quantum state having overl& ) ) ) ,
\F/)vith %e g:oun()j stati Ouquey result is a gengral theoprem\f"here diagB) IS the_ vecto_r whose entries are the diagonal
proved in this section, connecting the energy level$idb elements ofB.ln'thlg ba_S|s. Elementary results from the
the properties of a set we shall define, labdRedy). Ro(y) ~ theory of majorization imply thadiagB) <A(B), where
is defined to consist of all quantum states, both pure angenotes the majorization re!atl.arF.urt.her elementary re-
mixed, which agree withy on the hyperedges i. Thatis, Sults from the theory of majorlzatlénmp!y that diagB)
Re(#) contains all statep such that t(p) = tre(|)(]) for all =2p;P;\(B), where thep_j form a.probablllty.dls_trlbgtlon,
the hyperedges in E, wheree indicates that we trace over and theP; are permutation matrices. Substituting into Eq.
all systemsexceptthose ine. (8) we obtain

It is perhaps not obvious why a theorem connecting the
energy IF:aveIspoH to Rs(¥) shouldytell us anything about ?he tr(AB) = E PMA) - PiA(B). 9
relationship between those energy levels and long-range cor- .
relations. Remarkably, however, the propertieRgfi) are  The result now follows from the observatfothat for any
intimately connected with the correlationsn and this fact  two vectorsx andy, x' -y’ <x-y=<x!-y!. [
will enable us to make the desired connections. We are now in a position to state and prove our main

Our presentation strategy in this section is to first provetheorem. Note, incidentally, that the proof of the main theo-
the general theorem and then explore connections betweeam makes use of only the first inequality in the statement of
Rs(#) and long-range correlations, applying the generalLemma 1, not the second inequality. We included both be-
theorem to a variety of examples.

*This result appears on p. 218[&2], as Theorem B.1 in Chap. 9.

) ) _ See, e.g., any 0f31-3§ for an introduction to majorization and
In this subsection we prove a general theorem connectingyther references.

the energy levels of a system haviggas its approximate  “see p. 113 0f32], Proposition C.1 of Chap. 4.
ground state t&s(y). We begin by specifying some notation  5A proof of this observation may be found as Corollary 11.4.4 on
and nomenclature. p. 49 of [34].

A. Connection between the energy levels anBg(1)
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cause both are of interest, appear to be little known, and B. Example applications
virtually no extra work is required to obtain the second.

Theorem 1Let H be a Hamiltonian respecting the cou-
pling topologyG. Supposey) is a state with overlajg with
the ground state oH. Let p e Rs(¢) have eigenvalueg,
=p,=---. Then

We now explore some applications of Theorem 1, relating
the energy spectrum of a system to the presence of long-
range correlations in the ground state of that system.

1 1. Example: Perfect long-range correlations

> (E; —Eppj < (1 -F?)Eq, (10 Suppose we have a three-component system, with sub-
=1 systems labeled 1,2, and 3. Suppose the coupling topdogy

is such that systems 1 and 2 may interact, systems 2 and 3
may interact, but systems 1 and 3 cannot interact directly.
Note that in this discussion 1,2, and 3 may be aggregates—
e.g., systems 1 and 3 might be spins on either end of a long
linear chain, with system 2 the collection of all spins in be-
tween. Suppose, furthermore, thatis some quantum state
exhibiting perfect correlationbetween systems 1 and 3. By
perfect correlation, we mean that there is a measurement

whered is the dimension of state space.

It is sometimes convenient to write the sum in a slightly
different fashion. Including §=0 term makes no difference,
since Eo—E, vanishes, so the sum may be rewrittg[(E;
—Eg)pj, with the sum over all possible indicejs,

Proof. By definition of F as the overlap betweehand the
ground statdE), we see that up to an unimportant global

phase, basis in which a measurement outcomejodfn system 1
=F|E,) + 1 -F2E,), 11 implies, with probability 1, a measurement outcomen
1) =FlEg) + L (D system 3, and conversely.
where|E ) is orthonormal tdEg). We now use this expres- As an example of such a situatiogt,could be a product

