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The importance of feedback control is being increasingly appreciated in quantum physics and applications.
This paper describes the use of optimal control methods in the design of quantum feedback control systems,
and in particular the paper formulates and solves a risk-sensitive optimal control problem. The resulting
risk-sensitive optimal control is given in terms of an unnormalized conditional state, whose dynamics include
the cost function used to specify the performance objective. The risk-sensitive conditional dynamic equation
describes the evolution of our knowledge of the quantum system tempered by our purpose for the controlled
quantum system. Robustness properties of risk-sensitive controllers are discussed and an example is provided.
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I. INTRODUCTION

Optimal control theory provides a systematic approach to
controlling system design that is widely used. A cost function
is formulated by the designer that encodes the desired per-
formance of the system as its minimum, and then the cost is
minimized to obtain the desired controller. Perhaps the most
famous example is Kalman’slinear quadratic Gaussian
(LQG) regulator problem, where the cost criterion is an av-
erage of an integral,

JLQG = ESo
k=0

M−1

sxk8Pxk + uk8Quk + xM8 PMxMdD , s1d

where the cost is an expectationE of an integral,xk anduk
are, respectively, the state and control variablessvectorsd,
andP, Q, andPM are weighting matrices.1 The cost criterion
s1d is an example of what is sometimes called arisk-neutral
criterion. The statesor phase spaced variablexk is part of the
model of the classical physical system being controlled. In
general, the controller has only partial access to state infor-
mation, with measurements corrupted by noise. Kalman’s
optimal LQG feedback controller is an explicit function of
the conditional state and covariance. It is dynamic, since the
conditional state and covariance evolve in time via the Kal-
man filter ssee, e.g.,f1,2g, and the Kalman filter does not
involve the cost function in any way; it gives the optimal
mean square state estimate independently of any control ob-
jective. Interestingly, the function giving the optimal feed-
back control is the same as for an analogous problem with
full state information, viz., multiplication by a gain matrix
determined by solving a Riccati equation. Kalman’s optimal
LQG controller is the paradigm example of the so-called
separation structure, where the controller is decomposed
into an estimation partsfilteringd and a control part, as illus-
trated in Fig. 1.

Over the past 20 or so years, another type of optimal

control problem has generated considerable interest, viz.,lin-
ear exponential quadratic Gaussian(LEQG) optimal con-
trol, or risk-sensitiveoptimal control,[3–5]. In this average
of the exponential of an integral problem, the cost is of the
form

JLEQG = EFexpSo
k=0

M−1

sxk8Pxk + uk8Qukd + xM8 PMxMDG . s2d

In this case the optimal feedback control is an explicit func-
tion of a dynamical quantity closely related to the conditional
state and covariance, but given by dynamics that include
terms from the cost function. It also has a separation struc-
ture, although in this case the filter depends on the cost func-
tion used to specify the performance objective, and is a
modification of the Kalman filter. One of the major reasons
for the interest in the risk-sensitive problem is its close con-
nections to robust control and minimax gamesf6–8g. Robust
control concerns the desire to design controllers that are ro-
bust with respect to uncertainty, such as model errors and
exogenous disturbancesf9g. Robustness properties of risk-
sensitive controllers are described inf10g.

Risk-neutral, risk-sensitive, and other stochastic control
problems have been considered for problems with a finite
number of states; see, e.g.,[2,11–13]. After an analysis of an
example of a machine replacement problem[12], the authors
concluded that for that problem the risk-neutral controller
was more aggressive than risk-sensitive and related minimax
controllers.

*Electronic address: Matthew.James@anu.edu.au
1If x is a column vector, the notationx8 indicates the transpose, a

row vector. FIG. 1. Feedback controller showing the separation structure.
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Suppose we wish to control a quantum physical system
using real time feedback via a nonquantum feedback system
(say using a digital computer) in some optimal fashion. If
one were to do this using a standard cost criterion, say one
analogous to Kalman’s LQG regulator problem(risk neu-
tral), then one would find that the optimal control is a func-
tion of the conditional(selective) state(a density operator),
as is well known; see, e.g.,[14–17]. The conditional state is
the solution of a stochastic master equation that describes the
evolution of ourknowledgeof the system. This stochastic
master equation is used in two ways:(i) as the model of the
quantum physical system, taking into account the effect of
the measurements, and(ii ) as the dynamics of the filter in the
optimal controller Fig. 1.

The purpose of this paper is to consider the risk-sensitive
optimal control of quantum physical systems. The quantum
systems are modeled by stochastic master equations for the
conditional state. The risk-sensitive criterion is one of a class
of multiplicative cost functions. The optimal solution for this
class of problems has a separation structure(Fig. 1) where
the filter describes the evolution of anunnormalizedcondi-
tional state via a modified stochastic master equation that
contains the cost function used to specify the performance
objective. The optimal control is a function of this unnormal-
ized conditional state. It is important to note that, in contrast
to the risk-neutral case described above, the states and dy-
namics for the quantum physical model and the filter are not
the same. Indeed, the unnormalized conditional dynamic
equation used in the filter describes the evolution of our
knowledgeof the quantum system tempered by ourpurpose
for the controlled quantum system. This type of extension of
the conditional dynamics in quantum physics may merit fur-
ther investigation. We emphasize that the unnormalized con-
ditional state is defined only in the context of the risk-
sensitive and multiplicative control objectives considered
here, where it is used in a specific feedback situation. Again,
we emphasize that(i) the model of the quantum physical
system is the standard stochastic master equation for the con-
ditional state, and(ii ) the filter is described by a modified
stochastic master equation for an unnormalized conditional
state; this modified equation includes terms from the cost
function.

This paper is organized as follows. In Sec. II we carefully
describe the model we use for the controlled quantum sys-
tem. Then in Sec. III we summarize some relevant results for
a risk-neutral optimal control problem and make some com-
ments on the feedback solution. Section IV contains the for-
mulation and dynamic programming solution to the risk-
sensitive and related multiplicative cost optimal control
problems, together with a brief discussion of robustness. The
ideas are illustrated by a simple example of a two-state sys-
tem with feedback. Further developments, applications, and
examples will be given in subsequent papers.

II. THE CONTROLLED QUANTUM SYSTEM

A. Controlled state transfer

We consider a controlled quantum physical system with
inputs u and outputsy. The inputs represent signals or ac-

tions that are applied to the system, such as voltages, forces,
or light pulses. The outputs are signals that result from re-
peated measurements of observable quantities, such as posi-
tion, spin, etc. We will assume, for simplicity, that the mea-
surements are discrete valued. It is sometimes useful to
denote the range of input and output values byU and Y,
respectively.

