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For quantum communication in a gravitational field, the properties of the Einstein-Podolsky-Rosen(EPR)
correlation are studied within the framework of general relativity. Acceleration and gravity are shown to
deteriorate the perfect anticorrelation of an EPR pair of spins in thesamedirection, and apparently decrease the
degree of the violation of Bell’s inequality. To maintain the perfect EPR correlation and the maximal violation
of Bell’s inequality, observers must measure the spins in appropriately chosendifferent directions which
depend on the velocity of the particles, the curvature of the space-time, and the positions of the observers. Near
the event horizon of a black hole, the appropriate directions depend so sensitively on the positions of the
observers that even a very small uncertainty in the identification of the observers’ positions leads to a fatal error
in quantum communication, unless the observers fall into the black hole together with the particles.
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I. INTRODUCTION

Entanglement is a strange feature of quantum theory and
gives rise to a nonlocal correlation called the Einstein-
Podolsky-Rosen(EPR) correlation[1,2]. The EPR correla-
tion was originally discussed to address the foundation of
quantum theory. However, it is now widely accepted as a
vital resource in quantum communication such as quantum
teleportation[3] and quantum cryptography[4,5]. Thus, to
perform precise quantum communication, we must under-
stand the properties of the EPR correlation in various physi-
cal situations. Recently, a number of papers[6–12] have dis-
cussed how entanglement is affected by the Lorentz
transformation in the regime of special relativity[13]. For
example, the present authors discussed the EPR correlation
with moving observers who share a common rest frame[8].
In that study, we showed that the perfect anticorrelation of an
EPR pair of spins in thesamedirection deteriorates in the
observers’ rest frame, and that the degree of the violation of
Bell’s inequality[14,15] decreases apparently as the velocity
of the observers increases. To utilize the perfect EPR corre-
lation and the maximal violation of Bell’s inequality, the
moving observers must measure the spins in appropriately
chosendifferentdirections; the choice of such directions de-
pends on the velocity of the observers and on that of the
particles.

In this paper, we extend these considerations to a regime
of general relativity by introducing a gravitational field. In
general relativity, a gravitational field is represented by a
curved space-time, which entails a breakdown of the global
rotational symmetry. A spin is, on the other hand, known to
represent the rotational symmetry of a system. Thus, the spin
in general relativity can be defined only locally by invoking
the local rotational symmetry of the local inertial frame. In
the present paper, we show explicitly how to extract thenon-
local correlation from thelocally defined spins. We also in-
vestigate how to extract the nonlocal correlation beyond the
event horizon, which arises in strong gravitational fields and
uniquely features the problem of general relativity.

As a consequence of the local definition, a particle mov-

ing in curved space-time is accompanied by a precession of
its spin due to the acceleration of the particle by an external
force and due to the difference between local inertial frames
at different points. These effects of the particle’s motion re-
sult in a continuous succession of local Lorentz transforma-
tions. Since a Lorentz transformation rotates the spin of the
particle according to the Wigner rotation[13], the motion of
the particle leads to a continuous succession of local Wigner
rotations of the spin, producing spin precession. Spin preces-
sion caused by acceleration may be viewed as a generalized
Thomas precession in curved space-time. On the other hand,
spin precession caused by a change in the local inertial frame
is an effect of space-time curvature.

Applying both forms of spin precession to a relativistic
EPR state near the Schwarzschild black hole, we show that
acceleration and gravity deteriorate the perfect anticorrela-
tion in directions that would be the same as each other if the
space-time were flat, and that they apparently decrease the
degree of the violation of Bell’s inequality, as in the case of
moving observers in special relativity[8]. To exploit the per-
fect EPR correlation and the maximal violation of Bell’s in-
equality, the observers must measure the spins in appropri-
ately chosen different directions. Identification of the
appropriate directions depends on the velocity of the par-
ticles, the curvature of the space-time, and the positions of
the observers. Surprisingly, while the parallel transport in
general relativity can define which directions are the same as
each other in curved space-time[16], the appropriate direc-
tions arenot the same as each other even in this sense. We
also show that, near the event horizon of the black hole, the
appropriate directions depend quite sensitively on the posi-
tions of the observers, because the spin precession induced
by the particle’s motion becomes very rapid there. Therefore,
even a very small uncertainty in the identification of the
observers’ positions leads to a fatal error in quantum com-
munication near the event horizon. In particular, static ob-
servers cannot extract the EPR correlation from circularly
moving particles unless they can find their own positions
with infinite accuracy. To exploit the EPR correlation on(and
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beyond) the event horizon, the observers must fall into the
black hole together with the particles.

