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Quantum algorithms are built enabling Poincaré recurrence times and periodic orbits of classical dynamical
systems to be found. It is shown that exponential gain compared to classical algorithms can be reached for a
restricted class of systems. Quadratic gain can be achieved for a larger set of dynamical systems. The simplest
cases can be implemented with a small number of qubits.
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It has been suggested since the work of Feynman[1] that
the superposition principle of quantum mechanics enables
exponentially many computations to be performed in parallel
(see reviews in[2–4]). Thus in principle quantum processors
using the full power of quantum mechanics may be enor-
mously faster than today’s classical computers. This possi-
bility has motivated a great deal of attention in the scientific
community, and many experimental proposals have been ex-
plored to realize such a quantum computer. However, it has
been surprisingly hard to spot specific problems where quan-
tum algorithms may be faster than classical ones. One such
example is the celebrated Shor’s algorithm[5], which factors
large numbers with exponential efficiency compared to any
known classical algorithm. Another algorithm, due to Grover
[6], speeds up the search in an unsorted data base, although
not exponentially.

In parallel, people have investigated the possibility of us-
ing a quantum device to simulate physical systems, a prob-
lem of much practical interest. In particular, several works
have shown that quantum computers can speed up the simu-
lation of quantum mechanical systems[7–9] and classical
spin systems[10]. It was also suggested in[11] that a quan-
tum computer may be efficient at simulating classical dy-
namical systems as well. In the present work, the problem of
finding Poincaré recurrence times and periodic orbits of dy-
namical systems is studied. Such quantities give important
information about the dynamics and are standard tools for
studying classical mechanics. Explicit algorithms will be
presented showing that such quantities can be evaluated
faster on a quantum computer than on a classical one. In
some cases, exponential efficiency compared to classical al-
gorithms can be reached. In other cases, quadratic gains can
be realized.

For classical bounded conservative systems, Poincaré[12]
showed that some points from an arbitrary small phase space
domain will eventually come back to this domain. In general,
the actual values of the recurrence time for a given area of
phase space, and the statistics of these times, are not given
by the theorem and require specific studies to be understood.
This time can be extremely long, and is very hard to study
numerically. Advances in the power of modern classical
computers allow one to get information about such quanti-
ties, but the problem is still under investigation currently
[13]. In addition to their intrinsic interest, the return times
also give insight into transport properties, diffusion coeffi-
cients, and correlation functions of the system studied[13].

A related feature of dynamical systems is the presence of
periodic orbits, which are trajectories coming back exactly to
their initial point in phase space. They play a special role in
understanding the physical properties of these systems, and
are present in both Hamiltonian and dissipative systems. For
example, they enable diffusion coefficients and properties of
strange attractors to be computed[14] and enter the famous
Gutzwiller trace formula[15], which is a general semiclassi-
cal quantization scheme valid for chaotic systems.

I will first show how such quantities can be found effi-
ciently on a particular example, the Arnold cat map[16,17],
one of the most famous chaotic dynamical systems. It is an
automorphism of the torus with the equation

ȳ = y + xsmod 1d, x̄ = y + 2xsmod 1d, s1d

where overbars denote the new values of the variables after
one iteration. This map is area preserving and may be inter-
preted as describing the evolution in phase space, withx
representing position andy momentum. It is an Anosov sys-
tem, with homogeneous exponential divergence of trajecto-
ries and positive Kolmogorov-Sinai entropyh<0.96. The
map s1d can be equivalently written as the action of the
232 matrix L= s 2 1

1 1
d on s x

y
d. Other cat maps can be built by

taking any 232 matrix L with integer entries and deter-
minant 1.

It is known [18–20] that for the cat map(1) periodic
orbits are in one-to-one correspondence with points with ra-
tional coordinates. Still, it is a computationally hard problem
to find theperiodof a given point. The usual way of studying
this problem is to consider the set of rational points sharing
the same denominatorg. These points form ag3g lattice in
the phase space, which is invariant under the action of the
map. The action of the map on such points can be written on
the numerators only, namely,ȳ=y+xsmod gd, x̄=y
+2xsmod gd, or s x̄

ȳ
d=Ls x

y
dsmod gd, with x,y, x̄, ȳ integers.

All points in such a lattice are periodic, but not with the
same period. A quantity similar to the recurrence time is the
lattice period functionasgd. It is the smallest integer such
that afterasgd iterations all points in the lattice have come
back to the initial position, i.e., it is the recurrence time of
the whole lattice. This quantity has been the subject of many
studies[18–20], since it describes the whole set of periodic
orbits of the system, and also gives insight into the quanti-
zation of the cat map[18,20]. In particular, the behavior of
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asgd controls the ergodicity of the eigenfunctions of the
quantum cat map for"=1/g [21]. It turns out to be a very
erratic function ofg; some results for its statistical properties
have been derived nonrigorously based on assumptions from
probabilistic number theory[20]. Numerical checks for mod-
erate values ofg show that the asymptotic regime is very
slowly reached[20]. Thus, for example, computingasgd in
small windows around large values ofg will enable one to
check its asymptotic properties. This has interest for both
number theory and the study of dynamical systems.