The state of the quantum system is described by a density
operatorv.2 This state evolves in time as a result of a variety
of factors including the underlying unitary evolution, inter-
action with the environment, the effect of repeated measure-
ments, and feedback control actions. Since measurements are
made, and the outcomes are used to determine control ac-
tions in a feedback context, we are interested in the selective
or conditional evolution of the states. As an example
[18–20], a range of conditional evolutions can be described
by an Ito-typestochastic master equation(SME) of the form

dv = Lfvgdt + MfvgdW s3d

for suitablessuperdoperatorsL andM swhich may depend
on the controlud. Here,dW represents an Ito-type Brownian
motion sWiener processd increment, called an innovation, re-
lated to the measured output valuey by

dy= trhNfvgjdt + dW s4d

for a suitablessuperdoperatorN. If we denote byr the ex-
pected value ofv with respect toW sor yd, we obtain the
master equation, frequently encountered in the analysis of
open systems:

ṙ = Lfrg. s5d

It is conceptually and technically simpler to work in dis-
crete time, and so we will do so in this paper. Effectively, we
will be using a model for sampled-data feedback control of
quantum systems. In this model, measurements are made and
control actions are applied at discrete time instantstk,

3 called
sample times. Continuous time models are of considerable
importance and will be considered elsewhere.

The discrete time model we use for the quantum system is
defined in terms of a(super)operator4 Gsu,yd that depends on
the control inputu and the output measurementy. The idea is
that if the quantum system is in statevk at timek, and at this
time the control valueuk is applied, a measurement outcome
yk+1 will be recorded, and the system will transfer to a new
statevk+1. The probability ofyk+1 is psyk+1uuk,vkd, where

psyuu,vd = kGsu,ydv,Il. s6d

Here, we have used the notation

2Without further qualification, we use the term state to refer to a
positive self-adjoint operator normalized to have trace equal to 1.

3For example,tk=kDt, whereDt is the time between samples, and
k is an integer indicating discrete time values.

4The operatorGsu,yd should preserve self-adjointness and posi-
tivity.
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kv,Bl = trfBvg s7d

to specify thesexpectedd value of an observableB when the
system is in statev. The operatorGsu,yd is assumed to be
normalized, i.e.,

o
yPY

kGsu,ydv,Il = kv,Il = 1,

so thatpsyuu,vd is aprobability distribution, since it satisfies
oypsyuu,vd=1.

Selective or conditional evolution means that the new
statevk+1 depends on the value of the measurementyk+1, and
we write this dependence as follows:

vk+1 = LGsuk,yk+1dvk, s8d

where

LGsu,ydv =
Gsu,ydv
psyuu,vd

. s9d

Equations8d is a discrete time stochastic master equation and
can be viewed, e.g., as the result of integrating an equation of
the forms3d over one time stepsafter substituting fordW in
terms ofdyd.

We denote the average of the conditional statevk with
respect to the measurements byrk. If uk is a deterministic
(nonrandom) input signal, thenrk satisfies the master equa-
tion

rk+1 = o
yPY

Gsuk,ydrk. s10d

Equations8d constitutes our model of the quantum system.
For further information on this framework of operator valued
measures and quantum operations, seef14,21–23g. We now
give some examples.

Example 1.We define the controlled transferGsu,yd by
interleaving open system dynamics and imperfect orthogonal
measurements. The open system dynamics are modeled by a
quantum operation

Euv = o
b

Eb
uvEb

u†, s11d

where the controlled operatorsEb
u satisfy obEb

u†Eb
u= I for all

inputsu. Closed systems are described by the unitary evolu-
tion operationEuv=TuvTu†, where for each input valueu,Tu

is a unitary operator.
The imperfect measurements are modeled as follows. Let

A be a self-adjoint operator with discrete nondegenerate
spectrum specsAd. For aPspecsAd an eigenvalue ofA let ual
denote the normalized eigenvector, and letPa= ualkau denote
the projection onto the eigenspace ofAsPaucl=kaucl uald.
Perfect measurements would correspond toy=a; however, to
reflect the presence of measurement noise in applications we
will assume that when a measurement occurs on the quantum
system, the valuesa and associated projections occur in the
usual (perfect) way, but that knowledge of the outcomes is
corrupted by sensor noise so that the controller(or any ob-
serving device or person) measures a valuey. The measure-

ment y is a random variable, related to the outcomesa via
probability kernelsqsyuad, the probability ofy given thata
occurred. The kernels have the property thatoyqsyuad=1 for
all a. In the case of perfect measurements,qsyuad=1 if y=a,
andqsyuad=0 if yÞa.

The operatorGsu,yd is given by

Gsu,ydv = o
a,b

qsyuadPaEb
uvEb

u†Pa s12d

and the adjoint is given by

G†su,ydB = o
a,b

qsyuadEb
u†PaBPaEb

u, s13d

whereB is an observable. The expressions in this example
can be derived using standard techniques of quantum opera-
tions and discrete time filtering based on Bayes’ rulessee,
e.g.,fs22d, Chap. 2.2,s23d, Chap. 8,s21d, s14d, s2d, Chap. 6,
s1d, Chap. 7gd. j

Example 2.(Two-state system.) We now describe a spe-
cific instance of Example 1, viz., a two-state system and
measurement device, where it is desired to use feedback con-
trol to put the system into a given state. The example is
inspired by a simple quantum feedback example[(24), Sec.
1.3] and an example in stochastic control concerning a ma-
chine replacement problem[12,13].

In [(24), Sec. 1.3], a particle beam is passed through a
Stern-Gerlach device, which results in one beam of particles
in the up state and one beam in the down state. The beam of
particles in the up state is subsequently left alone, while the
beam in the down state is subject to a further device which
will result in a change of spin direction from down to up.
The final outcome of this feedback arrangement is that all
particles are in the up state. Analogous feedback configura-
tions can be constructed using other physical systems, e.g.,
light and polarization measurement.

In what follows we extend the general features of this
example to accommodate repeated noisy measurements.
Physically, the noisy measurements might arise from imper-
fectly separated beams, where a proportion of each beam
contaminates the other, and/or from interference or noise af-
fecting sensors. The example was chosen because the risk-
neutral and risk-sensitive problems can be solved explicitly.
Hence the example provides a concrete illustration of some
ideas concerning quantum feedback control. More substan-
tial examples and applications will be considered elsewhere.

The pure states of the system are of the form

ucl = c−1u− 1l + c1u1l ; Sc−1

c1
D .

The statesu−1l and u1l are eigenstates of the observable

A = S− 1 0

0 1
D , s14d

corresponding to ideal measurement valuesa=−1 and 1. It is
desired to put the system into the state
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u1l = S0

1
D or u1lk1u = S0 0

0 1
D .

We define a controlled transfer operatorGsu,yd as the
following physical process(Fig. 2). First apply a unitary
transformationTu, where the control valueu=0 means to do
nothing, whileu=1 means to flip the states(quantum NOT
gate), i.e.,

Tu =5S
1 0

0 1
D if u = 0,

S0 1

1 0
D if u = 1.

