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What correlations are present in the ground state of a many-body Hamiltonian? We study the relationship
between ground-state correlations, especially entanglement, and theenergy gapbetween the ground and first
excited states. We prove several general inequalities which show quantitatively that ground-state correlations
between systems not directly coupled by the Hamiltonian necessarily imply a small energy gap.
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I. INTRODUCTION

A central problem in physics is characterizing the ground
state of a many-body Hamiltonian. Of particular interest is
the problem of understanding the correlations in the ground
states of such systems. As an outgrowth of that interest, there
has recently been considerable work on understanding the
nonclassicalcorrelations in the ground state, that is, the
ground-state entanglement. Some recent work on this prob-
lem, with further references, includes[1–13] (see also
[14–17], and references therein).

The purpose of the present paper is to prove some general
inequalities relating the ground-state correlations and en-
tanglement to the spectrum of the system Hamiltonian. We
will prove that the existence of long-range correlations in the
ground state implies a small energy gap between the ground
and first excited states of the system. Our use of “long range”
here is a convenient euphemism; we mean simply correla-
tions between subsystems not directly coupled by the system
Hamiltonian.

To be more concrete, let us describe a specific example of
our results. Suppose we have a three-body system, with the
bodies labeled 1, 2, and 3. We suppose systems 1 and 2 are
coupled, and systems 2 and 3 are coupled. Importantly, sys-
tems 1 and 3 arenot directly coupled. This is the only as-
sumption we make about the system Hamiltonian. Supposec
is some joint pure state of the three systems, possessing “suf-
ficient correlations” between system 1 and 3, in a sense to be
made precise later. Our goal is to relate the energy gap to the
overlapF= zkc uE0lz betweenc and the ground stateuE0l of
the system. Note that throughout the paper we interchange
between the two pure-state notations where convenient: with
a ket sucld and withoutscd. We will prove that

DE

Etot
ø 2s1 − F2d, s1d

where DE is the energy gap, andEtot is the total energy
scale for the system, i.e., the difference between the maxi-
mal and minimal energies of the Hamiltonian. The ratio of
the gap to the total energy scale is an appropriate dimen-
sionless parameter for deciding whether a gap is small or
large. Note that rescaling of the Hamiltonian corresponds
physically just to a rescaling of time, so one can only
expect results in terms of such a dimensionless parameter;
it does not make sense to say that a gap is “small” in any
absolute sense—one needs to compare it to another rel-
evant energy scale. The inequalitys1d tells us that as the
overlapF tends to 1, the gap size must vanish, compared
to the total energy scale in the system, whenever the state
c exhibits sufficiently strong correlations between sys-
tems 1 and 3.

Equation(1) is just one example of the sort of relation we
will prove. We will prove a variety of similar relations, for
different situations. In particular, we will analyze more gen-
eral coupling schemes and consider the relationship of cor-
relations to the energies of low-lying states other than the
first excited state.

Our investigations may be placed in several different con-
texts, including the theory of quantum phase transitions, re-
sults from quantum many-body physics such as the Gold-
stone theorem, and the theory of entanglement developed
within the burgeoning field of quantum information science.
We now briefly review these connections.

A quantum phase transition[18,19] is a qualitative change
in the properties of the ground state of a HamiltonianHsgd as
a parameterg in the Hamiltonian is varied through acritical
point gc. The parameterg might, for example, be the value of
an external magnetic field applied to a system of spins. Near
a critical point, a system undergoing a second-order quantum
phase transition usually exhibits two related phenomena. The
first phenomenon is truly long-range correlations in the
ground state, in the sense of correlations that decay only
slowly with distance. The second phenomenon is a vanishing
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energy gapDE→0. These phenomena are expressed via the
relations

1

j
~ ug − gcuh, DE ~ ug − gcuzh. s2d

In these relations,j is the characteristic length scale on
which correlations occur in the system,DE is the energy gap,
as before, andh andz are constants known ascritical expo-
nents. Remarkably, the exact values ofh and z do not de-
pend on the particular details of the microscopic interactions
in the system, but only on a small number of system param-
eters, such as dimensionality and symmetry; this phenom-
enon is known as universality. The exponentz is known as
thedynamical critical exponent, and relates the way in which
the energy gap vanishes to the way long-range correlations
emerge near the critical point. In particular, we see thatDE
~j−z, so that, provided the critical exponentz is positive, the
energy gap and the correlation length behave inversely to
one another; as the gap becomes small, the correlation length
becomes large, and vice versa.

Clearly, the study of the dynamical critical exponentz has
much in common with the questions we are pursuing here.
However, there are many significant differences. In particu-
lar, work on quantum phase transitions usually requires
working in the thermodynamic limit of an infinite number of
systems and often requires additional symmetry assumptions,
such as translational invariance. Although numerous physical
examples have suggested that it is generally true that corre-
lations decay exponentially with the size of the energy gap, it
is only relatively recently that a general proof of this fact has
been provided[20], for systems in the thermodynamic limit.

In contrast, our results apply for any many-body quantum
system, whether in the thermodynamic limit or not, and do
not require any additional symmetry assumptions, such as
translational invariance. Thus, our results complement those
obtained in the study of quantum phase transitions.

Another context for our work is a classic result from
quantum many-body physics, the nonrelativistic Goldstone
theorem[21–23] (see Chap. 9 of[24] for a review), which
shows that diverging correlations imply a vanishing energy
gap. However, as with the case of work on quantum phase
transitions, these results are complementary to ours, in that
they rely on having infinite systems and typically require
additional symmetry assumptions.

An intriguing aspect of our results is that they make con-
siderable use of techniques developed in the new field of
quantum information science,1 especially techniques devel-
oped for the study of entanglement. Thus, our paper illus-
trates a general idea discussed elsewhere[2,13,27–29] (see
also [30]), namely, that quantum information science may
provide tools and perspectives for understanding the proper-
ties of complex quantum systems, complementary to the ex-
isting tools used in quantum many-body physics.

We begin the paper in Sec. II with a simple, easily under-
stood toy model that illustrates many of the main physical
ideas of the paper in a heuristic way. Much of the remainder

of the paper is devoted to generalizations and formalization
of the ideas in Sec. II. Interestingly, the mathematics that
arises when generalizing formalizing the results of Sec. II
leads in a natural way to other problems of great physical
interest, and exploring these connections is a theme of the
paper.

The next section of the paper, Sec. III, sets up a general
framework for our investigations, introducing a convenient
language to describe complex interactions involving many
bodies, and precisely framing the questions we address in
this language. Section IV is the core of the paper, presenting
a series of general results connecting long-range ground-state
correlations to the energy gap and other properties of the
low-lying states. Section V explores an intriguing connection
of our results to the theory of quantum error-correcting
codes. Finally, Sec. IV concludes with a discussion of open
questions.