sion to evaluate the average energy for the gigteThe first  ¥13® . In this casey exhibits perfect correlations if mea-
term on the right-hand side of E¢L1) contributesF°E, to ~ surements are performed in the Schmidt bases for systems 1
the energy, while the second term contributes at ngdst and 3, respectively.
—F?)Enae Since the energy dE, ) is no more thark,,, It Another example is stateg such that when system 2 is
follows that (¢{H|y)<F2Ey+(1-F2)E.. Rewriting this traced out we get a mixed state of the foip;j):(jl,
inequality in terms ofE,y=Ea—Eo rather thang,,, we  ®li)s(ils, wherelj); and|j); are orthonormal bases for sys-
obtain tems 1 and 3, respectively. It is easy to show that such states
must have three-party Schmidt decompositions of the form
(WH[P) < Eg+ (1 - F?)E. (12 studied by Thapliyal [36] and Peres[37], ie.,
- - =ZVpjli)alidalids, wherelj), |j)2, and|j)s are orthonormal
Furthermoreh smce{aandp hﬁve thel_same relduced densn% basJ;estor the respective systems. An example of such a state
{nat;;ch OE yper((aj tghes In the coupling topology, we see thal o Greenbelger-Horne-ZeiIinge(lGHZ) state |GHZ)
r(pH)=(¥H[#) and thus =(]000+|111))/v2. Indeed, if we consider am-qubit linear
tr(pH) < Ey + (1 - F?)Eyy. (13) array, with the first and last qubits considered as system 1
and system 3, with the remaining qubits grouped together as
Applying the first inequality of Lemma 1 to the left-hand system 2, then we see that theparty GHZ state| GHZ)
side of Eq.(13) gives =(|0y®n+|1)®n)/\2 is also an example of such a state.
In general, ify is any state exhibiting such perfect corre-
lations there must exist normalized, but possibly nonorthogo-
nal, statedj), of system 2, such that

d-1
> piEj < Ep+ (1 - F?)E:. (14)
j=0

Using the fact thaTE?:'&pjzl, and doing some elementary —

algebra and relabeling of indices, we see that this can be w:Z VpilDalidalids. (19
rewritten in the fornE?;ll(Ej—Eo)pj <(1-F?E,, as we set !

out to prove.

An interesting observation related to Theorem 1 is that ifNote thatp; are the probabilities with which the measure-
G, and G, are hypergraphs such that the hyperedgeGpf ment outcomg occurs on systems 1 and 3. Now define
are a subset of those @,, then RGZ(zp)gRGl(g//). This is
true because ip and ¢ agree on hyperedges @, then they o o N
must certainly agree on hyperedges@j. It follows that P= E PPl © 102012 @ [1Dails- (16)
Theorem 1 impliestrongerconstraints on the energy levels .
for systems whose coupling topology respe@tsthan for
systems respectinG,. Thus, for example, Theorem 1 gives Observe thap € Rs(¢), since it has the same reduced den-
stronger constraints on the energy levels for five spins arsity matrices on systems 12 and 23 as dgehlote also that
ranged in a line, with nearest-neighbor interactions, than fop has eigenvalueg;. It will be convenient to assume that the
the same spins arranged into a circle, again with nearestneasurement outcomes are labeled, ... d—1 and have
neighbor interactions. been ordered so that=p,=---. From Theorem 1 we have
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a1 quite simple because of it. However, the definition is differ-
E (Ej-Egpy=(1- F?)Er. (17) ent from other more conventional correlation measures, such
=1 as spin-spin correlation functions, or the “correlation coeffi-

cient” from statistics.

if The definition ofC implicitly assumes that the same la-
belsj are being used for measurement outcomes on system 1
lower energy levelg,, ... E,_,. So, for example, in the sce- and system 3. This need not be the case. For example, system

nario of Sec. I, if¢:éME>13|¢>2, then we havepo:plzé, 1 might be a spin;- system, with measurement outcomes

and Eq.(17) become&E, < Ey+2(1-F?)E,, Thus, the gap labeled £, and systm 3 a spin-1 system, with measurement
to the first excited state in this example vanishesFas outcomes labeled 0, 1. If this is the case we can define an

1. analogous notion of correlation by identifying the outcomes

Similarly, for ann-qubit linear chain, with systems 1 and ©Of the spin measurement with a subset of the spin-1 out-
3 the qubits on each end of the chainyifs then-party GHz ~ ¢omes, e.g., 1/2:1, -1/2—-1, and soC=py/2 1+ P-1/2,-2
state, then we again conclude tigts Ey+2(1-F)E,, and N general, we can define a measure of correlation by iden-
the gap to the first excited state vanishesas 1. tifying the measurement outcomes for the system with the

Another illuminating—albeit, ultimately trivial—example Smaller state space with a subset of the measurement out-
is when system 13 is in a product state|a);|b),|c)s. Thisis ~ COMES for the system with the larger state space. The argu-

a case of the theorem, for the system does exhibit perfecents below are easily generalized to this case, but for no-
correlation, provided system 1 is measured in a basis includ@tional clarity we stick to the case when systems 1 and 3
ing |a), and system 3 is measured in a basis includg have identical Ia_bellngs for th¢|r measurements.