An interesting distinction between the present general-
relativistic problem and the special-relativistic one
[6–8,10,12] is that in the former the Lorentz transformation
arises from the motion of the particle, not from that of the
observer, because neither the general coordinate system nor
the local inertial frame is changed at each point. This means
that we could extend previous work on special-relativistic
quantum information to the regime of general relativity only
by considering moving particles in a gravitational field. Re-
cently, quantum communications with accelerated observers
have been discussed[17,18] using the Davies-Unruh effect
[19] in Minkowski space-time. However, their protocols
have no special-relativistic analogy, since they do not in-
volve the Lorentz transformation. Actually, their resources
are not the entanglement between spins.

This paper is organized as follows. Section II formulates a
spin-1/2 particle in a curved space-time and shows a spin
precession induced by the motion of the particle. As an ex-
ample, the Schwarzschild space-time is considered. Section
III discusses the EPR correlation and Bell’s inequality in the
Schwarzschild space-time, and explains how to extract the
EPR correlation on and beyond the event horizon subject to
an uncertainty in the identification of observers’ positions.
Section IV summarizes our results.

II. SPIN IN CURVED SPACE-TIME

A. Local inertial frame

In general relativity, a gravitational field is represented by
a curved space-time with metricgmnsxd. To define a spin in
the curved space-time, we introduce a local inertial frame at
each point using a vierbein(or a tetrad) ea

msxd and its inverse
ea

msxd defined by[20]

ea
msxdeb

nsxdgmnsxd = hab s1d

and

ea
msxdea

nsxd = dm
n, ea

msxdeb
msxd = da

b, s2d

wherehab=diags−1,1,1,1d is the Minkowski metric. Here
and henceforth, it is assumed that Latin letters run over
the four inertial-coordinate labels0,1,2,3; Greek letters
run over the four general-coordinate labels; and repeated
indices are to be summed. The general-coordinate labels
are lowered bygmnsxd and raised by its inverse,gmnsxd,
defined by gmrsxdgrnsxd=dm

n. The inertial-coordinate la-
bels are lowered byhab and raised by its inverse,hab,
defined byhachcb=da

b. The vierbein represents the coor-
dinate transformation from the general coordinate system
xm to the local inertial framexa at each point. Therefore,
the vierbein and its inverse transform a tensor in the gen-
eral coordinate system into one in the local inertial frame,
and vice versa. For example, a tensorVmn

rsxd in the gen-
eral coordinate system can be transformed into that in the
local inertial frame at xm via the relation Vab

csxd
=ea

msxdeb
nsxdec

rsxdVmn
rsxd. Clearly, the choice of the local

inertial frame is not unique, since the inertial frame re-

mains inertial under the Lorentz transformation. The
choice of the vierbein therefore has the same degree of
freedom known as the local Lorentz transformation. In
fact, definitions s1d and s2d remain unaltered under the
local Lorentz transformation, i.e.,

ea
msxd → e8a

msxd = La
bsxdeb

msxd, s3d

ea
msxd → e8a

msxd = La
bsxdeb

msxd, s4d

whereLa
bsxd=hach

bdLc
dsxd and La

csxdLb
dsxdhcd=hab. Al-

though this transformationLa
bsxd is a Lorentz transforma-

tion, it has no connection with the Lorentz transformation
that is included as a special case in the general coordinate
transformation.

Using the local Lorentz transformation, we can define a
particle with spin 1/2 in curved space-time. It is well known
that a “particle” is not defined uniquely in quantum field
theory in curved space-time[21], since the “time” coordinate
to define the positive energy is not unique; this nonunique-
ness is an origin of particle creation such as Hawking radia-
tion [22]. However, in the present formulation, our particle is
specified by the vierbeine0

msxd, which relates the local time
to a global time. A spin-1/2 particle in curved space-time is
then defined as a particle whose one-particle states furnish
the spin-1/2 representation of the local Lorentz transforma-
tion, not of the general coordinate transformation. In fact, the
Dirac field in the curved space-time[21] is spinor under the
local Lorentz transformation, while it is scalar under the gen-
eral coordinate transformation. More specifically, consider a
massive spin-1/2 particle moving with four-velocityumsxd
=dxm /dt, which is normalized as

umsxdumsxd = − c2. s5d

The four-momentum is given bypmsxd=mumsxd, with m be-
ing the mass of the particle. Accordingly, the four-
momentum in the local inertial frame becomespasxd
=ea

msxdpmsxd using the vierbein. In the local inertial frame at
point xm, the one-particle state in quantum theory is specified
using the third componentss=↑ ,↓d of the spin as
upasxd ,s ;xl, as in special relativity. This state indicates not a
localized state atxm with definite momentumpasxd, but
rather an extended state whose momentum ispasxd if it is
viewed in the local inertial frame atxm. By definition, the
state upasxd ,s ;xl transforms as the spin-1/2 representation
under the local Lorentz transformation. Note that, in the case
of special relativity, a one-particle stateupa,sl in the spin-
1/2 representation transforms under a Lorentz transforma-
tion La