We then make an imperfect measurement corresponding to
the observableA. We model this by an ideal devicese.g.,
Stern-Gerlach, beam splitterd with projection operators

P−1 = S1 0

0 0
D, P1 = S0 0

0 1
D ,

followed by a memoryless channel with error probability
kernels

qs− 1u− 1d = 1 −a,

qs− 1u1d = a,

qs1u− 1d = a,

qs1u1d = 1 −a,

where 0øaø1 is the probability of a measurement errorscf.
f23g, Fig. 8.1d.

The controlled transfer operator is therefore[from Eq.
(12)]

Gsu,ydv = qsyu− 1dP−1T
uvTu†P−1 + qsyu1dP1T

uvTu†P1.

In this example, the controlu can take the values 0 or 1, and
the outputy has values 0 or 1sU=h0,1j ,Y =h0,1jd.

If we write a general density matrix as

v = Sv11 v12

v12
* v22

D , s15d

then the controlled operatorsGsu,yd are given explicitly by

Gs0,− 1dv = Ss1 − adv11 0

0 av22
D ,

Gs0,1dv = Sav11 0

0 s1 − adv22
D ,

Gs1,− 1dv = Ss1 − adv22 0

0 av11
D ,

Gs1,1dv = Sav22 0

0 s1 − adv11
D .

This example is continued in stages in the remainder of the
paper. j

B. Feedback control

In the above description of the quantum system(8), we
have not described how the controlsuk are determined by the
measurementsyk via a feedback controllerK. We now do
this.

Feedback controllers should becausal, i.e., the current
control valueuk cannot depend on future values of the mea-
surementsyk+1,yk+2, . . .. On atime interval 0økøM −1 this
is expressed as follows:

K = hK0,K1, . . . ,KM−1j,

where

u0 = K0,

u1 = K1sy1d,

u2 = K2sy1,y2d, etc.

To simplify notation, we often write sequences
uk1

,uk1+1, . . . ,uk2
asuk1,k1

. Then we can writeuk=Kksy1,kd. A
controller K can be restricted to subintervalskø j øM by
fixing (or omitting) the first arguments in the obvious way.
We denote byK the class of all such feedback controllers.

A feedback controllerK in closed loop with the quantum
system(Fig. 3) operates as follows. The given initial statev0
and controllerK are sufficient to define random sequences of
statesv0,M, inputsu0,M−1, and outputsy1,M over a given time
interval 0økøM iteratively as follows. The control valueu0
is determined byK0 (no observations are involved yet), and
it is applied to the quantum system, which responds by se-
lecting y1 at random according to the distribution

FIG. 2. Two-state system example showing the controlled uni-
tary operatorTu and the noisy measurement device M-a with error
probability a. FIG. 3. Feedback control of quantum system showing a general

feedback controllerK.
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psy1uu0,v0d. This then determines the next statev1 via Eq.
(8). Next u1 is given byK1sy1d and applied to the system.
This process is repeated until the final time.

The controllerK therefore determines controlled stochas-
tic processesvk, uk, andyk on the interval 0økøM. Expec-
tation with respect to the associated probability distribution
is denotedEv0,0

K . The state sequencevk is a controlled Mar-
kov process.

One way a controllerK can be constructed is using a
function

uk = usvk,kd,

wherevk is given by Eq.s8d with initial statev0. This con-
troller is denotedKv0

u . The SME equations8d forms part of
this controller, viz., its dynamics, and must be implemented
with suitable technologyse.g., a digital computerd. Control-
lers of this type are said to have aseparation structure,
where the controller can be decomposed into an estimation
part fi.e., filtering via Eq.s8dg and a control partsi.e., the
function ud. We will see in Sec. III that the optimal risk-
neutral controller is of this formsFig. 6d. In Sec. IV, the
optimal risk-sensitive controller also has a separation struc-
ture, but the filter used is differentsFig. 7d.

The separation structure arises naturally from the dynamic
programming techniques, as we shall see.

Example 3.(Two-state system with feedback, Example 2

continued.) We consider a particular feedback controllerK̄
for a time horizonM =2 defined by

u0 = K̄0 = 0, u1 = K̄1sy1d = H0 if y1 = 1,

1 if y1 = − 1.
s16d

We applyK̄ to the system with initial pure state

uc0l =
1
Î2

u− 1l +
1
Î2

u1l or v0 =
1

2
S1 1

1 1
D . s17d

The result is shown in Table I which displays the resulting
conditional states

v1
su0,y1d = LGsu0,y1dv0,

v2
su0,y1d,su1,y2d = LGsu1,y2dv1

su0,y1d,

and the associated probabilities. Explicitly, the terms shown
in Table I are

p1 = psy1uu0,v0d, p2 = psy2uu1,v1d

v1
s0,−1d = Ss1 − ad 0

0 a
D, v1

s0,1d = Sa 0

0 s1 − ad
D

v2
s0,−1d,s1,−1d = v2

s0,1d,s0,−1d =
1

2
S1 0

0 1
D ,

v2
s0,−1d,s1,1d = v2

s0,1d,s0,1d =
1

a2 + s1 − ad2Sa2 0

0 s1 − ad2D .

Also shown are the nonselective states:

r0 = v0,

r1 = ps− 1uu0,v0dv1
s0,−1d + pS1uu0,v0dv1

s0,1d =
1

2
S1 0

0 1
D ,

r2 = pS− 1u1,v1
s0,−1ddv2

s0,−1d,s1,−1d + ps1u1,v1
s0,−1ddv2

s0,−1d,s1,1d

+ pS− 1u0,v1
s0,1ddv2

s0,1d,s0,−1d + ps1u0,v1
s0,1ddv2

s0,1d,s0,1d

=
1

2
Sa2 + as1 − ad 0

0 as1 − ad + s1 − ad2D .

At time k=0 the controlu=0 is applied. Ify1=−1 is ob-
served, as a result of the imperfect measurement, the system

moves to the statev1
s0,−1d. Sincey1=−1, the controllerK̄ [Eq.

(16)] gives u1=1. This results in the statev2
s0,−1d,s1,−1d or

v2
s0,−1d,s1,1d, depending on the outcome of the second mea-

surementy2. If, on the other hand,y1=1 is observed, the

system moves to the statev1
s0,1d. Sincey1=1, the controllerK̄

[Eq. (16)] gives u1=0, and hencev2
s0,1d,s0,−1d or v2

s0,1d,s0,1d,
again depending on the outcome of the second measurement
y2. This is illustrated in Fig. 4.

