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Informational distance on quantum-state space
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By formally generalizing the classical Hellinger distance and affinity on the space of probability densities,
we introduce their quantum analog on the quantum state space consisting of all density operators. We show that
the infinitesimal form of the quantum Hellinger distance is the skew information introduced by Wigner and
Yanase in 1963. We compare the Hellinger distance and affinity with the Bures distance and fidelity, and
establish a variety of their fundamental properties. We further apply them to characterizing entanglement and
to establishing some unusual uncertainty relations relating nonsimultaneous measurements of a single observ-
able in two different quantum states.
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I. INTRODUCTION tion theory is to distinguish two alternative density operators

In classical statistical theory, a state is defined as a robt-)y quantum measurements. A convenient approach fo this
Y P roblem is to introduce various distance measuynastricy

ability distribution on some sample space. One of the mosgn the space of quantum states, and consequently to geom-

Important ISsues In sta_tlst_lcal_ inference theory is to dIStIn'etrize the statistical inference problem. Modern applications
guish two probability distributions based on some observa-

tions. In this respect, various distance measurestrics of quantum mechanics in quantum information theory have
: _respect, g renewed the interests in quantum-state space, whose geom-
play a crucial role. Apart from the relative entropy

; "7 etry depends crucially on the metric involvé6]. In this
gaKr:J(l:Ig?scI;]Leelsbolt_aéaﬁggol_ﬁ)gfl"[r%e:h;sg?ﬂséfundamental dis- context, Wootters introduced a statistical distance which is

essentially the same as the affinity in order to quantifying the

_— — discrimination of quantum statdg]. Braunstein and Caves
H(f,9): = f [VF(x) = Vg0 JPdx further studied this problem from a geometrical point of view
[8].
between two probability densitidsandg. In case thaf and Inspired by the original Hellinger distance, we introduce a

g are discrete probability distributions, their Hellinger dis- distance between two density operatprand o as

tance is g
D(P,U')Z = tr(\e’p - \;O.)Z

. [£7 Y — (12 . . .
H(f,9): = 2 [VF(X) = Vg . with tr denoting operator trace. We shall call this tlgeian-
X tum) Hellinger distance, in accordance to the classical case.
A C|OSE|y related concept, affinity, is defined as Here we also define a related notion, (Iumantun) affinity,
as
A(f,g): = f VE)Vg(dx Alp,0): = tr/p\o.

From the cyclic property of trace, we easily see that the
affinity is non-negative because

A(f,9): = > V() Vg(x) Alp,a) =t (p ™) (pH4e 1.

X

whenf andg are probability densities, and

Furthermore, we also have
whenf andg are discrete probability distributions. Affinity

quantifies how closd and g are, and its application dates D(p,0) =2 - 2A(p,0).
back to Bhattacharyyg8], Kakutani[4], and Matusitd5]. It
is also widely used in the mathematical literature. One par
ticular virtue of affinity is that it is multiplicative under di-
rect product4].

In quantum mechanics, a state is described by a densi
operator, and a key issue in quantum detection and estim

While many distance measures, such as the relative en-
fropy [9-11], the trace distancl 2], the Hilbert-Schmidt dis-
tance[13], and the Bures distan¢&4—2Q, have been exten-
sively studied and applied to quantum measurement theory, it
Yeems that théquantum Hellinger distance, which is the
z§'|mplest and most straightforward generalization of the
widely used classical Hellinger distance, has received almost
no attention. An exception is Ref21] in which Albrecht
*Email address: luosl@mail.amt.ac.cn actually used the affinity in discussing issues related with the
"Email address: mazq@math.cityu.hk black-hole information problem. However, he did not study
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the informational properties of the affinity in detail. We will ~ The fidelity has the advantage of a direct physical inter-
uncover the statistical and physical contents of the Hellingepretation in terms of the concept of purification of mixed
distance and affinity, and in particular, demonstrate that thetates and of being a generalization of the usual transition
infinitesimal form of the Hellinger distance is exactly the probability for pure states.

skew information introduced by Wigner and Yanase in 1963 The formal similarity between the Hellinger distance and
[22]. Moreover, we will apply this distance measure to char-the widely studied Bures distance is striking. The former is
acterizing entanglement and to establishing some unusualven formally simpler than the latter, and in the meantime
uncertainty relations. enjoys almost all remarkable informational properties the lat-

Before we proceed, let us briefly recall some of the com-ter has.
monly used distance measures for the convenience of com- Since the Bures distance is so closely related with the

parisons. Hellinger distance, and in order to put the Hellinger distance
(1) Relative entropy: into an appropriate perspective, we will review some funda-
mental properties of the Bures distance and fidelity in the

Slp,0): =trlp(In p=In a)]. following section.

