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For quantum communication in a gravitational field, the properties of the Einstein-Podolsky-fE&&&@n
correlation are studied within the framework of general relativity. Acceleration and gravity are shown to
deteriorate the perfect anticorrelation of an EPR pair of spins isdheedirection, and apparently decrease the
degree of the violation of Bell’s inequality. To maintain the perfect EPR correlation and the maximal violation
of Bell’s inequality, observers must measure the spins in appropriately claiferent directions which
depend on the velocity of the particles, the curvature of the space-time, and the positions of the observers. Near
the event horizon of a black hole, the appropriate directions depend so sensitively on the positions of the
observers that even a very small uncertainty in the identification of the observers’ positions leads to a fatal error
in quantum communication, unless the observers fall into the black hole together with the particles.
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I. INTRODUCTION ing in curved space-time is accompanied by a precession of

Entanglement is a strange feature of quantum theory antis SPin due to the acceleration of the particle by an external
gives rise to a nonlocal correlation called the Einstein-force and due to the difference between local inertial frames
Podolsky-RoseEPR) correlation[1,2]. The EPR correla- at different points. These effects of the particle’s motion re-
tion was originally discussed to address the foundation ofult in a continuous succession of local Lorentz transforma-
guantum theory. However, it is now widely accepted as dions. Since a Lorentz transformation rotates the spin of the
vital resource in quantum communication such as quanturparticle according to the Wigner rotati¢h3], the motion of
teleportation[3] and quantum cryptographi,5]. Thus, to  the particle leads to a continuous succession of local Wigner
perform precise quantum communication, we must underrotations of the spin, producing spin precession. Spin preces-
stand the properties of the EPR correlation in various physision caused by acceleration may be viewed as a generalized
cal situations. Recently, a number of papdslZ have dis- Thomas precession in curved space-time. On the other hand,
cussed how entanglement is affected by the Lorentspin precession caused by a change in the local inertial frame
transformation in the regime of special relativity3]. For is an effect of space-time curvature.
example, the present authors discussed the EPR correlation Applying both forms of spin precession to a relativistic
with moving observers who share a common rest frj@le = EPR state near the Schwarzschild black hole, we show that
In that study, we showed that the perfect anticorrelation of ammcceleration and gravity deteriorate the perfect anticorrela-
EPR pair of spins in theamedirection deteriorates in the tion in directions that would be the same as each other if the
observers’ rest frame, and that the degree of the violation apace-time were flat, and that they apparently decrease the
Bell's inequality[14,15 decreases apparently as the velocitydegree of the violation of Bell’s inequality, as in the case of
of the observers increases. To utilize the perfect EPR correnoving observers in special relativif§]. To exploit the per-
lation and the maximal violation of Bell's inequality, the fect EPR correlation and the maximal violation of Bell’s in-
moving observers must measure the spins in appropriatelgquality, the observers must measure the spins in appropri-
chosendifferentdirections; the choice of such directions de- ately chosen different directions. Identification of the
pends on the velocity of the observers and on that of theppropriate directions depends on the velocity of the par-
particles. ticles, the curvature of the space-time, and the positions of

In this paper, we extend these considerations to a regimthe observers. Surprisingly, while the parallel transport in
of general relativity by introducing a gravitational field. In general relativity can define which directions are the same as
general relativity, a gravitational field is represented by aeach other in curved space-tifi£6], the appropriate direc-
curved space-time, which entails a breakdown of the globatfions arenot the same as each other even in this sense. We
rotational symmetry. A spin is, on the other hand, known toalso show that, near the event horizon of the black hole, the
represent the rotational symmetry of a system. Thus, the spiappropriate directions depend quite sensitively on the posi-
in general relativity can be defined only locally by invoking tions of the observers, because the spin precession induced
the local rotational symmetry of the local inertial frame. In by the particle’s motion becomes very rapid there. Therefore,
the present paper, we show explicitly how to extractribe-  even a very small uncertainty in the identification of the
local correlation from thdocally defined spins. We also in- observers’ positions leads to a fatal error in quantum com-
vestigate how to extract the nonlocal correlation beyond thenunication near the event horizon. In particular, static ob-
event horizon, which arises in strong gravitational fields andservers cannot extract the EPR correlation from circularly
uniquely features the problem of general relativity. moving particles unless they can find their own positions