These results are consistent with[24], Sec. 1.3. Indeed,
whena=0 (perfect measurements), the feedback system ter-
minates in the desired pure stater2= u1lk1u. The role of feed-
back control is clearly demonstrated here. With imperfect
measurements, 0,a,1, the system terminates in the mixed
stater2 given by Eq.(18), with the degree of mixing(indi-
cating the expected degradation in performance) depending
on the measurement error probability parametera:

TABLE I. State evolution under the controllerK̄.

v0 p1 v1 p2 v2

2as1−ad v2
s0,−1d,s1,−1d

v0
1
2 v1

s0,−1d a2+s1−ad2 v2
s0,−1d,s1,1d

1
2 v1

s0,1d 2as1−ad v2
s0,1d,s0,−1d

a2+s1−ad2 v2
s0,1d,s0,1d

r0=v0 r1 r2

FIG. 4. Physical realization of the two stages of the two-state

system with feedback using controllerK̄. Due to the merging of the
beams in the second stage, we have the intermediate stateṽ2

=v2
s0,−1d,s1,−1d /2+v2

s0,1d,s0,−1d /2 if y2=−1 [with probability 2as1
−ad], or ṽ2=v2

s0,−1d,s1,1d /2+v2
s0,1d,s0,1d /2 if y2=1 [with probability

a2+s1−ad2].
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trr2
2 = fa2 + as1 − adg2 + fas1 − ad + s1 − ad2g2

,

=
H1 if 0 , a , 1,

1 if a = 0.

j

III. RISK-NEUTRAL CONTROL

In this section we summarize dynamic programming re-
sults for a well-known type of finite time horizon optimal
control problem[2,14]. The optimal control problem dis-
cussed here can be considered to be a prototype problem
illustrating measurement feedback in the quantum context.
The dynamic programming methods used in this paper for
solving the optimal control problems are standard, and the
reader is referred to the literature for further information; see,
e.g.,[1,2,23].

We define acost functionto be a non-negative observable
Lsud that can depend on the controlu. The cost function
encodes the designer’s control objective. We also use a non-
negative observableN to define a cost for the final state.

Example 4.(Two-state system with feedback, Example 3
continued.) To set up the cost functionLsud to reflect our
objective of regulating the system to the desired pure state
u1l, we define

X =
1

2
sA − Id = S− 1 0

0 1
D ,

where A is the observable corresponding to the projective
measurements14d. We note that the expected value ofX2 is

k1uX2u1l = trfX2u1lk1ug = 0,

k− 1uX2u − 1l = trfX2u− 1lk− 1ug = 1,

which gives zero cost to the desired state and nonzero cost to
the undesired state. We shall also introduce a cost of control
action, as follows:

csud = H0 if u = 0,

p if u = 1,

wherep.0. This gives a zero cost for doing nothing, and a
nonzero cost for the flip operation. Thus we define the cost
function to be

Lsud = X2 + csudI s19d

and the cost for the final state is defined to be

N = X2.

This modifies our earlier objective of putting the system into
the desired state by including a penalty for control action.

j
Let M .0 be a positive integer indicating a finite time

interval k=0, . . . ,M. Given a sequence of control values
u0,M−1=u0, . . . ,uM−1 and measurementsy1,M =y1, . . . ,yM, de-
fine therisk-neutral cost functionalas

Jv,0sKd = Ev,0
K So

i=0

M−1

kvi,Lsuidl + kvM,NlD , s20d

wherevi , i =0, . . . ,M, is the solution of the system dynamics
s8d with initial statev0=v under the action of a controllerK.
This is an appropriate quantum generalization of the classical
LQG cost s1d. The objective is to minimize this functional
over all measurement feedback controllersKPK.

Following [14] it is convenient to rewrite the cost func-
tional (20). For eachk, given a sequence of control values
uk,M−1=uk, . . . ,uM−1 and measurementsyk+1,M =yk+1, . . . ,yM,
define a random sequence of observablesQk by the recursion
[14], Eq. (3.1)

Qk = G†suk,yk+1dQk+1 + Lsukd, 0 ø k ø M − 1,

QM = N.

When useful, we write

Qk = Qksuk,M−1,yk+1,Md

to indicate dependence on the input and outputs.Qk may be
called acost observable. The cost functionals20d is given by

Jv,0sKd = o
y1,MPYM

kv,Q0fKsy1,Md0,M−1,y1,Mgl. s22d

Here and elsewhere we use abbreviations of the form

Ksy1,Md0,M−1 = sK0,K1sy1d, . . . ,KM−1sy1,M−1dd.

Remark 1.The cost observableQk given by Eq.s21d and the
expression in Eq.s22d is analogous to the familiar Heisen-
berg picture used in quantum physics. It is very natural from
the point of view of dynamic programming, and indeed Eqs.
s20d and s22d are related by iterating Eq.s21d. Here is the
first step:

kv0,Q0l = kv0,G
†su0,y1dQ1 + Lsu0dl

=kv0,Lsu0dl + kGsu0,y1dv0,Q1l

=kv0,Lsu0dl + kv1,Q1lpsy1uu0,v0d,

where v1=LGsu0,y1dv0 and psy1uu0,v0d is given by
Eq. s6d. j

The key idea of dynamic programming is to look at the
current state at a current time 0økøM −1 and to optimize
the remaining cost from the current time to the final time.
This leads to an iterative solution. Accordingly, we define,
for each 0økøM, the cost to go incurred by a controllerK
(restricted tokø l øM −1) to be

Jv,ksKd = o
yk+1,MPYM−k

kv,Qk„Ksyk+1,Mdk,M−1,yk+1,M…l.

s23d

The dynamic programming equation associated with this
risk-neutral problem is

Vsv,kd = inf
uPU

hkv,L„udl + o
yPY

VsLGsu,y…v,k + 1dpsyuu,vdj,
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Vsv,Md = kv,Nl,

where 0økøM −1. This is the fundamental equation from
which the optimality or otherwise of a controller can be de-
termined.

Let V be the solution to the dynamic programming equa-
tion (24). Then for any controllerKPK we have

Vsv,kd ø Jv,ksKd. s25d

If we assume in addition that a minimizer

u*sv,kd P arg min
uPU

hkv,Lsudl

+ o
yPY

V„LGsu,ydv,k + 1…psyuu,vdj s26d

exists5 for all v ,0økøM −1, then the separation structure

controller Kv0

u*
srecall Sec. II B defined by Eq.s26d is opti-

mal, i.e.,

Jv0,0sKv0

u*
d = Vsv0,0d ø Jv0,0sKd s27d

for all KPK.
Example 5.(Two-state system with feedback, Example 4

continued.) We solve the dynamic programming equation
(24) and determine the optimal feedback controls as follows.
For k=M =2 we have

Vsv,2d = kv,X2l = v11

and hence fork=1

Vsv,1d = v11 + minfV0sv,1d,V1sv,1dg,

where V0sv ,1d and V1sv ,1d are given in the Appendix.
Hence we obtain

u*sv,1d = H0 if V0sv,1d ø V1sv,1d,

1 if V0sv,1d . V1sv,1d.

At time k=0 we have

Vsv,0d = v11 + minfV0sv,0d,V1sv,0dg,

where V0sv ,0d and V1sv ,0d are given in the Appendix,
which gives

u*sv,0d = H0 if V0sv,0d ø V1sv,0d,

1 if V0sv,0d . V1sv,0d.

