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The importance of feedback control is being increasingly appreciated in quantum physics and applications.
This paper describes the use of optimal control methods in the design of quantum feedback control systems,
and in particular the paper formulates and solves a risk-sensitive optimal control problem. The resulting
risk-sensitive optimal control is given in terms of an unnormalized conditional state, whose dynamics include
the cost function used to specify the performance objective. The risk-sensitive conditional dynamic equation
describes the evolution of our knowledge of the quantum system tempered by our purpose for the controlled
guantum system. Robustness properties of risk-sensitive controllers are discussed and an example is provided.
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I. INTRODUCTION control problem has generated considerable interest |wiz.,

. . . ear exponential quadratic GaussighEQG) optimal con-
Optimal control theory provides a systematic approach tcfrol, or risk-sensitiveoptimal control,[3-5]. In this average

controlling system design that is widely used. A cost function fth : ; :
) . ) xponential of an integral problem, th is of th
is formulated by the designer that encodes the desired peo— rt e exponential of an integral problem, the cost is of the

formance of the system as its minimum, and then the cost is
minimized to obtain the desired controller. Perhaps the most M-1
famous example is Kalman'iinear quadratic Gaussian JLEQG - E[ex > (X P+ U Quy) +X|'V|PMXM)]- 2)
(LQG) regulator problem, where the cost criterion is an av- k=0
erage of an integral,
In this case the optimal feedback control is an explicit func-
M-1 tion of a dynamical quantity closely related to the conditional
JRC=E| > (%PX+ UQu+ Xy Pyxy) |, (1)  state and covariance, but given by dynamics that include
k=0 terms from the cost function. It also has a separation struc-

where the cost is an expectati@nof an integralx, andu,  fure, although in this case the filter depends on the cost func-
are, respectively, the state and control variakflesctors, ~ tion used to specify the performance objective, and is a
andP, Q, andP,, are weighting matrice5The cost criterion ~modification of the Kalman filter. One of the major reasons
(1) is an example of what is sometimes calledsk-neutral for the interest in the risk-sensitive problem is its close con-
criterion. The statéor phase spagevariablex, is part of the ~ Nections to robust control and minimax ganiés8|. Robust
model of the classical physica| System being controlled. |rf:0ntr0| concerns the desire to deSign controllers that are ro-
general, the controller has only partial access to state inforoust with respect to uncertainty, such as model errors and
mation, with measurements corrupted by noise. Kalman'§xogenous disturbanc¢s]. Robustness properties of risk-
optimal LQG feedback controller is an explicit function of Sensitive controllers are described[#0].
the conditional state and covariance. It is dynamic, since the Risk-neutral, risk-sensitive, and other stochastic control
conditional state and covariance evolve in time via the Kal-Problems have been considered for problems with a finite
man filter (see, e.g.[1,2], and the Kalman filter does not number of states; see, e.f2,11-13. After an analysis of an
involve the cost function in any way; it gives the optimal @xample of a machine replacement probler2], the authors
mean square state estimate independently of any control o§oncluded that for that problem the risk-neutral controller
jective. Interestingly, the function giving the optimal feed- Was more aggressive than risk-sensitive and related minimax
back control is the same as for an analogous problem witgontrollers.
full state information, viz., multiplication by a gain matrix
determined by solving a Riccati equation. Kalman’s optimal
LQG controller is the paradigm example of the so-called
separation structure where the controller is decomposed
into an estimation paiiltering) and a control part, as illus-
trated in Fig. 1.

Over the past 20 or so years, another type of optimal

physical system

control |« filter

*Electronic address: Matthew.James@anu.edu.au
Yf x is a column vector, the notatiod indicates the transpose, a
row vector. FIG. 1. Feedback controller showing the separation structure.
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Suppose we wish to control a quantum physical systentions that are applied to the system, such as voltages, forces,
using real time feedback via a nonquantum feedback systewr light pulses. The outputs are signals that result from re-
(say using a digital computein some optimal fashion. If peated measurements of observable quantities, such as posi-
one were to do this using a standard cost criterion, say onton, spin, etc. We will assume, for simplicity, that the mea-
analogous to Kalman's LQG regulator problgmisk neu-  surements are discrete valued. It is sometimes useful to
tral), then one would find that the optimal control is a func- denote the range of input and output valuesWyand,
tion of the conditionalselectivg state(a density operatyr  respectively.
as is well known; see, e.d.14-17. The conditional state is The state of the quantum system is described by a density
the solution of a stochastic master equation that describes thuperatorw.2 This state evolves in time as a result of a variety
evolution of ourknowledgeof the system. This stochastic of factors including the underlying unitary evolution, inter-
master equation is used in two ways: as the model of the action with the environment, the effect of repeated measure-
quantum physical system, taking into account the effect oments, and feedback control actions. Since measurements are
the measurements, afid) as the dynamics of the filter in the made, and the outcomes are used to determine control ac-
optimal controller Fig. 1. tions in a feedback context, we are interested in the selective

The purpose of this paper is to consider the risk-sensitiver conditional evolution of the states. As an example
optimal control of quantum physical systems. The quantunj18-2Q, a range of conditional evolutions can be described
systems are modeled by stochastic master equations for they an Ito-typestochastic master equatiq®ME) of the form
conditional state. The risk-sensitive criterion is one of a class
of multiplicative cost functions. The optimal solution for this do = L[w]dt+ M[w]dW €)]
class of problems has a separation structliig. 1) where
the filter describes the evolution of amnormalizedcondi-  for suitable(supejoperators and M (which may depend
tional state via a modified stochastic master equation thadn the control). Here,dW represents an Ito-type Brownian
contains the cost function used to specify the performancenotion (Wiener processincrement, called an innovation, re-
objective. The optimal control is a function of this unnormal- lated to the measured output valydoy
ized conditional state. It is important to note that, in contrast
to the risk-neutral case described above, the states and dy- dy=tr{Mw]}dt+ dW (4)
namics for the quantum physical model and the filter are not
the same. Indeed, the unnormalized conditional dynamigor a suitable(supejoperator . If we denote byp the ex-
equation used in the filter describes the evolution of Oulpected value ofw with respect tow (or y), we obtain the
knowledgeof the quantum system tempered by @urpose  master equationfrequently encountered in the analysis of
for the controlled quantum system. This type of extension obpen systems:
the conditional dynamics in quantum physics may merit fur-
ther investigation. We emphasize that the unnormalized con- p=L[p]. (5)
ditional state is defined only in the context of the risk-
sensitive and multiplicative control objectives considered It is conceptually and technically simpler to work in dis-
here, where it is used in a specific feedback situation. Again¢rete time, and so we will do so in this paper. Effectively, we
we emphasize thati) the model of the quantum physical Will be using a model for sampled-data feedback control of
system is the standard stochastic master equation for the cofiu@ntum systems. In this model, measurements are made and
ditional state, andii) the filter is described by a modified control actions are applied at discrete time instaptzalled
stochastic master equation for an unnormalized conditiongg@mple times. Continuous time models are of considerable
state; this modified equation includes terms from the costmportance and will be considered elsewhere.
function. The discrete time model we use for the quantum system is

