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By formally generalizing the classical Hellinger distance and affinity on the space of probability densities,
we introduce their quantum analog on the quantum state space consisting of all density operators. We show that
the infinitesimal form of the quantum Hellinger distance is the skew information introduced by Wigner and
Yanase in 1963. We compare the Hellinger distance and affinity with the Bures distance and fidelity, and
establish a variety of their fundamental properties. We further apply them to characterizing entanglement and
to establishing some unusual uncertainty relations relating nonsimultaneous measurements of a single observ-
able in two different quantum states.
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I. INTRODUCTION

In classical statistical theory, a state is defined as a prob-
ability distribution on some sample space. One of the most
important issues in statistical inference theory is to distin-
guish two probability distributions based on some observa-
tions. In this respect, various distance measures(metrics)
play a crucial role. Apart from the relative entropy
(Kullback-Leibler entropy) [1], the most fundamental dis-
tance is the so-called Hellinger distance[2]

Hsf,gd: =E fÎfsxd − Îgsxdg2dx

between two probability densitiesf andg. In case thatf and
g are discrete probability distributions, their Hellinger dis-
tance is

Hsf,gd: = o
x

fÎfsxd − Îgsxdg2.

A closely related concept, affinity, is defined as

Asf,gd: =E ÎfsxdÎgsxddx

when f andg are probability densities, and

Asf,gd: = o
x

ÎfsxdÎgsxd

when f andg are discrete probability distributions. Affinity
quantifies how closef and g are, and its application dates
back to Bhattacharyyaf3g, Kakutanif4g, and Matusitaf5g. It
is also widely used in the mathematical literature. One par-
ticular virtue of affinity is that it is multiplicative under di-
rect productf4g.

In quantum mechanics, a state is described by a density
operator, and a key issue in quantum detection and estima-

tion theory is to distinguish two alternative density operators
by quantum measurements. A convenient approach to this
problem is to introduce various distance measures(metrics)
on the space of quantum states, and consequently to geom-
etrize the statistical inference problem. Modern applications
of quantum mechanics in quantum information theory have
renewed the interests in quantum-state space, whose geom-
etry depends crucially on the metric involved[6]. In this
context, Wootters introduced a statistical distance which is
essentially the same as the affinity in order to quantifying the
discrimination of quantum states[7]. Braunstein and Caves
further studied this problem from a geometrical point of view
[8].

Inspired by the original Hellinger distance, we introduce a
distance between two density operatorsr ands as

Dsr,sd: = trsÎr − Îsd2

with tr denoting operator trace. We shall call this thesquan-
tumd Hellinger distance, in accordance to the classical case.
Here we also define a related notion, thesquantumd affinity,
as

Asr,sd: = trÎrÎs.

From the cyclic property of trace, we easily see that the
affinity is non-negative because

Asr,sd = trfsr1/4s1/4dsr1/4s1/4d†g.

Furthermore, we also have

Dsr,sd = 2 − 2Asr,sd.

While many distance measures, such as the relative en-
tropy [9–11], the trace distance[12], the Hilbert-Schmidt dis-
tance[13], and the Bures distance[14–20], have been exten-
sively studied and applied to quantum measurement theory, it
seems that the(quantum) Hellinger distance, which is the
simplest and most straightforward generalization of the
widely used classical Hellinger distance, has received almost
no attention. An exception is Ref.[21] in which Albrecht
actually used the affinity in discussing issues related with the
black-hole information problem. However, he did not study
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the informational properties of the affinity in detail. We will
uncover the statistical and physical contents of the Hellinger
distance and affinity, and in particular, demonstrate that the
infinitesimal form of the Hellinger distance is exactly the
skew information introduced by Wigner and Yanase in 1963
[22]. Moreover, we will apply this distance measure to char-
acterizing entanglement and to establishing some unusual
uncertainty relations.

Before we proceed, let us briefly recall some of the com-
monly used distance measures for the convenience of com-
parisons.

(1) Relative entropy:

Ssr,sd: = trfrsln r − ln sdg.

This nonsymmetric distance is widely used in quantum sta-
tistical mechanicsf9,10g and recently in quantifying en-
tanglementf11g. Its classical analog is the Kullback-Leibler
entropy, which is widely used in mathematical statisticsf1g.

(2) Trace distance induced by the trace norm:

Dtrsr,sd: = trÎsr − sd2.