However, since we havp,=1, and all othep,=0, we see Next, we define a normalized and perfectly correlated
that Eq. (17) gives us only trivial information & (1 statey’ of the joint system by discarding those termsyin

~F?)E,, and cannot be used to deduce anything about thEhat leas to the correlations being imperfect, and renormaliz-
(0]

spectrum of the system. It is only as the probabilitigs Ing the state appropriately:
become mixed that E17) may be used to duduce interest- D —; ;
\‘pj,j|J>|9jj>|l>

ing information about the spectrum. J-

= 20
v = (20

Let us generalize the previous example so that it applieggﬁg th,a;t;/:// ?0L:nsluStefk?iil;[g@:r%g?::c:rrlslsggrggtr\:v;nbs s
also to systems with imperfect correlations. Suppose agaip 4 usy P . Y
ems 1 and 3, in the sense of the earlier example, and thus we

that we have a three-component system 123, and the cols ude that
pling topology allows 1 and 2, and 2 and 3 to interact, but

Equation(17) tells us that ag-— 1 the quantity on the left-
hand side gets squeezed toward zero. In particular,
Po, ---,p>0, then we conclude thd&,— E,, as do all the

2. Example: Imperfect long-range correlations

not 1 and 3. Supposg is anexactground state for a Hamil- P )
tonian respecting this coupling topology. Suppdgeis an E —(J:"l(Ej —Eop) < (1 -F)E, (21)
orthonormal basis for system 1, afi} is an orthonormal !
basis for system 3. We can expaitcas whereF is the overlap betwee’ and the ground state. But
—. we assumed thaty was a ground stat¢possibly one of
’/’:% VP el k), (18 many, soF=|(y' | )|=+C, and thus the previous equation

may be rewritten
wherep;  is the probability of getting the measurement out-
comej on system 1 anét on system 3, if measurements are 2 pj,(Ej~Eg) < C(1 - O)Eyqy, (22
performed in thelj) and |k) bases, respectively. The states !
lejo are normalized, but possibly nonorthogonal, states 0brovidedC>O. Equation(22) tells us that a—1, i.e., as

system 2. _ we approach perfect correlation, the quantity on the left-hand
To measure the correlation between the measurement oWige must approach zero. Thus,go, ... ,prx>0 then we

comes on systems 1 and 3 we define a correlation measurggnciude thak, ... E,— E, as the correlations become per-

fect.
]

3. Example: Approximating a state with imperfect long-range
C is just the probability that the measurement outcome on correlations

system 1 is the same as the measurement outcome on SySterT\Ne can generalize the previous two examples still further,

3. Thus, values ofC close to 1 indicate highly correlated . ; :
: . to the case where we are trying approximatea state with
measurement outcomes, while values very close to zero in-

dicate a high level of anticorrelation. the choice of this formlmperfect correlations as the ground state. Suppose again that

. : . we have a three-component system 123, and the coupling
for C is a matter of convenience in that later results becom?opology allows 1 and 2. and 2 and 3 to interact. but not 1

and 3. Suppos# is a state with correlatio€=2p; ;>0 in
SCompare Eq(1). some measurement basis for systems 1 and 3. Suppose there
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is a Hamiltonian respecting the coupling topology such that Proof. A direct proof is easily obtained. Letbe the state
the overlap betweers and the ground state 5. We will in Rg(y) of maximal rank, lety; be the eigenvectors qf
prove that the energy levels of the Hamiltonian satisfy with nonzero eigenvalues, and argue that allghenust have
energy equal to the ground-state energy. This follows since,
> pi(Ej—Eg) <C(V1-C+V1-F?)?E. (23) if one has energy higher than the ground state, then another
i must have energy below the ground state—a
contradiction—to ensure that(kip) is equal to the ground-
state energy. Alternatively, observe that this theorem is a spe-
cial case of Theorem 1, with=1. |
Similarly to the previous example, we can_ write Example As an example, suppose we have just three sys-
. e = tems 1,2,3, and suppose only couplings between 12 and 23
=Zjc/pyilen0lk), and definey’ =Xy ilj)le plid/VC. We 5 e involved. Suppose that= ;3@ i, wherei,; is an en-
now defineF(a,b)=|(alb)|, the overlap between any two tangled state of systems 1 and 3, with Schmidt decomposi-
statega) and|b). It is convenient to note the\fl—F(a,b)2 IS tion l//lazzj\f’aj|j>|j>, and i, is some state of system 2.
a metric_on _projective state space. Recall tha) We will analyze this scenario in two different ways. The
=Po| )/ \{Pol¢p) is the normalized state that arises from first method of analysis is similar in spirit to arguments ear-
projecting ¢ onto the ground space. From the triangle in-lier in the paper, such as led to Theorem 2. The second
equality method is from a somewhat different point of view, and we
will see that it sometimes leads to stronger results. Our first
VI-F(/ B> < V1-F(¢/,)* + V1 -F(,Ep)? (24)  argument is as follows. Just as argued earfer;p;|j)(j|
® | )| ®j)Xj| is in Rg(y). We therefore see, from any
<V1-C+1-F2 (25)  one of Theorems 3, 2, and 1, that the ground-state degen-
eracy is at least equal to the Schmidt number g,
But if F, =\('|Pg|¢/) is the overlap ofy’ with the  ScHyy,), i.e., the number of nonzero coefficients in the
ground space then we hawg, =F(y',Ep) and thus com-  Schmidt decomposition. It follows that if;3® i, is to be a

This result generalizes both the last example,(E8), which
corresponds to the case whEr1, and the example before
that, Eq.(17), which corresponds to the ca€s1.