As a consequence of the local definition, a particle mov-with infinite accuracy. To exploit the EPR correlation @md
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beyond the event horizon, the observers must fall into themains inertial under the Lorentz transformation. The

black hole together with the particles. choice of the vierbein therefore has the same degree of
An interesting distinction between the present generalfreedom known as the local Lorentz transformation. In

relativistic problem and the special-relativistic one fact, definitions(1) and (2) remain unaltered under the

[6-8,10,12 is that in the former the Lorentz transformation local Lorentz transformation, i.e.,

arises from the motion of the particle, not from that of the

observer, because neither the general coordinate system nor e,M(x) — €' 4(X) = A L(x) e (%), (3)

the local inertial frame is changed at each point. This means

that we could extend previous work on special-relativistic a 'a _Aa b

guantum information to the regime of general relativity only €700 = 7,00 = A% (0€%,(), @

by considering moving pe_lrtic_les in a gravitational field. Re'whereAab(x):nacnbdACd(x) and A2,(x)APy(x) 7%= 720, Al-

cently, quantgm commumcaugns with acqelerated observerﬁ]ough this transformationy(x) is a Lorentz transforma-

have been discussgd7,1§ using the Davies-Unruh effect tion, it has no connection with the Lorentz transformation

[19] in Mka\.NSk' spa_cg—tlme. Howeyer, their protocolg that is included as a special case in the general coordinate
have no special-relativistic analogy, since they do not N4 ansformation

volve the Lorentz transformation. Actually, their resources Using the local Lorentz transformation, we can define a

are not the eqtanglement between spins. . article with spin 1/2 in curved space-time. It is well known
This paper is organized as follows. Section Il formulates hat a “particle” is not defined uniquely in quantum field

spin-1/2 particle in a curved space-time and shows a Spiﬂweory in curved space-tinf21], since the “time” coordinate

precession induced by the motion of the particle. As an ©Xto define the positive energy is not unique; this nonunique-

amp_le, the Schwarzschild space-time s ?Ons'dere_d' _SeCt' ss is an origin of particle creation such as Hawking radia-
lll discusses the EPR correlaiion and Bell's inequality in the,;,, [22]. However, in the present formulation, our particle is
Schwarzschild space-time, and explains how to extract th‘§pecified by the vierbeiay*(x), which relates the local time
EPR correlation on and beyond the event horizon subject o a global time. A spin-1/2 particle in curved space-time is

gzcl:ig%elr\t/agﬁgnmatrr;zee;dgﬂﬁ'?ggﬂﬁg of observers pOSItions.,q d'efined as a partic!e whose one-particle states furnish
: the spin-1/2 representation of the local Lorentz transforma-
tion, not of the general coordinate transformation. In fact, the
Il. SPIN IN CURVED SPACE-TIME Dirac field in the curved space-tim21] is spinor under the

local Lorentz transformation, while it is scalar under the gen-

eral coordinate transformation. More specifically, consider a
In general relativity, a gravitational field is represented bymassive spin-1/2 particle moving with four-velocity(x)

a curved space-time with metrg,,,(x). To define a spin in  =dx*“/dr, which is normalized as

the curved space-time, we introduce a local inertial frame at

each point using a vierbejior a tetragl e,#(x) and its inverse U (X)u,(X) = - 2. (5)

e?,(x) defined by[20]

A. Local inertial frame

The four-momentum is given bp*(x) =mu*(x), with m be-

€ (X)€" (X)9,,(X) = 7ap (D) ing the mass of the particle. Accordingly, the four-

and momentum in the local inertial frame becomes(x)
=e? (X)p“(x) using the vierbein. In the local inertial frame at
e?,(¥e"(x) = 6,", €%, (X)ep(x) = &%, (2)  pointx, the one-particle state in quantum theory is specified

where n,=diag-1,1,1,1 is the Minkowski metric. Here using the third componento(=1,]) of the spin as

and henceforth, it is assumed that Latin letters run oveLpa(X),"’;X% as in special relativity. This state indicates not a
the four inertial-coordinate labeld,1,2.3: Geek letters localized state at with definite momentump?(x), but

run over the four general-coordinate labels; and repeatetpther an extended state whose momenturp?ig) if it is
indices are to be summed. The general-coordinate labeldewed in the local inertial frame at*. By definition, the
are lowered byg,,(x) and raised by its inverseg**(x), state|p?(x),o;x) transforms as the.spln—1/2 representation
defined by g*’(x)g,,(x)=8*,. The inertial-coordinate la- under the local Lorentz transformation. Note that, in the case