II. INVITATION: A TOY MODEL

We begin with a toy model which illustrates in a simple
setting many of the important physical ideas developed in
more detail later in the paper. Our purpose in presenting
these ideas first in a simple form is to keep the underlying
physical ideas distinct from some of the mathematical com-
plexities of later sections. Keep in mind, however, that some
of these later mathematical complexities reveal surprising
connections to other physical problems whose importance
may not be apparent in the simplified setting discussed in
this section.

Our toy model is a system of three qubits(spin-12 systems)
arranged in a line. We label the qubits 1, 2, and 3. Suppose
the qubits are coupled by a HamiltonianH, which contains
only nearest-neighbor interactions and so can be writtenH
=H12+H23. Note that single-qubit contributions to the
Hamiltonian can be included in the interactionsH12 andH23.
For our purposes all that matters is that there are not cou-
plings between qubits 1 and 3. Suppose the ground state of
H , uE0l, is nondegenerate, with corresponding ground-state
energyE0. Suppose the gap to the energy of the first excited
state isDE.

How entangled are qubits 1 and 3 in the ground stateuE0l?
We will prove that in order for qubits 1 and 3 to approach
maximal entanglement, the gapDE must approach zero. We
will give only a heuristic argument for now, with general
proofs to follow later. Notes, in particular, that while the
following argument applies for maximal entanglement be-
tween qubits 1 and 3, the results of subsequent sections can
be applied to more general types of correlation.

We begin by observing that, since qubits 1 and 3 are
nearly maximally entangled, then

uE0l < ucl ; uMEl13ufl2, s3d

whereuMEl is some maximally entangled two-qubit state,
ufl is a single-qubit state, and subscripts indicate which
systems the states are associated with. But sinceuE0l
<ucl the expectation energy forucl must also be close
to E0,

1See[25,26] for reviews and further references.
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kcuHucl < E0. s4d

Next, let uME8l be a two-qubit maximally entangled state
orthogonal to uMEl and define uc'l;uME8l13ufl2. Note
that uc'l is orthogonal toucl, and in view of Eq.s3d it
must be true thatuc'l is approximately orthogonal touE0l.
It follows that uc'l can be expressed, approximately, as a
superposition of states with energiesE1 and higher, where
E1 is the energy of the first excited state. Therefore the
expectation energy foruc'l must be at leastE1:

kc'uHuc'l ù E1 + ssmall correctionsd. s5d

These small corrections can, in principle, be negative, and
we will see that thismustbe the case, in order to be consis-
tent with the reasoning below.

Next, observe that the expectation energies forucl and
uc'l are the same,

kcuHucl = kc'uHuc'l. s6d

To see this, observe thatkcuH12ucl=kc'uH12uc'l, since the
reduced density matrices forc andc' are identical on the
system 12. A similar argument shows that the contribution to
the expectation energy fromH23 is the same from bothc
and c'. Combining these results gives Eq.s6d.

To complete the argument, observe that Eqs.(4)–(6) can
be consistent only ifE0<E1+small corrections, and thus the
energy gap must itself be small.

Summarizing, the presence of nearly maximal ground-
state entanglement between sites which do not directly inter-
act allows us to construct a state that(a) is almost orthogonal
to the ground state, and thus must have energy of aboutE1 or
higher; but(b) looks locally very much like the ground state,
and thus must have energy approximatelyE0. The only way
these two facts can simultaneously be true is if the energy
gap is comparable in size to the corrections used in our ap-
proximations. Making this argument precise, and generaliz-
ing it further, is the subject of subsequent sections.

III. FRAMEWORK

This section introduces a framework for generalizing and
formalizing the ideas of the previous section. We first intro-
duce some general language for describing interactions in
many-body quantum systems, then use this language to pre-
cisely state the main questions addressed through the remain-
der of the paper. we conclude with an overview of our an-
swers to these questions.

In the previous section we considered three interacting
qubits, with the restriction that the first and third qubits do
not interact. It is helpful to introduce some language to de-
scribe more general interactions.

Suppose we have a general many-body system, with com-
ponents labeled 1, . . . ,N. We can regard these labels as a set
of verticesV for a graph. Given a two-body Hamiltonian for
that system, we can naturally associate with each coupling
between bodies an(undirected) edge between the corre-

sponding vertices. So, for example, the Hamiltonian2 H
=XXI+ZIZ corresponds to a graph with vertices 1,2,3, and
edgesh1,2j ,h1,3j.

More generally, if some terms in the Hamiltonian couple
more than two bodies, then we can associate with that
Hamiltonian ahypergraph. A hypergraph consists of the set
V of vertices, together with a collection ofhyperedges E.
Each hyperedge inE is just a subset ofV, and represents a
coupling term between the corresponding systems. So, for
example, the HamiltonianH=XXI+ZIZ+YYZ corresponds
to a hypergraph with vertices 1,2,3 and hyperedges
h1,2j ,h1,3j, andh1,2,3j.

We call a hypergraphG=sV,Ed a coupling topologywhen
it is associated with a quantum system in this way. We say
that a HamiltonianH respects the coupling topology Gif
every coupling inH corresponds to a hyperedge inG. We do
not require every hyperedge inG to have a corresponding
coupling inH. So, for example, the three-qubit Hamiltonian
H=XXI+ZIZ respects the coupling topology of the hyper-
graph with vertices 1, 2, 3 and hyperedgesh1,2j ,h1,3j, and
h1,2,3j, even though there is no term coupling qubits 1, 2,
and 3 simultaneously.

Note that there is an apparent ambiguity in this definition,
since a given Hamiltonian can be decomposed in more than
one way, e.g.,H=XXI+ IXX=XXM++M−XX, where M±
; I ±X. We resolve this ambiguity by saying thatH respects
the coupling topologyG if there issomedecomposition ofH
which respects that coupling topology.

With this language we can now give a precise statement
of the problem we are interested in. In fact, it is useful to
consider two different forms of the problem. The simpler
form is as follows.

Exact ground-state problem. Let c be a quantum state of
some many-body system. We think ofc as atarget statethat
we desire to be theexactground state. Suppose the system
Hamiltonian H respects the coupling topologyG=sV,Ed.
Given thatc is an exact ground state ofH, what does this
imply about the level spacings ofH? In particular, do the
coupling topologyG and the correlations present inc imply
anything about the level spacings of the system,independent
of the specific details ofH?