This nonsymmetric distance is widely used in quantum sta-
tistical mechanicg9,10] and recently in quantifying en-

tanglemen{11]. Its classical analog is the Kullback-Leibler Il. BURES DISTANCE AND FIDELITY
entropy, which is widely used in mathematical statisfits

. ; The Bures distance and fidelity have a variety of nice
(2) Trace distance induced by the trace norm:

properties. Some of their fundamental properties are as fol-
N P lows [14-2(.

Dulp,0): = tr(p = )" (1) 0=F(p,0)<1, andF(p,o)=1 if and only if p=o.
(3) Hilbert-Schmidt distance induced by the Hilbert- Moreover,F(p,o)=F(o,p), and

Schmidt norm:
F(UpUT,UaU") =F(p,0)

Drdp,0): = \tr(p = o). for any unitary operatob.

These two distances, though formally simple, have some (2) If p=[¢)Xy] and o=[¢p)¢| are pure states, then
drawbacks from an informational perspective. For instancef(p,o)=(¢1¢)| is the magnitude of transition amplitude.
Dy(p,o) has the desirable property of being monot¢ha], (3) The fidelity F(-, ) is multiplicative under tensor prod-
that is, contracts under quantum operatiéalso called sto- uct:
chastic maps, or completely positive, trace preserving maps

between the spaces of density operatoksit is not Rie- Flp1 ® p2,01 ® 02) = Flp1,01)F(p2, 02).
mannian, whileDy{p,o) is Riemannian, but not monotone  (4) The fidelity F(-, ) is jointly concave with respect to its
[13]. two arguments. That is,
Comparing the definitions of the Hellinger distance, the
trace distance, and the Hilbert distance, we see that they are F(E )\jpj,z )\jaj) => \iF(pj,0)).
strikingly similar, except that the position of the square root j i j

is different. This difference entails quite different propertlesHereE A=1, \;=0.
for the three distance measures. If we recall that the prob- (5) Let E= {E} be any measurement, i.&; is positive,

ability amplitude, that is, the square root of the quantumandz Ej=1. LetE ={tr(pE;)} andE, {tr(oE)} be the cor-

state, Is of fun_damental Importance in guantum mechanics ar%spondmg classmal probablllty dlstrlbutlons of the measure-
a primitive object, we would intuitively expect that the Hell- ment outcomes, then

inger distance has some advantages over the other two. This
is indeed the case as we shall demonstrate in later sections. F(p,0) < A(E,.E,).

4) Bures distance:
@ Therefore, the fidelity is bounded above by tteassical

Dy(p,0): = 2 - 2tr/ p*20p*2, affinity.
In addition, the fidelity has the following variational char-
In quantum information theory, this is a far more interestingacterizationg15,17,18 2@
and useful metric than those induced by the trace norm and (1) F(p,0)= mmEA(E »), that is, the fidelity is the
the Hilbert-Schmidt norm. It distinguishes itself by its re- minimum of the(classmaj affinity of the measurement out-
markable properties of being both Riemannian and monocome probability distributions, the minimum being taken

tone. The closely related notion, fidelity, over all quantum measurement.
~ " (2) F(p,0)=maxy o[(¥|®P)|, where the maximum is
F(p,0):=trp™“ap taken over all purification® and® of p ando, respectively.
is widely used in quantum information theof7—19. (3) F(p,0)=max(¥|®)[|, where the maximum is taken
Clearly, over all quantum pure statels and® such that there exists
a quantum operation mappind) and|®) to p and o, re-
Dy(p,0) =2 - 2F(p,0). spectively. This implies in particular that no quantum opera-
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oncr)] can increase the distinguishability of two quantum states Alp, o) = tr(\p\o),

(4) F(p,o0)=maxtr(U\pyo), where the maximum is
taken over all unitary operatots.