This paper is organized as follows. In Sec. Il we carefullydefined in terms of asupejoperatof I'(u,y) that depends on
describe the model we use for the controlled quantum systhe control input and the output measurementThe idea is
tem. Then in Sec. Ill we summarize some relevant results fothat if the quantum system is in statg at timek, and at this
a risk-neutral optimal control problem and make some comtime the control valuey is applied, a measurement outcome
ments on the feedback solution. Section IV contains the foryi:1 Will be recorded, and the system will transfer to a new
mulation and dynamic programming solution to the risk-Statew,;. The probability ofyi.; is p(Yis1|uk, @), where
sensitive and related multiplicative cost optimal control
problems, together with a brief discussion of robustness. The p(y|u,®) =(I'(u,y)w,l). (6)
ideas are illustrated by a simple example of a two-state sys-
tem with feedback. Further developments, applications, antiiere, we have used the notation
examples will be given in subsequent papers.

2Without further qualification, we use the term state to refer to a
[l. THE CONTROLLED QUANTUM SYSTEM positive self-adjoint operator normalized to have trace equal to 1.
3For examplet,=kAt, whereAt is the time between samples, and
k is an integer indicating discrete time values.
We consider a controlled quantum physical system with “The operatof’(u,y) should preserve self-adjointness and posi-
inputs u and outputsy. The inputs represent signals or ac- tivity.

A. Controlled state transfer
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(w,B) =t Bw] (7) menty is a random variable, related to the outconaegia

] probability kernelsg(y|a), the probability ofy given thata

to specify the(expected value of an observablB when the  j..urred. The kernels have the property tﬁéﬂl(ﬂa):l for
system is in states. The operatod’(u,y) is assumed to be 5 | the case of perfect measuremeniyja) =1 if y=a,

normalized, i.e., andq(yla)=0 if y#a.

ST Uy),l) = (o) =1, The operatod’(u,y) is given by
yeY
r = P,ELwELP 12
so thatp(y|u, ) is aprobability distribution since it satisfies Uy % aly[2)PaEy0B, Pa (12
Syp(ylu, w)=1.

Selective or conditional evolution means that the newand the adjoint is given by
statewy,, depends on the value of the measurenygnt and
we write this dependence as follows: If(uy)B=> q(yla)EgTPaBPaE”, (13)
a,b

i1 = Ar(Ug Yis1) @i, (8)
whereB is an observable. The expressions in this example
can be derived using standard techniques of quantum opera-
T(uy)o tions and discrete time filtering based on Bayes’ r(dee,
— 9 e.g.,[(22), Chap. 2.2(23), Chap. 8,21), (14), (2), Chap. 6,
P(ylu, @) (1), Chap. 7). m

Equation(8) is a discrete time stochastic master equation and Example 2(Two-state systemWe now describe a spe-

can be viewed, e.g., as the result of integrating an equation @fic instance of Example 1, viz., a two-state system and
the form(3) over one time stefafter substituting fodwin ~ Measurement device, where it is desired to use feedback con-

terms ofdy). trol to put the system into a given state. The example is

We denote the average of the conditional statewith  inSpired by a simple quantum feedback exanfols), Sec.
respect to the measurements fy If u, is a deterministic 1.3] and an example in stochastic control concerning a ma-
(nonrandom input signal, therp, satisfies the master equa- chine replacement problefi2,13.

where

AF(U,Y)CU =

tion In [(24), Sec. 1.3, a particle beam is passed through a
Stern-Gerlach device, which results in one beam of particles
Pre1 = > T'(UgY) pk. (10) in the up state and one beam in the down state. The beam of
yeY particles in the up state is subsequently left alone, while the

. . beam in the down state is subject to a further device which
Equation(8) constitutes our model of the quantum system..ii result in a change of spin direction from down to up.

For further information on this framework of operator valued the final outcome of this feedback arrangement is that all

measures and quantum operations, [48621-23. We now  paricles are in the up state. Analogous feedback configura-

give some examples. tions can be constructed using other physical systems, e.g.,
Example 1.We define the controlled transféi(u,y) by light and polarization measurement.

interleaving open system dynamics and ir_nperfect orthogonal™ |, \what follows we extend the general features of this

measurements. _The open system dynamics are modeled bBéi‘ample to accommodate repeated noisy measurements.

quantum operation Physically, the noisy measurements might arise from imper-
o= BB (11) fectly s_eparated beams, where a proportion of each' beam

B . b®@p contaminates the other, and/or from interference or noise af-

fecting sensors. The example was chosen because the risk-

where the controlled operatoE;, satisnybEgTEg:I for all neutral and risk-sensitive problems can be solved explicitly.

inputsu. Closed systems are described by the unitary evoluHence the example provides a concrete illustration of some

tion operationt'w=TUwT"!, where for each input value, TV ideas concerning quantum feedback control. More substan-

is a unitary operator. tial examples and applications will be considered elsewhere.

The imperfect measurements are modeled as follows. Let The pure states of the system are of the form

A be a self-adjoint operator with discrete nondegenerate

spectrum spd@). Fora e spec¢A) an eigenvalue oA let |a)

denote the normalized eigenvector, andRgt|a)(a| denote

the projection onto the eigenspace AfP,|y)=(a|y)|a)).

Perfect measurements would correspong=a; however, to  The states-1) and|1) are eigenstates of the observable

reflect the presence of measurement noise in applications we

will assume that when a measurement occurs on the quantum _ (‘ 1 0) (14)

system, the valuea and associated projections occur in the “\o 1/

usual(perfecy way, but that knowledge of the outcomes is

corrupted by sensor noise so that the contraleerany ob-  corresponding to ideal measurement valaes-1 and 1. It is

serving device or persgmeasures a valug The measure- desired to put the system into the state

) =c_qf-Dy+cyfly = (El)

1
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FIG. 2. Two-state system example showing the controlled uni-

tary operatoiT¥ and the noisy measurement devicedWith error

probability «.
|>—1 0r|><|—01.