We will show that the answer to this question is “yes.” An
example of the sort of answer we will give is as follows.
Supposec us an exact ground state of a HamiltonianH
respecting the coupling topologyG. Then the ground state of
H is at leastm-fold degenerate, wherem is an integer deter-
mined solely by(a) the coupling topology and(b) the prop-
erties ofc. In particular, we will see thatm is closely related
to long-range correlations inc, where by long range we
mean correlations between systems not directly coupled
by G.

It is important that the degeneracym is determined solely
by properties ofG andc: the particular details of the Hamil-
tonianH do not matter, beyond the topology of the interac-
tions. Even given the ability to engineer arbitrary designer
Hamiltonians, the fact thatc is an exact ground state andG

2We useI ,X,Y,Z to denote the four Pauli matrices and omit ten-
sor product signs for notational brevity.
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the coupling topology guarantees anm-fold degeneracy in
the ground state.

More interesting and general than the study of exact
ground states is the study of how the coupling topology and
correlations inc affect the ability toapproximatec as a
ground state. This question is captured by the following
problem.

Approximate ground-state problem. Let c be a quantum
state of some many-body system. Suppose the system Hamil-
tonian H respects the coupling topologyG=sV,Ed. Given
that the overlap betweenc and the ground state isF
;ÎkcuP0ucl, whereP0 projects onto the ground-state eigens-
pace, what does this imply about the level spacings ofH? In
particular, do the coupling topologyG, the overlapF, and the
correlations present inc imply anything about the level spac-
ings of the system,independentof the specific details ofH?

We will obtain solutions to this problem similar to those
obtained for the exact ground-state problem. For example,
supposec has overlapF with the ground state of a Hamil-
tonianH respecting the coupling topologyG. We will prove
an inequality relating the gapDE to the overlapF and a
measureC of long-range correlation in the system. This in-
equality will enable us to prove that asF→1 the presence of
long-range correlations in the system forces the energy gap
to vanish.

In the next two sections we will obtain several solutions
to the approximate ground-state problem, applicable in dif-
ferent contexts. Interestingly, one of these solutions—in
some sense the strongest—involves quantum error-correcting
codes, as discussed in Sec. V.

IV. GENERAL THEORY

SupposeH is a Hamiltonian respecting the coupling to-
pologyG=sV,Ed, andc is a quantum state having overlapF
with the ground state. Our key result is a general theorem,
proved in this section, connecting the energy levels ofH to
the properties of a set we shall define, labeledRGscd. RGscd
is defined to consist of all quantum states, both pure and
mixed, which agree withc on the hyperedges inE. That is,
RGscd contains all statesr such that trēsrd=trēsuclkcud for all
the hyperedgese in E, whereē indicates that we trace over
all systemsexceptthose ine.

It is perhaps not obvious why a theorem connecting the
energy levels ofH to RGscd should tell us anything about the
relationship between those energy levels and long-range cor-
relations. Remarkably, however, the properties ofRGscd are
intimately connected with the correlations inc, and this fact
will enable us to make the desired connections.

Our presentation strategy in this section is to first prove
the general theorem and then explore connections between
RGscd and long-range correlations, applying the general
theorem to a variety of examples.

A. Connection between the energy levels andRG„c…

In this subsection we prove a general theorem connecting
the energy levels of a system havingc as its approximate
ground state toRGscd. We begin by specifying some notation
and nomenclature.

Recall that P0 is the projector onto the ground-state
eigenspace, and that the overlap betweenc and the ground
state isF;ÎkcuP0ucl. Assuming thatF.0, we defineuE0l
to be the(normalized) ground state onto whichc projects.
Explicitly, we defineuE0l; P0ucl /ÎkcuP0ucl. It will be con-
venient to label the energy levels asE0øE1ø¯, and to let
Emax be the largest energy level. Note that the energy levels
are not assumed to be distinct, so, for example, if the ground
state is doubly degenerate then we will haveE0=E1. We
chooseuE1l , uE2l , . . . sothat uE0l , uE1l , . . . forms an orthonor-
mal eigenbasis of energy eigenstates in the obvious way. We
let Etot=Emax−E0 be the total energy scale for the system.

With this nomenclature, we are now ready to proceed to
the statement and proof of our main theorem. The key to the
proof of the theorem is a lemma from linear algebra. The
lemma is easy to state, and the result is rather obvious, yet all
the proofs we are aware of make use of surprisingly sophis-
ticated ideas. The result appears to be little known but is
useful in many contexts. It appeared as Eq.(133) in a set of
unpublished lecture notes[31].

Lemma 1. Let A andB be Hermitian matrices. Then

lsAd↓ · lsBd↑ ø trsABd ø lsAd↓ · lsBd↓, s7d

wherelsMd denotes the vector whose entries are the eigen-
values of the matrixM, v↓sv↑d is the vector whose entries are
the entries ofv rearranged into descendingsascendingd or-
der, and · is the Euclidean inner product.

Proof. We work in a basis in whichA is diagonal, with its
eigenvalues the diagonal entries of the matrix representation
in that basis. Then

trsABd = o
j

AjjBjj = lsAd · diagsBd, s8d

where diagsBd is the vector whose entries are the diagonal
elements ofB in this basis. Elementary results from the
theory of majorization imply thatdiagsBdalsBd, where
denotes the majorization relation.3 Further elementary re-
sults from the theory of majorization4 imply that diagsBd
=opjPjlsBd, where thepj form a probability distribution,
and thePj are permutation matrices. Substituting into Eq.
s8d we obtain

trsABd = o
j

pjlsAd · PjlsBd. s9d

The result now follows from the observation5 that for any
two vectorsx andy, x↓ ·y↑øx·yøx↓ ·y↓. j

We are now in a position to state and prove our main
theorem. Note, incidentally, that the proof of the main theo-
rem makes use of only the first inequality in the statement of
Lemma 1, not the second inequality. We included both be-

3This result appears on p. 218 of[32], as Theorem B.1 in Chap. 9.
See, e.g., any of[31–35] for an introduction to majorization and
further references.

4See p. 113 of[32], Proposition C.1 of Chap. 4.
5A proof of this observation may be found as Corollary II.4.4 on

p. 49 of [34].
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cause both are of interest, appear to be little known, and
virtually no extra work is required to obtain the second.