A quantum computer of moderate size is able to compute
the functionasgd for exponentially large values ofg. One
does not need to actually simulate the evolution of individual
points in the lattice, sinceasgd is the smallest integert such
that Lt= Ismod gd, with I the identity. Nine registers ofnq

qubits withnq, log2 g are needed, one holding the values of
time, the next four the matrix entries, and the last ones being
workspace. The algorithm applies period finding(which is
the basis of Simon’s[22] and Shor’s[5] algorithms) to the
four registers encoding the entries of the matrix. First one
prepares the initial state, which isN−1/2ot=0

N−1 utlu1lu0lu0lu1l,
whereN=2nq. It is easily built from the ground state of the
system by applyingnq Hadamard gates and two single-qubit
flips. Then one constructs the time evolution to end up with
the entries of the matrixLt modulog in the last four registers.
With this aim, first the entriessai ,bi ,ci ,did of eachL2i

for i
=1, ... ,nq−1 are precomputed classically. This can be done
sequentially, first squaringL to getL2, then squaringL2, and
so on, untilL2nq−1

is obtained. This requires of the order of
Osnq

3d classical operations. For eacht, the binary decompo-
sition of t is t=Si=0

nq−1ai2
i with ai =0,1, so that Lt

=Pi=0
nq−1sL2i

dai. So the exponentiation ofL can be done bynq

multiplication of L2i
conditioned on the value of the qubiti.

This matrix multiplication can be done by a sequence of
number multiplication. For example, the sequence of trans-
formations for the first two entries is

N−1/2o
t=0

N−1

utlualublucludl

→N−1/2o
t=0

N−1

utlualublucludlualublscopyd

→N−1/2o
t=0

N−1

utluaailubdilucludluabilubcil

→N−1/2o
t=0

N−1

utluaai + bciluabi + bdilucludluabilubcil.

This needs a controlled multiplier modulog, which can be
done following the procedure in[23] using two extra regis-
ters as workspace. To erase the unwanted registers one uses a
standard trick: one builds the sequence of gates correspond-
ing to F : uuluvlu0lu0l→ uuluvludibiu−cibivluaiciv−biciul. Ap-
plying F−1 to the state above sets the work registers to zero.
One then does the same operation again for the next two
entries of the matrix. This needsOsnq

2d operations, and

should be done for all qubitsi in the first register to buildLt,
so Osnq

3d gates are used in total. One ends up with the state

N−1/2ot=0
N−1 utluAtluBtluCtluDtl where sAt ,Bt ,Ct ,Dtd are entries

of the matrixLt modulog.
Then, as in Shor’s algorithm, one performs a quantum

Fourier transform(QFT) of the first register. This quantum
analog of the classical Fourier transform needsOsnq

2d el-
ementary gates to be performed. Since the last four registers
describe a periodic function oft, peaks in the Fourier trans-
form can be measured and yield the periodasgd. Indeed, if
asgd divides N, then the peaks are precisely at values of
multiples ofN/asgd, while otherwise broader peaks will ap-
pear but a significant probability will be concentrated on the
best rational approximants of multiples ofN/asgd, and a
continued fraction algorithm can yield the period inOsnq

3d
classical operations[2–4].

It is worth trying to compare this algorithm to compute
asgd with others. Classically, computing all iteratesLk up to
the period is clearly exponential sinceasgd is of the same
order of magnitude asg [kasgd /gl→0 more slowly than any
inverse power ofg [20]]. Another method to computeasgd
[19] is based on the theory of ideals of quadratic fields. For a
prime p, aspd=fp−sd/pdg /m, where s d is the Kronecker
symbol s=±1d, d is the discriminant of the field containing
the eigenvalues ofL, and m is an integer divisor ofp
−sd/pd to be determined by trial and error. For compositeg,
asgd can be determined from theaspd, p being the prime
factors of g. This method is also exponential classically,
since it requires the factorization ofg in prime factors. On a
quantum computer, one may try to use Shor’s algorithm, first
factoringg; then factoringp−sd/pd for all prime factors ofg
and trying all possible integer divisors. Most integersg have
,log log g prime factors and for mostp there are
,slog pdlog 2 divisors of p−sd/pd [24]. Thus this algorithm
is also polynomial for most numbers. Still, it is known[24]
that the number of divisors of an integern can be quite large,
of the order of 2log n/log log n in the worst cases, making this
method not polynomial for someg. The algorithm here is
simpler, givingasgd in one run, and is always polynomial.