(3) Hilbert-Schmidt distance induced by the Hilbert-
Schmidt norm:

Dhssr,sd: = Îtrsr − sd2.

These two distances, though formally simple, have some
drawbacks from an informational perspective. For instance,
Dtrsr ,sd has the desirable property of being monotone[12],
that is, contracts under quantum operations(also called sto-
chastic maps, or completely positive, trace preserving maps
between the spaces of density operators), but is not Rie-
mannian, whileDhssr ,sd is Riemannian, but not monotone
[13].

Comparing the definitions of the Hellinger distance, the
trace distance, and the Hilbert distance, we see that they are
strikingly similar, except that the position of the square root
is different. This difference entails quite different properties
for the three distance measures. If we recall that the prob-
ability amplitude, that is, the square root of the quantum
state, is of fundamental importance in quantum mechanics as
a primitive object, we would intuitively expect that the Hell-
inger distance has some advantages over the other two. This
is indeed the case as we shall demonstrate in later sections.

(4) Bures distance:

Dbsr,sd: = 2 − 2trÎr1/2sr1/2.

In quantum information theory, this is a far more interesting
and useful metric than those induced by the trace norm and
the Hilbert-Schmidt norm. It distinguishes itself by its re-
markable properties of being both Riemannian and mono-
tone. The closely related notion, fidelity,

Fsr,sd: = trÎr1/2sr1/2

is widely used in quantum information theoryf17–19g.
Clearly,

Dbsr,sd = 2 − 2Fsr,sd.

The fidelity has the advantage of a direct physical inter-
pretation in terms of the concept of purification of mixed
states and of being a generalization of the usual transition
probability for pure states.

The formal similarity between the Hellinger distance and
the widely studied Bures distance is striking. The former is
even formally simpler than the latter, and in the meantime
enjoys almost all remarkable informational properties the lat-
ter has.

Since the Bures distance is so closely related with the
Hellinger distance, and in order to put the Hellinger distance
into an appropriate perspective, we will review some funda-
mental properties of the Bures distance and fidelity in the
following section.

II. BURES DISTANCE AND FIDELITY

The Bures distance and fidelity have a variety of nice
properties. Some of their fundamental properties are as fol-
lows [14–20].

(1) 0øFsr ,sdø1, and Fsr ,sd=1 if and only if r=s.
Moreover,Fsr ,sd=Fss ,rd, and

FsUrU†,UsU†d = Fsr,sd

for any unitary operatorU.
(2) If r= uclkcu and s= uflkfu are pure states, then

Fsr ,sd= ukcuflu is the magnitude of transition amplitude.
(3) The fidelityFs· , ·d is multiplicative under tensor prod-

uct:

Fsr1 ^ r2,s1 ^ s2d = Fsr1,s1dFsr2,s2d.

(4) The fidelityFs· , ·d is jointly concave with respect to its
two arguments. That is,

FSo
j

l jr j,o
j

l js jD ù o
j

l jFsr j,s jd.

Hereo j l j =1, l j ù0.
(5) Let E=hEjj be any measurement, i.e.,Ej is positive,

ando j Ej = I. Let Er=htrsrEjdj andEs=htrssEjdj be the cor-
responding classical probability distributions of the measure-
ment outcomes, then

Fsr,sd ø AsEr,Esd.

Therefore, the fidelity is bounded above by thesclassicald
affinity.

In addition, the fidelity has the following variational char-
acterizations[15,17,18,20].

(1) Fsr ,sd=minEAsEr ,Esd, that is, the fidelity is the
minimum of the(classical) affinity of the measurement out-
come probability distributions, the minimum being taken
over all quantum measurement.

(2) Fsr ,sd=maxC,FukC uFlu, where the maximum is
taken over all purificationsC andF of r ands, respectively.

(3) Fsr ,sd=maxukC uFluu, where the maximum is taken
over all quantum pure statesC andF such that there exists
a quantum operation mappinguCl and uFl to r and s, re-
spectively. This implies in particular that no quantum opera-
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tion can increase the distinguishability of two quantum states
[20].

(4) Fsr ,sd=maxUtrsUÎrÎsd, where the maximum is
taken over all unitary operatorsU.