We define a controlled transfer operatitu,y) as the
following physical procesgFig. 2). First apply a unitary
transformationT", where the control value=0 means to do
nothing, whileu=1 means to flip the statgguantum NOT

gate, i.e.,
(1 o) tuz0
| =
0o1) "YUV

U —
16
10
We then make an imperfect measurement corresponding

the observabléA. We model this by an ideal devide.qg.,
Stern-Gerlach, beam splitjewith projection operators

5 _(1 o) P_(o o)
17\o o) "*"\o 1)

followed by a memoryless channel with error probability

kernels

q-1-1)=1-a,
q(-11) = «,
q1-1) =a,

q1)=1-ea,

where Osa< 1 is the probability of a measurement er(of.
[23], Fig. 8.1.

The controlled transfer operator is therefdfeom Eq.
(12)]

I(uy)o=q(yl- YP4ToT P_y + q(y|1) P TU0T Py

In this example, the contral can take the values 0 or 1, and
the outputy has values 0 or (U={0,1},Y={0,1}).
If we write a general density matrix as

_ [ W11 w12
w — * ’
w1y W32

then the controlled operatof§u,y) are given explicitly by

(15

(l-aw;; 0O

F(O,—l)a):< 0 oo ),
22
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input . output
5 physical system yp

FIG. 3. Feedback control of quantum system showing a general
feedback controlleK.

F(O,l)wZ(

awoo 0 )
0 (1-aoy/
This example is continued in stages in the remainder of the

paper. |
to

F(l,l)a)Z(

B. Feedback control

In the above description of the quantum syst&3)) we
have not described how the contro|sare determined by the
measurementy, via a feedback controlleK. We now do
this.

Feedback controllers should lmausal i.e., the current
control valueu, cannot depend on future values of the mea-
surements/i;1, Y2, - - .. On atime interval 0sk<M-1 this
is expressed as follows:

K={Kq,Ky, ... Ky-1},

where

Up= Ko,
Uy = Kq(ya),

Up = Ky(yy,Y2), etc.

To simplify notation, we often write sequences
U, Ui +1, - - U, @SUy k- Then we can writel =Ky (y; ). A
controller K can be restricted to subintervalis<sj<M by
fixing (or omitting) the first arguments in the obvious way.
We denote by the class of all such feedback controllers.

A feedback controlleK in closed loop with the quantum
system(Fig. 3) operates as follows. The given initial staig
and controlleK are sufficient to define random sequences of
stateswg y, inputsug y-1, and outputsy; yy over a given time
interval O<k= M iteratively as follows. The control valug
is determined byK, (no observations are involved yeand
it is applied to the quantum system, which responds by se-
lecting y; at random according to the distribution
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TABLE I. State evolution under the controllé.
———i——s| M- M-
E a1l L fip ol 1 X—»
o P1 w1 P2 2 : -L -1
- (0,-1),(1,-1) :
. - 20(l-a) w20 s wo W G2 pa
wo 3 ‘Ug_’ ) @?+(1-a)? PRI C
% w(lo,l) 2a(1-a) w(20,1),(0,—1) FIG. 4. Physical realization of the two stages of the two-state
2 +(1-a)? w(zo,l),(o,b system With feedback using controll€r Due to t_he mergi_ng oithe
_ beams in the second stage, we have the intermediate &tate
Po=®o P1 p2

=) V2400 PO 2 if y,=-1 [with probability 2a(1
-a)], or sz:w(zo’_ '(1’1)/2+w(20'1)’(0'1)/2 if y,=1 [with probability

. . - a?+(1-a)?.
p(y1|Up, wg). This then determines the next stadg via Eq.
(8). Next uy is given byK;(y;) and applied to the system.
This process is repeated until the final time. 0D = ((1 -a) 0) 0D _ (a 0 )
The controllerK therefore determines controlled stochas- 1 0 a) 0 (1-a
tic processesy, Uy, andy, on the interval Gsk< M. Expec-
tation with respect to the associated probability distribution 1/1 0
is denotedEcKoO’O. The state sequencg, is acontrolled Mar- QLD = ,0.9.0.-9 = —< )
kov process 2\0 1
One way a controlleK can be constructed is using a
function 0-D,(1,1) _  (0,1,00,1) _ 1 (“2 0 )
wy o) - _ 2 _ 2 -
Uy = Uy k), a*+(1-2)°\0 (1-a)

where wy is given by Eq.(8) with initial statew,. This con-  Also shown are the nonselective states:
troller is denoted(io. The SME equatior{8) forms part of
this controller, viz., its dynamics, and must be implemented Po = wo,
with suitable technologye.g., a digital computer Control-
lers of this type are said to have separation structure 1/1 0
where the controller can be decomposed into an estimation P1=P(= 1|ug, o) > ™ + p<1|u0,w0)w(10‘1) = 5(0 1),
part[i.e., filtering via Eq.(8)] and a control parfi.e., the
function u). We will see in Sec. Il that the optimal risk-
neutral controller is of this form(Fig. 6). In Sec. IV, the B
optimal risk-sensitive controller also has a separation struc- 2~
ture, but the filter used is differeriFig. 7).

The separation structure arises naturally from the dynamic + p(— 10,00 2) 000D 1 5(1]0, 0V 000D
programming techniques, as we shall see.

Example 3(Two-state system with feedback, Example 2 1 <a2+ o(l-a) 0 )

continued) We consider a particular feedback controlker = > 0 1 1 5
for a time horizonM =2 defined by a(l-a)+(1-a)

P~ 1L p )0 00 ¢ fp o

At time k=0 the controlu=0 is applied. Ify;=-1 is ob-

Up= Eo -0, U1:E1(y1) _ {2 ': Y1i i,l (16)  served, as a result g)flthe imperfect measurement, the system
==L moves to the state!””. Sincey,=-1, the corztrol)lt(aK EEq.
I . _ . . 0,-1),(1,-1)
We applyK to the system with initial pure state (1(25])_]1)%"’1‘)35;1‘1- This results in the statey, or
w, , depending on the outcome of the second mea-

| >_i|_ 1)+i|1> or _}(1 1) an surementy,. If, on the other handy,=1 is observed, the
Yo = V2 V2 ®=o\1 1) system moves to the staté’”. Sincey;=1, the controlleK
_ _ o _[Eq. (16)] gives u;=0, and hencewy® or PO,
The result is shown in Table | which displays the resulting;gain depending on the outcome of the second measurement
conditional states y,. This is illustrated in Fig. 4.

