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Quantum computing of Poincaré recurrences and periodic orbits
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Quantum algorithms are built enabling Poincaré recurrence times and periodic orbits of classical dynamical
systems to be found. It is shown that exponential gain compared to classical algorithms can be reached for a
restricted class of systems. Quadratic gain can be achieved for a larger set of dynamical systems. The simplest
cases can be implemented with a small number of qubits.
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It has been suggested since the work of Feynfdqthat A related feature of dynamical systems is the presence of
the superposition principle of quantum mechanics enableperiodic orbits, which are trajectories coming back exactly to
exponentially many computations to be performed in paralletheir initial point in phase space. They play a special role in
(see reviews iff2—4)). Thus in principle quantum processors understanding the physical properties of these systems, and
using the full power of quantum mechanics may be enorare present in both Hamiltonian and dissipative systems. For
mously faster than today’s classical computers. This possiexample, they enable diffusion coefficients and properties of
bility has_ motivated a great Qeal of attention in the Sc'e“t'f'cstrange attractors to be computgdl] and enter the famous
community, and many experimental proposals have been exsizwiller trace formulg15], which is a general semiclassi-
plored to realize such a quantum computer. However, it hag, quantization scheme valid for chaotic systems.
been surprisingly hard to spot specific problems where quan- I will first show how such quantities can be found effi-
tum algorithms may be faster than classical ones. One suc(gently on a particular example, the Arnold cat nfdg,17,

example is the celebrated Shor’s algoritfih which factors : ) .
large numbers with exponential efficiency compared to an)?ne of the 'most famous chagtlc dynamlcgl systems. It is an
known classical algorithm. Another algorithm, due to Groverautomorphlsm of the torus with the equation

[6], speeds up the search in an unsorted data base, although
not exponentially.

I parallel, peopl_e have _investigated _the possibility of USyyhere overbars denote the new values of the variables after
ing a quantum device to simulate physical systems, a prob, o e ation. This map is area preserving and may be inter-
lem of much practical interest. In particular, several works

. Breted as describing the evolution in phase space, with
have shown that quantum computers can speed up the simU esenting position andmomentum. It is an ANOSoV Sys-
lation of quantum mechanical systerfis-9] and classical P gp ' Y

. tem, with homogeneous exponential divergence of trajecto-
spin systemg$10]. It was also suggested [i1] that a quan- . I
tum computer may be efficient at simulating classical dy-rles and positive Kolmogorov-Sinai entropy~0.96. The

namical systems as well. In the present work, the problem of'ap (1) can be equivalently written as the action of the

H —(21 X .
finding Poincaré recurrence times and periodic orbits of dy2 2 matrixL=(7}) on (}). Other cat maps can be built by

namical systems is studied. Such quantities give importar@king any 2<2 matrix L with integer entries and deter-
information about the dynamics and are standard tools foftinant 1. o
studying classical mechanics. Explicit algorithms will be It i known [18-2Q that for the cat mapl) periodic
presented showing that such quantities can be evaluatéHb'tS are in one—to-o_ne_cprrespondenc_e with points with ra-
faster on a quantum computer than on a classical one. |Honal coordlnates. St|[|, itis apomputauonally hard proplem
some cases, exponential efficiency compared to classical d@ find theperiodof a given point. The usual way of studying
gorithms can be reached. In other cases, quadratic gains c4HS Problem is to consider the set of rational points sharing
be realized. the same denominatgr These points form g X g lattice in

For classical bounded conservative systems, Poirfajé the phase space, which is invariant un_der the actior_1 of the
showed that some points from an arbitrary small phase spadB@P- The action of the map on such points can be written on
domain will eventually come back to this domain. In general,N® numerators —only, namelyy=y+x(modg), x=y
the actual values of the recurrence time for a given area of 2x(modg), or @:LQ)(mOd g), with x,y, X,y integers.
phase space, and the statistics of these times, are not givenAll points in such a lattice are periodic, but not with the
by the theorem and require specific studies to be understoogame period. A quantity similar to the recurrence time is the
This time can be extremely long, and is very hard to studylattice period functiona(g). It is the smallest integer such
numerically. Advances in the power of modern classicalthat aftera(g) iterations all points in the lattice have come
computers allow one to get information about such quantiback to the initial position, i.e., it is the recurrence time of
ties, but the problem is still under investigation currentlythe whole lattice. This quantity has been the subject of many
[13]. In addition to their intrinsic interest, the return times studies[18-2(, since it describes the whole set of periodic
also give insight into transport properties, diffusion coeffi- orbits of the system, and also gives insight into the quanti-
cients, and correlation functions of the system studi&g]. zation of the cat majp18,2Q. In particular, the behavior of