Theorem 1. Let H be a Hamiltonian respecting the cou-
pling topologyG. Supposec is a state with overlapF with
the ground state ofH. Let rPRGscd have eigenvaluesr0

ùr1ù¯. Then

o
j=1

d−1

sEj − E0dr j ø s1 − F2dEtot, s10d

whered is the dimension of state space.
It is sometimes convenient to write the sum in a slightly

different fashion. Including aj =0 term makes no difference,
since E0−E0 vanishes, so the sum may be rewritteno jsEj

−E0dr j, with the sum over all possible indices,j .
Proof. By definition ofF as the overlap betweenc and the

ground stateuE0l, we see that up to an unimportant global
phase,

ucl = FuE0l + Î1 − F2uE'l, s11d

whereuE'l is orthonormal touE0l. We now use this expres-
sion to evaluate the average energy for the stateucl. The first
term on the right-hand side of Eq.s11d contributesF2E0 to
the energy, while the second term contributes at mosts1
−F2dEmax, since the energy ofuE'l is no more thanEmax. It
follows that kcuHucløF2E0+s1−F2dEmax. Rewriting this
inequality in terms ofEtot=Emax−E0 rather thanEmax, we
obtain

kcuHucl ø E0 + s1 − F2dEtot. s12d

Furthermore, sincec and r have the same reduced density
matrices on hyperedges in the coupling topology, we see that
trsrHd=kcuHucl and thus

trsrHd ø E0 + s1 − F2dEtot. s13d

Applying the first inequality of Lemma 1 to the left-hand
side of Eq.s13d gives

o
j=0

d−1

r jEj ø E0 + s1 − F2dEtot. s14d

Using the fact thato j=0
d−1r j =1, and doing some elementary

algebra and relabeling of indices, we see that this can be
rewritten in the formo j=1

d−1sEj −E0dr j ø s1−F2dEtot, as we set
out to prove.

An interesting observation related to Theorem 1 is that if
G1 and G2 are hypergraphs such that the hyperedges ofG1
are a subset of those ofG2, then RG2

scd#RG1
scd. This is

true because ifr andc agree on hyperedges inG2 then they
must certainly agree on hyperedges inG1. It follows that
Theorem 1 impliesstrongerconstraints on the energy levels
for systems whose coupling topology respectsG1 than for
systems respectingG2. Thus, for example, Theorem 1 gives
stronger constraints on the energy levels for five spins ar-
ranged in a line, with nearest-neighbor interactions, than for
the same spins arranged into a circle, again with nearest-
neighbor interactions.

B. Example applications

We now explore some applications of Theorem 1, relating
the energy spectrum of a system to the presence of long-
range correlations in the ground state of that system.

1. Example: Perfect long-range correlations

Suppose we have a three-component system, with sub-
systems labeled 1,2, and 3. Suppose the coupling topologyG
is such that systems 1 and 2 may interact, systems 2 and 3
may interact, but systems 1 and 3 cannot interact directly.
Note that in this discussion 1,2, and 3 may be aggregates—
e.g., systems 1 and 3 might be spins on either end of a long
linear chain, with system 2 the collection of all spins in be-
tween. Suppose, furthermore, thatc is some quantum state
exhibiting perfect correlationbetween systems 1 and 3. By
perfect correlation, we mean that there is a measurement
basis in which a measurement outcome ofj on system 1
implies, with probability 1, a measurement outcomej on
system 3, and conversely.

As an example of such a situation,c could be a product
c13^ c2. In this casec exhibits perfect correlations if mea-
surements are performed in the Schmidt bases for systems 1
and 3, respectively.

Another example is statesc such that when system 2 is
traced out we get a mixed state of the formo jpju jl1k j u1
^ u jl3k j u3, whereu jl1 and u jl3 are orthonormal bases for sys-
tems 1 and 3, respectively. It is easy to show that such states
must have three-party Schmidt decompositions of the form
studied by Thapliyal [36] and Peres [37], i.e., c
=o j

Îpju jl1u jl2u jl3, where u jl1, u jl2, and u jl3 are orthonormal
bases for the respective systems. An example of such a state
is the Greenberger-Horne-Zeilinger(GHZ) state uGHZl
=su000l+ u111ld /Î2. Indeed, if we consider ann-qubit linear
array, with the first and last qubits considered as system 1
and system 3, with the remaining qubits grouped together as
system 2, then we see that then-party GHZ stateuGHZl
=su0l ^ n+ u1l ^ nd /Î2 is also an example of such a state.

In general, ifc is any state exhibiting such perfect corre-
lations there must exist normalized, but possibly nonorthogo-
nal, statesu jl2 of system 2, such that

c = o
j

Îpju jl1u jl2u jl3. s15d

Note thatpj are the probabilities with which the measure-
ment outcomej occurs on systems 1 and 3. Now define

r ; o
j

pju jl1k j u1 ^ u jl2k j u2 ^ u jl3k j u3. s16d

Observe thatrPRGscd, since it has the same reduced den-
sity matrices on systems 12 and 23 as doesc. Note also that
r has eigenvaluespj. It will be convenient to assume that the
measurement outcomes are labeled0,1, . . . ,d−1 and have
been ordered so thatp0ùp1ù¯. From Theorem 1 we have
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o
j=1

d−1

sEj − E0dpj ø s1 − F2dEtot. s17d

Equations17d tells us that asF→1 the quantity on the left-
hand side gets squeezed toward zero. In particular, if
p0, . . . ,pk.0, then we conclude thatEk→E0, as do all the
lower energy levelsE1, . . . ,Ek−1. So, for example, in the sce-
nario of Sec. II, ifc= uMEl13ufl2, then we havep0=p1= 1

2,
and Eq.s17d becomes6 E1øE0+2s1−F2dEtot. Thus, the gap
to the first excited state in this example vanishes asF
→1.

Similarly, for ann-qubit linear chain, with systems 1 and
3 the qubits on each end of the chain, ifc is then-party GHZ
state, then we again conclude thatE1øE0+2s1−F2dEtot, and
the gap to the first excited state vanishes asF→1.

Another illuminating—albeit, ultimately trivial—example
is when system 13 is in a product statec= ual1ubl2ucl3. This is
a case of the theorem, for the system does exhibit perfect
correlation, provided system 1 is measured in a basis includ-
ing ual, and system 3 is measured in a basis includingubl.
However, since we havep0=1, and all otherpj =0, we see
that Eq. (17) gives us only trivial information 0ø s1
−F2dEtot and cannot be used to deduce anything about the
spectrum of the system. It is only as the probabilitiespj
become mixed that Eq.(17) may be used to duduce interest-
ing information about the spectrum.