bels are lowered byy,, and raised by its inversey?®,  Of special relativity, a one-particle staig?, o) in the spin-
defined by 72%7.,= &%, The vierbein represents the coor- 1./2 representation transforms under a Lorentz transforma-
dinate transformation from the general coordinate systerfion A% as[23,24

x* to the local inertial frame® at each point. Therefore,

the vierbein and its inverse transform a tensor in the gen- U(A)|p? o) = > DY2 (WA, p)|AP? o), (6)

eral coordinate system into one in the local inertial frame, o'

and vice versa. For example, a tend6f”,(x) in the gen- )

eral coordinate system can be transformed into that in thwhereD _~(W(A,p)) is a 2X 2 unitary matrix that rotates
local inertial frame atx* via the relation V&(x) the spin of the particle according to the Wigner rotation
:eaM(x)ebV(x)eCP(X)V/“’p(x). Clearly, the choice of the local W?2,(A,p). The explicit form of the Wigner rotation is given
inertial frame is not unique, since the inertial frame re-by

(112
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WA, p) = [LHAP)A L(p)]% ) 0, (%) =—&,"(X) V ,6%,(x) =e*,(X) V ,&,"(x)  (15)
with a standard Lorentz transformatiad,(p), is the connection one-forrfor a spin connection20]. The
0 second equality in Eq(15) results from definition(1) and
L () =7, V.9, =V ,7,=0, giving xap(X)=—xpa(X). Substituting
Egs.(13) and(14) into Eq. (10), we obtain

L%(p) =L'(p) = pi/mc, ,
SpA(X) = N2 (X)p°(X)d7, (16)
L'(p) = &+ (v = Dp'p¥|pf?, (8)  where
where y=1|p|?+m?c2/mc andi,k=1,2,3.Therefore, in the 1
case of the curved space-time, the one-particle state  A%,(X)=- m_c’-[aa(x) Po(X) = PA(X)ap(X)] + x¥p(x). (17)
[p3(x), ;) transforms under a local Lorentz transformation

A% (x) as This is an infinitesimal local Lorentz transformation, since
@ , Nap(X) =—Apa(X). That is, when the particle moves, the mo-
U(A(X)|p3(x), ;%) = 2 D52 (W) [ApA(X), 0 ;X), mentum in the local inertial frame transforms under the local
o’ Lorentz transformation
9
( ) Aab(x) = 6ab+ )\ab(x)dT. (18)

whereW?4,(x) = Wa,(A(X), p(x)) is the local Wigner rotation. Using th it ¢ dina to this local
Instead of the one-particle statp?(x),o;x), we could sing the unitary operator CorgeSpor_] Ing to this loca
L . / Lorentz transformation, the stat@®(x),o;x) is now de-
employ Dirac’s four-component spinor, which also repre-

: a S -
sents a spin-1/2 particle. These two are equivalent as far & ribed a(A(X))[p*(x), o7ix’) in the local inertial frame at

NN o
Lorentz-transformation properties are concerned. For extNe New pointx'~. From Eq.(9), the spin is then rotated

ample, the case of moving observ§d$ in special relativity acc_ordlng to the local ngn(_ar rOtat'O‘“.b(?().' qu the 'r?f'”"
was calculated equivalently using Dirac’s spifi}. tesm_’nal Lorentz transformatiard8), the infinitesimal Wigner
rotation becomes

B. Spin precession WA, (X) = &%, + 9%,(x)d, (19
Since 'Fhe s_pin of a particle is defined locally relative towheret}oo(x):ﬁoi(x):ﬁio(x):o and

the local inertial frame, we next consider the change of the
spin when a particle moves from one point to another in i , N () P(X) = Nio(¥)p'(X)
curved space-time. After an infinitesimal proper tithe the F(X) = N(X) +
particle moves to a new point' “=x*+u*(x)d7. The four-
momentum of the particle then becomgs(x’)=p3(x) Its spin-1/2 representation is
+6p?(x) in the local inertial frame at the new point, because )

. o ) i
of changes in both momentum and local inertial frame: Df,’?(W(x)) =+ 5[1‘}23(x) oy + V31X 0y + D1 0 ]d7