(5) Fsr ,sd= 1
2minXtrsXr+X−1sd, where the minimum is

taken over all invertible positive observablesX.
The infinitesimal form of the Bures distance is the quan-

tum Fisher information defined via the symmetric logarith-
mic derivative[16]. We will see that the infinitesimal form of
the Hellinger distance is the Wigner-Yanase skew informa-
tion, a version of quantum Fisher information defined via
commutator derivative of the square root of the quantum
density operator[23]. Further, both the Bures distance and
the(quantum) Hellinger distance reduce to the classical Hell-
inger distance whenr ands are simultaneously diagonal.

III. HELLINGER DISTANCE AND AFFINITY

We now list the fundamental properties of the Hellinger
distance and the affinity.

(1) 0øAsr ,sdø1 and Asr ,sd=1 if and only if r=s.
Moreover,Asr ,sd=Ass ,rd, and

AsUrU†,UsU†d = Asr,sd

for any unitary operatorU.
(2) If r= uclkcu and s= uflkfu are pure states, then

Asr ,sd= ukc uflu is the magnitude of transition amplitude.
(3) The affinityAs· , ·d is multiplicative under tensor prod-

uct:

Asr1 ^ r2,s1 ^ s2d = Asr1,s1dAsr2,s2d.

(4) The affinityAs· , ·d is jointly concave with respect to its
two arguments:

ASo
j

l jr j,o
j

l js jD ù o
j

l jAsr j,s jd.

(5) Let E=hEjj be any measurement, i.e.,Ej is positive,
ando j Ej = I. Let Er=htrsrEjdj andEs=htrssEjdj be the cor-
responding probability distributions of the measurement out-
comes, then

Asr,sd ø AsEr,Esd.

That is, thesquantumd affinity is bounded above by thesclas-
sicald affinity.

Items(1)–(3) can be easily verified, and(4) follows from
Corollary 1.1 of Lieb[24]. Item (5) follows from Theorem 1
and property(4) of the fidelity.

We have seen that the affinity and the Hellinger distance
possess almost all desirable information theoretic properties
the fidelity and the Bures distance have, and are apparently
easier to compute.

Theorem 1.The affinityAs· , ·d is always dominated by the
fidelity Fs· , ·d, and accordingly, the Hellinger distanceDs· , ·d
always dominates the Bures distanceDbs· , ·d:

Asr,sd ø Fsr,sd, Dsr,sd ù Dbsr,sd.

The conclusions follow from the following expressions
for the affinity As· , ·d and the fidelityFs· , ·d:

Asr,sd = trsÎrÎsd,

Fsr,sd = max
U

trsUÎrÎsd.

Let us see an example. Consider a qubit system in which
a general density operator is of the form

ra =
1

2
sI + as→d =

1

2
S 1 + a3 a1 − ia2

a1 + ia2 1 − a3
D ,

with

a = sa1,a2,a3d P R3, uau: = Îa1
2 + a2

2 + a3
2 ø 1

and

s→ = ssx,sy,szd

being the Pauli spin matrices. It is easy to computeÎra as

Îra =
1

Î2sÎ1 + uau + Î1 − uaud

3 S1 +Î1 − uau2 + a3 a1 − ia2

a1 + ia2 1 +Î1 − uau2 − a3
D .

Now let

rb =
1

2
sI + bs→d =

1

2
S 1 + b3 b1 − ib2

b1 + ib2 1 − b3
D

be another density operator, then direct evaluation yields

Asra,rbd =
s1 +Î1 − uau2ds1 +Î1 − ubu2d + a ·b

sÎ1 + uau + Î1 − uaudsÎ1 + ubu + Î1 − ubud
.

Herea·b=a1b1+a2ba+a3b3. In contrast, the fidelity is given
by

Fsra,rbd = Î1
2f1 + a ·b + Îs1 − uau2ds1 − ubu2dg.

The following result is a kind of quantum data processing
inequality.

Theorem 2.Let r ands be quantum states on a composite
systemH1 ^ H2. Let r1=tr2r andr2=tr1r be the partial trace
of r over H2 and H1, respectively, ands1,s2 are defined
similarly. Then

Asr j,s jd ù Asr,sd, j = 1,2.

For an elementary proof, see the Appendix.

IV. RELATIONS WITH FISHER INFORMATION

Both the Bures distance and the Hellinger distance have a
natural statistical interpretation. To motivate this, let us first
consider a natural problem in the theory of classical statisti-
cal estimation: Suppose thathpu :uPRj is a family of prob-
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ability densities onR parametrized byu, and we have ob-
served samplesx1, . . . ,xn, where each is a random variable
independently distributed according topu for some fixed un-
known u. Our objective is to estimate thisu as faithfully as
possible by virtue of the available samples.