b as f23,24g

UsLdupa,sl = o
s8

Ds8s
s1/2d

„WsL,pd…uLpa,s8l, s6d

whereD
s8s

s1/2d(WsL ,pd) is a 232 unitary matrix that rotates
the spin of the particle according to the Wigner rotation
Wa

bsL ,pd. The explicit form of the Wigner rotation is given
by
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Wa
bsL,pd = fL−1sLpdL Lspdga

b s7d

with a standard Lorentz transformationLa
bspd,

L0
0spd = g,

L0
ispd = Li

0spd = pi/mc,

Li
kspd = dik + sg − 1dpipk/upW u2, s8d

whereg=ÎupW u2+m2c2/mc and i ,k=1,2,3.Therefore, in the
case of the curved space-time, the one-particle state
upasxd ,s ;xl transforms under a local Lorentz transformation
La

bsxd as

U„Lsxd…upasxd,s;xl = o
s8

Ds8s
s1/2d

„Wsxd…uLpasxd,s8;xl,

s9d

whereWa
bsxd;Wa

b(Lsxd ,psxd) is the local Wigner rotation.
Instead of the one-particle stateupasxd ,s ;xl, we could

employ Dirac’s four-component spinor, which also repre-
sents a spin-1/2 particle. These two are equivalent as far as
Lorentz-transformation properties are concerned. For ex-
ample, the case of moving observers[8] in special relativity
was calculated equivalently using Dirac’s spinor[7].

B. Spin precession

Since the spin of a particle is defined locally relative to
the local inertial frame, we next consider the change of the
spin when a particle moves from one point to another in
curved space-time. After an infinitesimal proper timedt, the
particle moves to a new pointx8m=xm+umsxddt. The four-
momentum of the particle then becomespasx8d=pasxd
+dpasxd in the local inertial frame at the new point, because
of changes in both momentum and local inertial frame:

dpasxd = dpmsxdea
msxd + pmsxddea

msxd. s10d

The change in the momentum is given by

dpmsxd = unsxddt ¹ np
msxd = mamsxddt, s11d

where

amsxd = unsxd ¹ nu
msxd s12d

is the acceleration due to an external forcesexcluding the
gravityd. Since pmsxdpmsxd=−m2c2 and pmsxdamsxd=0 from
Eq. s5d, we obtain

dpmsxd = −
1

mc2famsxdpnsxd − pmsxdansxdgpnsxddt. s13d

On the other hand, the change in the local inertial frame is
given by

dea
msxd = unsxddt ¹ ne

a
msxd = − unsxdvn

a
bsxdeb

msxddt

; xa
bsxdeb

msxddt, s14d

where

vm
a

bsxd = − eb
nsxd ¹ mea

nsxd = ea
nsxd ¹ meb

nsxd s15d

is the connection one-formsor a spin connectiond f20g. The
second equality in Eq.s15d results from definitions1d and
¹mgnrsxd= ¹ mhab=0, giving xabsxd=−xbasxd. Substituting
Eqs.s13d and s14d into Eq. s10d, we obtain

dpasxd = la
bsxdpbsxddt, s16d

where

la
bsxd = −

1

mc2faasxdpbsxd − pasxdabsxdg + xa
bsxd. s17d

This is an infinitesimal local Lorentz transformation, since
labsxd=−lbasxd. That is, when the particle moves, the mo-
mentum in the local inertial frame transforms under the local
Lorentz transformation

La
bsxd = da

b + la
bsxddt. s18d

Using the unitary operator corresponding to this local
Lorentz transformation, the stateupasxd ,s ;xl is now de-
scribed asU(Lsxd)upasxd ,s ;x8l in the local inertial frame at
the new pointx8m. From Eq. (9), the spin is then rotated
according to the local Wigner rotationWa

bsxd. For the infini-
tesimal Lorentz transformation(18), the infinitesimal Wigner
rotation becomes

Wa
bsxd = da

b + qa
bsxddt, s19d

whereq0
0sxd=q0

isxd=q i
0sxd=0 and

q i
ksxd = l i

ksxd +
l i

0sxdpksxd − lk0sxdpisxd
p0sxd + mc

. s20d

Its spin-1/2 representation is

Ds8s
s1/2d

„Wsxd… = I +
i

2
fq23sxdsx + q31sxdsy + q12sxdszgdt

s21d

with the Pauli matriceshsx,sy,szj and the unit matrixI. We
thus obtain the formula for upasxd ,s ;xl
=U(Lsxd)upasxd ,s ;x8l as