bining with Eqg.(25) we have ground state of the system, then the ground state must be
5 —_— Sch¢,5)-fold degenerate. Of course, the Schmidt number is
1-F, <(N1-C+\1-F?»? (26)  awell-known entanglement monotone, so in this example we
conclude that the ground-state degeneracy is at least as large
The result now follows from Eq(17). _ as the amount of long-range entanglement, as measured by
Summarizing, we have proved the following general theothe Schmidt number.
rem. Our second method of analysis takes a state-based, rather

Theorem 2Let H be a Hamiltonian coupling systems 1 than operator-based, point of view. L&(y) be the set of
and 2, and 2 and 3, but not 1 and 3. Lk be the joint  purequantum states agreeing withon hyperedges, i.e., it is
probability distribution associated with a measurement inthe subset ofRg(y) containing only pure states. Define
some bases for systems 1 and 3, for a statdabel the Ny, (4) to be the dimension of the linear space spanned by
measurement outcomés 1, ..., and sahatpyo=p; 1=--*.  the vectors inSs(#). Observe then thallspad ) < Neand ),
Define the correlation measu@=2p;;, and letF be the since given any linearly independest, ..., Ss(¥) we
overlap betweeny and the ground state. Then, provided thatcan formp=3;|1;)(¢;|/me Rs(#), which has rankn. Thus,
C>0, the energy levels dfl are constrained by the relation Theorem 3 implies that the ground state is at least

— . Nspad #0)-fold degenerate.
2 P j(Ej—Ep) <SC(V1-CH+V1-F?)%Ey. (27 In_the scenario studied above, With=5® i, Y3
J =3Vpili)li), we see that the stateX;\p,eij)[j) are in
Ss(y) for any choice of the phase§, and thusNgya ()
= Schi,5), and we conclude, as earlier, that the ground state
C. Exact ground states and ground-state degeneracy is at least Schyo)—fold degenerate. However, when the

We have seen that the properties Rf(y) are closely ~Schmidt coefficients; are degeneratésp,{)can actually
related to long-range correlations in the stdtdn this sec- be somewhat larger than the Schmidt number(&gh. The
tion we make some more specialized observation aboubllowing proposition enables us to make a precise evalua-
Rs(#) that can be used to prove results about the groundtion of Ngpa{#). _
state degeneracy of any Hamiltonian with as anexact Proposition 1 Let ¢=y3® i, where ¢;3=3; v’pj|j>|j>.
ground state. Then Nspar(¢)=2kd§, where the sum is over an indéxfor

We defineN,,,{#) to be the maximal rank of any density distant nonzero Schmidt coefficients, adgis the degen-
matrix in Rg(y). We will see below thaiN,4(#) is con-  eracy of thekth nonzero Schmidt coefficient.

nected to both the long-range correlationsyirand also to Note that, according to the proposition, whgg has non-
the ground-state degeneracy. We begin with the latter cordegenerate Schmidt coefficientsp,{¢) is equal to the
nection. Schmidt number off, 5, which is an entanglement monotone.

Theorem 3 Let H be a Hamiltonian respecting the cou- However, using the results dB8] it is easy to construct
pling topologyG. Suppose) is a ground state dfl. Thenthe  examples with degenerate Schmidt coefficients that show
ground state is at least . ()-fold degenerate. Nspad #) is not, in general, an entanglement monotone.

032303-7



HASELGROVE, NIELSEN, AND OSBORNE PHYSICAL REVIEW A9, 032303(2004)

Proof. It is clear that all states iig;(y/) have the form Proposition 2 Let H be a Hamiltonian respecting the cou-
$13® i, Where ¢35 is a state having the same reduced den+pling topology G. Supposé is a state having overlap with
sity matrices on systems 1 and 3 as dges Butitis easy to  the ground state oH. Suppose¢ e Rs() is such that
see that this is the case if and only #3=€7(®,Uy) [{y/| Y| =cog ). Then
®11¢ns where 6 is a phase factoJ, is a special unitary
operator acting on the subspace of system 1 corresponding to E _E.< 1-F? E
the kth Schmidt coefficient, aneb, denotes the direct sum TN = R
over those subspaces. The result now follows from the —
simple observation that in &,®d, space, the dimension Whereg(6,F)=[1-F cog6)+1-Fsin(6)].
spanned by states from the fort ®1)Z||j)[j), whereU Note that¢ plays a role analogous in Theorem 1. The
e SU(d,), is dﬁ, [ ] crucial additional piece of structure in the proposition is the