2. Example: Imperfect long-range correlations

Let us generalize the previous example so that it applies
also to systems with imperfect correlations. Suppose again
that we have a three-component system 123, and the cou-
pling topology allows 1 and 2, and 2 and 3 to interact, but
not 1 and 3. Supposec is anexactground state for a Hamil-
tonian respecting this coupling topology. Supposeu jl is an
orthonormal basis for system 1, andukl is an orthonormal
basis for system 3. We can expandc as

c = o
jk

Îpj ,ku jluejklukl, s18d

wherepj ,k is the probability of getting the measurement out-
come j on system 1 andk on system 3, if measurements are
performed in theu jl and ukl bases, respectively. The states
uejkl are normalized, but possibly nonorthogonal, states of
system 2.

To measure the correlation between the measurement out-
comes on systems 1 and 3 we define a correlation measure

C ; o
j

pj ,j . s19d

C is just the probability that the measurement outcome on
system 1 is the same as the measurement outcome on system
3. Thus, values ofC close to 1 indicate highly correlated
measurement outcomes, while values very close to zero in-
dicate a high level of anticorrelation. the choice of this form
for C is a matter of convenience in that later results become

quite simple because of it. However, the definition is differ-
ent from other more conventional correlation measures, such
as spin-spin correlation functions, or the “correlation coeffi-
cient” from statistics.

The definition ofC implicitly assumes that the same la-
bels j are being used for measurement outcomes on system 1
and system 3. This need not be the case. For example, system
1 might be a spin-12 system, with measurement outcomes
labeled ±1

2, and system 3 a spin-1 system, with measurement
outcomes labeled 0, ±1. If this is the case we can define an
analogous notion of correlation by identifying the outcomes
of the spin-12 measurement with a subset of the spin-1 out-
comes, e.g., 1 /2→1, −1/2→−1, and soC=p1/2,1+p−1/2,−1.
In general, we can define a measure of correlation by iden-
tifying the measurement outcomes for the system with the
smaller state space with a subset of the measurement out-
comes for the system with the larger state space. The argu-
ments below are easily generalized to this case, but for no-
tational clarity we stick to the case when systems 1 and 3
have identical labelings for their measurements.

Next, we define a normalized and perfectly correlated
statec8 of the joint system by discarding those terms inc
that leas to the correlations being imperfect, and renormaliz-
ing the state appropriately:

c8 ;
o

j

Îpj ,ju jluejjlu jl

ÎC
. s20d

Note that we must assumeC.0 for this definition to be
valid. c8 obviously exhibits perfect correlation between sys-
tems 1 and 3, in the sense of the earlier example, and thus we
conclude that

o
j

pj ,j

C
sEj − E0d ø s1 − F2dEtot, s21d

whereF is the overlap betweenc8 and the ground state. But
we assumed thatc was a ground statespossibly one of
manyd, soFù zkc8 uclz=ÎC, and thus the previous equation
may be rewritten

o
j

pj ,jsEj − E0d ø Cs1 − CdEtot, s22d

providedC.0. Equations22d tells us that asC→1, i.e., as
we approach perfect correlation, the quantity on the left-hand
side must approach zero. Thus, ifp0,0, . . . ,pk,k.0 then we
conclude thatE1, . . . ,Ek→E0 as the correlations become per-
fect.

3. Example: Approximating a state with imperfect long-range
correlations

We can generalize the previous two examples still further,
to the case where we are trying toapproximatea state with
imperfect correlations as the ground state. Suppose again that
we have a three-component system 123, and the coupling
topology allows 1 and 2, and 2 and 3 to interact, but not 1
and 3. Supposec is a state with correlationC=opj ,j .0 in
some measurement basis for systems 1 and 3. Suppose there6Compare Eq.(1).
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is a Hamiltonian respecting the coupling topology such that
the overlap betweenc and the ground state isF. We will
prove that the energy levels of the Hamiltonian satisfy

o
j

pj ,jsEj − E0d ø CsÎ1 − C + Î1 − F2d2Etot. s23d

This result generalizes both the last example, Eq.s22d, which
corresponds to the case whenF=1, and the example before
that, Eq.s17d, which corresponds to the caseC=1.

Similarly to the previous example, we can writec
=o jk

Îpj ,ku jluejklukl, and definec8;o j
Îpj ,ju jluej ,jlu jl /ÎC. We

now defineFsa,bd;zkaublz, the overlap between any two
statesual andubl. It is convenient to note thatÎ1−Fsa,bd2 is
a metric on projective state space. Recall thatuE0l
=P0ucl /ÎkcuP0ucl is the normalized state that arises from
projecting c onto the ground space. From the triangle in-
equality

Î1 − Fsc8,E0d2 ø Î1 − Fsc8,cd2 + Î1 − Fsc,E0d2 s24d

øÎ1 − C + Î1 − F2. s25d

But if Fc8;Îkc8uP0uc8l is the overlap ofc8 with the
ground space then we haveFc8ùFsc8 ,E0d and thus com-
bining with Eq. s25d we have

1 − Fc8
2

ø sÎ1 − C + Î1 − F2d2. s26d

The result now follows from Eq.s17d.
Summarizing, we have proved the following general theo-

rem.
Theorem 2. Let H be a Hamiltonian coupling systems 1

and 2, and 2 and 3, but not 1 and 3. Letpj ,k be the joint
probability distribution associated with a measurement in
some bases for systems 1 and 3, for a statec. Label the
measurement outcomes0,1, . . ., and sothat p0,0ùp1,1ù¯.
Define the correlation measureC;o jpj ,j, and letF be the
overlap betweenc and the ground state. Then, provided that
C.0, the energy levels ofH are constrained by the relation

o
j

pj ,jsEj − E0d ø CsÎ1 − C + Î1 − F2d2Etot. s27d

C. Exact ground states and ground-state degeneracy

We have seen that the properties ofRGscd are closely
related to long-range correlations in the statec. In this sec-
tion we make some more specialized observation about
RGscd that can be used to prove results about the ground-
state degeneracy of any Hamiltonian withc as anexact
ground state.

We defineNrankscd to be the maximal rank of any density
matrix in RGscd. We will see below thatNrankscd is con-
nected to both the long-range correlations inc and also to
the ground-state degeneracy. We begin with the latter con-
nection.

Theorem 3. Let H be a Hamiltonian respecting the cou-
pling topologyG. Supposec is a ground state ofH. Then the
ground state is at leastNrankscd-fold degenerate.