U„Lsxd…upasxd, ↑ ;x8l

= S1 +
i

2
q12sxddtDupasx8d, ↑ ;x8l −

1

2
fq31sxd − iq23sxdg

3dtupasx8d, ↓ ;x8l, s22d

U„Lsxd…upasxd, ↓ ;x8l =
1

2
fq31sxd + iq23sxdgdtupasx8d, ↑ ;x8l

+ S1 −
i

2
q12sxddtDupasx8d, ↓ ;x8l.

s23d

We emphasize that the change of the spinqa
bsxd is equal

neither toxa
bsxd nor to la

bsxd.
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By iterating the infinitesimal transformation, we find a
transformation formula for a finite proper time. This be-
comes a Dyson series as in the time-dependent perturbation
theory, sincela

bsxd’s at different points do not necessarily
commute with each other. Suppose that the particle moves
along a pathxmstd from xi

m=xmstid to xf
m=xmst fd. Dividing

h=t f −ti into N parts withxskd
m ;xm(ti +shk/Nd) and applying

the infinitesimal Lorentz transformation(18) to each part, we
obtain the Lorentz transformation for the momentum in the
local inertial frame as

La
bsxf,xid = lim

N→`
p
k=0

N Fda
b + la

bsxskdd
h

N
G

= T expFE
ti

tf

la
b„xstd…dtG , s24d

whereT is the time-ordering operator, and the exponential
refers not to the exponential of each component but to that of
the whole matrix. The corresponding Wigner rotation is then
given by

Wa
bsxf,xid = lim

N→`
p
k=0

N Fda
b + qa

bsxskdd
h

N
G

= T expFE
ti

tf

qa
b„xstd…dtG . s25d

This formula can be proven by noting that

Wa
bsL1L2,pd = fWsL1,L2pdWsL2,pdga

b s26d

from the definitions7d, and that

Fda
b + la

bsxskdd
h

N
Gpbsxskdd = pasxsk+1dd s27d

from the definition ofla
bsxd.

C. Schwarzschild space-time

As an illustrative example in general relativity, we con-
sider the Schwarzschild space-time[25], which is the unique
spherically symmetric solution of Einstein’s equation in
vacuum. In the spherical coordinate systemst ,r ,u ,fd, the
metric of this space-time is given by

ds2 = gmnsxddxmdxn

= − fsrdc2dt2 +
1

fsrd
dr2 + r2sdu2 + sin2 udf2d, s28d

where

fsrd = 1 −
rs

r
, s29d

and the parameterrs is called the Schwarzschild radius. At
this radiusr =rs, the Schwarzschild space-time has an event
horizon where no displacementdxm=sdt,dr ,du ,dfd can be
timelike ds2,0 because offsrsd=0. The singularity of the
metric at the event horizon means not a physical singularity

but a breakdown of the coordinate systemst ,r ,u ,fd. The
inside of the event horizonr , rs is the Schwarzschild black
hole whose mass is given byM =c2rs/2G. In the Schwarzs-
child space-time, it is convenient to choose vierbeins1d such
that

e0
tsxd =

1

cÎfsrd
, e1

rsxd = Îfsrd,

e2
usxd =

1

r
, e3

fsxd =
1

r sin u
, s30d

and all the other components are zero. In the following dis-
cussions, only nonzero components will be shown. At each
point, the 0-, 1-, 2-, and 3-axes are parallel to thet, r, u, and
f directions, respectively. This vierbein represents a static
local inertial frame at each point, because all the components
are independent oft and because the componentsei

tsxdsi
=1,2,3d ande0

asxdsa=r ,u ,fd are zero. The inverse of vier-
bein (2) is then given by

e0
tsxd = cÎfsrd, e1

rsxd =
1

Îfsrd
,

e2
usxd = r, e3

fsxd = r sin u. s31d

A straightforward calculation shows that the connection one-
form (15) becomes

vt
0

1sxd = vt
1

0sxd =
crs

2r2 , s32d

vu
1

2sxd = − vu
2

1sxd = − Îfsrd, s33d

vf
1

3sxd = − vf
3

1sxd = − Îfsrdsin u, s34d

vf
2

3sxd = − vf
3

2sxd = − cosu. s35d

In this Schwarzschild space-time, let us consider a par-
ticle in a circular motion with a radiusrs.rsd and constant
velocity rdf /dt;vÎfsrd on the equatorial planeu=p /2.
The four-velocity of this particle is given by