These results are consistent wiid4], Sec. 1.3. Indeed,
when =0 (perfect measuremenighe feedback system ter-
minates in the desired pure state=|1)(1|. The role of feed-
(Ug,y1),(Ug,Y2) — (Ug,y1)
wp @2 = Ap(ug,yp) w7, back control is clearly demonstrated here. With imperfect

and the associated probabilities. Explicitly, the terms showAneasurements,0a <1, the system terminates in the mixed

w(luo,yl) = Ar(Ug,y1) w,

in Table | are statep, given by Eq.(18), with the degree of mixingindi-
cating the expected degradation in performardepending
P1=p(Y1|Ug @), P2 = P(Yalus, wy) on the measurement error probability parameter
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trps=[a?+ a(1-a)P+[a(l-a) + (1 -a)?]? M1
" 3,0(K) = Ei,o< 2 (o L(u))+ <wM,N>), (20
i=0

1 ifa=0. wherew;,i=0, ... M, is the solution of the system dynamics
(8) with initial statewy=w under the action of a controllé.
B Thisis an appropriate quantum generalization of the classical
LQG cost(1). The objective is to minimize this functional
IIl. RISK-NEUTRAL CONTROL over all measurement feedback controll&rs .
Following [14] it is convenient to rewrite the cost func-
In this section we summarize dynamic programming re-ional (20). For eachk, given a sequence of control values
sults for a well-known type of finite time horizon optimal u, y_3=Uuy, ... Uy-; and measurementfim=VYi+1, - - - Yums
control problem[2,14]. The optimal control problem dis- define a random sequence of observakleby the recursion
cussed here can be considered to be a prototype problefn4], Eq.(3.1)
illustrating measurement feedback in the quantum context.

<{1 f0<a<1,

The dynamic programming methods used in this paper for Q=TT (U Yir) Qe + L), Osk=M-1,
solving the optimal control problems are standard, and the

reader is referred to the literature for further information; see, Qu=N.

e.g.,[1,2,23.

We define acost functiorto be a non-negative observable WWhen useful, we write

L(u) that can depend on the control The cost function = Qu )
= i Qk = QiU m-1, Y1 m
encodes the designer’s control objective. We also use a non- _
negative observablN to define a cost for the final state.  to indicate dependence on the input and outp@fsmay be
Example 4(Two-state system with feedback, Example 3 called acost observableThe cost functional20) is given by
continued) To set up the cost functioh(u) to reflect our

objective of regulating the system to the desired pure state JooK)= 2 (0,QdK(Yimom-1.YimD-  (22)
|1), we define yimeYM
1 -1 0 Here and elsewhere we use abbreviations of the form
X=Z(A-1)= ( ) ,
2 0 1 K(yrmom-1= (Ko, Ka(yp), .. Ky-1(Y1m-1))-

where A is the observable corresponding to the projectiveRemark 1The cost observabl®, given by Eq.(21) and the
measurementl4). We note that the expected valueXfis  expression in Eq(22) is analogous to the familiar Heisen-
berg picture used in quantum physics. It is very natural from

(1X31) =t X?1)(1]] =0, the point of view of dynamic programming, and indeed Egs.
(20) and (22) are related by iterating Eq21). Here is the
(= 1X3 - 1) =t X?- 1= 1] =1, first step:
which gives zero cost to the desired state and nonzero cost to {wg,Qq) = (wo, T T(Ug,y1)Q; + L(up))
the undesired state. We shall also introduce a cost of control — (o, L(Ug)) + (T(Ug Y1) g, Q1)
action, as follows: ~\@o-to 0:Y1) @01
=(wg,L(Ug)) + {w1,Q)P(y1|Ug, wo),
0 if u=0,
c(u) = : _ where w;=Ar(Up,y1)wo, and p(y;|uy,w) is given by
p if u=1,
Eq. (6). ]

wherep>0. This gives a zero cost for doing nothing, and a The key idea of dynamic programming is to look at the
nonzero cost for the flip operation. Thus we define the costurrent state at a current timesk<M -1 and to optimize

function to be the remaining cost from the current time to the final time.
This leads to an iterative solution. Accordingly, we define,

L(u) =X +c(u)l (19 for each G<k=<M, the cost to go incurred by a controllr
and the cost for the final state is defined to be (restricted tok<I<M~-1) to be
N = X2, Jok(K) = > (@, Qu(K(Yicr1 M)k M-10Yir 1)) -

. - . . . . . Y1) eyM
This modifies our earlier objective of putting the system into K

the desired state by including a penalty for control action.
o o - B The dynamic programming equation associated with this
Let M>0 be a positive integer indicating a finite time risk-neutral problem is
interval k=0, ... M. Given a sequence of control values

Uom-1=Up, - - Uy-1 and measurementg y=y1, --- .Yu, d&-  V(w,k) = inf {{w,L(U)) + >, V(Ar(U,y)@,k+ 1)p(y|u,®)},
fine therisk-neutral cost functionahs uey yeY

(23
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V(w,M) ={w,N), filter control
3 ©1 . s
where Osk<=M-1. This is the fundamental equation from wo — Wi I u(w, 1)) |
which the optimality or otherwise of a controller can be de- I -
termined. .
Let V be the solution to the dynamic programming equa- e ] :
tion (24). Then for any controlleK € K we have VO i g M-a z‘j_.
: e : H
V(w,K) < J, (K). (25) z -1 5 -1
If we assume in addition that a minimizer “o “1 physical S@gteplgl
u*(w,K) e arg mif(o,L(u)) ="l w
ueU H
 [wo— o] furr )] |
+ %V(AF(U:y)ka"' Dp(ylu,w)}  (26) filter control
ye i

exists for all w,0=k<M~-1, then the separation structure  FIG. 5. Physical realization of the two stages of the two-state
controllerK! (recall Sec. Il B defined by Eq26) is opti-  system with feedback using the optimal risk-neutral contdﬂgg
mal, i.e., 0 [with @y given by Eq. (17), we have ug=u’(wg,0)=0,u;
. ZU*(wlvl)]'
on,O(KiO) = V(w010) = JwO,O(K) (27)
Let us consider the special cage 0 andp=0, with initial

for all K e K. state(17). We then find thaty(wg, 0)=V;(wy,0)=0.5, and

Example 5(Two-state system with feedback, Example 4 hence we take"(wg,0)=0, i.e.,uy=0.
continued) We solve the dynamic programming equation  Next, if y;=-1 is observed, we haves;=|-1)(-1],
(24) and determine the optimal feedback controls as followsy/ (w,,1)=1, andV,(w;,1)=0. Hence we take’ (w;,1)=1,
Fork=M=2 we have i.e., uy=1. However, ify;=1 is observed, we havey