Another possibility to explore periodic orbits and
Poincaré recurrences, which can be generalized to other sys-
tems beyond(1), is to start from an initial point and look for
periodicities of its iterates. In this case, it is appropriate to
use a discretized map. As discussed in[11], the best possible
discretization uses symplectic maps[25]. These maps can be
exactly iterated and are themselves Hamiltonian if the origi-
nal system is. In dimension 2, they can be written as the
action of a unitary operatorL on theN2 points sxi ,yjd with
xi = i /N, i =0, ... ,N−1 and yj = j /N, j =0, ... ,N−1, with N
=2nq. For example, for the cat map, a pointsxi ,yjd of the
discretized phase space density is mapped tosx̄i , ȳjd through
the action of the 232 matrixL defined above. The algorithm
requires three registers, two of sizenq specifying points in
phase space and one of sizep holding the values of time,
plus additional qubits as workspace, with usuallyp<nq. One

starts from the initial state 2−p/2ot=0
2p−1 utlux0luy0l, easily built

from the action ofp Hadamard gates and 2nq single-qubit
flips. Then one constructs a sequence of gates giving
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2−p/2ot=0
2p−1 utluLtsx0dluLtsy0dl. Then a QFT of the first register

will yield peaks from which the period of the point can be
found. If L and eachL2k

for k=1, ... ,p−1 can be computed
and implemented inO(Bsnqd), whereB is a polynomial, this
will be exponentially faster than classically. For the cat map,
all can be done efficiently by a method similar to the one
described above, first precomputing theL2k

classically, then
decomposing eacht in binary representation, and then using
a controlled multiplier moduloN to compute(Ltsx0d ,Ltsy0d).
Again, this usesOsnq

3d quantum gates.
Other maps can be explored in the same way, provided

their classical evolution operatorL enables fast(polynomial)
classical computation ofsL2k

d. In such cases, the algorithm
above can reach exponential gain over the classical compu-
tation. If L is efficiently implementable, but exponentially
large iterates cannot be efficiently computed(see examples
below), the algorithm above will not work. Nevertheless, in
this case it is possible to obtain a gain for the computation of
periodic orbits and recurrence properties of the whole system
for a given time(as opposed to a chosen initial point). The
basic idea is to compute sequentially the iterates of a distri-
bution and then use Grover iterations to search for specific
trajectories. The dynamical system is discretized through a
symplectic mapL, on a lattice of sizeN3N whereN=2nq,
and it is assumed thatL can be implemented on theseN2

points in O(Bsnqd) operations whereB is a polynomial.
Then a subdomainA is selected. The simplest case is a
square of sizeP3 P with P=2p and p,nq. The initial

state is uc0l=2−poi=0
2p−1 o j=0

2p−1 uxiluyjl. Then one realizes the

transformation uc0l→2−poi=0
2p−1 o j=0

2p−1 uLsxidluLsyjdl¯
→2−poi=0

2p−1 o j=0
2p−1 uLtsxidluLtsyjdl. The value of the firstnq

−p qubits of each register is enough to know if the trajectory
is back to the domainA (sinceA can be moved efficiently to
a corner). So aftert iterations this value is checked for all
trajectories, and asz controlled by the value of these 2nq
−2p qubits gives a minus sign to the values ofuLtsxidluLtsyjdl
that end a trajectory which returns toA. This can be done
efficiently using O(s2nq−2pd2) elementary gates and no
work qubit [4]. Then one inverts all the gates but the last

operation, ending with 2−poi=0
2p−1 o j=0

2p−1 euxiluyjl, where e
= ±1 depending on the fact that the trajectory went back toA
after theset iterations. This whole procedure is then used as
an oracle for iterations of the Grover algorithm[6]. After
P/ÎM iterations, whereM is the number of solutions, the
amplitude of the wave function is concentrated on initial
points which return toA after t iterations, and a measure of
the registers will give one of them. The whole algorithm
necessitates 2nq qubits plus the workspaces. OnlyOstP/ÎMd
operations are needed to get the returns, as opposed to
OstP2/Md for the classical simulation(up to logarithmic fac-
tors). In OstP/ÎMd one initial point of a trajectory that re-
turns toA is obtained. To get other trajectories that return, or
for different return times, one needs to restart the algorithm.
This process obviously has interest mostly fort! P. The
number of returning trajectoriesM can be evaluated through
the quantum counting algorithm(phase estimation combined
with Grover iterations) in OstPd operations[26]. Since gen-

erally the numberM is unknown, one can estimate it by
quantum counting prior to the search, but it is not necessary
[26].