This proposition shows us how to evaluddg,,{y) for a angled relating s and ¢. As this angle varies from 0 ta/2,
large class of interesting states and thus to place lowethe bound Eq(28) varies from the vacuous; —-Ey< E,—as
bounds on the ground-state degeneracy. Wihgris degen-  with Theorem 1 we get no information at all in this case—
erate these results are actually stronger than are obtaingdrough toE; —Ey< (1-F?)E,,/F?, which is nontrivial. Note
using Theorem 2, sincllsp.(#) is strictly larger in this case that Theorem 1 can be applied also in this latter case; the
than the Schmidt number af,; Although the argument strongest bound obtained in this way comes from choosing
leading to Theorem 2 can be modified to give this strongep=1|y)(y|+1|4)(¢|, which gives E;~Eo=<2(1-F?)E,
bound, the modification is not especially natural from awnich is a factor of 2 weaker than Proposition 2, in fhe
physical point view. Thus, we believe there is some merit in_ 1 |imit.
the alternative, state-based point of view taken in the present p ¢ By the same argument that led to Ed.3), we

(28)

discussion.
Example Recall that a state with a multiparty Schmidt conclude that
decomposition can be written in the forrf86,37 ¢ ($H|p) < Eg+ (1 —=F?)Ey. (29

=ZVp;lili)---[i)- An example of such a state is thegubit _ , _

GHZ state|GHZ)=(|0)®"+|1)*")/y2. Suppose the coupling EXpressindEo) in terms of we have, up to an unimportant
topology G contains all hyperedges of up to-1 vertices, 9lobal phase|Eg)=F|¢)+\1-F?¢"), for somey" ortho-
i.e., the allowed Hamiltonians may couple uprte1 of the ~Nnormal to ¢. Taking the inner product with¢ gives
systems, but not alh systems simultaneously. It is easy to [(¢|Ep)|<F cos 6+V1-F?(|4")|. Becausey is ortho-
see that the stateX;\p;ef|j)---|j) are in Ss(¢), for any  normal toy we have|(¢|4)|<sin 6, and so

choice of the phaseg;, and thusNgp,{1) = Sch(#), where —

ScHy) is the number of terms appearing in the multiparty [{#|Eq)| < F cos 6+ V1 -F*sin 6. (30)

Schmidt decomposition. It follows that the ground statélof \ye see from this equation that the componenéadrthogo-

is at least Schy)- f(.)ld degenerate. For example, in the case,, to|Ey) is at least|g(#,F), as defined in the statement of
of the GHZ state, it follows that the ground state is at Ieas}he ronosition. and thus

twofold degenerate, since the GHZ state has Schmidt num- prop '

ber 2. (¢Hl$) = [1-9(6,F)IE+9(6,FE;. (3D
D. Further development of Theorem 1 Combining this inequality with Eq(29) and rearranging
Can Theorem 1 be strengthened in any way? We novgives the result. |

show that there are physically interesting ways of varying the
hypotheses of Theorem 1, in order to reach stronger conclu-
sion. One way of doing this, related to quantum error-

correcting codes, is described in detail in Sec. V. We now The key to applying Theorem 1 is the ability to find states

E. Understanding Rg(#)

explain, more briefly, another possible variation. p lying in Rg(¢). To this end, we make a few general re-
The basic idea is to amend Theorem 1 so it makes use @harks on the problem of understandiRg(y).
information about the relationship betwegnand p. Con- Our first observation is thag(¢) is a convex set, since a

sider two possible case@) ¢ is orthogonal to the support of mixture of states, each of which agrees withon hyper-
p, and(b) ¢ is contained in the support @f In the former  edges, also agrees withh on hyperedges. Therefore, one
case, we see that there is a subspace of dimensiofiglank might try to understan@g(¢) by finding its extreme points.
+1, spanned by the support pfand¢, in which energies are  Unfortunately, we do not know what those extreme points
all approximately equal t&,, and thusEo~E;~---Eqanqp)-  are, or even if they are pure or mixed quantum states.
In the latter case we can conclude only that there is a sub- Additional light on Rs(#)is shed by the work of Linden,
space of dimension raf)—the support op—in which en-  Popescu, and Woottef89], and subsequent work by Linden
ergies are all approximately equal &, and thus we draw and Wootterd40]. In [39] it is shown that almost all three-
the weaker conclusion th&;~E;~ - - Eani(p)-1- qubit quantum states are uniquely determined by their two-
We have not yet succeeded in obtaining a clean generalparty reduced density matrices. More precisely, given a
zation of Theorem 1 incorporating this idea. However, wethree-qubit state/= 53, let p15, p13,p23 be that correspond-
have obtained a simpler result in this vein, which we nowing two-qubit reduced density matrices. Th&g] show that
briefly describe. unless the state is equivalent, up to local unitaries, to a state
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of the formal000 +b|111), ¢ is the unique state, even al- know thep € Rs(#), but this does not imply that all states in

lowing mixed states, with those reduced density matrices. the support oRg(#) have the same expectation energy. It is
Restating in our languagg39] shows that for ally except  this difference that allows us to draw a stronger conclusion in

those equivalent ta|000)+b|111) by local unitariesRg(#) the present scenario.