y=y+x(mod 1), x=y+2x(mod 1), (1)
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a(g) controls the ergodicity of the eigenfunctions of the should be done for all qubiisin the first register to build,
quantum cat map foh=1/g [21]. It turns out to be a very SO O(ng) gates are used in total. One ends up with the state
erratic funct|0n_ ofg; some results for its statistical properties N—1/22t’\:ol |)A)|BY|Cy|Dy) where (A, B,,C;,Dy) are entries
have been derived nonrigorously based on assumptions frogf the matrixL' modulog.
probabilistic number theorj20]. Numerical checks for mod- Then, as in Shor’s algorithm, one performs a quantum
erate values ofj show that the asymptotic regime is very Fourier transform(QFT) of the first register. This quantum
slowly reached20]. Thus, for example, computing(g) i analog of the classical Fourier transform neesy) el-
small windows around large values gfwill enable one to ementary gates to be performed. Since the last four registers
check its asymptotic properties. This has interest for bottdescribe a periodic function af peaks in the Fourier trans-
number theory and the study of dynamical systems. form can be measured and yield the perig@). Indeed, if

A quantum computer of moderate size is able to computer(g) divides N, then the peaks are precisely at values of
the function«(g) for exponentially large values af. One  multiples of N/ a(g), while otherwise broader peaks will ap-
does not need to actually simulate the evolution of individualpear but a significant probability will be concentrated on the
points in the lattice, since(g) is the smallest integdrsuch  best rational approximants of multiples &f/ «(g), and a
that L'=I(modg), with | the identity. Nine registers ofi;  continued fraction algorithm can yield the period Q{ng)
qubits withn,~log, g are needed, one holding the values of classical operationg2—4].
time, the next four the matrix entries, and the last ones being It is worth trying to compare this algorithm to compute
workspace. The algorithm applies period findipwghich is  «(g) with others. Classically, computing all iteratesup to
the basis of Simon'$22] and Shor’s[5] algorithmg to the  the period is clearly exponential sinegg) is of the same
four registers encoding the entries of the matrix. First onesrder of magnitude ag [{a(g)/g)— O more slowly than any
prepares the initial state, which K22 []1)[0)|0)[1),  inverse power ofy [20]]. Another method to computa(g)
whereN=2". It is easily built from the ground state of the [19) is based on the theory of ideals of quadratic fields. For a
system by applying, Hadamard gates and two single-qubit prime p, a(p)=[p-(d/p)]/m, where () is the Kronecker
flips. Then one constr.uct:ts the time evolution to end up withgympol (=+1), d is the discriminant of the field containing
the entries of the matrik' modulog in the last four reiglsters. the eigenvalues o, and m is an integer divisor ofp
With this aim, first the entriega;,b;,¢;,d) of eachL® fori  —(d/p) to be determined by trial and error. For composjte
=1,...ng—1 are precomputed classically. This can be doney(g) can be determined from the(p), p being the prime
sequentially, first squaring to getL? then squarind.?, and  factors of g. This method is also exponential classically,
so on, untilL?* " is obtained. This requires of the order of since it requires the factorization gfin prime factors. On a
O(ng’) classical operations. For eaththe binary decompo- quantum computer, one may try to use Shor’s algorithm, first
sition of t is t=34%2" with ;=0,1, so that L' factoringg; then factoringo—(d/p) for all prime factors ofy
:Hingal(Lzl)ai_ So the exponentiation df can be done by, and trying all possible integer divisors. Most integgrisave

multiplication of L? conditioned on the value of the qubit 109 Ioglog zpf_i”_‘e factors and for mostp there are
This matrix multiplication can be done by a sequence of (109 P)*® “divisors of p—(d/p) [24]. Thus this algorithm

number multiplication. For example, the sequence of transiS &S0 polynomial for most numbers. Still, it is knoW24]
formations for the first two entries is that the number of divisors of an integecan be quite large,

of the order of £9 W09 91 iy the worst cases, making this
method not polynomial for somg. The algorithm here is
simpler, givinga(g) in one run, and is always polynomial.
Another possibility to explore periodic orbits and
Poincaré recurrences, which can be generalized to other sys-
- tems beyondl), is to start from an initial point and look for
—NZY [Bl2[b)|c)|d)|2)|b)(copy) periodicities of its iterates. In this case, it is appropriate to