In this context, the Fisher information plays a fundamen-
tal role [25,26]. Recall that the Fisher information of a pa-
rametrized family of probability densitieshpu :uPRj on R is
defined as

Ispud =E S ] ln pusxd
] u

D2

pusxddx s1d

=4E S ] Îpusxd
] u

D2

dx, s2d

provided that the integrals exist. In particular, whenpusxd
=psx−ud shenceu is a location parameterd, by the translation
invariance of the Lebesgue integral, we have

Ispud =E S ] ln psxd
] x

D2

psxddx s3d

=4E S ] Îpsxd
] x

D2

dx. s4d

Thus in this circumstance,Ispud is independent of the param-
eter u, and we will denoteIspud simply by Ispd. This is the
Fisher information of the probabilityp with respect to the
location. Whenpu is distributed on a discrete set, all the
integrals above should be replaced by summations.

The notion of Fisher information plays a basic role in the
theory of maximum likelihood estimation(in fact, this is the
origin of Fisher information). The asymptotic normality of a
maximum likelihood estimator is characterized by the Fisher
information as the inverse variance. The celebrated Cramér-
Rao inequality characterizes the intrinsic uncertainty of pa-
rameter estimation by virtue of the Fisher information[26].

Now, we see how we can intuitively generalize the notion
of Fisher information to the quantum setting. The quantum
analog of probability densities are density operators, and that
of integral is trace. Usually the natural extensions of a clas-
sical quantity to the quantum case are not unique due to the
noncommutativity of operators, but depend on the ordering
of the operators. In the circumstance here, we have two
simple and heuristic routes. The first is to define a quantum
analog of the statistical score function(logarithmic deriva-
tive) lu : =] ln pu /]u and formally generalizes the expression

Ispud =E lu
2sxdpusxddx

defined by Eq.s1d. Replacing the parametrized probability
densitiespu by a parametrized density operatorru, the inte-
gration by trace, and the logarithmic derivativelu by the
symmetric logarithmic derivativeLu determined by

] ru

] u
=

1

2
sLuru + ruLud, u P R,

which is formally motivated by the identity

] pu

] u
=

1

2
slupu + pulud, u P R,

we come to the quantum Fisher information defined via the
symmetric logarithmic derivative

Ibsrud: = trsLu
2rud. s5d

The subscriptb anticipates that this is related to the infini-
tesimal form of the Bures distanceDb. sOf course, one can
also write

] pu

] u
= pulu = lupu,

and consider a version of quantum Fisher information de-
fined via the right/left logarithmic derivative, as studied in
Refs.f27–29gd. This seemingly sophisticated scheme was ac-
tually first done in a quantum estimation setting and plays an
important role in quantum estimation and detection theory
f27–29g. Note that this is different from the simpler and more
naive generalization

Issrud: = trFS ] ln ru

] u
D2

ruG ,

which seems to never attract anyone’s attention. We remark
that this definition is not without informational or physical
contents, but we will not pursue them here.

In particular, one may also generalize Eq.(2) in a
parameter-free manner. Letr be any quantum state andX
any observable, then we define

Ibsr,Xd: = trsL2rd, s6d

whereL is the logarithmic derivative determined by

dXr =
1

2
sLr + rLd

anddX is the quantum commutator derivative defined by the
commutator

dXr: = ifr,Xg = isrX − Xrd.

The above two generalizations, Eqs.(5) and(6), are con-
sistent in the following sense: Ifru satisfies the Landau–von
Neumann equation

i
] ru

] u
= fX,rug, r0 = r,

then

Ibsrud = Ibsr,Xd.

The verification is straightforward by noting

ru = e−iuXreiuX.
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The second quantum extension of the classical Fisher in-
formation arises when one formally generalizes the expres-
sion

Ispud = 4E S ] Îpusxd
] u

D2

dx

defined by Eq.s2d. Replacing the integration by trace, the
parametrized probability densitiespu by a parametrized den-
sity operatorru on some Hilbert space, we can heuristically
define

Isrud: = 4trS ] Îru

] u
D2

. s7d

On the other hand, along the line of Eq.(4) in a
parameter-free case, we may define

Isr,Xd: = 4trsdX
Îrd2. s8d

Isr ,Xd is, up to an inessential constant factor, the Wigner-
Yanase skew informationf22g.