={y}, when G is the complete graph allowing interactions  Proof. LetV be the maximal vector space which is a sub-

between any pair of the systems 1, 2, and 3. Thus, Theore&pt of S;(y). By the Courant-Fischer-Weyl minimax prin-
1 gives only nontrivial information when the stageis lo- ciple (see Chap. 3 0f34]), we have
cally equivalent toa|000)+b|112). Of course, bounds like

Theorem 2 apply in general. Eng -1 Mmax (P|H| ). (33
The results of39] were extended if40], which consid- ’ peVigl=1

ered the scenario afi qudits, i.e.,d—d.imensional quantum g by the same reasoning that led to Etg) the right-hand
systems. ReferenddQ] proved the existence of constants  gije of the previous equation is bounded aboveEgy (1

and B, 0<a<pB<1, such that(a) specifying all reduced ~F?)E,,, which gives the result
ot .

density matrices for subsystems containirgn qudits I . .
. h How can we evaluatdl ? Insight into this question
uniquely determined the global state for almost all quantum spack ) g q

states, andb) knowing all the reduced density matrices on 'S provided ?y noticing an interestihg g(_)nne_ction, namely,
up to na qudits doesnot uniquely determine the state, in that the maximal vector space containedity) is a type of
general. The estimates they obtained éoand 8 were of ~ quantum error-correcting code. To see this, let us recall some
order 1, and depended on the valualpfor details, se¢40]. basic facts from the theory of quantum error correction
Restating in our languag@40] showed that ifG includes  [25.28.

all hyperedges involving up t@n vertices, then for almost Let S be a set whose elements are collections of sub-
all ¢, Rs(1)={y}. However, for more physically interesting Systems of some quantum system. The elementrepre-
cases, like when the coupling topology involves only two-Sent(collective) subsystems on which errors are allowed to

body interactions, the results pf0] suggest thaRs(y) will ~ occur, and still be correctable by the code. For example, for

typically contain mixed states, and thus the bounds of Theo? C0de correcting errors on up to two qubits at a tir8e,

rem 1 become nontrivial. consists of all pair$j,k} of labels for two qubits. A quantum
error-correcting code correcting errors 8is vector spac&V
such that

V. CONNECTION TO QUANTUM ERROR-CORRECTING PATBPOCP, (34)
CODES
ng/hereP projects onto the code spa®®, and Aand B are

There is an interesting way to strengthen the conclusio ; o
g way g hgalrbltrary operators that act nontrivially only on subsystems

of the earlier theorems, by making use of stronger hypot . " d
eses. Intriguingly, this line of thinking leads to a natural Con-WhICh are elements d& These conditions, Eq34), define

nection with quantum error-correcting codes. We present thig/hat it is to be a guantum error-correcting code correcting

material starting with a general theorem connecting the ga rror_s_onS For more on the physical interpretation of these
9 g g 9 \Eondmons, sed25) and(26).

to the properties of the ground state, and then explain ho .
those properties are connected to quantum error-correctin We return now to the connec'uon be’gween Theorem 4 ar_1d
antum error correction. In one direction, the connection is

codes. N : ; X i
L . . — quite simple. Supposé is a state in &-dimensional quan-
We begin with a little more notation. L&(¢) denote the  y, error-correcting code/ which corrects errors on a s8t

set of a_II vectors\ ¢, where\ is a complex number, andis  \\e define a coupling topology on the syste®w (V,E), by
a state inSs(¢). Let Ngpacd) be the dimension of the largest gpeifying thatE consists of all hyperedges such that

vector space which is a subset®4(y). We now prove that eCs,Us, for somes;,s, € S. We will use Eq.(34) to show
Nspacd#) is connected to the spectral properties of the systhat all statesp in the codeW must have the same reduced

tem. o _ density matrices on any hyperedgeand thUSnge(l//),
Theorem 4Let H be a Hamiltonian respecting the cou- ang thereforéNyq ) = k.
pling topologyG. Supposey is a state with overlajg with To see this, suppos€ is an operator that is a tensor
the ground state. Then product of operators acting on the individual systems.itt
— AT i
Eo<E < <Ey L =E+(1- F)E.. (32 follows thatC=A B for some operatoré andB acting only
spacey) on the systems irs; ands,. We have, by Eq(34), PCP

The inequality that is the conclusion of this theorem is=YP for some constant of proportionality. It follows that if
substantially stronger than the inequalities proved earlier® iS any state in the code then
such as Theorem 1 and its corollaries. The reason this stron-
ger conclusion is possible is because we use a stronger hy- tr(l¢X4IC) = . (39
pothesis as the basis for our reasoning. The key fact is thatnis is true for all¢ in the code, and because was an
every state in the maximal subspaceSaf) is guaranteed arbitrary tensor product acting @ we see that the reduced
to have the same expectation energy for Hamiltonians redensity matrix one must be the same for all elemenfsof
spectingG. In contrast, in the scenario of Theorem 1, wethe code.
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The converse statement is also true. Suppdsés the  This is because all states in such a code must share the same