N-1

N2 [t]a)b)c)ld)
t=0

N-1

=0 use a discretized map. As discussedlif], the best possible
_1/2’\‘"1 discretization uses symplectic mgj2$]. These maps can be
—N23 [t)]aa)|bd)|c)|d)aby)|bc) exactly iterated and are themselves Hamiltonian if the origi-
=0 nal system is. In dimension 2, they can be written as the
N-1 action of a unitary operatdr on theN? points (x;,y;) with
—N2> t)|ag + bg)|ab + bd)|c)|d)|ab)|bc). x=i/N, i=0,..N-1 and y;=j/N, j=0,..N-1, with N
t=0

=2". For example, for the cat map, a poif,y;) of the

This needs a controlled multiplier modujowhich can be ~ discretized phase space density is mappe@ty;) through
done fo”owing the procedure |[‘23] using two extra regis_ the action of the X 2 matrixL defined above. The algorithm
ters as workspace. To erase the unwanted registers one use€gluires three registers, two of sing specifying points in
standard trick: one builds the sequence of gates corresponghase space and one of sipeholding the values of time,
ing to F:|u[v)|0)|0)— |up|v)|dibu—cibw)laicu —bicuy. Ap-  Plus additional qubits as workspace, with usuglly n,. One
plying F~! to the state above sets the work registers to zerostarts from the initial state?’zﬁffgl t)|Xo)|Yo), easily built
One then does the same operation again for the next twivom the action ofp Hadamard gates andng single-qubit
entries of the matrix. This need@(né) operations, and flips. Then one constructs a sequence of gates giving
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z—p/22t2:"61 6)/LY(%0))|LY(Yo)). Then a QFT of the first register erally the numbemM is unknown, one can estimate it by

will yield peaks from which the period of the point can be quantum counting prior to the search, but it is not necessary
k
found. If L and each_? for k=1,... p—1 can be computed

and implemented iD(B(n,)), whereB is a polynomial, this The algorithm can be modified to get a different result, the

will be exponentially faster than classically. For the cat mapnumPer and coordinates of the periodic orbits of the system.
In this case one starts from all tiex N points of the lattice

all can be done efficiently by a method similar to the one™ b . n
described above, first precomputing & classically, then ~With N=2%, with initial state|yho) =2 Z5 " X5 ly;).
decomposing eachin binary representation, and then using 1"€n one performs

a controlled multiplier moduldN to compute(L'(x,) , L' (yo)).

Again, this usei)(n;;’) guantum gates. 2M-1 2M-1

Other maps can be explored in the same way, provided |thy — 27" E E XlYPILOGOY L)) -+
their classical evolution operatbrenables fastpolynomia) =0 =0
classical computation o(ﬂ_zk). In such cases, the algorithm 2"9-1 2M-1
above can reach exponential gain over the classical compu- =2 X > Ol Liy)).
tation. If L is efficiently implementable, but exponentially i=0 j=0

large iterates cannot be efficiently computege examples  agter t jterations the value of the iterate is compared to
below), the algorithm above will not work. Nevertheless, in e initial value(for example, by adding the registers bitwise
this case it is possible to obtain a gain for the computation of,5qulo 2, and a minus sign is givetby using ac, con-
periodic orbits and recurrence properties of the whole systemg|ied by the value of these qubitd]) if it is the same. Then

for a given time(as opposed to a chosen initial pointhe e inverts all the gates but the last operation, ending with
basic idea is to compute sequentially the iterates of a distri:

—ngs 201 5 2"-1 |\ |\, — ;
bution and then use Grover iterations to search for specifig “Zizo iz €lx)ly;), where e=+1 depending whether

trajectories. The dynamical system is discretized through c;(;lL?:et?s tﬁg’fﬁg{% ';Spsrr]'%?g:cg E)er“i;ﬁ;tri];gggltehgrgrover
symplectic map., on a lattice of sizeN X N where N=2"q,

o : Igorithm[6] and all periodic orbits can be found by iterating
and it is assumed thdt can be implemented on thes¢ & — , .
points in O(B(n,)) operations wheF;eB is a polynomial. the process. AfteD(tN/ M) operations, the amplitude of the
Then a subdor%ainA is selected. The simplest case is g vave function is concentrated on periodic points of petiod
square of sizePx P with P=2P .and p<n,. The initial (M is the number of such pointsin contrast, the classical
= o

. — opy2P-1 52P-1 _ search need®(tN?/M) operations. As aboveM can be
state 'S|¢O>_‘2 Zizo Zi=o |)fi>|yziZL1Thzep: one realizes the o4 ated through quantum counting@gtN) operations.
transformation o) — 272" Zisg” [LIL(y;))- - A much studied class of classical twist maps corresponds