Ip*(X) = SpH(x)€7,(X) + pH(X) 567, (X) . (10

The change in the momentum is given by

p°() +mc 20

(21)

with the Pauli matrice$oy, 0y, 07} and the unit matrix. We
SpH(X) =u’(x)d7V ,p“(x) = ma*(x)dr, (11  thus obtain the formula for |pA(x),o;%)
=U(A(X)[p*(x),0;X") as

where
a*(x) = u(x) V u(x) (12) U(A(x))|pa(.x), 75X
is the acceleration due to an external fofexcluding the = (1+|—012(x)dr)|pa(x’), 17— 1[1931(x) =i 03(X)]
gravity). Since p“(x)p,(x)=-m?c? and p“(x)a,(x)=0 from 2 2
Eqg. (5), we obtain Xd7p3(x’), | ;x'), (22

1
H(x) = = —[a“(X)p,(X) - p“(X)a,(x)]p"(x)dr. (13 1 _
opH(x) 5[2409p, (%) — pH(x)a,(x) Jp"(x)dr. (13) U(A(x))|pa(x),¢;x’>=5[1?310()+I1923(X)]dﬂp""(X’),T;X’>

On the other hand, the change in the local inertial frame is i
given by + (1 - Eﬁlz(x)dr>|pa(x’), Lixh.
8e®,(x) = U (0)d7V ,6,(X) = = u"(X) ,2,(X)e”,(X)dT

= x%p(X)e® ,(x)dr, (14)

(23)

We emphasize that the change of the spty(x) is equal
where neither tox?,(x) nor to A?,(x).
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By iterating the infinitesimal transformation, we find a but a breakdown of the coordinate systétr, 8, ). The
transformation formula for a finite proper time. This be- inside of the event horizon<r, is the Schwarzschild black
comes a Dyson series as in the time-dependent perturbatidtole whose mass is given W =c?ri/2G. In the Schwarzs-
theory, sincen?,(x)’s at different points do not necessarily child space-time, it is convenient to choose vierb@insuch
commute with each other. Suppose that the particle movethat
along a pathx*(7) from x*=x*(7) to x¢=x*(7;). Dividing
h=7;—7 into N parts withxf,) =x*(7;+(hk/N)) and applying el )_ L e, (x) = \%
the infinitesimal Lorentz transformatiq@8) to each part, we VE(r)
obtain the Lorentz transformation for the momentum in the
local inertial frame as

N (30

Ay(xe, %) = lim [ ] [5ab+)\ b(Xa) ]

N—op=0

1

Oy — — D) —
e'(X)=—, e’(X)=—",
2 () r 5" r sin 6
and all the other components are zero. In the following dis-
. cussions, only nonzero components will be shown. At each

=T ex f A& (x(7))d7 |, (24) poin_t, th_e 0-, 1-, 2-, a_nd 3-axe_s are par_allel totthe 6, and _
, ¢ directions, respectively. This vierbein represents a static

local inertial frame at each point, because all the components

whereT is the time-ordering operator, and the exponential, o independent of and because the componem&x)(i
refers not to the exponential of each component but to thato_t1 2,3 ande,®(X)(a=r, 0, ¢) are zero. The inverse of vier-

the whole matrix. The corresponding Wigner rotation is thenbem(Z) is then given by

given by
" 0 =cVf(r), €= ——,
WE(X¢, X)) = ,\lllm H &+ 99 b(X(k)) ’f( )
—%k=0
7 2 () = 3 (W)= ci
T exp{f ﬁab(x(r))dr} (25) eyx) =1, €4x)=rsiné. (31)
i A straightforward calculation shows that the connection one-
This formula can be proven by noting that form (15) becomes
W (A1 AL, p) = [W(A 1, A p)W(A, P T3, (26) Crs

w%1(X) = oy(x) = (32

from the definition(7), and that o’
{561 bt Aab(x(k))£:| PP(Xa) = P (X 1) (27) wg'oX) = = wA (0 = = T(r), (33
from the definition ofA2,(x). w0 == w42 (X) =~ VE(r)sin 6, (34
C. Schwarzschild space-time w4%3(X) = = w,45(X) = - cos 6. (35

As an illustrative example in general relativity, we con-  In this Schwarzschild space-time, let us consider a par-
sider the Schwarzschild space-tifi®5], which is the unique ticle in a circular mot|on with a radius(>r,) and constant
spherically symmetric solution of Einstein’s equation in velocity rd¢/dt=uv/f (r) on the equatorial plan&=m/2.
vacuum. In the spherical coordinate systénr,#,¢), the  The four-velocity of this particle is given by

metric of this space-time is given by he he
cos c sin

ds’ = g,,,(x)dx“dx’ u'(x) = ok u?(x) = : (36)