maximal subspace iEG(@_ SupposeS is any set such that Set of reduced density matrices on collections of up lto 2

for each pairs; and's, in S there is a hyperedge in E subsystems and thus share the same energy with respect to an
satisfying eDs,Us,. We will show thatW is an error- n-local Hamiltonian ifn<2L. Physically, this is cleaa pri-
correcting code correcting errors 8nThe proof is similarto  ©1 — all the states of the code must be energetically indis-
but slightly more elaborate than the proof in the previoustinguishable, in order to preserve information. However, it
paragraph. Lef andB be operators acting nontrivially only S€€mS to us an interesting fact that either all or none of the
on subsystems, ands,. We aim to establish Eq34). Be-  States of quantum error-correcting code can be ground states.
cause all stateg in Sg(1) have the same reduced density There is nothing in between.

matrices ore we conclude that

($|AB|¢) =, (36)

for some constany independent ofp. This implies

VI. DISCUSSION

We have developed several general results demonstrating
that systems exhibiting ground-state entanglement or corre-
| o) B|ATB| )P = Y| b)) . (37) lation that is “long range,” in the sense of being between
subsystems not directly coupled, must necessarily have a
Naively, one might try to establish Eq34) by summing  small energy gap. These results suggest many interesting av-
over an orthonormal basis of stagefor W.Of course, this  enues for further investigation.
may not work, because of possible cross terms on the left- Characterizing the physical properties responsible for the
hand side of Eq(37). We will show, however, that these vanishing gap.We have demonstrated several connections
cross terms vanish. To see this, |gt be an orthonormal |inking the energy gap to long-range correlations and en-
basis forw. Then for any paifj; # j, we have tanglement in the ground state. However, many of the con-
. C N Atol v At nections we have identified only hold for spedialbeit still
({Gal+ GDATBUI2) +[12)=(CGal = GDAB(10) - [i2) rather generalcases, rather than in the most general case.
(38 What are the physical properties responsible for the vanish-
ing of the gap in the most general case?
Characterizing R(p). Our work has highlighted the im-
(el = iGDATB([j) +ilj 2= +ii2DAB(j1) = ilj2)- portance of understanding the §§(p), defined to be the set
(39) of all density matriceso with the property that p)
=tr o) for all sets of systems coupled by the coupling topol-
Adding thg first of these equations fotimes the second ogy G. In physical termsRg(p) contains all those density
equation gives matriceso which are energetically indistinguishable frgm
(iJA™Bljp =0 (a0)  for any Hamiltonian respecting the coupling topolagyDe-

' veloping a good mathematical and physical understanding of
which establishes that the cross terms vanish, and thus\that Rs(p) is an extremely challenging and interesting problem in
is quantum error-correcting code. quantum information science. Promising preliminary work

We have shown that systems with quantum error-on this problem has been done[B®,4(Q, but much remains
correcting codes as approximate ground states must satisfyg be done.
especially stringent constraints on their low-lying spectra. It The thermodynamic limitn the thermodynamic limit of a
is interesting to compare these results with those[1df large number of systems, the energy differekgg between
where it was shown that nondegenerate quantum errothe maximal and minimal energies in the system typically
correcting codes correcting errors on up ltosubsystems tends toward infinity. Recall that the results obtained in this
cannot be the ground state of any nontriialocal Hamil-  paper typically boundAE/E,,; above by some measure of
tonian, i.e., a Hamiltonian coupling no more thansub-  long-range correlation, wher&E is the energy gap. Since
systems at a time, and not a multiple of the identity. RemarkE,, tends to infinity in the thermodynamic limit, it follows
ably, [1] proved aconstantlower bound on the distance that our results do not give interesting information in this
between the ground state and states of code in this scenariomit, except in the case where we require exact ground
This constant lower bound is much stronger even than thetates, i.eF=1. It would be extremely interesting to develop
bounds of Theorem 4. However, a critical difference is thatmore powerful results relating the gap to long-range correla-
the results of 1] applied only to nondegenerate codes, whiletions and entanglement in the thermodynamic limit.
Theorem 4 is more general in that it applies also to degen- Connection between the gap and the range of correla-
erate codes. tions.We have “long range” to mean entanglement or corre-

Viewed from a slightly different angle, our results provide lation between parts of a system that are not directly coupled.
an amusing counterpoint tfl]. Reference{1l] pointed out Of course, we expect there will be substantial differences
that no state in a nondegenerate code correcting up to between a situation where two subsystems are close, e.g.,
errors can be a ground state oflafiocal Hamiltonian. Theo- have perhaps a single spin mediating their indirect interac-
rem 4 implies if one state of a degenerate code corredting tion, and cases where the interaction is much more indirect,
errors is a ground state of dnlocal Hamiltonian, therall e.g., the left- and right-hand ends of a linear chain, with a
statesof that code must be ground states of Hamiltonian.large block of intermediate spins mediating the interaction

and
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between the two ends. We expect that the latter case withat the techniques of quantum information science will,
impose much more stringent restrictions on the size of thenore generally, be a powerful tool for understanding and
gap than the former case. Preliminary numerical investigapredicting the properties of complex quantum systems.
tions with the Heisenberg model bear this out, and further
investigations are currently underway.