utsxd =
coshj

Îfsrd
, ufsxd =

c sinh j

r
, s36d

wherej is a rapidity in the local inertial frame defined by

v
c

= tanhj. s37d

In order for the particle to move in this way, we must apply
an external force against the centrifugal force and the grav-
ity. The accelerations12d due to this external force then be-
comes

arsxd = −
c2 sinh2 j

r
F1 −

rs

2rf srd
coth2 jG fsrd. s38d
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Now, after an infinitesimal proper timedt, the particle
moves by an angledf=ufsxddt as depicted in Fig. 1. How-
ever, the change in the local inertial frame(14) is not a trivial
rotation about the 2-axis,

w1
3sxd = − w3

1sxd = ufsxd =
c sinh j

r
, s39d

since in general relativity parallel transport that depends on
the space-time curvature has to be invoked in order to com-
pare local inertial frames at different points. The definition
s14d shows that the change in the local inertial frame consists
of a boost along the 1-axis and a rotation about the 2-axis,

x0
1sxd = x1

0sxd = −
crs coshj

2r2Îfsrd
, s40d

x1
3sxd = − x3

1sxd =
c sinh jÎfsrd

r
. s41d

The infinitesimal Lorentz transformations17d then becomes

l0
1sxd = l1

0sxd = −
c coshj sinh2 j

r
F1 −

rs

2rf srdGÎfsrd,

s42d

l1
3sxd = − l3

1sxd =
c cosh2 j sinh j

r
F1 −

rs

2rf srdGÎfsrd,

s43d

which also consists of a boost along the 1-axis and a rotation
about the 2-axis. Nevertheless, the momentum in the local
inertial frame is constant, pasxd=smc coshj ,0 ,0 ,
mc sinh jd, pointing to the 3-axis. Finally, the change of
the spin defined by Eq.s20d becomes the rotation about
the 2-axis through an angle

q1
3sxd = − q3

1sxd =
c coshj sinh j

r
F1 −

rs

2rf srdGÎfsrd,

s44d

as illustrated in Fig. 1. It is important to note that

qa
bsxd Þ la

bsxd Þ xa
bsxd Þ wa

bsxd; s45d

these three nonequalities result from the boost part ofla
bsxd,

the acceleration of the particle, and the curvature of the
space-time, respectively.

To illustrate this result, we consider a special case ofrs
=0, i.e., Minkowski space-time. In this case, the change in
the local inertial frame is reduced to the rotation about the
2-axis through an angle

x1
3sxd = − x3

1sxd =
c sinh j

r
, s46d

which is nothing but the trivial rotations39d. The change of
the spin is also reduced to the rotation about the 2-axis
through an angle

q1
3sxd = − q3

1sxd =
c coshj sinh j

r
. s47d

The difference between Eqs.s46d and s47d gives rise to a
precession of the spin called the Thomas precession. When
v /c!1, the precession angle perdt=dt coshj becomes

fq3
1sxd − x3

1sxdgdt , −
va

2c2dt, s48d

wherea;uarsxdu=c2 sinh2 j / r.

III. EPR CORRELATION AND BELL’S INEQUALITY

We now discuss how to exploit the EPR correlation for
quantum communication using accelerated particles in a
gravitational field. Specifically, we consider a pair of circu-
larly moving particles in the Schwarzschild space-time, as
discussed in the preceding section.

A. EPR correlation

Consider two observers and an EPR source on the equa-
torial planeu=p /2 at a radiusrs.rsd with azimuthal angles
±F (observers) and 0(EPR source), as illustrated in Fig. 2.
The observers and the EPR source are assumed to be static
[“at rest” in the coordinate systemst ,r ,u ,fd] and to use the
static local inertial frame(30) to measure or prepare the spin
state. Note that the inertial frame is defined at each instant,
since the observers and EPR source are accelerated to keep
staying at a constant radius. First, the EPR source emits a
pair of entangled particles in opposite directions with con-
stant four-momentap±

a=smc coshj ,0 ,0 , ±mc sinh jd in the
spin-singlet state,

1
Î2

fup+
a, ↑ ;0lup−

a, ↓ ;0l − up+
a, ↓ ;0lup−

a, ↑ ;0lg, s49d

where for notational simplicity we write only thef coordi-
nate in the arguments. After a proper timerF /c sinh j, each

FIG. 1. A spin in a circular motion. At each point, the 1- and
3-axes are parallel to the radial and tangential directions, respec-
tively.
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particle reaches the corresponding observer. Using Eq.
s44d, the Wigner rotations25d becomes a rotation about
the 2-axis,