Proof. A direct proof is easily obtained. Letr be the state
in RGscd of maximal rank, letc j be the eigenvectors ofr
with nonzero eigenvalues, and argue that all thec j must have
energy equal to the ground-state energy. This follows since,
if one has energy higher than the ground state, then another
must have energy below the ground state—a
contradiction—to ensure that trsHrd is equal to the ground-
state energy. Alternatively, observe that this theorem is a spe-
cial case of Theorem 1, withF=1. j

Example. As an example, suppose we have just three sys-
tems 1,2,3, and suppose only couplings between 12 and 23
are involved. Suppose thatc=c13^ c2, wherec13 is an en-
tangled state of systems 1 and 3, with Schmidt decomposi-
tion c13=o j

Îpju jlu jl, andc2 is some state of system 2.
We will analyze this scenario in two different ways. The

first method of analysis is similar in spirit to arguments ear-
lier in the paper, such as led to Theorem 2. The second
method is from a somewhat different point of view, and we
will see that it sometimes leads to stronger results. Our first
argument is as follows. Just as argued earlier,r=o jpju jlk j u
^ uc2lkc2u ^ u jlk j u is in RGscd. We therefore see, from any
one of Theorems 3, 2, and 1, that the ground-state degen-
eracy is at least equal to the Schmidt number ofc13,
Schsc13d, i.e., the number of nonzero coefficients in the
Schmidt decomposition. It follows that ifc13^ c2 is to be a
ground state of the system, then the ground state must be
Schsc13d-fold degenerate. Of course, the Schmidt number is
a well-known entanglement monotone, so in this example we
conclude that the ground-state degeneracy is at least as large
as the amount of long-range entanglement, as measured by
the Schmidt number.

Our second method of analysis takes a state-based, rather
than operator-based, point of view. LetSGscd be the set of
purequantum states agreeing withc on hyperedges, i.e., it is
the subset ofRGscd containing only pure states. Define
Nspanscd to be the dimension of the linear space spanned by
the vectors inSGscd. Observe then thatNspanscdøNrankscd,
since given any linearly independentc1, . . . ,cmPSGscd we
can formr=S juc jlkc ju /mPRGscd, which has rankm. Thus,
Theorem 3 implies that the ground state is at least
Nspanscd-fold degenerate.

In the scenario studied above, withc=c13^ c2,c13
=o j

Îpju jlu jl, we see that the stateso j
Îpje

iu ju jlu jl are in
SGscd for any choice of the phasesu j, and thusNspanscd
ùSchsc13d, and we conclude, as earlier, that the ground state
is at least Schsc13d–fold degenerate. However, when the
Schmidt coefficientspj are degenerate,Nspanscdcan actually
be somewhat larger than the Schmidt number Schsc13d. The
following proposition enables us to make a precise evalua-
tion of Nspanscd.

Proposition 1. Let c=c13^ c2, where c13=o j
Îpju jlu jl.

Then Nspanscd=okdk
2, where the sum is over an indexk for

distant nonzero Schmidt coefficients, anddk is the degen-
eracy of thekth nonzero Schmidt coefficient.

Note that, according to the proposition, whenc13 has non-
degenerate Schmidt coefficients,Nspanscd is equal to the
Schmidt number ofc13, which is an entanglement monotone.
However, using the results of[38] it is easy to construct
examples with degenerate Schmidt coefficients that show
Nspanscd is not, in general, an entanglement monotone.
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Proof. It is clear that all states inSGscd have the form
f13^ c2 wheref13 is a state having the same reduced den-
sity matrices on systems 1 and 3 as doesc13. But it is easy to
see that this is the case if and only iff13=eiufs%kUkd
^ Igc13, whereu is a phase factor,Uk is a special unitary
operator acting on the subspace of system 1 corresponding to
the kth Schmidt coefficient, and%k denotes the direct sum
over those subspaces. The result now follows from the
simple observation that in adk ^ dk space, the dimension
spanned by states from the formsU ^ Ido ju jlu jl, where U
PSUsdkd, is dk

2. j
This proposition shows us how to evaluateNspanscd for a

large class of interesting states and thus to place lower
bounds on the ground-state degeneracy. Whenc13 is degen-
erate these results are actually stronger than are obtained
using Theorem 2, sinceNspanscd is strictly larger in this case
than the Schmidt number ofc13. Although the argument
leading to Theorem 2 can be modified to give this stronger
bound, the modification is not especially natural from a
physical point view. Thus, we believe there is some merit in
the alternative, state-based point of view taken in the present
discussion.

Example. Recall that a state with a multiparty Schmidt
decomposition can be written in the form[36,37] c
=o j

Îpju jlu jl¯ u jl. An example of such a state is then-qubit
GHZ stateuGHZl=su0l^n+ u1l^nd /Î2. Suppose the coupling
topology G contains all hyperedges of up ton−1 vertices,
i.e., the allowed Hamiltonians may couple up ton−1 of the
systems, but not alln systems simultaneously. It is easy to
see that the stateso j

Îpje
iu ju jl¯ u jl are in SGscd, for any

choice of the phasesu j, and thusNspanscdùSchscd, where
Schscd is the number of terms appearing in the multiparty
Schmidt decomposition. It follows that the ground state ofH
is at least Schscd- fold degenerate. For example, in the case
of the GHZ state, it follows that the ground state is at least
twofold degenerate, since the GHZ state has Schmidt num-
ber 2.

D. Further development of Theorem 1

Can Theorem 1 be strengthened in any way? We now
show that there are physically interesting ways of varying the
hypotheses of Theorem 1, in order to reach stronger conclu-
sion. One way of doing this, related to quantum error-
correcting codes, is described in detail in Sec. V. We now
explain, more briefly, another possible variation.

The basic idea is to amend Theorem 1 so it makes use of
information about the relationship betweenc and r. Con-
sider two possible cases:(a) c is orthogonal to the support of
r, and (b) c is contained in the support ofr. In the former
case, we see that there is a subspace of dimension ranksrd
+1, spanned by the support ofr andc, in which energies are
all approximately equal toE0, and thusE0<E1< ¯Eranksrd.
In the latter case we can conclude only that there is a sub-
space of dimension ranksrd—the support ofr—in which en-
ergies are all approximately equal toE0, and thus we draw
the weaker conclusion thatE0<E1< ¯Eranksrd−1.

We have not yet succeeded in obtaining a clean generali-
zation of Theorem 1 incorporating this idea. However, we
have obtained a simpler result in this vein, which we now
briefly describe.

Proposition 2. Let H be a Hamiltonian respecting the cou-
pling topology G. Supposec is a state having overlapF with
the ground state ofH. SupposefPRGscd is such that
zkc uflz=cossud. Then

E1 − E0 ø
1 − F2

gsu,Fd
Etot, s28d

wheregsu ,Fd;f1−F cossud+Î1−F2 sinsudg2.
Note thatf plays a role analogous tor in Theorem 1. The

crucial additional piece of structure in the proposition is the
angleu relatingc andf. As this angle varies from 0 top /2,
the bound Eq.(28) varies from the vacuousE1−E0øEtot—as
with Theorem 1 we get no information at all in this case—
through toE1−E0ø s1−F2dEtot/F

2, which is nontrivial. Note
that Theorem 1 can be applied also in this latter case; the
strongest bound obtained in this way comes from choosing
r= 1

2uclkcu+ 1
2uflkfu, which gives E1−E0ø2s1−F2dEtot,

which is a factor of 2 weaker than Proposition 2, in theF
→1 limit.