The optimal risk-neutral feedback controller is given by

u0 = Kv0,0
u*

= u*sv0,0d, u1 = Kv0,1
u*

sy1d = u*sv1,1d,

wherev1=LGsu0,y1dv0. Note that the controlu1 depends on
y1 through the conditional statev1 separation structured. A
physical implementation of the quantum system with optimal
risk-neutral feedback is shown in Fig. 5.

Let us consider the special casea=0 andp=0, with initial
state(17). We then find thatV0sv0,0d=V1sv0,0d=0.5, and
hence we takeu*sv0,0d=0, i.e.,u0=0.

Next, if y1=−1 is observed, we havev1= u−1lk−1u ,
V0sv1,1d=1, andV1sv1,1d=0. Hence we takeu*sv1,1d=1,
i.e., u1=1. However, if y1=1 is observed, we havev1
= u1lk1u, V0sv1,1d=0, andV1sv1,1d=1, and hence we take
u*sv1,1d=0, i.e.,u1=0. In either case we achieve the desired
stater2=v2= u1lk1u.

This action is the same as that seen before for the control-

ler K̄. The same controller is obtained for 0,a,0.5 and
p=0, butv2 will be a mixed state. IfpÞ0 the optimal con-

troller Kv0

u*
will result in control actions that in general differ

from those ofK̄. j
Remark 2.Note that the optimal risk-neutral controller

Kv0

u*
determined by Eq.(26) feeds back the conditional state

vk, given by the SME(8), in accordance with its separation
structure, Fig. 6. This means that from the point of view of
optimal risk-neutral control, the best thing to do is to make
use of the filter (8), a dynamical quantity that contains
knowledgeof the quantum system, as obtained by the con-
troller through the measurement process embedded inG. j

Remark 3.A second remark we wish to make here con-

5The notation arg minuPUfsud means the subset of values fromU
minimizing f.

FIG. 5. Physical realization of the two stages of the two-state

system with feedback using the optimal risk-neutral contollerKv0

u*

[with v0 given by Eq. (17), we have u0=u*sv0,0d=0,u1

=u*sv1,1d].

FIG. 6. Optimal risk-neutral controllerKv0

u*
showing separation

structure and states of the physical systemvk and filtervk.
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cerns the well-known concept in control engineering ofdual
control, [2], Chap. 6.8. This concept relates to the dual func-
tion of the measurement feedback controllerK, viz., (i) to
alter the future evolution of the system, and(ii ) to alter the
future values of the available information. The optimal
choice ofK takes both of these factors into account. j

Remark 4.The final remark for this section concernsfeed-
backandrobustness. Feedback is the most important concept
in control engineering, and has a long history going back at
least to the mechanical governors used to regulate the speed
of steam engines. Feedback is used to compensate for distur-
bances and uncertainty, and feedback loops typically enjoy a
robustness margin(e.g., gain margin and phase margin in
classical control engineering), a measure of this compensa-
tion ability. Note that in the absence of disturbances and
uncertainty, feedback is completely unnecessary and control
can be achieved by a prescribed open loop controller. How-
ever, in reality both quantum and classical systems are sub-
ject to disturbances and uncertainty, e.g.,(i) the influence of
the environment,(ii ) model error due to approximation and
unknown parameters, and(iii ) imprecise measurements. In
the quantum context, there is the further complication[26]
that as a consequence of the act of measurement randomness
is introduced, and this could potentially reduce control effec-
tiveness. Measurement feedback control of quantum systems
is fundamentally a stochastic control problem containing
nonclassical characteristics. These considerations underscore
the importance of feedback control and the need for robust-
ness when controlling quantum systems. Robustness issues
will be taken up again in Sec. IV(see Example 9). j

IV. MULTIPLICATIVE COSTS AND RISK-SENSITIVE
CONTROL

We turn now to the risk-sensitive optimal control prob-
lem, the main object of this paper. The risk-sensitive cost
functional we consider, a quantum generalization of LEQG
(2), is

Jv,0
m sKd = Ev,0Sp

k=0

M−1

kvk,e
mLsukdlkvM,emNlD , s28d

wherem.0 is a positive risk parameter,Lsud is a cost func-
tion sas defined in Sec. IIId, andN is a non-negative observ-
able. The conditional statesvk are given by the quantum
system models8d.

Remark 5.The risk-sensitive cost(28), by use of the ex-
ponential function, gives heavy weight to large values of the
cost functions in the exponents. A system controlled by a
controller minimizing this cost is not likely to experience
large values of these quantities. Risk-sensitive controllers are
known to enjoy some robustness properties against uncer-
tainty in the model and external disturbances; see[10] and
Example 9. j

The primary goal in this section is to find the optimal
controller for the risk-sensitive cost functional(28). As
noted, this cost functional is defined in terms of the condi-
tional statevk of the quantum system(8). However, in order
to solve this optimization problem, we need to express the

cost functional in a manner that facilitates the use of optimal
control methods. As in the classical LEQG case, this requires
the introduction of a new state, which in general isunnor-
malized. To define this new unnormalized state, for which we
use the notationv̂ to distinguish such states from normalized
statesv, we need to use possibly nonlinear operators(ob-
servables) B and (super)operatorsR. These nonlinear opera-
tors allow us to formulate and solve a general class of mul-
tiplicative cost optimal control problems for quantum
systems.6

Our risk-sensitive and multiplicative cost functionals can
be defined in terms of(super)operator valued costs Rsud that
satisfy the real multiplicative homogeneity property

Rsudrv̂ = rRsudv̂ s29d

for any real numberr and anyv̂ ,u. The risk-sensitive prob-
lem corresponds to particular choices of operator valued cost
sExample 6d. However, the fundamental equations in this
section are valid for any operator valued costRsud satisfying
Eq. s29d. Note that operator valued costsRsud are not in
general quantum operationsfbecause linearity and the in-
equality kRsudv̂ ,Ilø kv̂ ,Il need not hold in generalg.

Example 6.We give two examples of operator valued
costs.

(i) A specific linear form forRsud is

Rsudv̂ = o
c

Zcsudv̂Zcsud s30d

where hZcsudj is a family of cost functionssSec. IIId. The
adjoint R†sud acts on observablesB via

R†sudB = o
c

ZcsudBZcsud, s31d

and thereby defines a linear functional on unnormalized
states by

kv̂,R†sudBl = o
c

kZcsudv̂Zcsud,Bl s32d

fwe have written this explicitly to facilitate comparison with
Eq. s34d belowg.

(ii ) An operator valued costRsud corresponding to the
risk-sensitive cost(28) can be defined as follows. LetLsud be
a cost function, andm.0. Then set

Rsudv̂ =
kv̂,emLsudl

kv̂,1l
v̂. s33d

Note thatRsud is nonlinear but satisfies the real multiplica-
tive homogeneity conditions29d.