(5) F(p,a):%minxtl’(Xp+X_lo'), where the minimum is
taken over all invertible positive observablgs

The infinitesimal form of the Bures distance is the quan-
tum Fisher information defined via the symmetric logarith-

F(p, o) = maxtr(Uypyo).
U

Let us see an example. Consider a qubit system in which
a general density operator is of the form

mic derivative[16]. We will see that the infinitesimal form of 1+ .
the Hellinger distance is the Wigner-Yanase skew informa- Pa= 1“ +ad) = }( fis ay |a2),
tion, a version of quantum Fisher information defined via 2 2\a;tia, 1-ag

commutator derivative of the square root of the quantuquith
density operatof23]. Further, both the Bures distance and
the (quantum Hellinger distance reduce to the classical Hell- a=(a,azay) € R3, |a:=Va?+al+ai<1
inger distance whep and ¢ are simultaneously diagonal. g
an

IIl. HELLINGER DISTANCE AND AFFINITY

We now list the fundamental properties of the Hellinger
distance and the affinity. 0 =(0y,0y,07)
(1) 0=<A(p,0)<1 and A(p,o)=1 if and only if p=0.

Moreover,A(p, 0) =A(c, p), and being the Pauli spin matrices. It is easy to compu'ﬁ—g as

1

= [y | i
12(vV1 +|al + V1 —|al
for any unitary operatod. V2(V1+[al+ V1~ [a)
(2 If p=|y)y| and o=|¢)(¢p| are pure states, then " (1 +\V1-|al?>+a, a; —ia, )

A(UpUt,UaU") = A(p,0)

—
VPa

Alp,o)=(| $)| is the magnitude of transition amplitude.

(3) The affinity A(-, ) is multiplicative under tensor prod-
uct: Now let

al+iaz l+\“”1_|a|2_a3

Alp1 ® pa, 01 ® 03) = Alp1,01)A(py,07).

(4) The affinity A(-, ) is jointly concave with respect to its oy = }(I +bo) = }( l+bsg by - ibz)
two arguments: b7 2 2\b;+ib, 1-bs
A(E Nipj 2 )\J‘Ti> = > \A(p;, ). be another density operator, then direct evaluation yields
j j ) _ @+1-[aPa+1-[pP +a-b
(5) Let E={E;} be any measurement, i.&; is positive, Alpa:pp) =

[1+]a]+ 1 -]al)(V1+|b|+y1-]b])’
and2; Ej=I. Let E,={tr(pE;)} andE,={tr(cE))} be the cor- (V1 +[af + V1 ~[a))(1 +]b| + V1 -[b])

responding probability distributions of the measurement outHerea-b=a;b; +a,b,+agbs. In contrast, the fidelity is given

comes, then by
Alp,0) < AE,E,). F(papo) = V3[L+a-b+ (L -[a2)(1 -[bP)].
That is, the(quantum affinity is bounded above by thelas- The following result is a kind of quantum data processing
sica) affinity. _ 3 inequality.
Items(1)~(3) can be easily verified, an@) follows from Theorem 2Let p ando be quantum states on a composite
Corollary 1.1 of L|eb[24_]. Itgm (5) follows from Theorem 1 systemH, ® H,. Let p;=tr,p andp,=tr;p be the partial trace
and property4) of the fidelity. of p over H, and H,, respectively, andr;, o, are defined

We have seen that the affinity and the Hellinger distanc&imilarly. Then
possess almost all desirable information theoretic properties
the fidelity and the Bures distance have, and are apparently Alpj,0j) = Alp,0), j=1,2.
easier to compute.

Theorem 1The affinity A(-, - is always dominated by the
fidelity F(-, ), and accordingly, the Hellinger distanb¥-, )
always dominates the Bures distarizg- , :

For an elementary proof, see the Appendix.