Wa
bs±F,0d =1

1 0 0 0

0 cosQ 0 ±sin Q

0 0 1 0

0 7sin Q 0 cosQ
2 , s50d

where the angleQ is given by

Q = F coshjF1 −
rs

2rf srdGÎfsrd. s51d

Note that we do not need the time-ordering operatorT in this
example, sinceqa

bsxd is constant during the motion. This
Wigner rotation is represented by using the Pauli matrixsy
as

Ds8s
s1/2d

„Ws±F,0d… = expS7 i
sy

2
QD . s52d

Therefore, in the local inertial frames atf=F and −F, the
state is described as

1
Î2

fcosQsup+
a, ↑ ;Flup−

a, ↓ ;− Fl

− up+
a, ↓ ;Flup−

a, ↑ ;− Fld

+ sin Qsup+
a, ↑ ;Flup−

a, ↑ ;− Fl

+ up+
a, ↓ ;Flup−

a, ↓ ;− Fldg, s53d

as illustrated in Fig. 2. Because the spin-singlet state is
mixed with the spin-triplet state, spin measurements in the
same direction are not always anticorrelated in the local in-
ertial frames atf= ±F se.g., in each 1-axisd. Clearly, this
result includes the trivial rotation of the local inertial frames
±F, as in Eq.s39d. To eliminate this spurious effect, we
rotate the bases atf= ±F about the 2-axis through the
angles7F, respectively, that is,

up±
a, ↑ ; ± Fl8 = cos

F

2
up±

a, ↑ ; ± Fl ± sin
F

2
up±

a, ↓ ; ± Fl,

s54d

up±
a, ↓ ; ± Fl8 = 7 sin

F

2
up±

a, ↑ ; ± Fl + cos
F

2
up±

a, ↓ ; ± Fl.

s55d

Using these bases, the state is written as

1
Î2

fcosDsup+
a, ↑ ;Fl8up−

a, ↓ ;− Fl8

− up+
a, ↓ ;Fl8up−

a, ↑ ;− Fl8d

+ sin Dsup+
a, ↑ ;Fl8up−

a, ↑ ;− Fl8

+ up+
a, ↓ ;Fl8up−

a, ↓ ;− Fl8dg, s56d

where

D = Q − F = FHcoshjF1 −
rs

2rf srdGÎfsrd − 1J . s57d

Now that the trivial rotation is removed in these bases, we
can explicitly see that the relativistic effect deteriorates the
perfect anticorrelation in the directions that would be the
same as each other if the space-time were flat. This deterio-
ration is a consequence of the nonequalityqa

bsxdÞwa
bsxd in

Eq. s45d. Of course, our result does not mean a breakdown of
the nonlocal correlation, since the entanglement is invariant
under local unitary operations. If we take account of the
relativistic effect arising from acceleration and gravity, we
can exploit the perfect anticorrelation for quantum commu-
nication. More specifically, the observers atf= ±F must
rotate the directions of the measurement about the 2-axis
through the angles7Q in their local inertial frames, respec-
tively. It is interesting that the parallel transport in general
relativity f16g doesnot give the directions that maintain the
perfect anticorrelation. This occurs because ofqa

bsxd
Þxa

bsxd in Eq. s45d.
The value ofD as a function ofrs/ r and v /c=tanhj is

shown in Fig. 3. In the nonrelativistic limitv /c→0 and
rs/ r →0, the angleD becomes

D , FS v2

2c2 −
rs

r
D . s58d

The first term is attributed to acceleration and the second to
gravity. Note that they have different signs. Although Eq.
s58d holds only for the nonrelativistic limit, we can draw
from it the following qualitative physical picture: At the spa-
tial infinity r →`, the gravitational field is so weak that the
angleD is positive. However, closer to the event horizon, the
gravitational field becomes stronger, thus makingD smaller.
At a radiusr =r0 defined by

FIG. 2. An EPR gedanken experiment in the Schwarzschild
space-time. Two observers(gray circles) and an EPR source(gray
square) are located atf= ±F and 0, respectively.
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F1 −
rs

2r0fsr0dGÎfsr0d =Î1 −
v2

c2 , s59d

the angleD vanishes, and becomes negative forr , r0 ssee
Fig. 3d. In the limit of v→c, the radiusr0 becomes 3rs/2;
inside this radius, the gravitational field is so strong that the
accelerationarsxd for the circular motion must be in the out-
ward direction for anyv. Right on the event horizonr → rs,
we find D→−`.