The adjoint operatorR†sud applied to an operatorB is a
nonlinear functional ofv̂ given by

6We denote the value ofB at v̂ by kv̂ ,Bl, extending the notation
(7). The (generalized) adjoint R† of R is defined by kv̂ ,R†Bl
=kRv̂ ,Bl for all v̂ and allB.
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kv̂,R†sudBl =
kv̂,emLsudl

kv̂,1l
kv̂,Bl s34d

fcf. Eq. s32d aboveg.
The relationship betweenRsud and the risk-sensitive cost

(28) will be explained in Example 7 below. j
Given an operator valued costRsud, we shall find it con-

venient to introduce an operatorGRsu,yd defined by

GRsu,yd = Gsu,ydRsud. s35d

In general,GR is not normalized:

o
yPY

kGRsu,ydv̂,Il = kRsudv̂,Il Þ kv̂,Il.

The operatorGR will be used to define a new state evolution
as follows. Define an operatorLG,R by

LG,Rsu,ydv̂ =
GRsu,ydv̂
pRsyuu,v̂d

, s36d

where

pRsyuu,v̂d =
kGRsu,ydv̂,Il

kRsudv̂,Il
. s37d

In general, the stateLG,Rsu,ydv̂ is unnormalized. However,
pRsyuu,v̂d is a probability distribution, since it is easy to
check that

o
yPY

pRsyuu,v̂d = 1.

However, we point out that

kLG,Rsu,ydv̂,Il = kRsudv̂,Il. s38d

This unnormalized state transition operator arises in the dy-
namic programming equation, as we shall see below.

Associated with the operatorLG,R is the dynamics

v̂k+1 = LG,Rsuk,yk+1dv̂k, s39d

whereyk+1 is distributed according to the probability distri-
bution pRsyk+1uuk,v̂kd given by Eq.s37d. This is a controlled
Markov chain, withunnormalizedstatesv̂k. It is a modified
stochastic master equation corresponding to the operatorGR.
Under the action of a controllerKPK the stochastic process
v̂k is determined by Eq.s39d anduk=Kksy1,kd.

The separation structure controller in this case takes the
following form. Given a functionûsv̂ ,kd and initial statev̂0

we define a controllerKv0

û PK by

uk = ûsv̂k,kd,

wherev̂k is given by Eq.s39d, 0økøM, with initial condi-
tion v̂0.

Let M .0 be a positive integer indicating a finite time
intervalk=0, . . . ,M. For eachk, given a sequence of control
valuesuk,M−1=uk, . . . ,um−1 and measurement valuesyk+1,M
=yk+1, . . . ,yM, define random cost observablesGk by the re-
cursion

Gk = R†sukdG†suk,yk+1dGk+1,

GM = F, s40d

where 0økøM −1 andF is a non-negative linear observ-
able. It is evident thatGk is real multiplicative homogeneous
if Gk+1 is [recall Eq.(29)].

We next define themultiplicativecost functional

Jv̂,0
m sKd = o

y1,MPYM

kv̂,G0fKsy1,Md0,M−1,y1,Mgl s41d

whereKPK is a measurement feedback controller.
Lemma 1.The cost functionalJv̂,0

m sKd defined by Eq.(41)
is given by the alternate expression

Jv̂,0
m sKd = Ev̂,0

K fkv̂M,Flg, s42d

where v̂i , i =k, . . . ,M, is the solution of the recursions39d
with initial statev̂0=v̂ under the action of the controllerK.

Proof. We have

kv̂0,G0l = kv̂0,R
†su0dG†su0,y1dG1l = kRsu0dv̂0,Gsu0,y1d†G1l

= kGsu0,y1dRsu0dv̂0G1l = kv̂1,G1dpRsy1uu0,v̂0d,

where v̂1=LG,Rsu0,y1dv̂0 and pRsy1uu0,v̂0d is given by Eq.
s37d. Iterating in this way we see that Eqs.s41d ands42d are
equivalent. These properties use the real multiplicative ho-
mogeneity property ofGk. j

Example 7.[Continuation of Example 6(ii ).] We now
show that whenRsud is given by Eq.(33) and

F = emN,

whereN is a non-negative linear observable, the multiplica-
tive cost functionalJv̂,0

m sKd defined by Eq.s41d equals the
risk-sensitive cost functionals28d.

Proceeding as in the proof of Lemma 1, we have

kv̂0,G0l = kv̂0,R
†su0dG†su0,y1dG1l

= kGsu0,y1dRsu0dv̂0,G1l

= kGsu0,y1dv̂0,G1l
kv̂0,e

mLsu0dl
kv̂0,1l

=
kGsu0,y1dv̂0,G1l/kv̂0,1l
kGsu0,y1dv̂0,1l/kv̂0,1l

kv̂0,e
mLsu0dl

3
kGsu0,y1dv̂0,1l

kv̂0,1l

= kLGsu0,y1dv̂0,G1lkv̂0,e
mLsu0dlpsy1uu0,v̂0d,

where v̂0=v̂0/ sv̂0,1d, LGsu,yd is defined by Eq.s9d, and
psyuu,vd is defined by Eq.s6d. Now if v̂0=v0 is normalized,
with kv0,1l=1, then we have shown that

kv0,G0l = kLGsu0,y1dv0,G1lkv0e
mLsu0dlpsy1uu0,v̄0d

= kv1,G1lkv0,e
mLsu0dlpsy1uu0,v0d,

wherev1=LGsu0,y1dv0 is the normalized state evolving ac-
cording to the quantum system models8d. Note thatkv1,1l
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=1. Continuing in this way we see that Eq.s41d equals the
risk-sensitive cost functionals28d, using Lemma 1.

It can also be checked thatvk and v̂k are related simply
via

v̂k = p
i=0

k−1

kvi,e
mLsuidlvk. s43d

j
To solve the optimal control problem for the cost func-

tional (41), we define the cost to go

Jv̂,k
m sKd = o

yk+1,MPYM−k

kv̂,Gk„Ksyk+1,Mdk,M−1,yk+1,M…l

s44d

and the corresponding dynamic programming equation

Wsv̂,kd = inf
uPUS o

yPY
W„LG,Rsu,ydv̂,k + 1…pRsyuu,v̂dD ,

Wsv̂,Md = kv̂,Fl, s45d

where 0økøM −1.
Theorem 1.Let Wsv̂ ,kd, 0økøM, be the solution of the

dynamic programming equation(45). (i) Then for anyK
PK we have

Wsv̂,kd ø Jv̂,k
m sKd. s46d

sii d Assume in addition that the minimizer

û*sv̂,kd P arg min
uPU H o

yPY
W„LG,Rsu,ydv̂,k + 1…pRsyuu,v̂dJ

s47d

exists for allv̂ ,0økøM −1. Then the separation structure

controller Kv0

û*
defined by Eq.s47d is optimal for problem

s41d, i.e., J
v̂0,0

sKdùJv̂,0
m sKv0

û*
d for all KPK.