The definitions ofIsrud by Eq. (7) and Isr ,Xd by Eq. (8)
are also consistent in the following sense.

If ru satisfies the Landau–von Neumann equation

i
] ru

] u
= fX,rug, r0 = r,

then f23g

Isrud = Isr,Xd.

Remark.In the study of information contents of distribu-
tions (quantum-mechanical density operators), Wigner and
Yanase[22] introduced the quantityIsr ,Xd which they called
skew information, to measure the information content of the
density operatorr with respect to the self-adjoint operatorX,
which serves as a conserved quantity such as a Hamiltonian
or a momentum. Alternatively,Isr ,Xd may also be inter-
preted as a measure of the noncommutativity betweenr and
X. Wigner and Yanase argued and proved that this quantity
satisfies a variety of the desirable intuitive requirements of
an information measure. Furthermore, for anyaP f0,1g,
they also introduced the quantity

Iasr,Xd: =
1

as1 − ad
trfsdXradsdXr1−adg,

which is now called the Wigner-Yanase-Dyson information,
as a general quantity to measure information content ofr
with respect toX. Lieb proved the convexity of the Wigner-
Yanase-Dyson informationf24g.

Apart from the formal similarity between the Bures dis-
tance and the Hellinger distance, they also have the intrinsic
relations manifested in the forms of quantum Fisher informa-
tion: The infinitesimal change of the Bures distance is the
quantum Fisher information determined by the symmetric
logarithmic derivative, while the infinitesimal change of the
Hellinger distance is the quantum Fisher information deter-

mined by the commutator derivative, which happens to be
the Wigner-Yanase skew information. These are more pre-
cisely stated as follows.

Theorem 3.If ru satisfies the Landau–von Neumann equa-
tion

i
] ru

] u
= fX,rug, r0 = r.

Then

(i) ]2Dsru ,rzd /]u]zuu=z=0=1/2 Isr ,Xd.
(ii ) ]2Dsru ,rd /]u2uu=0=1/2 Isr ,Xd.
(iii ) ]2Dbsru ,rzd /]u]zuu=z=0=1/2 Ibsr ,Xd.
(iv) ]2Dbsru ,rd /]u2uu=0=1/2 Ibsr ,Xd.

Proof. (1) Note

ru = e−iuXreiuX, rz = e−izXreizX,

we have

] Îru

] u
= ie−iuXfÎr,XgeiuX,

] Îrz

] z
= ie−izXfÎr,XgeizX.

Therefore

]2Dsru,rzd
] u ] z

= − 2
]2trsÎru

Îrzd
] u ] z

= − 2trS ] Îru

] u

] Îrz

] z
D .

Now the conclusion follows from direct evaluation.s2d fol-
lows from similar calculations.s3d and s4d are implicit in
Ref. f16g.

V. QUANTIFYING ENTANGLEMENT

According to the general entanglement quantification pro-
cedure proposed by Vedralet al. [30], we may use the Hell-
inger distance as a measure to quantify entanglement. For a
quantum stater on a composite quantum systemH1 ^ H2,
let us define

Esrd: = inf
s

Dsr,sd,

where the infimum is taken over all separable statessa state
s is separable if it can be expressed ass=o j l jr j

s1d
^ r j

s2d for
some density operatorsr j

s1d and r j
s2d on H1 andH2, respec-

tively, o j l j =1,l j ù0. Otherwise it is entangled or nonsepa-
rabled. This entanglement measure possesses the following
basic properties.

(1) Esrd=0 if and only if r is separable.
(2) Esrd is invariant under local unitary operations, i.e.,
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Esrd = EsU1 ^ U2rU1
†

^ U2
†d

for any unitary operatorsU1 andU2 on H1 andH2, respec-
tively.

(3) Esrd is convex with respect tor, i.e.,

Eso
j

l jr jd ø o
j

l jEsr jd.

(4) Esrd decreases under quantum operations, i.e., for

o
j

VjVj
† = I, l j = trsVjrVj

†d, r j =
VjrVj

†

l j
,

we have

Esrd ù o
j

l jEsr jd.

VI. UNCERTAINTY RELATIONS

The conventional Heisenberg uncertainty relation relates
the uncertainties of two observables in a single quantum
state, and its standard form is

Vsr,XdVsr,Yd ù
1
4ukfX,Yglru2.