1
=—f(r)c?dt® + ﬁdr2+ r2(de? + sir? 6d¢?), (28)  whereé is a rapidity in the local inertial frame defined by
where %: tanhé. (37)

r

f(r)=1 ‘?S1 (290 In order for the particle to move in this way, we must apply
an external force against the centrifugal force and the grav-

and the parametar is called the Schwarzschild radius. At ity. The acceleratiorf12) due to this external force then be-

this radiusr =r¢, the Schwarzschild space-time has an eventomes

horizon where no displacemedi“=(dt,dr,d#,d¢) can be )

timelike d<0 because of(rg=0. The singularity of the a'(x) = - c? sint? 5[1 s cotl? g]f(r) (39)

metric at the event horizon means not a physical singularity 2rf(r)
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90 = - 031()() _ ¢ coshé sinh g{l rs } \m

- 2rf(r)
(44)
as illustrated in Fig. 1. It is important to note that
Fp(X) # N (X) # X(X) # 0*(X); (45)

these three nonequalities result from the boost paxfgix),
the acceleration of the particle, and the curvature of the
space-time, respectively.

To illustrate this result, we consider a special caseof
black hole =0, i.e., Minkowski space-time. In this case, the change in

o . . . the local inertial frame is reduced to the rotation about the
FIG. 1. A spin in a circular motion. At each point, the 1- and 2-axis through an angle

3-axes are parallel to the radial and tangential directions, respec-
tively. csinhé
x'a(¥) == x*1(x) = A (46)

Now, after an infinitesimal proper timdr, the particle o _ o )
moves by an anglé¢=u®(x)dr as depicted in Fig. 1. How- Which is nothing but the trivial rotatiof89). The change of
ever, the change in the local inertial frarfie) is nota trivial ~ the spin is also reduced to the rotation about the 2-axis
rotation about the 2-axis, through an angle
¢ coshé sinh

By = - 93,00 = SCONESIRE,
(39) '

The difference between Eq§6) and (47) gives rise to a

precession of the spin called the Thomas precession. When

since in general relativity parallel transport that depends o /. <1 the precession angle per=dr coshé becomes
the space-time curvature has to be invoked in order to com- ’

pare local inertial frames at different points. The definition
(14) shows that the change in the local inertial frame consists

of a boost along the 1-axis and a rotation about the 2-axis, )
wherea=|a'(x)|=c? sint? &/r.

csinhé (47)

@h3(x) == @3 (x) =u?(x) =

[9%(x) — x*1 (0 ]Jd7 ~ — ;’—fzdt, 49)

crs coshé (40) IIl. EPR CORRELATION AND BELL'S INEQUALITY

0 (oy — A oy — _
X 1(X) =X O(X) = ZFZV’m )

We now discuss how to exploit the EPR correlation for
guantum communication using accelerated particles in a
gravitational field. Specifically, we consider a pair of circu-
(41 larly moving particles in the Schwarzschild space-time, as
discussed in the preceding section.

XlB(X) - _ X31(X) - m

The infinitesimal Lorentz transformatioil7) then becomes A. EPR correlation
Consider two observers and an EPR source on the equa-
0 L c coshé sinl? ¢ s — torial planef=m/2 at a radiug (>r¢) with azimuthal angles
A"1(X) = No(X) = = e VE(r), +® (observersand O(EPR sourcg as illustrated in Fig. 2.

The observers and the EPR source are assumed to be static
(42 [“at rest” in the coordinate systef,r, 8, ¢)] and to use the
static local inertial fram&30) to measure or prepare the spin
¢ cost? £ sinh & ) s state. Note that the inertial frame is defined at each instant,
A(x) = =A% (x) = [1 - S :|\'f(r)' since the observers and EPR source are accelerated to keep
r 2rf(r) staying at a constant radius. First, the EPR source emits a
(43) pair of entangled particles in opposite directions with con-
stant four-momenta?=(mccosh¢,0,0, #mcsinh &) in the
pin-singlet state,

which also consists of a boost along the 1-axis and a rotation
about the 2-axis. Nevertheless, the momentum in the local 1
inertial frame is constant, pA(x)=(mccosh¢,0,0, —=lIp% 1:0p2, 10y = p, | ;0p2, 1:0)],  (49)
mcsinh ¢), pointing to the 3-axis. Finally, the change of V2

the spin defined by Eq(20) becomes the rotation about where for notational simplicity we write only thé coordi-
the 2-axis through an angle nate in the arguments. After a proper time/c sinh ¢, each