Proof. By the same argument that led to Eq.(13), we
conclude that

kfuHufl ø E0 + s1 − F2dEtot. s29d

ExpressinguE0l in terms ofc we have, up to an unimportant
global phase,uE0l=Fucl+Î1−F2uc'l, for somec' ortho-
normal to c. Taking the inner product withf gives
zkf uE0lzøF cosu+Î1−F2zkf uc'lz. Becausec' is ortho-
normal toc we havezkf uc'lzøsin u, and so

zkfuE0lz ø F cosu + Î1 − F2 sin u. s30d

We see from this equation that the component off orthogo-
nal to uE0l is at leastÎgsu ,Fd, as defined in the statement of
the proposition, and thus

kfuHufl ù f1 − gsu,FdgE0 + gsu,FdE1. s31d

Combining this inequality with Eq.s29d and rearranging
gives the result. j

E. Understanding RG„c…

The key to applying Theorem 1 is the ability to find states
r lying in RGscd. To this end, we make a few general re-
marks on the problem of understandingRGscd.

Our first observation is thatRGscd is a convex set, since a
mixture of states, each of which agrees withc on hyper-
edges, also agrees withc on hyperedges. Therefore, one
might try to understandRGscd by finding its extreme points.
Unfortunately, we do not know what those extreme points
are, or even if they are pure or mixed quantum states.

Additional light onRGscdis shed by the work of Linden,
Popescu, and Wootters[39], and subsequent work by Linden
and Wootters[40]. In [39] it is shown that almost all three-
qubit quantum states are uniquely determined by their two-
party reduced density matrices. More precisely, given a
three-qubit statec=c123, let r12,r13,r23 be that correspond-
ing two-qubit reduced density matrices. They[39] show that
unless the state is equivalent, up to local unitaries, to a state
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of the form au000l+bu111l, c is the unique state, even al-
lowing mixed states, with those reduced density matrices.

Restating in our language,[39] shows that for allc except
those equivalent toau000l+bu111l by local unitaries,RGscd
=hcj, when G is the complete graph allowing interactions
between any pair of the systems 1, 2, and 3. Thus, Theorem
1 gives only nontrivial information when the statec is lo-
cally equivalent toau000l+bu111l. Of course, bounds like
Theorem 2 apply in general.

The results of[39] were extended in[40], which consid-
ered the scenario ofn qudits, i.e.,d-dimensional quantum
systems. Reference[40] proved the existence of constantsa
and b, 0,a,b,1, such that(a) specifying all reduced
density matrices for subsystems containingbn qudits
uniquely determined the global state for almost all quantum
states, and(b) knowing all the reduced density matrices on
up to na qudits doesnot uniquely determine the state, in
general. The estimates they obtained fora and b were of
order 1, and depended on the value ofd; for details, see[40].

Restating in our language,[40] showed that ifG includes
all hyperedges involving up tobn vertices, then for almost
all c ,RGscd=hcj. However, for more physically interesting
cases, like when the coupling topology involves only two-
body interactions, the results of[40] suggest thatRGscd will
typically contain mixed states, and thus the bounds of Theo-
rem 1 become nontrivial.

V. CONNECTION TO QUANTUM ERROR-CORRECTING
CODES

There is an interesting way to strengthen the conclusions
of the earlier theorems, by making use of stronger hypoth-
eses. Intriguingly, this line of thinking leads to a natural con-
nection with quantum error-correcting codes. We present this
material starting with a general theorem connecting the gap
to the properties of the ground state, and then explain how
those properties are connected to quantum error-correcting
codes.

We begin with a little more notation. LetS̄Gscd denote the
set of all vectorslf, wherel is a complex number, andf is
a state inSGscd. Let Nspacescd be the dimension of the largest

vector space which is a subset ofS̄Gscd. We now prove that
Nspacescd is connected to the spectral properties of the sys-
tem.

Theorem 4. Let H be a Hamiltonian respecting the cou-
pling topologyG. Supposec is a state with overlapF with
the ground state. Then

E0 ø E1 ø ¯ ø ENspacescd−1
ø E0 + s1 − F2dEtot. s32d

The inequality that is the conclusion of this theorem is
substantially stronger than the inequalities proved earlier,
such as Theorem 1 and its corollaries. The reason this stron-
ger conclusion is possible is because we use a stronger hy-
pothesis as the basis for our reasoning. The key fact is that

every state in the maximal subspace ofS̄Gscd is guaranteed
to have the same expectation energy for Hamiltonians re-
spectingG. In contrast, in the scenario of Theorem 1, we

know therPRGscd, but this does not imply that all states in
the support ofRGscd have the same expectation energy. It is
this difference that allows us to draw a stronger conclusion in
the present scenario.

Proof. Let V be the maximal vector space which is a sub-

set of S̄Gscd. By the Courant-Fischer-Weyl minimax prin-
ciple (see Chap. 3 of[34]), we have

ENspacescd−1 ø max
fPV,ifi=1

kfuHufl. s33d

But by the same reasoning that led to Eq.s13d the right-hand
side of the previous equation is bounded above byE0+s1
−F2dEtot, which gives the result.

How can we evaluateNspacescd? Insight into this question
is provided by noticing an interesting connection, namely,

that the maximal vector space contained inS̄Gscd is a type of
quantum error-correcting code. To see this, let us recall some
basic facts from the theory of quantum error correction
[25,26].

Let S be a set whose elements are collections of sub-
systems of some quantum system. The elements ofS repre-
sent(collective) subsystems on which errors are allowed to
occur, and still be correctable by the code. For example, for
a code correcting errors on up to two qubits at a time,S
consists of all pairsh j ,kj of labels for two qubits. A quantum
error-correcting code correcting errors onS is vector spaceW
such that

PA†BP~P, s34d

where P projects onto the code spaceW, and Aand B are
arbitrary operators that act nontrivially only on subsystems
which are elements ofS. These conditions, Eq.s34d, define
what it is to be a quantum error-correcting code correcting
errors onS. For more on the physical interpretation of these
conditions, sees25d and s26d.