_ 2 =|1)(1], Vo(w1,1)=0, andV;(w;,1)=1, and hence we take
V(@,2) = (0, X) = oy u*(w1,1)=0, i.e.,u;=0. In either case we achieve the desired

and hence fok=1 statep,=w,=|1)(1|.

This action is the same as that seen before for the control-
ler K. The same controller is obtained fo<x<<0.5 and

where Vo(w,1) and V,(w,1) are given in the Appendix. P=0 butw, will be a mixed state. Ip# 0 the optimal con-
Hence we obtain troller Kﬁ,o will result in control actions that in general differ

; from those ofK. u
u'(w,1) = 0 !f Vo(w, 1) < Vy(w,1), Remark 2.Note that the optimal risk-neutral controller
1 if Vo(w, 1) > Vl(w,l)

K{O determined by Eq(26) feeds back the conditional state

V((l), 1) = (1)11 + m|n[V0((1), l),Vl((l), 1)],

At time k=0 we have wy, given by the SMES8), in accordance with its separation
_ structure, Fig. 6. This means that from the point of view of
V(0,0) = w3 + min[Vy(w,0),Vy(w,0)], optimal risk-neutral control, the best thing to do is to make

use of the filter(8), a dynamical quantity that contains
knowledgeof the quantum system, as obtained by the con-
troller through the measurement process embeddéd il

0 if Vo(@,0) < Vy(w,0), Remark 3A second remark we wish to make here con-

where Vy(w,0) and V;(w,0) are given in the Appendix,
which gives

u(w,0)= {1 if Vo(w,0) > Vy(w,0).

. . . . input physical system output
The optimal risk-neutral feedback controller is given by state wg
v eqn. (8) 4
uO = Kli,o'o = U*(w010)1 u]_ = Klzluoyl(yl) = U*(wla 1)1 .............................................

wherew;=Ar(Ug,y;1) wo. Note that the contral;, depends on control filter

y; through the conditional state, separation structuyeA T wten k)T Z;a;e (‘g’;

physical implementation of the quantum system with optimal { i

risk-neutral feedback is shown in Fig. 5. : feedback controller K2

®The notation arg mig.,f(u) means the subset of values frdin FIG. 6. Optimal risk-neutral controllek” showing separation

minimizing f. structure and states of the physical systegand filter w,.
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cerns the well-known concept in control engineeringlo&l  cost functional in a manner that facilitates the use of optimal
control, [2], Chap. 6.8. This concept relates to the dual func-control methods. As in the classical LEQG case, this requires
tion of the measurement feedback controkérviz., (i) to  the introduction of a new state, which in generaluisnor-
alter the future evolution of the system, aig to alter the  malized To define this new unnormalized state, for which we
future values of the available information. The optimal use the notatio to distinguish such states from normalized
choice ofK takes both of these factors into account. Hl statesw, we need to use possibly nonlinear operat@is-
Remark 4The final remark for this section concerieed-  servables B and (supejoperatorsR. These nonlinear opera-
backandrobustnessFeedback is the most important concepttors allow us to formulate and solve a general class of mul-
in control engineering, and has a long history going back atiplicative cost optimal control problems for quantum
least to the mechanical governors used to regulate the speeylstemsf’.
of steam engines. Feedback is used to compensate for distur- Our risk-sensitive and multiplicative cost functionals can
bances and uncertainty, and feedback loops typically enjoy ke defined in terms dfuper)operator valued costq that
robustness margiiie.g., gain margin and phase margin in satisfy the real multiplicative homogeneity property
classical control engineerijpga measure of this compensa-
tion ability. Note that in the absence of disturbances and Ruro=rR(u)» (29
uncertainty, feedback is completely unnecessary and control
can be achieved by a prescribed open loop controller. Howfor any real number and anyw,u. The risk-sensitive prob-
ever, in reality both quantum and classical systems are sutem corresponds to particular choices of operator valued cost
ject to disturbances and uncertainty, e().the influence of (Example 6. However, the fundamental equations in this
the environment(ii) model error due to approximation and Section are valid for any operator valued cBét) satisfying
unknown parameters, ani) imprecise measurements. In Eg. (29). Note that operator valued cosRu) are not in
the quantum context, there is the further complicafigfy general quantum operatioribecause linearity and the in-
that as a consequence of the act of measurement randomnesgiality (R(u)@,1)<(®,1) need not hold in generhl
is introduced, and this could potentially reduce control effec- Example 6.We give two examples of operator valued
tiveness. Measurement feedback control of quantum systent®sts.
is fundamentally a stochastic control problem containing (i) A specific linear form forR(u) is
nonclassical characteristics. These considerations underscore
the importance of feedback control and the need for robust- OPED Z(U)wZ(u) (30)
ness when controlling quantum systems. Robustness issues c

will be taken up again in Sec. I¥see Example © |
where {Z.(u)} is a family of cost functiongSec. Il). The

adjoint R'(u) acts on observableB via
IV. MULTIPLICATIVE COSTS AND RISK-SENSITIVE
CONTROL R'(U)B =2, Z(u)BZ,(u), (31
We turn now to the risk-sensitive optimal control prob- ¢

lem, the main object of this paper. The risk-sensitive cost,q thereby defines a linear functional on unnormalized

functional we consider, a quantum generalization of LEQGg4ag by
(), is

M-1 (&,R'(U)B) = X (ZL(W)@Z(),B) (32)
3 oK) =Ego| I (0 W) (op,e™) ], (28 ¢
k=0
) o ) [we have written this explicitly to facilitate comparison with
whereu>0 is a positive risk parametel(u) is a cost func-  Eq. (34) below].

tion (as defined in Sec. )] andN is a non-negative observ- (||) An operator valued COSR(U) Corresponding to the

able. The conditional statesy are given by the quantum isk-sensitive cost28) can be defined as follows. Letu) be

system mode(8). N a cost function, ang.>0. Then set
Remark 5The risk-sensitive cog28), by use of the ex-
ponential function, gives heavy weight to large values of the  {o,etty
cost functions in the exponents. A system controlled by a RUWo=—"—"—wo. (33

controller minimizing this cost is not likely to experience
large values of these quantities. Risk-sensitive controllers ar,
known to enjoy some robustness properties against unc
tainty in the model and external disturbances; g8 and
Example 9.