B. Uncertainties in observers’ positions

We have shown that the observers can, in principle, utilize
the EPR correlation by adjusting the directions of measure-
ment. Nevertheless, in practice, such adjustments become
difficult near the horizon, since the spin precession(44) is
very rapid there. Suppose a classical or quantum uncertainty
dF exists in the observers’ positionF. The error of the angle
Q to maintain the perfect EPR correlation then becomes

dQ = dFU1 +
D

F
U . s60d

Quantum communication must tolerate this error by some
error-correcting scheme. However, near the horizonr , rs,
dQ can be much larger thanp and thus the observers cannot
determine the directions of measurement clearly enough to
extract the EPR correlation. Therefore, to utilize the EPR
correlation,dF and r must satisfy at least

dF , pU1 +
D

F
U−1

. s61d

At the horizonr =rs, this requirement reduces todF=0 be-
cause the velocity of the spin precessions44d is infinite. This
means that the observers on the horizon could not extract the
EPR correlation from the particles, were it not for the infinite
accuracy ofF. More generally, for a given uncertaintydF,
there exists a radiusrcs.rsd such that static observers at
r , rc cannot extract the EPR correlation from circularly
moving particles.

However, if the observers use different local inertial
frames and different particles, they can extract the EPR cor-
relation even atr , rc. Note that the divergence of the spin
precession(44) originates from the fact that the vierbein(30)
and four-velocity(36) become singular at the horizon. There-
fore, the observers must choose a vierbein and a four-
velocity that avoid the singularities at the horizon. Since
these singularities are connected with the breakdown of the
coordinate systemst ,r ,u ,fd, we adopt the Kruskal coordi-
nate system[25], in which the metric is not singular at the
horizon. The Kruskal coordinatessT,Rd are defined from
st ,rd by

R2 − c2T2 = 4rs
2 fsrd
Fsrd

,
cT

R
= tanhS ct

2rs
D , s62d

where

Fsrd =
rs

r
e−r/rs. s63d

In the Kruskal coordinate systemsT,R,u ,fd, the metric be-
comes

ds2 = − Fsrdc2dT2 + FsrddR2 + r2sdu2 + sin2 udf2d,

s64d

where the radial coordinater is now interpreted as a function
of T andR. In light of this coordinate system, we choose a
new vierbeinẽa

msxd as

ẽ0
Tsxd =

1

cÎFsrd
, ẽ1

Rsxd =
1

ÎFsrd
,

ẽ2
usxd =

1

r
, ẽ3

fsxd =
1

r sin u
, s65d

which is not singular at the horizon. Using the original coor-
dinate systemst ,r ,u ,fd, we find that this vierbein is related
to the static vierbein(30) by a local Lorentz transformation:

ẽa
msxd=L̃a

bsxdeb
msxd, where

L̃a
bsxd =1

1

2rs

ÎFsrd
fsrd

R −
c

2rs

ÎFsrd
fsrd

T 0 0

−
c

2rs

ÎFsrd
fsrd

T
1

2rs
ÎFsrd

fsrd
R 0 0

0 0 1 0

0 0 0 1

2 .

s66d

Since this Lorentz transformation is a boost along the 1-axis
parallel to ther direction, the new local inertial frame falls
into the black hole whenT.0. To perform measurements in
this local inertial frame, the observers also must fall into the
black hole. Similarly, we choose the four-velocity of par-
ticles as

FIG. 3. The angleD as a function ofrs/ r andv /c=tanhj. The
dotted line at the bottom is the radiusr0, whereD becomes 0.uD /Fu
is on the order of 10−9 on the Earth ifv!10 km/s. However, it
becomes infinite asr → rs or v→c.
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ũTsxd =
coshj̃
ÎFsrd

, ũfsxd = ±
c sinhj̃

r
, s67d

which is not singular at the horizon. Sincep̃1sxd
= ẽ1

msxdũmsxd=0, the particles also fall into the black hole
with the local inertial frames65d, while moving in the ±f
directions. With the vierbeins65d and four-velocitys67d, we
obtain the local Wigner rotation

q̃1
3sxd = − q̃3

1sxd = ±
c coshj̃sinhj̃

r
F3 +

r

rs
GÎFsrdR

4rs
,

s68d

instead of Eq.s44d. Since this precession is not singular at
the horizon, the observers on the horizon can extract the EPR
correlation from the particles without the infinite accuracy of
F. Furthermore, they can extract the EPR correlation beyond
the horizonr , rs suntil the physical singularityr =0d.