Here Vsr ,Xd : = trsrX2d−ftrsrXdg2 is the variance, and
kfX,Yglr : = trsrfX,Ygd is the average of the commutator.
The following uncertainty relations concerning nonsimul-
taneous measurements of a single observable are of differ-
ent nature. They relate the quantum uncertainties of a
single observable in two different quantum states. To ap-
preciate them, one should recall thatIsr ,Xd is the infor-
mation content of observables not commuting withsskew
tod X in the stater, and therefore by the Bohr complemen-
tary principle, Isr ,Xd may also be interpreted as certain
uncertainty of X in r. Indeed, whenr is pure, Isr ,Xd
=8Vsr ,Xd is essentially the usual variance. For general
mixed state,Isr ,Xdø8Vsr ,Xd.

Theorem 4.Let r ands be two quantum states(generally
mixed), and letX be an observable. Then

ÎIsr,Xd ù
2utrsfÎr,ÎsgXdu
Î1 − A2sr,sd

,

ÎIss,Xd ù
2utrsfÎr,ÎsgXdu
Î1 − A2sr,sd

.

In particular,

ÎIsr,XdÎIss,Xd ù
4utrsfÎr,ÎsgXdu2

1 − A2sr,sd
.

Proof. Define

ÎrX: =
2dX

Îr

ÎIsr,Xd
.

ThenÎrX
† =ÎrX, and

trsÎrX
2d = 1, trsÎrÎrXd = 0.

From the definition ofÎrX, we have

XÎr − ÎrX =
i

2
ÎIsr,XdÎrX,

which implies

ÎssXÎr − ÎrXd =
i

2
ÎIsr,XdÎsÎrX.

Taking trace, we have

trsfÎr,ÎsgXd =
i

2
ÎIsr,XdtrsÎsÎrXd.

But by the abstract Parseval inequality we have

1 = trsÎs2d ù utrsÎsÎrdu2 + utrsÎsÎrXdu2.

Therefore

utrsÎsÎrXdu ø Î1 − A2sr,sd.

The first conclusion now follows. The second result follows
similarly. The third conclusion follows from the combination
of the first two.

There are some interesting consequences for the above
uncertainty relations.

(1) First, there is a trivial consequence. Ifr= uclkcu and
s= uflkfu are two eigenvectors ofX with different eigenval-
ues, we see readily from the first uncertainty relation in
Theorem 4 thatucl and ufl will be orthogonal.

(2) Second, letY be another observable, and letru satisfy
the Landau–von Neumann equation

i
] ru

] u
= fY,rug, r0 = r,

then foru near zero,

trsfÎru,ÎrgXd = − 2iu ReCrsX,Yd + osud.

Here Re denotes the real part, and

CrsX,Yd: = trsrXYd − trsÎrXÎrYd

is a correlation measure between observablesX andY in r.
Note in particular,CrsX,Xd= 1

8Isr ,Xd is the Wigner-Yanase
skew information.

On the other hand,

Asru,rd = 1 −
Isr,Yd

8
u2 + osu2d,

and thus

Î1 − A2sru,rd =
ÎIsr,Yd

2
u + osud.

Substituting the above identities into the first uncertainty re-
lation of Theorem 4, and lettingu→0, we obtain
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Isr,XdIsr,Yd ù 82uReCrsX,Ydu2,

and in particular,

Vsr,XdVsr,Yd ù uReCrsX,Ydu2

becauseIsr ,Xdø8Vsr ,Xd ,Isr ,Ydø8Vsr ,Yd. This last un-
certainty relation, which employs a kind of correlation of
two observables to set a lower bound of the product of vari-
ances, complements the original Heisenberg uncertainty re-
lation, which employs the commutator to set a lower bound
of the product of variances. It is of particular relevance when
the observablesX andY are belonging to two different quan-
tum subsystems, and thus they commute.

VII. CONCLUSIONS

In summary, by analogy with the classical notions, we
have introduced the Hellinger distance and affinity on the
quantum-state space consisting of all density operators. We
have investigated their fundamental properties, and in par-
ticular, have made extensive comparisons with the Bures dis-
tance and fidelity. The Hellinger distance and the associated
affinity are easier to compute than the Bures distance and the
fidelity, while enjoy almost all nice informational properties
of the latter. Actually, we have put the Hellinger distance and
the Bures distance on equal footing by showing that they are
intrinsically related to two different but natural quantum ex-
tensions of the classical Fisher information.