032113-5
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Ipg, 1 ;£ D)y =cos%|p§, T; id))isin%pi, XN

(54)

) o
pg, | ;£ ®)y = F sin5|p§, T id))+cosz|pi, XN

(55
black hole Using these bases, the state is written as
FIG. 2. An EPR gedanken experiment in the Schwarzschild
space-time. Two observe(gray circle$ and an EPR sourc@ray i A 4N mB | .\
squarg are located atp=+® and 0, respectively. VE[COSqu*’ 1:®) |p_, Li=®)
_lna . 2P . ’
particle reaches the corresponding observer. Using Eq. [P, L5 @) lp% 13- @)")
(44), the Wigner rotation(25) becomes a rotation about +sinA(|pd, ;@) [p%, 1 ;- D)’
the 2-axis, a a ,
+|p+l~l/!(b> |p—lll_®> )]! (56)
1 0 0 0 h
0 cos® 0 #sin® where
V\Iab(i(l),O) = ) (50)
0 0 1 0 r i
f— — S /
0 Fsin® 0 cosO® A=O0-d=] coshg[l—zrf(r)]\rf(r)—l . (57

where the angl® is given by Now that the trivial rotation is removed in these bases, we

can explicitly see that the relativistic effect deteriorates the
Q=P coshg{l— s }\m (51) perfect anticorrelation in the direptions that woulq be thg
2rf(r) same as each other if the space-time were flat. This deterio-
ration is a consequence of the nonequailfy(x) # ¢?,(x) in
Note that we do not need the time-ordering operator this  Eq. (45). Of course, our result does not mean a breakdown of
example, sinced?,(x) is constant during the motion. This the nonlocal correlation, since the entanglement is invariant
Wigner rotation is represented by using the Pauli madtjx under local unitary operations. If we take account of the

as relativistic effect arising from acceleration and gravity, we
can exploit the perfect anticorrelation for quantum commu-
2 ~ _.oy nication. More specifically, the observers @t +® must
Dy, W(x®,0)) = exp *i 2 0. (52) rotate the directions of the measurement about the 2-axis

through the angles O in their local inertial frames, respec-
tively. It is interesting that the parallel transport in general
relativity [16] doesnot give the directions that maintain the
perfect anticorrelation. This occurs because 8y (x)

1 # x%(X) in Eq. (45). . '
—=[cosO(|pS, 1:®)|p, | ;- D) The value ofA as a function ofrg/r andv/c=tanh¢ is

V2 shown in Fig. 3. In the nonrelativistic limit/c—0 and
rd/r— 0, the angleA becomes

Therefore, in the local inertial frames gt=® and -, the
state is described as

=1p2, | ;®)[p8, 1 ;- D))
+sinO(|p?, T;P)[p2, 1 ;- D)
+[pd, | D)8, | ;- D))], (53)

2

A~c1><”—2—rf>. (58)

as illustrated in Fig. 2. Because the spin-singlet state iFhe first term is attributed to acceleration and the second to
mixed with the spin-triplet state, spin measurements in thgravity. Note that they have different signs. Although Eqg.
same direction are not always anticorrelated in the local in{58) holds only for the nonrelativistic limit, we can draw
ertial frames atp=+d (e.g., in each 1l-axjs Clearly, this from it the following qualitative physical picture: At the spa-
result includes the trivial rotation of the local inertial frames tial infinity r — o, the gravitational field is so weak that the
+®, as in EQ.(39). To eliminate this spurious effect, we angleA is positive. However, closer to the event horizon, the
rotate the bases ap=+®d about the 2-axis through the gravitational field becomes stronger, thus makingmaller.
angles+®, respectively, that is, At a radiusr =r, defined by
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However, if the observers use different local inertial
frames and different particles, they can extract the EPR cor-
relation even at <r.. Note that the divergence of the spin
precessioni44) originates from the fact that the vierbgid0)
and four-velocity(36) become singular at the horizon. There-
fore, the observers must choose a vierbein and a four-
velocity that avoid the singularities at the horizon. Since
these singularities are connected with the breakdown of the
coordinate systen(t,r, 6, ¢), we adopt the Kruskal coordi-
nate systemj25], in which the metric is not singular at the
horizon. The Kruskal coordinate§,R) are defined from