Proof. We prove part(i) by induction. LetKPK. For k
=M, we have

Wsv̂,Md = sv̂,Fd = Jv̂,M
m sKd

so Eq.s46d holds for k=M. Next, we assume that Eq.s46d
holds fork+1, i.e.,

Wsv̂,k + 1d ø Jv̂,k+1
m sKd. s48d

Now by Eqs.s45d, s48d, ands37d

Wsv̂,kd ø o
yk+1PY

W„LG,Rsuk,yk+1dv̂,k + 1…pRsyk+1uuk,v̂d

ø o
yk+1PY

JLG,Rsuk,yk+1dv̂,k+1
m sKdpRsyk+1uuk,v̂d

= o
yk+1PYyk+2,M

o
PYM−sk+1d

kLG,Rsuk,yk+1dv̂,Gk+1l

3 pRsyk+1uuk,v̂d

= o
yk+1PYyk+2,M

o
PYM−sk+1d

kv̂,GR
†suk,yk+1dGk+1l = Jv̂,k

m sKd

as required.
Part(ii ) follows from the proof of part(i), with k=0, since

at every step we have equality and so

Wsv̂0,0d = Jv̂0,0
m sKv̂0

û*
d.

HenceJv̂0,0
m sKdùJv̂0,0

m sKv0

û*
d for all KPK. The real multipli-

cative homogeneity property ofGk has been used here also.
j

Remark 6.Note that the optimal multiplicative cost/risk-

sensitive controllerKv0

û*
determined by Eq.(47) feeds back

the unnormalized conditional statev̂k, given by the modified
SME (39) (Fig. 7). This means that from the point of view of
optimal risk-sensitive or multiplicative control, the best thing
to do involves use of a dynamical quantity that not only
containsknowledge(as measured by the controller) of the
quantum system, but also contains information about the
purposeof the controller. This should be contrasted with the
risk-neutral case(Sec. III). Note in particular that the modi-
fied SME (39) is no longer the optimal filter from the point
of view of seeking the best estimate of observables(cf. Re-
mark 2). Further, the concept of dual control(Remark 3) has
greater weight here, since the costRsud appears explicitly in
the controller dynamics(39)—while the optimal multiplica-
tive cost/risk-sensitive controller has a separation structure,
in the sense of a decomposition into a dynamical filter part
and static control part, the task of estimation is not separated
from the task of control(Fig. 7). We emphasize that the
multiplicative cost/risk-sensitive conditional state is defined
only in the context of these specific control objectives, where
they are used in specific feedback situations. j

Example 8.(Two-state system with feedback, Example 5
continued.) We now consider the risk-sensitive optimal con-
trol problem for the two-state example, with operator valued
cost Rsud defined by Eq.(33) where Lsud is given by Eq.
(19). If we write the density matrix as Eq.(15), then

Rsudv̂ =
emv̂11 + v̂22

v̂11 + v̂22

emcsudSv̂11 v̂12

v̂12
* v̂22

D .

The risk-sensitive controlled transfer operatorsGRsu,yd are
defined by

FIG. 7. Optimal multiplicative/risk-sensitive controllerKv0

û*

showing separation structure and states of the physical systemvk

and filter v̂k.
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GRsu,ydv̂ = Gsu,ydRsudv̂ =
kv̂,emLsudl

kv̂,1l
Gsu,ydv̂.

Explicitly, we have

GRs0,− 1dv̂ =
emv̂11 + v̂22

v̂11 + v̂22
Ss1 − adv̂11 0

0 av̂22
D ,

GRs0,1dv̂ =
emv̂11 + v̂22

v̂11 + v̂22
Sav̂11 0

0 s1 − adv̂22
D ,

GRs1,− 1dv̂ =
emv̂11 + v̂22

v̂11 + v̂22

empSs1 − adv̂22 0

0 av̂11
D ,

GRs1,1dv̂ =
emv̂11 + v̂22

v̂11 + v̂22

empSav̂22 0

0 s1 − adv̂11
D .

The dynamic programming equation(45) is solved and
the optimal feedback controls are found as follows. First, for
k=M =2 we have

Wsv̂,2d = kv̂,emX2
l = emv̂11 + v̂22

and then fork=1

Wsv̂,1d = minfW0sv̂,1d,W0sv̂,1dg,

whereW0sv̂ ,1d andW1sv̂ ,1d are given in the Appendix, and

û*sv,1d = H0 if W0sv,1d ø W1sv,1d,

1 if W0sv,1d . W1sv,1d.

Next, for k=0,

Wsv̂,0d = minfW0sv̂,0d,W0sv̂,0dg,

whereW0sv̂ ,0d andW1sv̂ ,0d are given in the Appendix, and

û*sv,0d = H0 if W0sv,0d ø W1sv,0d,

1 if W0sv,0d . W1sv,0d.

The optimal feedback controller is given by

u0 = Kv̂0,0
û*

= û*sv̂0,0d,u1 = Kv̂0,1
û*

sy1d = û*sv1,1d,

where v̂1=LG,Rsu0,y1dv̂0. Again, we see the separation
structure, where here the controlu1 depends ony1 through
the unnormalized conditional statev̂1. A physical implemen-
tation of this controller is shown in Fig. 8.

To see the effect of the risk-sensitive controller, consider
the initial statev̂0=v0 given by Eq. (17), and parameter
values a=0.25, m=2. We find thatW0sv̂0,0d=W1sv̂0,0d,
and hence we takeu0= û*sv̂0,0d=0.

If y1=−1 is measured, we find that

v̂1 = S3.1459 0

0 1.04863
D ,

v1 = S0.75 0

0 0.25
D with probability 0.5,

and

u1 = û*sv̂1,1d = H1 if 0 ø p ø 0.4,

0 if p . 0.4.
s49d

If, on the other hand,y1=1 is measured, we find that

v̂1 = S1.04863 0

0 3.1459
D ,

v1 = S0.25 0

0 0.75
D with probability 0.5,

and

u1 = û*sv̂1,1d = 0

for any value ofp. When the control costp=0.2, thefinal
snonselectived state is given by

r2 = S0.25 0

0 0.75
D = 0.25u− 1lk− 1u + 0.75u1lk1u.

This state does not equal the desired pure stateu1lk1u, a re-
flection of the level of measurement uncertaintya=0.25 and
the presence of a nonzero control penalty.

To compare with the risk-neutral version of this problem,
we find that the threshold in Eq.(49) for the risk-neutral
problem isp=0.75. This means that for a larger range of
values of the control costp, the risk-neutral controller will be
active, i.e., selectu=1, than is the case for the risk-sensitive
controller. This is consistent with the description of the ex-
ample in [12,13] where the risk-neutral controller is more
aggressive than the risk-sensitive controller. j

FIG. 8. Physical realization of the two stages of the two-state

system with feedback using the optimal risk-sensitive controllerKv̂0

ū*

[with v̂0=v0 given by Eq. (17), we haveu0= û*sv0,0d=0, u1

= û*sv̂1,1d].
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We conclude with an example that indicates the likely
robustness properties of the risk-sensitive controller and the
relationship between the risk-neutral and risk-sensitive prob-
lems.