The primary goal in this section is to find the optimal
controller for the risk-sensitive cost function&28). As
noted, this cost functional is defined in terms of the condi- ®we denote the value d& at @ by (&,B), extending the notation
tional statew, of the quantum syster(8). However, in order (7). The (generalizey adjoint RT of R is defined by(®,R'B)
to solve this optimization problem, we need to express the(Ra,B) for all & and allB.

eﬁote thatR(u) is nonlinear but satisfies the real multiplica-
five homogeneity conditio29).

The adjoint operatoR'(u) applied to an operatdB is a
nonlinear functional ofo given by
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o,e -V Gy = RT(U)T (U Yies1) Gree1
(&,RT(U)B) = (@ € >(&),B> (34) k (T (Ui, Yier ) Gisr
(@,1)
Gy =F, (40)
[cf. EQ. (32) abovs. _ o
The relationship betweeR(u) and the risk-sensitive cost Where Osk<=M-1 andF is a non-negative linear observ-
(28) will be explained in Example 7 below. u able. It is evident thaG, is real multiplicative homogeneous
Given an operator valued coBtu), we shall find it con-  iIf Gie1 is [recall Eq.(29)]. .
venient to introduce an operatbi(u,y) defined by We next define thenultiplicative cost functional
I'r(u,y) =T(u,y)R(U). (35 J5 o(K) = > (0,Go[K(yymom-1.YamD) (4D
Y1,MEYM

In general I' is not normalized: )
whereK e £ is a measurement feedback controller.

> (TrUY)®, 1) = (RU,1) # (@,1). Lemma 1The cost functional, ,(K) defined by Eq(41)
yeY is given by the alternate expression
The operatol'r will be used to define a new state evolution I (K) = Eg,o[<a’M1F>]a (42)

as follows. Define an operatoY r by
where w;,i=k, ...,M, is the solution of the recursio(B89)

Arg(U,y)o = Truy)d (3p)  With initial state o= under the action of the controll.
PR pe(ylu, @) Proof. We have
where (@0, Go) = (@0, R"(U) I (Up, Y1) G1) = (R(Ug) @0, I (U, Y1) "G1)
~ _(Fruy)a,l) = (T (ug, Y1) R(Up) @¢G1) = (@1, G1) Pr(Y1|Ug, o),
PR(YIU, &) = 2L (37) ) - VPR
R, where &;=Ap g(Ug, Y1) @ and pg(yi|Ug, @) is given by Eq.

(37). lterating in this way we see that Eq4.1) and(42) are

In general, the statd g(u,y)o is unnormalized However, : X e
9 raU.y) equivalent. These properties use the real multiplicative ho-

pr(Y|u,®) is a probability distribution, since it is easy to

mogeneity property o6,. |
check that Example 7.[Continuation of Example &ii).] We now
S priylu,) =1 show that wherR(u) is given by Eq.(33) and
yeY F= ep,N,

However, we point out that whereN is a non-negative linear observable, the multiplica-

A A ) ) " :
(Arr(Uy)®,1) = (RW,1). (38) t|-ve cost .f.unct|onaLJw’0(P.<) defined by Eq.(41) equals the
risk-sensitive cost functiondR8).
This unnormalized state transition operator arises in the dy- Proceeding as in the proof of Lemma 1, we have
namic programming equation, as we shall see below.

Associated with the operatox; g is the dynamics (@0,Go) = (@0, R"(Ug) " (Ug,y1) Gy
1= A R(Ui Yicr 1) Ok, (39 = ([ (Uo,yn)R(Ug) 00, Gy
e . S (oo, €-(W0))

wherey,,, is distributed according to the probability distri- = <F(Uo,y1)&)o,Gl>0l—
bution pr(Yis1|Uk, @) given by Eq.(37). This is a controlled (@o, 1)
Markov ghain, withunnormalizedstates«blk. It is a modified (T (Ug, Y1) @6, G000, 1) , . "
stochastic master equation corresponding to the opefator =T N (g, e-10')
Under the action of a controllé € K the stochastic process (T(Ug,y1) o, 1)/{io, 1)
wy is determined by Eq39) and u,=Ky(yy k). (T'(Ug, Y1) @0, 1)

The separation structure controller in this case takes the X (é99,1)
following form. Given a functiori(w,k) and initial statew, 0 _
we define a controlleK,, i by = (Ar(Ug,Y1) @0, G1){@o, &) p(ya|Uo, o)

b= 00 ), where &y= a0/ (@9, 1), Ar(u,y) is defined by Eq.(9), and

p(y|u, w) is defined by Eq(6). Now if @y=wy is normalized,
wherew, is given by Eq.(39), 0<k=<M, with initial condi-  with (wg, 1)=1, then we have shown that
tion . _

Let M>0 be a positive integer indicating a finite time (w0, Go) = (Ar(Ug, Y1) o, Gy){ woe -0y p(ys|uo, o)
interval k:O,_... M. For eaclk, given a sequence of control = (w1, Gy){wo, €10 p(y4|Ug, o),
valuesuy y-1=Uy, ... ,Up-1 and measurement valugg. v
=Yi+1s - - - Ym, define random cost observabl&g by the re-  wherew;=A(Ug, Y1) w is the normalized state evolving ac-
cursion cording to the quantum system mod8). Note that{w,, 1)
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=1. Continuing in this way we see that E@1) equals the
risk-sensitive cost functiondR8), using Lemma 1.

It can also be checked thaf and @, are related simply
via

k-1

o =11 (0, "W).
=0

(43)

To solve the optimal control problem for the cost func-

tional (41), we define the cost to go

BK= X

M-k
YierMEY

(@, Gi(K(Yie1 Mk M-1:Yie1m))

(44)

and the corresponding dynamic programming equation

W(@,K) = inf ( > WA g(U,Y) i,k + 1)pR<y|u.a))),
ueU\yey

W(@,M) ={a,F), (45)

where O<k=M-1.