IV. RELATIONS WITH FISHER INFORMATION

Both the Bures distance and the Hellinger distance have a
natural statistical interpretation. To motivate this, let us first

The conclusions follow from the following expressions consider a natural problem in the theory of classical statisti-
for the affinity A(-, ) and the fidelityF(-, J: cal estimation: Suppose thgi,: 6 € R} is a family of prob-

A(p!U) = F(p!U)v D(pao-) = Db(p!U)
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ability densities onR parametrized byy, and we have ob- dpy 1

served samples,, ... X, where each is a random variable e E(Lepﬁpe'-e), 6eR,
independently distributed according pig for some fixed un-

known 6. Our objective is to estimate thigas faithfully as  which is formally motivated by the identity
possible by virtue of the available samples.

In this context, the Fisher information plays a fundamen- 9Py _ }(lape"' pdo), OeR
tal role [25,26. Recall that the Fisher information of a pa- 0 2 ' ’
Laer;:r?;rézgg family of probability densitiep,: 0 ek} onRis e t6 the quantum Fisher information defined via the

symmetric logarithmic derivative

2 PR—
I(p9)=f <M> P,(X)dx (1) In(pg): = tr(Lpy). (5)

70 The subscripb anticipates that this is related to the infini-
tesimal form of the Bures distand®,. (Of course, one can

» f ((9 \ﬂmde, - also write

a_;:pelazlepaa
provided that the integrals exist. In particular, whegix)

=p(x-6) (henced is a location parametgrby the translation and consider a version of quantum Fisher information de-

invariance of the Lebesgue integral, we have fined via the right/left logarithmic derivative, as studied in
Refs.[27-29). This seemingly sophisticated scheme was ac-
aln p(x) \? tually first done in a quantum estimation setting and plays an
1(py) :J <T> p(x)dx 3) important role in quantum estimation and detection theory

[27—-29. Note that this is different from the simpler and more
naive generalization

L [[20px))
'4f ( ax >dx' “ Is(pa)::”{(a?e%)z”"]

Thus in this circumstancé(p,) is independent of the param- hich seems to never attract anyone’s attention. We remark
eter 6, and we will denotd (p,) simply by I(p). This is the  that this definition is not without informational or physical
Fisher information of the probability with respect to the  contents, but we will not pursue them here.

location. Whenpg is distributed on a discrete Set, all the In particu|ar, one may also generalize E@) in a
integrals above should be replaced by summations. parameter-free manner. Lgtbe any quantum state arxi
The notion Of FiSher information p|ayS a baSiC I’O|e in theany Observab'e, then we deﬁne
theory of maximum likelihood estimatiogin fact, this is the
origin of Fisher information The asymptotic normality of a Ip(p,X): = tr(L?p), (6)
maximum likelihood estimator is characterized by the Fisher
information as the inverse variance. The celebrated Cramél
Rao inequality characterizes the intrinsic uncertainty of pa- 1
rameter estimation by virtue of the Fisher informat{@®]. dyp==(Lp+plL)
Now, we see how we can intuitively generalize the notion 2
of Fisher information to the quantum setting. The quantumandd, is the quantum commutator derivative defined by the
analog of probability densities are density operators, and thgfommutator
of integral is trace. Usually the natural extensions of a clas-
sical quantity to the quantum case are not unique due to the dyp: =i[p,X]=i(pX = Xp).

noncommutativity of operators, but depend on the ordering o
of the operators. In the circumstance here, we have twqQ. The above two generalizations, ES) and(6), are con-

simple and heuristic routes. The first is to define a quantunﬁl'stent in the foII_owmg sense: H, satisfies the Landau-von
eumann equation

analog of the statistical score functiglogarithmic deriva-
tive) 1,: =dIn p,/ 90 and formally generalizes the expression

hereL is the logarithmic derivative determined by

dpg
i~ = [X.pal,  Po=p,

1(py) :f 5P dx then

defined by Eq.(1). Replacing the parametrized probability l6(pg) = 1(p. X).