The algorithm can be modified to get a different result, the
number and coordinates of the periodic orbits of the system.
In this case one starts from all theN3N points of the lattice

with N=2nq, with initial stateuc0l=2−nqoi=0
2nq−1 o j=0

2nq−1 uxiluyjl.
Then one performs

uc0l → 2−nq o
i=0

2nq−1

o
j=0

2nq−1

uxiluyjluLsxidluLsyjdl ¯

→ 2−nq o
i=0

2nq−1

o
j=0

2nq−1

uxiluyjluLtsxidluLtsyjdl.

After t iterations the value of the iterate is compared to
the initial value(for example, by adding the registers bitwise
modulo 2), and a minus sign is given(by using asz con-
trolled by the value of these qubits[4]) if it is the same. Then
one inverts all the gates but the last operation, ending with

2−nqoi=0
2nq−1 o j=0

2nq−1 euxiluyjl, where e= ±1 depending whether
or not the trajectory is periodic of periodt. This whole pro-
cedure is then used as an oracle for iterations of the Grover
algorithm[6] and all periodic orbits can be found by iterating
the process. AfterOstN/ÎMd operations, the amplitude of the
wave function is concentrated on periodic points of periodt
(M is the number of such points). In contrast, the classical
search needsOstN2/Md operations. As above,M can be
evaluated through quantum counting inOstNd operations.

A much studied class of classical twist maps corresponds

to the form n̄=n−KV8sudsmod 2pLd ; ū=u+ n̄smod 2pd
where sn,ud is the pair of conjugated momentum(action)
and angle variables, and the overbars denote the resulting
variables after one iteration of the map. The discretized

map on anN3N lattice is simplyȲ=Y+fNKV8s2pX/Nd /

s2pdgsmodNd ; X̄=X+ȲsmodNd where f¯g is the integer
part andX,Y are integers. The caseVsud=cosu corresponds
to the Chirikov standard map, which has been a cornerstone
model in the study of chaos[17]. The discretized map on a
2nq32nq lattice can be implemented inOsnq

3d gates on a
quantum computer[8], and therefore a quadratic gain can be
achieved for return times and periodic orbits(although
other quantities may be obtained with exponential gain[11]).
A simpler example is the sawtooth map, which corre-

sponds toVsud=−u2/2. The discretized mapping isȲ=Y

+fNKs2pX/N−pd / s2pdgsmodNd ; X̄=X+ȲsmodNd. This
model has been intensively studied in the field of classical
chaos[27]. Depending on the values ofK, the system can be
stable or chaotic, and can display complex structures in
phase space with chaotic and integrable parts. Interesting
phenomena such as anomalous diffusion, self-similar struc-
tures, etc., are present. For integerK, exponentially large
iterates can be computed efficiently and the gain is exponen-
tial. For nonintegerK, the iterates cannot be computed effi-
ciently but the map itself can be implemented inOsnqd gates
on a 2nq32nq lattice, and a quadratic gain can be achieved
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for return times and periodic orbits. For example, the case
K= ±1/2 for return times requires only three registers(two
for X and Y, one as workspace) and the algorithm can be
realized with as few as eight qubits and 40 gates per Grover
iteration (domain 434 in a 838 lattice).

A particular case arises for systems with symmetries. For
example, in the standard and sawtooth maps, the classical
evolution operatorL is the product of two involutionsL
= I1I2 with I1

2= I2
2=1. Such involutions have lines of fixed

points, and it is easy to show that trajectories crossing one of
these lines twice are periodic. They correspond to periodic
orbits which are invariant through one of the symmetries.
These orbits can be found by iterating only points from one
of these lines, i.e.,N points instead ofN2. The latter algo-
rithm finds these orbits inÎN operations, keeping the qua-
dratic speedup.

The periodic orbits found by the various algorithms above
are exact periodic orbits of the discretized systems, which is
a Hamiltonian system in its own right. As concerns the origi-
nal continuous system, for hyperbolic systems the shadowing

theorem [28] ensures that an exact trajectory will remain
close to the dynamics of each discretized point for arbitrary
times. This exact trajectory will return close to its starting
point after the time computed by the algorithm, meaning that
it is a Poincaré recurrence time of the system. Moreover,
such an approximately periodic trajectory can be used as a
starting point for a Newton method converging to a true pe-
riodic orbit.

In conclusion, it has been shown that on a quantum com-
puter one can obtain Poincaré recurrence times and periodic
orbits of certain classical dynamical systems exponentially
faster than on a classical computer. For a larger class of
systems, a quadratic gain can be achieved.
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