Theorem 1Let W(w,k), 0<k=<M, be the solution of the
dynamic programming equatio@5). (i) Then for anyK
e K we have

W(w,k) < % (K). (46)

(ii) Assume in addition that the minimizer

ueU yeY

0" (&,k) € arg min >, W(Arg(U,Y) @, K+ 1)pR(y|u,€u)}

(47)

exists for allw,0<sk=<M-1. Then the separation structure

controller Kio defined by Eq.(47) is optimal for problem
(41), ie., . (K)=J4 (K for all K e K.

w

(0}
Proof. We prove parti) by induction. LetK € K. For k
=M, we have

W(a,M) = (&,F) = %, (K)

so Eq.(46) holds fork=M. Next, we assume that E¢46)
holds fork+1, i.e.,

W(o,k+1) < 3,1 (K). (48)

Now by Egs.(45), (48), and(37)

W(,k) < > WAL (Ui Yien) @, K+ D) Pr(Yier1| U, )

Yke1€Y

= X ‘JxrR(uk,yk+1)&),k+1(K)pR(yk+1|ukaa))
yk+lEY ’

= 2 2

ViereY yM-(k+1)

(At R(Ug, Yis1) @, Gye1)

Yie2Mm €

X Pr(Yie1|Uks @)

PHYSICAL REVIEW A 69, 032108(2004)

input physical system output
state wy
v eqn. (8) y
control filter
SR e—] state @y
a* (x, k) eqn. (39)

feedback controller K2~

..............................................

FIG. 7. Optimal multiplicative/risk-sensitive con'[rolleh(fj,0
showing separation structure and states of the physical sysiem
and filter ay.

= X 2

Yir1€ Yy, e YM(HD

(@,T (U Yir1) Giesr) = 35 W(K)

as required.
Part(ii) follows from the proof of parti), with k=0, since
at every step we have equality and so

W(@og,0) = 3% o(K2).

HencngOVO(K)BJgO‘O(K‘A‘w;) for all K € K. The real multipli-
cative homogeneity property @, has been used here also.
|
Remark 6.Note that the optimal multiplicative cost/risk-

sensitive controIIeKE’u; determined by Eq(47) feeds back

the unnormalized conditional staég, given by the modified
SME (39) (Fig. 7). This means that from the point of view of
optimal risk-sensitive or multiplicative control, the best thing
to do involves use of a dynamical quantity that not only
containsknowledge(as measured by the controljesf the
quantum system, but also contains information about the
purposeof the controller. This should be contrasted with the
risk-neutral caséSec. Ill). Note in particular that the modi-
fied SME(39) is no longer the optimal filter from the point
of view of seeking the best estimate of observalgtds Re-
mark 2. Further, the concept of dual contidtemark 3 has
greater weight here, since the c&%t)) appears explicitly in
the controller dynamicg39)—while the optimal multiplica-
tive cost/risk-sensitive controller has a separation structure,
in the sense of a decomposition into a dynamical filter part
and static control part, the task of estimation is not separated
from the task of controlFig. 7). We emphasize that the
multiplicative cost/risk-sensitive conditional state is defined
only in the context of these specific control objectives, where
they are used in specific feedback situations. |

Example 8(Two-state system with feedback, Example 5
continued) We now consider the risk-sensitive optimal con-
trol problem for the two-state example, with operator valued
cost R(u) defined by Eq.(33) whereL(u) is given by Eq.
(19). If we write the density matrix as E@15), then

Rua=

A K

Wiy W22

e“wyg+ Wy w1 W1
el :
w1t Wy

The risk-sensitive controlled transfer operatbygu,y) are
defined by
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. - {@,ert)y ~ filter control |
FR(UaY)w - F(Uyy)R(U)w - WF(Uyy)w wp — d)go,l) L. ﬁ*(d’l’ 1) é
Explicitly, we have =1 ug ‘
et [ (l-a)w 0
FR(O:_J—)Q’Z#<( 0) H i ) Mea |1 AT Mal|l ! b
117 W22 22 ) ™ gt
I'x(0,)o= M( @11 0 . ) , “o “ physical st;gte,?n
w1t Wy 0 (Q-awy 1 =-~1 uy
- OV L a (@, 1)
~ eﬂl:) + (’;) (1 - af)(l)zz 0 wo =@ v L
I'r(1,-Dw= #eﬂr( ~ ) filter control
(l)ll+ W2 0 awqq
FIG. 8. Physical realization of the two stages of the two-state
Ta(1,1)= w11+ Wy p< awyp 0 ) system with feedback using the optimal risk-sensitive contréljer
R W11+ 0 (1-a)ay/ [with @p=wo given by Eq.(17), we haveuy=0"(wp,0)=0, u;
=C|*(L’(\)l, 1)]

The dynamic programming equati@d5) is solved and
the optimal feedback controls are found as follows. First, for

1€ op 075 0 , -
k=M=2 we have 2 wl:( 0 0.25) with probability 0.5,
W(@,2) = (&,e") = a1 + @0
and
and then fork=1
I 1 fo<p=0.4, 49
Wi, 1) = minl W, 1, Wo(ao, D)1, W@ D= o o4 49

whereWg(a, 1) andW,(w, 1) are given in the Appendix, and i on the other handy,=1 is measured, we find that

a*(w,l):{o f Wo(o, 1) < Wa(, ), (104863 0
1 if Wy(w,1) > Wi(w,1). “=\ o  3.1459°

Next, for k=0,

with probability 0.5,

A ) ) 0.25
W(,0) = min[Wy(@,0), Wo(@,0)], “=\ o0 o075

whereWy(@,0) andW;(w, 0) are given in the Appendix, and and

0 if Wo(w,O) = Wl(w,O),

. up=0"(@,1) =0
1 if Wo(w,O) > Wl(w,O)

0" (w,0) ={
for any value ofp. When the control cogb=0.2, thefinal

The optimal feedback controller is given by (nonselective state is given by

Ak
Ak

Up = K5, 0= 0 (@,0),u = K?;o,l(w) =0"(w,2), 025 0
pr= =0.29- 1)(- 1|+ 0.791)x1].

- - . . 0 0.75
where w;=Arg(Ug,y1)@wo. Again, we see the separation '

structure, where here the contrej depends ory; through  Thjs state does not equal the desired pure $tatd|, a re-
the unnormalized conditional staig. A physical implemen-  fiection of the level of measurement uncertainty0.25 and
tation of this controller is shown in Fig. 8. the presence of a nonzero control penalty.