densitiesp, by a parametrized density operajgy, the inte-  Tne verification is straightforward by noting
gration by trace, and the logarithmic derivatiVg by the

symmetric logarithmic derivative , determined by po=€1%pe X,
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The second quantum extension of the classical Fisher immined by the commutator derivative, which happens to be
formation arises when one formally generalizes the expreshe Wigner-Yanase skew information. These are more pre-

sion cisely stated as follows.
’ , Theorem 3If p, satisfies the Landau—von Neumann equa-
d xpe(x)) tion
I =4 | | ——— ) dx
Py f ( J6
1229 2 [X.pl, po=
defined by Eq.(2). Replacing the integration by trace, the 90 Pols Po=p-

parametrized probability densitigg by a parametrized den-
sity operatorp, on some Hilbert space, we can heuristically Then

define
— 2 H —
aNp (1) &ZD(Poypg)/fwfme:g:o—l/z|(P,X)-
I(pg):=4tr( M") () (i) D(pg,p)! 967 p=0=1121(p,X).
(iii) PDp(pg,pe) ! 903 p=g=0=11214(p, X).
On the other hand, along the line of E¢4) in a (iv) #Dy(pg,p)! 06| p=o=11211(p, X).

parameter-free case, we may define
Proof. (1) Note

1(p,X): = 4tr(dyp)2. 8
(p,X) (dxVp) (8) b= & pd i,
I(p,X) is, up to an inessential constant factor, the Wigner-
Yanase skew informatiof22]. we have
The definitions ofl (py) by Eq.(7) andl(p,X) by Eq.(8) —
are also consistent in the following sense. INpy _ i1 r X]e ™
If p, satisfies the Landau—von Neumann equation 90 P :
.dpy —
i—=[X,pal,  po=p, ay : _
then[23]
Therefore
(py) =1(p.X). o
i ; it FD(pgpy) & tr(v@w@) I \pyd\p
Remark.In the study of information contents of distribu- ==2 = - ot —E8= )
tions (quantum-mechanical density operajord/igner and xS 909¢ a0 d¢

Yanasg22] introduced the quantiti(p, X) which they called
skew information, to measure the information content of th
density operatop with respect to the self-adjoint operatdy
which serves as a conserved quantity such as a Hamiltonia{ﬁef' [16].

or a momentum. Alternativelyl(p,X) may also be inter-

preted as a measure of the noncommutativity betweand V. QUANTIFYING ENTANGLEMENT

X. Wigner and Yanase argued and proved that this quantity di h | | ificati
satisfies a variety of the desirable intuitive requirements of /‘ccording to the general entanglement quantification pro-

an information measure. Furthermore, for ame[0,1], cedure proposed by Vedrat al. [30], we may use the Hell-
they also introduced the quantity inger distance as a measure to quantify entanglement. For a

quantum statep on a composite quantum systely ® Ho,
let us define

ow the conclusion follows from direct evaluatiof2) fol-
ows from similar calculations(3) and (4) are implicit in

—— (Ao (o' )],
a(l-a) E(p): =inf D(p,0),

which is now called the Wigner-Yanase-Dyson information,

as a general quantity to measure information contenp of where the infimum is taken over all separable statestate

with respect toX. Lieb proved the convexity of the Wigner- 4 is separable if it can be expressedoass; \, p]@)@ PJ@ for

Yanase-Dyson informatiof24].  some density operatoyél) and p®® on H, and’H,, respec-
Apart from the formal similarity between the Bures dis- tjyely, 3, \=1,0=0. Otherwise it is entangled or nonsepa-

tance and the Hellinger distance, they also have the intrinsigap|g. This entanglement measure possesses the following
relations manifested in the forms of quantum Fisher informaysic properties.

tion: The infinitesimal change of the Bures distance is the

quantum Fisher information determined by the symmetric

logarithmic derivative, while the infinitesimal change of the (1) £(p)=0 if and only if p is separable.