Example 9.We consider the risk-sensitive cost functional
(28), where the operator valued costRsud has the form(33),
andF=emN.

Robustness. To describe the robustness properties of the
risk-sensitive controller, we follow[10] and make use of the
following general convex duality formula(see, e.g.,[27],
Chap. 1.4):

ln EPfefg = sup
Q

hEQffg − ERsQiPdj, s50d

whereP andQ are probability distributions,7 and where the
relative entropy is defined byssee, e.g.,f23g, Chap. 11d

ERsQiPd = EQSln
dQ

dP
D .

To apply formulas50d, we proceed as follows. LetGnom be
the nominal operator used for design of the optimal risk-

sensitive controller, here denotedK̂nom
* . Together,Gnom and

K̂nom
* determine a probability distribution, here denoted

Pnom. In reality, the nominalGnom need not equal the op-
erator for the “true” system, denotedGtrue. The controller

K̂nom
* is applied to the true system, resulting in a probabil-

ity distribution Ptrue.
8

We write m=1/g2 and apply Eq.(50) to obtain the fol-
lowing inequalitysP=Pnom,Q=Ptrued:

g2ln EPtrueSp
k=0

M−1

kvk,e
mLsukdlkvM,emNlD

ù EPtrueFg2lnSp
k=0

M−1

kvk,e
mLsukdlkvM,emNlDG

− g2ERsPtrueiPnomd

=EPtrueFg2So
k=0

M−1

lnkvk,e
mLsukdl + lnkvM,emNlDG

− g2ERsPtrueiPnomd

ù EPtrueSo
k=0

M−1

kvk,Lsukdl + kvM,NlD − g2ERsPtrueiPnomd.

This implies the important bound

JPtrue

rn sK̄nom
* d ø g2lnJPnom

rs,g2
sK̂nom

* d + g2ERsPtrueiPnomd. s51d

The left-hand side of Eq.s51d is the risk-neutral cost crite-
rion s20d, evaluated using the true system modelPtrue and the

controller K̂nom
* designed using the nominal modelPnom.

Inequality s51d bounds this cost by two terms; the first
term is related to the optimal risk-sensitive costs28d,
while the second is the relative entropy term, which is a
measure of the “distance” between the true and nominal
systems. The numberg2=1/m.0 is a “robustness gain”
parameter, which we would like to be as small as possible
for maximum robustness, as inH` robust control f9g,
where the relative entropy term is a measure of the “en-
ergy” in the disturbance or uncertainty. This shows that
the risk-sensitive controller enjoys good performance, as
measured by the risk-neutral criterion, under nominal con-
ditions sPtrue=Pnomd, and acceptable performance in other
than nominal conditionssPtrueÞPnomd, as implied by the
bound. In summary, risk-sensitive controllers enjoy en-
hanced robustnesssrecall Remark 4d.

Relationship between the risk-neutral and risk-sensitive
value functions. We indicate briefly how the results of[(8),
Theorem 5.5] apply in the present context. Indeed, the reader
may check that for smallm.0 one has

1

m
ln

kv̂,expsmNdl
kv̂,1l

<
kv̂,Nl
kv̂,1l

.

This suggests the relation

lim
m↓0

1

m
ln

Wsv̂,kd
kv̂,1l

=
Vsv̂,kd
kv̂,1l

, s52d

which says that a logarithmic risk-sensitive optimal cost
tends to the optimal risk-neutral cost as the parameterm
→0, as might be expected.
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7We require thatQ is absolutely continuous with respect toP.
8We assume that the true distributionPtrue is absolutely continuous

with respect to the nominal distributionPnom.
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APPENDIX: FORMULAS FOR THE TWO-STATE SYSTEM WITH FEEDBACK EXAMPLE

The following quantities were used in the solution of the risk-neutral problem, Example 5:

V0sv,1d = v11,V1sv,1d = v22 + p, V0sv,0d = v11 + minfav11,p + v22 − av22g + minfv11 − av11,p + av22g,

V1sv,0d = p + av11 + v22 − av22 + minfav11,p + v22 − av22g + minfp + av11,v22 − av22g.

The following quantities were used in the solution of the risk-sensitive problem, Example 8:

W0sv̂,1d =
semv̂11 + v̂22d2

v̂11 + v̂22

, W1sv̂,1d =
empfv̂11v̂22 + e2mv̂11v̂22 + emsv̂11

2 + v̂22
2 dg

v̂11 + v̂22

,

W0sv̂,0d = minF− S semv̂11 + v̂22dfs− 1 +ademv̂11 − av̂22g2

sv̂11 + v̂22dfs− 1 +adv̂11 − av̂22g
D

− Sempsemv̂11 + v̂22dh− fs− 1 +adav̂11v̂22g − s− 1 +adae2mv̂11v̂22 + emfs− 1 +ad2v̂11
2 + a2v̂22

2 gj
sv̂11 + v̂22dfs− 1 +adv̂11 − av̂22g

DG
+ minS semv̂11 + v̂22dsaemv̂11 + v̂22 − av̂22d2

sv̂11 + v̂22dfasv̂11 − v̂22d + v̂22g

3
empsemv̂11 + v̂22dhemv̂22

2 + av̂22sv̂11 + e2mv̂11 − 2emv̂22d + a2f− sv̂11v̂22d − e2mv̂11v̂22 + emsv̂11
2 + v̂22

2 dgj
sv̂11 + v̂22dsasv̂11 − v̂22d + v̂22d

D ,

W1sv̂,0d = minF− Sempsemv̂11 + v̂22dsv̂11 − av̂11 + aemv̂22d2

sv̂11 + v̂22dfs− 1 +adv̂11 − av̂22g
D

− Se2mpsemv̂11 + v̂22dh− fs− 1 +adav̂11v̂22g − s− 1 +adae2mv̂11v̂22 + emfs− 1 +ad2v̂11
2 + a2v̂22

2 gj
sv̂11 + v̂22dfs− 1 +adv̂11 − av̂22g

DG
+ minFempsemv̂11 + v̂22dfemv̂22 + asv̂11 − emv̂22dg2

sv̂11 + v̂22dfasv̂11 − v̂22d + v̂22g
,

3
e2mpsemv̂11 + v̂22dhemv̂22

2 + av̂22sv̂11 + e2mv̂11 − 2emv̂22d + a2f− sv̂11v̂22d − e2mv̂11v̂22 + emsv̂11
2 + v̂22

2 dgj
sv̂11 + v̂22dfasv̂11 − v̂22d + v̂22g
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