(t.r) by
FIG. 3. The angle\ as a function of¢/r andv/c=tanh¢. The R2— 272 = 4r2 fr) cT_ a ct 62)
dotted line at the bottom is the radiug whereA becomes A/ ®| TUSE() R 2rg)’
is on the order of 10 on the Earth ifv <10 km/s. However, it
becomes infinite as—rg or v—c. where

A N F(r) = 2e7s, 63
[1 2r0f(r0)}\f(r0)_\/1 = (59) "

the angleA vanishes, and becomes negative ffetr, (see In the Kruskal coordinate syste(,R, 6, ¢), the metric be-

Fig. 3. In the limit of v —c, the radiusr, becomes B/2;  €OMeS
inside this radius, the gravitational field is so strong that the _ 5 -0 2 . 2
acceleratiora’(x) for the circular motion must be in the out- ds’= = F(n)c’dT + F(NdR + r*(de” + sin® ¢de?),
ward direction for anyw. Right on the event horizon—ry, (64)

we find A — —oo, . . . . .
where the radial coordinateis now interpreted as a function

of T andR. In light of this coordinate system, we choose a
new vierbeing,*(x) as
We have shown that the observers can, in principle, utilize

B. Uncertainties in observers’ positions

the EPR correlation by adjusting the directions of measure- I - ~ _ 1
- : : & (X)=—F7=——=, €"(X=7=—,
ment. Nevertheless, in practice, such adjustments become cVF(r) VE(r)
difficult near the horizon, since the spin precessid4) is
very rapid there. Suppose a classical or quantum uncertainty
&b exist_s in _the observers’ positich. The_ error of the angle B,0(x) = 1, Bl(x) = ——, (65)
O to maintain the perfect EPR correlation then becomes r rsin @

A which is not singular at the horizon. Using the original coor-
1+ 5‘ . (60 dinate systentt,r, 6, ¢), we find that this vierbein is related
to the static vierbeiri30) by a local Lorentz transformation:
Quantum communication must tolerate this error by Som%a”(x)zxab(x)eb“(x), where
error-correcting scheme. However, near the horizesr,,

60 = 5O

60 can be much larger tham and thus the observers cannot 1 [E() c [E()
determine the directions of measurement clearly enough to or. WR T o0 WT 00
extract the EPR correlation. Therefore, to utilize the EPR s s
i i ~ F 1
correlation,60 andr must satisfy at least AL = _c /ﬁ.l. 1 /@R oo |
o 2rg vV 1(r) 2rg V 1(r)
O < w1+ Y (61 0 0 10
0 0 01

At the horizonr =rg, this requirement reduces ®b=0 be- (66)

cause the velocity of the spin precessidd) is infinite. This

means that the observers on the horizon could not extract th@ince this Lorentz transformation is a boost along the 1-axis
EPR correlation from the particles, were it not for the infinite parallel to ther direction, the new local inertial frame falls
accuracy ofd. More generally, for a given uncertaintyb, into the black hole whefi >0. To perform measurements in
there exists a radius,(>rg) such that static observers at this local inertial frame, the observers also must fall into the
r<r. cannot extract the EPR correlation from circularly black hole. Similarly, we choose the four-velocity of par-
moving particles. ticles as
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cosEf c sinhE and gravity. More specifically, the spin component of one
X ="=—, Wx=+—-—>, (67)  particle must be measured in tlieos®,0,-sin®) direc-
VE(r) r tion or in the(0,1,0 direction in the local inertial frame

which is not singular at the horizon. Sincg(x) at ¢=®, and the spin component of the other must be
=8 (X T*(x)=0, the particles also fall into the black hole Mmeasured in thﬁ(_cosg’__l’_S'”)_/Vz direction or in
with the local inertial frame(65), while moving in the %  the (cos®,-1,sin®)/y2 direction in the local inertial
directions. With the vierbeili65) and four-velocity(67), we ~ frame at¢=-o.