Hellinger distance is the quantum Fisher information deter- (2) &(p) is invariant under local unitary operations, i.e.,

l(p,X): =
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E(p) = £(U; ® UypUl @ UY) tr(Vp2) =1, t(\pvpy) =0.
for any unitary operatortl; andU, on H; andH,, respec- From the definition of\s“;x, we have
tively. .

i 1 i ' ' | |
(3) £(p) is convex with respect tp, i.e., Xvp - \pX = EVI(’J’X) Ver
j i

which implies

(4) &(p) decreases under quantum operations, i.e., for P e i
Vo(XVp = \pX) = Evl(p,X)wwx-

VipV!
. T: .= . T L=
;V'VJ LA tl‘(VJpV]), Pi \j ’ Taking trace, we have
- - i
we have tr([\p o ]X) = V1 (p, X)tr( o ) -
Ep) =2 N E(py). ) .
j But by the abstract Parseval inequality we have
— — —
1=tr(Vo?) = [tr(VorVp)|2 + [tr(\orVpy) |
VI. UNCERTAINTY RELATIONS Therefore
. . . . — ’/_ ,’T
The conventional Heisenberg uncertainty relation relates [tr(VoVpy)| < V1 -A%(p,0).

the uncertainties of two observables in a single quantu . .
state. and its standard form is geq rT1‘he first conclusion now follows. The second result follows
' similarly. The third conclusion follows from the combination

V(p,X)V(p,Y) = ‘_11|<[x,y]>’3|2_ of the first two.
) , _ There are some interesting consequences for the above
Here V(p,X):=tr(pX*)—[tr(pX)]* is the variance, and uncertainty relations.

(X, Y], =tr(p[X,Y]) is the average of the commutator.
The following uncertainty relations concerning nonsimul- (1) First, there is a trivial consequence.df|y)y{ and
taneous measurements of a single observable are of diffe==|$)(¢| are two eigenvectors of with different eigenval-
ent nature. They relate the quantum uncertainties of &es, we see readily from the first uncertainty relation in
single observable in two different quantum states. To apTheorem 4 thafy) and|#) will be orthogonal.
preciate them, one should recall thép,X) is the infor- (2) Second, lety be another observable, and jgtsatisfy
mation content of observables not commuting wishkew  the Landau—von Neumann equation
to) X in the statep, and therefore by the Bohr complemen- g
tary principle, l(p,X) may also be interpreted as certain iﬂ:[y,pﬁ], Po=p,
uncertainty of X in p. Indeed, whenp is pure, I(p,X) d0
=8V(p,X) is essentially the usual variance. For generaknen for g near zero,
mixed state|(p,X)<8V(p,X). I

Theorem 4Let p ando be two quantum statggenerally tr((Vpg Vp]X) = — 210 ReC,(X,Y) + 0(6).
mixed), and letX be an observable. Then

- - Here Re denotes the real part, and
2Jtr([Vp, Vo IX)|

N7~ .
VI(p,X) = V’T(p,a) , C,(X,Y): = tr(pXY) — tr(vpXypY)

is a correlation measure between observalflendY in p.
——  2tr([(\p.NoIX)| Note in particular,C,(X,X)=5l(p,X) is the Wigner-Yanase
VI(0,X) = ———— skew information.

1 — A2 '
V1-A%p,0) On the other hand,

In particular,

_ . pY)
— 4|tr([\/;, \“/;']X)|2 Alpgp) =1~ 3 &+ 0(02):
VI(p, X)VI(0,X) = 1Mo
P and thus
Proof. Define
- 1Moo = \'|(P,Y)0+ p
~._ 2dy\p v (po.p) = > 0(6).
NPx- = /l—m.
o Vi Substituting the above identities into the first uncertainty re-
Then \s"p;r<=v“'px, and lation of Theorem 4, and letting— 0, we obtain
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1(p,X)1(p,Y) = 8IReC,(X,Y)|?, X = diag Xy, X, ... Xo)
and in particular, on H,, we have
VipX)V(p.Y) = REC, (X, V) U
, trX = >, UbXUJ.
becausel (p,X)<8V(p,X),1(p,Y)<8V(p,Y). This last un- s

certainty relation, which employs a kind of correlation of ) ) )
two observables to set a lower bound of the product of variNOW for anymnxmnmatrix X on '+, ® H, with the parti-
ances, complements the original Heisenberg uncertainty rélon
lation, which employs the commutator to set a lower bound

of the product of variances. It is of particular relevance when
the observableX andY are belonging to two different quan-

tum subsystems, and thus they commute.