To see the ef:fect of the risk-sensitive controller, consider To compare with the risk-neutral version of this problem,
the initial statewy=w, given by Eq.(17), and parameter \ye find that the threshold in Eq49) for the risk-neutral
values «=0.25, u=2. We find thatWo(wo,0)=Wi(@0,0),  problem isp=0.75. This means that for a larger range of

and hence we take,=0"(&o,0)=0. values of the control cogt, the risk-neutral controller will be
If y;=-1is measured, we find that active, i.e., seleat=1, than is the case for the risk-sensitive
controller. This is consistent with the description of the ex-
&)1:(3'1459 0 3) ample in[12,13 where the risk-neutral controller is more
0 1.04863° aggressive than the risk-sensitive controller. |
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We conclude with an example that indicates the likely

robustness properties of the risk-sensitive controller and the M-1
relationship between the risk-neutral and risk-sensitive prob- =Ep_ Y| 2 In(@, &) + In(wy, &Ny
lems. k=0
Example 9We consider the risk-sensitive cost functional - yzgR(pthpnom)
(28), where the operator valued cd&fu) has the form(33), M-1
andF=e“N, -
. . =E L + N | - Pirud|Prom -
RobustnessTo describe the robustness properties of the PthE( g) {n L) + (o >) V€ PruePron
risk-sensitive controller, we follo10] and make use of the
following general convex duality formulésee, e.g.[27], o )
Chap. 1.4 This implies the important bound

2 (Khom) = ¥INIEY (Kror) + 7ER(PrudPoom - (51)

PHU

In EP[ef] = SgF{EQ[f] - Er(Q[P)}, (50)
The left-hand side of Eq51) is the risk-neutral cost crite-
rion (20), evaluated using the true system molgl. and the

controller K}, designed using the nominal modB}y,
whereP andQ are probability distributioné,and where the Inequality (51) bounds this cost by two terms; the first
relative entropy is defined bisee, e.g.[23], Chap. 11 term is related to the optimal risk-sensitive ca&8),
while the second is the relative entropy term, which is a
measure of the “distance” between the true and nominal
systems. The numbey?=1/u>0 is a “robustness gain”
dQ parameter, which we would like to be as small as possible
Er(Q[P) =Eq Ind_P : for maximum robustness, as iH” robust control[9],
where the relative entropy term is a measure of the “en-
ergy” in the disturbance or uncertainty. This shows that
the risk-sensitive controller enjoys good performance, as
measured by the risk-neutral criterion, under nominal con-
k_ditions (Pyue=Prom),» @and acceptable performance in other

the nominal operator used for design of the optimal ris , “ S
sensitive controller, here denot&d .. TogetherI',,, and than nominal condition$Pyue? Pror), as implied by the
' o TOQ nom bound. In summary, risk-sensitive controllers enjoy en-

k;om determine a probability distribution, here denotedphanced robustnegsecall Remark %

Prom In reality, the nominal’,,, need not equal the op-  Relationship between the risk-neutral and risk-sensitive
erator for the “true” system, denotdd,. The controller yajye functionsWe indicate briefly how the results §8),
K;Om is applied to the true system, resulting in a probabil-Theorem 5.5apply in the present context. Indeed, the reader
ity distribution Py e® may check that for smajk>0 one has

We write u=1/7? and apply Eq(50) to obtain the fol-

lowing inequality (P=Pom, Q=Pyue:

To apply formula(50), we proceed as follows. Ldt,,, be

1, (@expuN) _ (@N)
Iz (@,1) (@,1)
M-1
¥2In Ep (H (wk,e“L(uk)>(wM,e”N)> This suggests the relation
true k:O
M-1 " ) Iimlan(&),k) _ V(®,k) 52)
= Eptrue yzln k];[O <wk'eﬂ k><vaeM > 110 4 <a),1> - <a),1> ’
- VZER(PtruJPnom)

which says that a logarithmic risk-sensitive optimal cost
tends to the optimal risk-neutral cost as the paramgter
— 0, as might be expected.
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APPENDIX: FORMULAS FOR THE TWO-STATE SYSTEM WITH FEEDBACK EXAMPLE
The following quantities were used in the solution of the risk-neutral problem, Example 5:

Vo(@,1) = 013, Va(@,1) = w5+ p,  Vo(@,0) = w13+ Minfaw;, P + 0y~ awyp] + Minfw; — awyg, p+ awyl,

Vi(0,0) = p+ awy; + 05— awyy+ Minfaws;, P+ w = awgs] + MNP+ awsy, 0y, — awy,].
The following quantities were used in the solution of the risk-sensitive problem, Example 8:

Wo(@n1) = (eﬂf)u‘*f)zz)z, Wy(@,1) = P[990 + €011 102pp + €40, + @3)] ,
w11t Wy

w11+ Wy

(& oy + gl (= 1 +a)eioy, = aa’zﬂ2>
(011 + 0)[(— 1 + @) 011 — awy)]
_ (eup(e”“&’n*' @2){= [(= 1 + @) a®11@y5] = (= 1+ @) a® @11ipp + €[(- 1+ )%0F, + aza’gz]})]
(@11 + @[ (= 1 + @)1~ aayy]
(€411 + @) (€11 + gy~ tlng)”
(@11+ W) (@11 = W) + W]
eP(e" 11 + ool 5y + alop Wrq + €201y — 28" i) + P~ (@11p) — €% 1190 + €(@F; + &’%2)]})

(@11 + @p)(a(@q1 — W3 + Wp0)

Wy(@,0) = min{— (

+ min(

eP(e w1y + woy) (11— awyy + aeﬂa’zz)z)
(@11 + 0)[(— 1 + @) 11 — ay)]
_ <92Mp(e”&’11+ 2= [(= 1 + @) a11@y5] = (= 1 + @) a® @1 0pp + €[(- 1+ )°0F, + aza’gz]})]
(@11 + W2)[(— 1 + @)y — adyy]
s A il sy}
(@11+ @)l al@11 =~ w29 + @20l
X (e iy + @pp){€ W5y + arlogyyy + €@y — 26“00) + 0~ (11@pp) — €@y 1iopp + (], + a’gz)]}}

(@11 + @[ (@11~ W3p) + wp)

W;(@,0) = min[— (
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