obtain the local Wigner rotation However, in practice, it becomes difficult to observe the
o violation of Bell's inequality when an uncertainty i is
~, o~ _c cosr"gsinrﬁ r |VF(NDR near the horizon. Even if the directions of measurement are
P == ()=t ————— +f_s T, adjusted so that Bell's inequality is maximally violated, the

error in ® decreases the degree of violation a2 2o< 50.
(68) This value must be greater than 2 to verify the violation of
instead of Eq(44). Since this precession is not singular at Bell's inequality. Therefore, from Eq(60), 60 andr must
the horizon, the observers on the horizon can extract the EPRaIisfy at least
correlation from the particles without the infinite accuracy of _
®. Furthermore, they can extract the EPR correlation beyond oD < \"2‘ 1+—
the horizonr <r (until the physical singularity =0). P

-1
(71)

For a given uncertaintys®d, there exists a radius,(>ry)
such that static observers ratr, cannot observe the viola-
tion of Bell's inequality from circularly moving particles. To
We next consider Bell's inequality using the circularly see the violation of Bell's inequality at<r, the observers
moving particles(36) in the static local inertial framé¢30). must fall into the black hole together with the particles, using
Suppose that the spin component of one particle is measurehe vierbein(65) and the four-velocity67).
in the (1,0,0 direction (componentQ) or in the (0,1,0 Using a different definition of a relativistic spin, Czachor
direction (componentR) in the local inertial frame atp [26] obtained a decrease in the degree of violation of Bell's
=®, and suppose that the spin component of the other ignequality. This decrease was caused by the inertial motion
measured in thé-1,-1,0/42 direction(componentS) or  of particles in Minkowski space-time. In contrast to this re-
in the (1,—1,()/\;5 direction(component?) in the local in-  sult, Bell's inequality is unaffected except for a trivial rota-
ertial frame at¢=-®. This set of observables gives rise to tion in our formulation in that case. Czachor’s effect is thus
the maximal violation of Bell's inequality for the spin-singlet different from ours. Tern¢27] discussed a relation of differ-
state in the usual case. However, for the circularly movingent choices of relativistic spin operators to the violation of
particles in the Schwarzschild space-time, the degree of thBell's inequalities.
violation of Bell's inequality apparently decreases as

C. Bell's inequality

(OS) +(RS)+(RT)—(QT) = 2\2 co2®. (69 IV. SUMMARY

Again, this result includes the effect of the trivial rotations of ~We considered the EPR correlation and the violation of
the local inertial frames @. To get rid of this effect, the Bell's inequality with accelerated particles in a gravitational
observers rotate the directions of the measurement about tiield. Using relativistic quantum theory in curved space-time,
2-axis through the angles®, respectively. That is, the spin we explictly derived the local Wigner rotation during the
component of one particle is measured in tltes®,0, motion of the particle. Considering particles in a circular
-sin @) direction(componentQ’) or in the(0,1,0 direc-  motion in the Schwarzschild space-time, we showed that ac-
tion (componentR’), and the spin component of the other celeration and gravity deteriorate the EPR correlation in the
is measured in the(—cos@,—l,—sinCI))/\s’E direction directions that are the same in nonrelativistic theory, and
(componentS’) or in the (cos®,-1,sin®)/2 direction apparently decrease the degree of the violation of Bell’s in-

(componentT’). Nevertheless, the degree of the violation equality. This fin_ding indicates ne?ther a breakdoyvr) of the
of Bell's inequality still decreases as nonlocal correlation nor a restoration of local realistic theo-

_ ries. In fact, if the spins are measured in appropriately chosen
(Q'SNY+(R'S"Y+(R'T)Y-(Q'T)y=2\2 cog A, different directions, we can obtain the perfect anticorrelation
(70) and the maximal violation of Bell's inequality. Our results
mean that, in order to utilize the nonlocal correlation and the
due to acceleration and gravity. Of course, local realisticviolation of Bell’s inequality for quantum communication,
theories cannot be restored, since Eff) is a consequence we must take account of the relativistic effect by adjusting
of local unitary operations. This decrease means that it is the directions of measurement; otherwise, the accuracy of
different set of directions that maximally violates Bell's in- quantum communication is reduced. In principle, we need
equality. To utilize the violation of Bell's inequality for information about the four-velocity and the vierbein in order
guantum communication, the observers must take into ador the communication to be perfect.
count the general-relativistic effects arising from acceleration Moreover, we showed that near the event horizon even a
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small uncertainty in the identification of observers’ positionsto the ability to communicate nonlocally in a curved space-
results in a fatal error in identifying the measurement directime using an EPR pair of spins.

tion needed to maintain the perfect EPR correlation, because

of an extremely rapid spin precession. In particular, static
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