C. Bell’s inequality

We next consider Bell’s inequality using the circularly
moving particles(36) in the static local inertial frame(30).
Suppose that the spin component of one particle is measured
in the s1,0,0d direction (componentQ) or in the s0,1,0d
direction (componentR) in the local inertial frame atf
=F, and suppose that the spin component of the other is
measured in thes−1,−1,0d /Î2 direction (componentS) or
in the s1,−1,0d /Î2 direction(componentT) in the local in-
ertial frame atf=−F. This set of observables gives rise to
the maximal violation of Bell’s inequality for the spin-singlet
state in the usual case. However, for the circularly moving
particles in the Schwarzschild space-time, the degree of the
violation of Bell’s inequality apparently decreases as

kQSl + kRSl + kRTl − kQTl = 2Î2 cos2Q. s69d

Again, this result includes the effect of the trivial rotations of
the local inertial frames ±F. To get rid of this effect, the
observers rotate the directions of the measurement about the
2-axis through the angles7F, respectively. That is, the spin
component of one particle is measured in thescosF ,0 ,
−sin Fd direction scomponentQ8d or in the s0,1,0d direc-
tion scomponentR8d, and the spin component of the other
is measured in thes−cosF ,−1,−sinFd /Î2 direction
scomponentS8d or in the scosF ,−1,sinFd /Î2 direction
scomponentT8d. Nevertheless, the degree of the violation
of Bell’s inequality still decreases as

kQ8S8l + kR8S8l + kR8T8l − kQ8T8l = 2Î2 cos2 D,

s70d

due to acceleration and gravity. Of course, local realistic
theories cannot be restored, since Eq.s70d is a consequence
of local unitary operations. This decrease means that it is a
different set of directions that maximally violates Bell’s in-
equality. To utilize the violation of Bell’s inequality for
quantum communication, the observers must take into ac-
count the general-relativistic effects arising from acceleration

and gravity. More specifically, the spin component of one
particle must be measured in thescosQ ,0 ,−sinQd direc-
tion or in thes0,1,0d direction in the local inertial frame
at f=F, and the spin component of the other must be
measured in thes−cosQ ,−1,−sinQd /Î2 direction or in
the scosQ ,−1,sinQd /Î2 direction in the local inertial
frame atf=−F.

However, in practice, it becomes difficult to observe the
violation of Bell’s inequality when an uncertainty inF is
near the horizon. Even if the directions of measurement are
adjusted so that Bell’s inequality is maximally violated, the
error inQ decreases the degree of violation as 2Î2 cos2 dQ.
This value must be greater than 2 to verify the violation of
Bell’s inequality. Therefore, from Eq.(60), dF and r must
satisfy at least

dF , Î2U1 +
D

F
U−1

. s71d

For a given uncertaintydF, there exists a radiusrbs.rsd
such that static observers atr , rb cannot observe the viola-
tion of Bell’s inequality from circularly moving particles. To
see the violation of Bell’s inequality atr , rb, the observers
must fall into the black hole together with the particles, using
the vierbeins65d and the four-velocitys67d.

Using a different definition of a relativistic spin, Czachor
[26] obtained a decrease in the degree of violation of Bell’s
inequality. This decrease was caused by the inertial motion
of particles in Minkowski space-time. In contrast to this re-
sult, Bell’s inequality is unaffected except for a trivial rota-
tion in our formulation in that case. Czachor’s effect is thus
different from ours. Terno[27] discussed a relation of differ-
ent choices of relativistic spin operators to the violation of
Bell’s inequalities.

IV. SUMMARY

We considered the EPR correlation and the violation of
Bell’s inequality with accelerated particles in a gravitational
field. Using relativistic quantum theory in curved space-time,
we explictly derived the local Wigner rotation during the
motion of the particle. Considering particles in a circular
motion in the Schwarzschild space-time, we showed that ac-
celeration and gravity deteriorate the EPR correlation in the
directions that are the same in nonrelativistic theory, and
apparently decrease the degree of the violation of Bell’s in-
equality. This finding indicates neither a breakdown of the
nonlocal correlation nor a restoration of local realistic theo-
ries. In fact, if the spins are measured in appropriately chosen
different directions, we can obtain the perfect anticorrelation
and the maximal violation of Bell’s inequality. Our results
mean that, in order to utilize the nonlocal correlation and the
violation of Bell’s inequality for quantum communication,
we must take account of the relativistic effect by adjusting
the directions of measurement; otherwise, the accuracy of
quantum communication is reduced. In principle, we need
information about the four-velocity and the vierbein in order
for the communication to be perfect.

Moreover, we showed that near the event horizon even a
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small uncertainty in the identification of observers’ positions
results in a fatal error in identifying the measurement direc-
tion needed to maintain the perfect EPR correlation, because
of an extremely rapid spin precession. In particular, static
observers on the horizon can extract the EPR correlation
from circularly moving particles only if they have infinite
accuracy as to their own positions. To exploit the EPR cor-
relation on and beyond the horizon, the observers must
choose a four-velocity and vierbein that are not singular at
the horizon, and thus the observers must fall into the black
hole together with the particles. This example demonstrates
that the choices of four-velocity and vierbein are important

to the ability to communicate nonlocally in a curved space-
time using an EPR pair of spins.
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