We return now to the connection between Theorem 4 and
quantum error correction. In one direction, the connection is
quite simple. Supposec is a state in ak-dimensional quan-
tum error-correcting codeW which corrects errors on a setS.
We define a coupling topology on the system,G=sV,Ed, by
specifying thatE consists of all hyperedgese such that
e#s1øs2 for somes1,s2PS. We will use Eq.(34) to show
that all statesf in the codeW must have the same reduced

density matrices on any hyperedgee, and thusW# S̄Gscd,
and thereforeNorthoscdùk.

To see this, supposeC is an operator that is a tensor
product of operators acting on the individual systems ine. It
follows thatC=A†B for some operatorsA andB acting only
on the systems ins1 and s2. We have, by Eq.(34), PCP
=gP for some constant of proportionalityg. It follows that if
f is any state in the code then

trsuflkfuCd = g. s35d

This is true for allf in the code, and becauseC was an
arbitrary tensor product acting one, we see that the reduced
density matrix one must be the same for all elementsf of
the code.
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The converse statement is also true. SupposeW is the

maximal subspace inS̄Gscd. SupposeS is any set such that
for each pairs1 and s2 in S there is a hyperedgee in E
satisfying e$s1øs2. We will show that W is an error-
correcting code correcting errors onS. The proof is similar to
but slightly more elaborate than the proof in the previous
paragraph. LetA andB be operators acting nontrivially only
on subsystemss1 and s2. We aim to establish Eq.(34). Be-
cause all statesf in SGscd have the same reduced density
matrices one we conclude that

kfuA†Bufl = g, s36d

for some constantg independent off. This implies

uflkfuA†Buflkfu = guflkfu. s37d

Naively, one might try to establish Eq.s34d by summing
over an orthonormal basis of statef for W.Of course, this
may not work, because of possible cross terms on the left-
hand side of Eq.s37d. We will show, however, that these
cross terms vanish. To see this, letu jl be an orthonormal
basis forW. Then for any pairj1Þ j2 we have

sk j1u + k j2udA†Bsu j1l + u j2ld=sk j1u − k j2udA†Bsu j1l − u j2ld
s38d

and

sk j1u − ik j2udA†Bsu j1l + i u j2l=sk j1u + ik j2udA†Bsu j1l − i u j2l.

s39d

Adding the first of these equations toi times the second
equation gives

k j2uA†Bu j1l = 0, s40d

which establishes that the cross terms vanish, and thus thatW
is quantum error-correcting code.

We have shown that systems with quantum error-
correcting codes as approximate ground states must satisfy
especially stringent constraints on their low-lying spectra. It
is interesting to compare these results with those of[1],
where it was shown that nondegenerate quantum error-
correcting codes correcting errors on up toL subsystems
cannot be the ground state of any nontrivialL-local Hamil-
tonian, i.e., a Hamiltonian coupling no more thanL sub-
systems at a time, and not a multiple of the identity. Remark-
ably, [1] proved aconstant lower bound on the distance
between the ground state and states of code in this scenario.
This constant lower bound is much stronger even than the
bounds of Theorem 4. However, a critical difference is that
the results of[1] applied only to nondegenerate codes, while
Theorem 4 is more general in that it applies also to degen-
erate codes.

Viewed from a slightly different angle, our results provide
an amusing counterpoint to[1]. Reference[1] pointed out
that no state in a nondegenerate code correcting up toL
errors can be a ground state of anL-local Hamiltonian. Theo-
rem 4 implies if one state of a degenerate code correctingL
errors is a ground state of anL-local Hamiltonian, thenall
statesof that code must be ground states of Hamiltonian.

This is because all states in such a code must share the same
set of reduced density matrices on collections of up to 2L
subsystems and thus share the same energy with respect to an
n-local Hamiltonian ifnø2L. Physically, this is cleara pri-
ori — all the states of the code must be energetically indis-
tinguishable, in order to preserve information. However, it
seems to us an interesting fact that either all or none of the
states of quantum error-correcting code can be ground states.
There is nothing in between.

VI. DISCUSSION

We have developed several general results demonstrating
that systems exhibiting ground-state entanglement or corre-
lation that is “long range,” in the sense of being between
subsystems not directly coupled, must necessarily have a
small energy gap. These results suggest many interesting av-
enues for further investigation.

Characterizing the physical properties responsible for the
vanishing gap.We have demonstrated several connections
linking the energy gap to long-range correlations and en-
tanglement in the ground state. However, many of the con-
nections we have identified only hold for special(albeit still
rather general) cases, rather than in the most general case.
What are the physical properties responsible for the vanish-
ing of the gap in the most general case?

Characterizing RGsrd. Our work has highlighted the im-
portance of understanding the setRGsrd, defined to be the set
of all density matricess with the property that trēsrd
=trēssd for all sets of systems coupled by the coupling topol-
ogy G. In physical terms,RGsrd contains all those density
matricess which are energetically indistinguishable fromr
for any Hamiltonian respecting the coupling topologyG. De-
veloping a good mathematical and physical understanding of
RGsrd is an extremely challenging and interesting problem in
quantum information science. Promising preliminary work
on this problem has been done in[39,40], but much remains
to be done.

The thermodynamic limit.In the thermodynamic limit of a
large number of systems, the energy differenceEtot between
the maximal and minimal energies in the system typically
tends toward infinity. Recall that the results obtained in this
paper typically boundDE/Etot above by some measure of
long-range correlation, whereDE is the energy gap. Since
Etot tends to infinity in the thermodynamic limit, it follows
that our results do not give interesting information in this
limit, except in the case where we require exact ground
states, i.e.F=1. It would be extremely interesting to develop
more powerful results relating the gap to long-range correla-
tions and entanglement in the thermodynamic limit.

Connection between the gap and the range of correla-
tions.We have “long range” to mean entanglement or corre-
lation between parts of a system that are not directly coupled.
Of course, we expect there will be substantial differences
between a situation where two subsystems are close, e.g.,
have perhaps a single spin mediating their indirect interac-
tion, and cases where the interaction is much more indirect,
e.g., the left- and right-hand ends of a linear chain, with a
large block of intermediate spins mediating the interaction
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between the two ends. We expect that the latter case will
impose much more stringent restrictions on the size of the
gap than the former case. Preliminary numerical investiga-
tions with the Heisenberg model bear this out, and further
investigations are currently underway.

In conclusion, we have used the techniques of quantum
information science to develop connections between the en-
ergy gap and long-range correlations and entanglement in the
ground states of many-body quantum systems. We believe

that the techniques of quantum information science will,
more generally, be a powerful tool for understanding and
predicting the properties of complex quantum systems.
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