Xll XlZ T le
X X e X
X = .21 .22 N ?m
Xm Xm2 " Xmm

where eachX;; is annxn diagonal matrix on H,, let us
In summary, by analogy with the classical notions, wedefine an operatios as
have introduced the Hellinger distance and affinity on the
quantum-state space consisting of all density operators. We S(X) = (troX) @ 1.
have investigated their fundamental properties, and in parg e
ticular, have made extensive comparisons with the Bures dis-

VII. CONCLUSIONS

tance and fidelity. The Hellinger distance and the associated trXyy trXg, -0 X,
affinity are easier to compute than the Bures distance and the tor tXon <o+ X

§ . . R . . . . 21 22 2m
fidelity, while enjoy almost all nice informational properties troX = ) ) )
of the latter. Actually, we have put the Hellinger distance and : :

the Bures distance on equal footing by showing that they are X X 0 1 Xom

intrinsically related to two different but natural quantum ex- )
tensions of the classical Fisher information. is the partial trace oK over ;. : ;
We have also employed the Hellinger distance to quanti- L8t U=11®@U,. ThenU is unitary, andU’=1,®U,. For
fying entanglement. We have established some uncertain§!® @PoveX with diagonal ;, we have
relations in purely quantum terms such as affinity and the n-1

skew information. This shed some light on the informational S(X) = lz uixut.
aspect of quantum measurement theory. Ni=o
Let w=€?"" be a primitive root of 1. We form the diagonal
S. Luo was supported by NSF of China, Grant No. V, = diagl,w,0?, ... "4

10131040. Q. Zhang was supported in part by the Research
Grants Council of the Hong Kong Special Administrative on H,.
Region, China, Project CityU 1221/02P. For any matrixY=(y;;) on H, let

D(Y) = dia Yoo oy
APPENDIX (Y) dY11,Y22 Ynn)

In this appendix, we present a proof of Theorem 2, and irbe the diagonal matrix obtained froxhby keeping only the
the meantime, we also present an elementary constructivédiagonal elements and setting all off-diagonal elements to
procedure of representing the partial trace as a quantum opero. Then we have
eration, which may be of independent interest.

-1
We only need to prove the first inequality=1). Suppose DY) = }nz Viy\i
the dimensions of{; and’H, arem andn, respectively. Let - nis% 202
U, be the cyclic unitary matrixpermutation matrixon .,
defined as Now for anymnXx mn matrix Y on H,® H, partitioned as
00--01 Yiu Y2 o0 Y
1000 y = Yor Yoo 0 Yo
U2: o1 - 00 - : : . : !
P P Ymi Ym2 " Ymm
00- 10 . . . i
with eachY;j; being annX'n matrix on’H,, let us define an
Then for anydiagonal matrix operation7 as

032106-7



S. LUO AND Q. ZHANG

D(Y1) D(Yy) D(Y1p)
) = D(Tzﬂ D(Tzz) D(sz)
DY) D(Yip) D(Ymm

This operation maps amnX mn matrix into a matrix with
the same order.

Put V=1,®V,, thenV is unitary, andVi=1,®V}. We
have

1n—l
TY) ==, ViyvT,
Nizo

PHYSICAL REVIEW A69, 032106(2004)

1n—l 1n—1
A(ﬂp),ﬂo))=A(—E Vipvt = vjov“)
nj=0 n]=0
n-1

1 L
== A(Vipv T VigyT)
nj:0
n-1

> Ap,o)

=0

1
n
=A(p,0).

Now the desired inequality follows from

Now we proceed to prove the desired result. By the con-

cavity of the affinity, we have

1n—1 . . 1n—1 . .
A(S(ﬂp)),S(ﬂa))FA(E% UiT(p)u™, E% UIT(o)U™
]= ]=
n-1

2%2 AUITp)UT UIT(0)UT)
i=0

n-1
=13 ATp), o) =A(TIp) (o).

N

Furthermore,

[ |
S(T(p)) =tr,7(p) ® f =p1® ;2

| |
S(T(0)) = tr, 7o) @ ﬁ =0 ® ﬁ

and

Alp1 ® 15N, 01 @ 15/N) = Alpy, 09).
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