We have also employed the Hellinger distance to quanti-
fying entanglement. We have established some uncertainty
relations in purely quantum terms such as affinity and the
skew information. This shed some light on the informational
aspect of quantum measurement theory.
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APPENDIX
In this appendix, we present a proof of Theorem 2, and in

the meantime, we also present an elementary constructive
procedure of representing the partial trace as a quantum op-
eration, which may be of independent interest.

We only need to prove the first inequalitys j =1d. Suppose
the dimensions ofH1 andH2 arem andn, respectively. Let
U2 be the cyclic unitary matrix(permutation matrix) on H2
defined as

U2 =1
0 0 ¯ 0 1

1 0 ¯ 0 0

0 1 ¯ 0 0

A A ¯ A A
0 0 ¯ 1 0

2 .

Then for anydiagonalmatrix

X = diagsx1,x2, . . . ,xnd

on H2, we have

trX = o
j=0

n−1

U2
j XU2

†j .

Now for anymn3mn matrix X on H1 ^ H2 with the parti-
tion

X =1
X11 X12 ¯ X1m

X21 X22 ¯ X2m

A A ¯ A
Xm1 Xm2 ¯ Xmm

2 ,

where eachXij is an n3n diagonal matrix on H2, let us
define an operationS as

SsXd = str2Xd ^ I2.

Here

tr2X =1
trX11 trX12 ¯ trX1m

trX21 trX22 ¯ trX2m

A A ¯ A
trXm1 trXm2 ¯ trXmm

2
is the partial trace ofX over H2.

Let U= I1 ^ U2. Then U is unitary, andU†= I1 ^ U2
†. For

the aboveX with diagonal Xij , we have

SsXd =
1

n
o
j=0

n−1

U jXU†j .

Let v=e2pi/n be a primitive root of 1. We form the diagonal
unitary matrix

V2 = diagh1,v,v2, . . . ,vn−1j

on H2.
For any matrixY=syijd on H2, let

DsYd = diagsy11,y22, . . . ,ynnd

be the diagonal matrix obtained fromY by keeping only the
diagonal elements and setting all off-diagonal elements to
zero. Then we have

DsYd =
1

n
o
j=0

n−1

V2
j YV2

†j .

Now for anymn3mn matrix Y on H1 ^ H2 partitioned as

Y =1
Y11 Y12 ¯ Y1m

Y21 Y22 ¯ Y2m

A A ¯ A
Ym1 Ym2 ¯ Ymm

2 ,

with eachYij being ann3n matrix onH2, let us define an
operationT as

INFORMATIONAL DISTANCE ON QUANTUM-STATE SPACE PHYSICAL REVIEW A69, 032106(2004)

032106-7



TsYd =1
DsY11d DsY12d ¯ DsY1md

DsY21d DsY22d ¯ DsY2md

A A ¯ A
DsYm1d DsYm2d ¯ DsYmmd

2 .

This operation maps anmn3mn matrix into a matrix with
the same order.

Put V = I1 ^ V2, then V is unitary, andV†= I1 ^ V2
†. We

have

TsYd =
1

n
o
j=0

n−1

V jYV †j .

Now we proceed to prove the desired result. By the con-
cavity of the affinity, we have

AsS„Tsrd…,S„Tssd…d=AS1

n
o
j=0

n−1

U jTsrdU†j,
1

n
o
j=0

n−1

U jTssdU†jD
ù

1

n
o
j=0

n−1

A„U jTsrdU†j,U jTssdU†j
…

=
1

n
o
j=0

n−1

A„Tsrd,Tssd…=A„Tsrd,Tssd….

Furthermore,

A„Tsrd,Tssd…=AS1

n
o
j=0

n−1

V jrV†j,
1

n
o
j=0

n−1

V jsV†jD
ù

1

n
o
j=0

n−1

AsV jrV†j,V jsV†jd

=
1

n
o
j=0

n−1

Asr,sd

=Asr,sd.

Now the desired inequality follows from

S„Tsrd… = tr2Tsrd ^
I2

n
= r1 ^

I2

n
,

S„Tssd… = tr2Tssd ^
I2

n
= s1 ^

I2

n
,

and

Asr1 ^ I2/n,s1 ^ I2/nd = Asr1,s1d.
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