In conclusion, we have used the techniques of quantum
information science to develop connections between the en- We thank Dave Bacon, Andrew Doherty, Gerardo Oritz,
ergy gap and long-range correlations and entanglement in thiohn Preskill, Guifre Vidal and, especially, Nick Bonesteel,
ground states of many-body quantum systems. We believior interesting and enjoyable discussions.

ACKNOWLEDGMENTS

[1] H. L. Haselgrove, M. A. Nielsen, and T. J. Osborne, Phys. Rev[21] R. V. Lange, Phys. Rev146 301 (1966).

Lett. 91, 210401(2003. [22] J. Goldstone, Nuovo Ciment9, 154 (1961).
[2] G. Vidal, e-print quant-ph/0301063. [23] J. Goldstone, S. Weinberg, and A. Salam, Phys. R&V7, 965
[3] J. . Latorre, E. Rico, and G. Vidal, e-print quant-ph/0304098 (1962.
(2003. [24] A. Auerbach,Interacting Electrons and Quantum Magnetism
[4] T. Tessier, I. H. Deutsch, A. Delgado, and I. Fuentes-Guridi, Graduate Texts in Contemporary Physi¢Springer-Verlag,
e-print quant-ph/0306018003. New York, 1994.
[5] T. A. Costi and R. H. McKenzie, e-print quant-ph/0302055 [25] M. A. Nielsen and I. L. ChuangQuantum Computation and
(2003. Quantum Information(Cambridge University Press, Cam-
[6] A. P. Hines, R. H. McKenzie, and G. J. Milburn, Phys. Rev. A bridge England, 2000
67, 013609(2003. [26] J. Preskill, Physics 229: Advanced Mathematical Methods of
[7] A. Osterloh, L. Amico, C. Falci, and R. Fazio, Natufieon- Physics—Quantum Computation and Information, California
don) 416 608(2002. Institute of Technology, Pasadena, CA, 19@Bpublishegl
[8] T. J. Osborne and M. A. Nielsen, Phys. Rev.&%, 032110 www.theory.caltech.edu/people/preskill/ph229
(2002. [27] T. J. Osborne, Ph.D. thesis, The University of Queensland,
[9] S. Scheel, J. Eisert, P. L. Knight, and M. B. Plenio, e-print 2002.
quant-ph/02071202002. [28] M. A. Nielsen, Sci. Am.287, 66 (2002.
[10] X. Wang and P. Zanardi, Phys. Lett. 301, 1 (2002. [29] J. Preskill, J. Mod. Opt47, 127 (2000.
[11] K. M. O’Connor and W. K. Wootters, Phys. Rev. &3 [30] D. Aharonov, Phys. Rev. /62, 062311(1999.
052302(200YD. [31] M. A. Nielsen, California Institute of Technology Technical
[12] D. Gunlycke, V. M. Kendon, V. Vedral, and S. Bose, Phys. Report, 1999, available online at www.ginfo.org/talks/
Rev. A 64, 042302(2001). [32] A. W. Marshall and I. Olkin|nequalities: Theory of Majoriza-
[13] M. A. Nielsen, Ph.D. thesis, University of New Mexico, 1998, tion and Its ApplicationgAcademic, New York, 1970
e-print quant-ph/0011036. [33] M. A. Nielsen and G. Vidal, Quantum Inf. Comput, 76
[14] D. Aharonov and A. Ta-Shma, iRProceedings of the 35th (200YD.
STOC 2003 (Association for Computing Machinery, New [34] R. Bhatia,Matrix Analysis(Springer-Verlag, New York, 1997
York, 2003, pp. 20-29. [35] P. M. Alberti and A. UhlmannStochasticity and Partial Or-
[15] J. Kempe and O. Regev, Quantum Inf. Comm®jt258(2003. der: Doubly Stochastic Maps and Unitary MixiiBordrecht,
[16] D. Aharonov and T. Naveh, e-print quant-ph/0210077. Boston, 1982
[17] E. Farhi,J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, an36] A. V. Thapliyal, Phys. Rev. A59, 3336(1999.
D. Preda, Scienc®92, 474 (200). [37] A. Peres, Phys. Lett. 202 16 (1995.
[18] S. SachdevQuantum Phase Transition€ambridge Univer-  [38] M. A. Nielsen, Phys. Rev. Lett83, 436(1999.
sity Press, Cambridge, England, 1999 [39] N. Linden, S. Popescu, and W. K. Wootters, Phys. Rev. Lett.
[19] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. 89, 207901(2002.
Mod. Phys. 69, 315(1997). [40] N. Linden and W. K. Wootters, Phys. Rev. LeR9, 277906
[20] M. B. Hastings, e-print cond-mat/0305505. (2002.

032303-11