P_

_ P_ . I I
—2 pEf:OlEjz:ol \Lt(Xi?>||-t()_/j)>- The value of the firshy  to the form n=n-KV'(6)(mod 27L); 6=6+n(mod 2m)
—p qubits of each register is enough to know if the trajectorywhere (n, §) is the pair of conjugated momentugactior)
is back to the domain (sinceA can be moved efficiently to  and angle variables, and the overbars denote the resulting
a Corne). So aftert iterations this value is checked for all Variab'es after one iteration Of the map_ The discretized

trajectories, and ar, controlled by the value of theseng S vt ,
~2p qubits gives a minus sign to the valuesidtx))|L{(y,) map on anN X N lattice is simplyY=Y+[NKV'(27X/N)/

that end a trajectory which returns fo This can be done (2m](MOdN); X=X+Y(modN) where[:-] is the integer
efficiently using O((2n,-2p)?) elementary gates and no Part andX, Y are integers. The cas& 6)=cos ¢ corresponds
work qubit [4]. Then one inverts all the gates but the lastt© the Chirikov standard map, which has been a cornerstone
model in the study of chadd.7]. The discretized map on a
2" x 2" |attice can be implemented i@(ng) gates on a
Juantum computel8], and therefore a quadratic gain can be
achieved for return times and periodic orbitalthough

operation, ending with 252t 320t ex)ly;), where e
=1 depending on the fact that the trajectory went back to
after thesd iterations. This whole procedure is then used a
an oracle for iterations of the Grover algorithj@]. After . : . y
P/\M iterations, whereM is the number of solutions, the Zthgr qulantltles ma|1y pe oatamed W|thhexponent|?]l_ Q:M)'
amplitude of the wave function is concentrated on initial simpler _example s the gawtoQt map. W 'C._ corre-
points which return toA aftert iterations, and a measure of SPonds toV(6)=-¢?/2. The discretized mapping ¥=Y

the registers will give one of them. The whole algorithm +[NK(27X/N-)/(2m)](modN); X=X+Y(modN). This
necessitatesrg qubits plus the workspaces. Orly(tP/\M) model has been intensively studied in the field of classical
operations are needed to get the returns, as opposed ¢haos[27]. Depending on the values &, the system can be
O(tP?/M) for the classical simulatiotup to logarithmic fac-  stable or chaotic, and can display complex structures in
tors). In O(tP/\VM) one initial point of a trajectory that re- phase space with chaotic and integrable parts. Interesting
turns toA is obtained. To get other trajectories that return, orphenomena such as anomalous diffusion, self-similar struc-
for different return times, one needs to restart the algorithmtures, etc., are present. For integer exponentially large
This process obviously has interest mostly fe¢P. The iterates can be computed efficiently and the gain is exponen-
number of returning trajectoriéd can be evaluated through tial. For nonintegek, the iterates cannot be computed effi-
the quantum counting algorithgphase estimation combined ciently but the map itself can be implementeddm,) gates
with Grover iterationsin O(tP) operationg26]. Since gen- on a 2ax 2" |attice, and a quadratic gain can be achieved
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for return times and periodic orbits. For example, the cas¢heorem[28] ensures that an exact trajectory will remain
K=+1/2 for return times requires only three registétwo  close to the dynamics of each discretized point for arbitrary
for X and Y, one as workspageand the algorithm can be times. This exact trajectory will return close to its starting
realized with as few as eight qubits and 40 gates per Groveioint after the time computed by the algorithm, meaning that

iteration(domain M4 i_n a 8x 8 lattice). . . it is a Poincaré recurrence time of the system. Moreover,
A particular case arises for systems with symmetries. Fog

example, in the standard and sawtooth maps, the classicaiJ Ch. an approximately periodic trajectory can be used as a
evolution, operatorL is the product of two invélutionsL Starting point for a Newton method converging to a true pe-

=1,1, with 12=12=1. Such involutions have lines of fixed "dic orbit.

points, and it is easy to show that trajectories crossing one of !N conclusion, it has been shown that on a quantum com-
these lines twice are periodic_ They correspond to periodi@uter one can obtain Poincaré recurrence times and peI’IOdIC
orbits which are invariant through one of the symmetriesorbits of certain classical dynamical systems exponentially
These orbits can be found by iterating only points from onefaster than on a classical computer. For a larger class of
of these lines, i.e.N points_instead oNN?. The latter algo- systems, a quadratic gain can be achieved.

rithm finds these orbits in'N operations, keeping the qua- _
dratic speedup. I thank D. Shepelyansky for many very useful discus-

The periodic orbits found by the various algorithms aboveSions, and S. Bette_lli and M. Terraneo for gritical reading of
are exact periodic orbits of the discretized systems, which i§he manuscript. This work was supported in part by the EC
a Hamiltonian system in its own right. As concerns the origi-RTN Contract No. HPRN-CT-2000-0156 and by the EC
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