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Triggered single-photon sources produce the vacuum state with nonzero probability, but produce a much
smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as
a mixture of the vacuum and single-photon states with probabilities 1−p and p, respectively. Here we are
concerned with increasing the efficiencyp by directing multiple copies of the single-photon-vacuum mixture
into a linear optical device and applying photodetection on some outputs. We prove that it is impossible, under
certain conditions, to increasep via linear optics and conditional preparation based on photodetection. We also
establish a class of photodetection events for whichp can be improved, although with an added multiphoton
component. In addition we prove that it is not possible to obtain perfect single-photon states via this method
from imperfectsp,1d inputs.
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Single-photon sources are important, for applications such
as secure quantum key distribution[1] and linear optical
quantum computation[2], yet generating single photons re-
mains challenging. The traditional method involves photode-
tection on one output mode from a nondegenerate parametric
down-conversion process to postselect a single photon in the
correlated mode[3,4]. More recently alternative single-
photon sources have been employed, including molecules
[5], quantum wells[6], color centers[7], ions [8], and quan-
tum dots[9]. Although these sources do not have as high a
fidelity as can be achieved using parametric down-
conversion[4], they have the advantage that they are trig-
gered. For a triggered single-photon source, the probability
of more than one photon being produced is much lower than
that for a Poissonian process[10], but the vacuum contribu-
tion can be quite high. That is, the coefficientsqn of the
single-mode output field density matrixon qnunlknu are neg-
ligible for nù2, but the vacuum contributionq0 is substan-
tial. For this study we consider an ideal single-mode single-
photon source with limited efficiencyp, which may be
represented by the density operator

r̂p = s1 − pdu0lk0u + pu1lk1u. s1d

Increasing the efficiencyp is important because of require-
ments for quantum optics experiments, especially those con-
cerned with quantum information processing. Much of this
effort is directed to improving sources, but here we pose the
question as to whether it is possible to perform postprocess-
ing to obtain higher efficiency, while maintaining a negli-
gible multiphoton contribution. A promising method of post-
processing is via linear optics and photodetection. It has been
shown that linear optics and photodetection can be used to
perform quantum computationf2g, and optical controlled-
NOT gates have recently been demonstrated[11]; however,
there are also no-go theorems for linear optics[12].

Below we show that it is impossible to increase the
single-photon efficiencyp, provided we consider detection
results where all but one of the photons are detected. This
eliminates the most straightforward possibility for ensuring
that the multiphoton contribution is negligible. If we allow
other detection results, we show it is possible for low-
efficiency (small p) single-photon states to yield, via linear
optics and conditional preparation based on photodetection,
an output with a larger probability for a single photon. How-
ever, these schemes also yield multiphoton contributions
comparable to the Poisson distribution.

In the general case we start with a supply ofN mixed
states of the form(1). For additional generality we allow the
different inputs to have different probabilities for a single
photon,pi, and we denote the maximum of these probabili-
ties bypmax. The initial input state may be described by

r̂in
sNd = ^

i=1

N

fs1 − pidu0lk0u + piu1lk1ug

= o
s

PsSp
i

sâi
†dsiu0l ^ H.c.D , s2d

where Ps=pipi
sis1−pid1−si, and the vectors=ss1, . . . ,sNdT

ssi =0,1d gives the photon numbers in the inputsssee Fig. 1d.
This input is then passed through a passive interferometer.

A passive interferometer is comprised of beam splitters, mir-
rors, and phase shifters. Mathematically, a passive interfer-
ometer transforms the amplitude operators of the incoming
fields â via the matrix transformationâ†°LTâ† with L
PUsNd [13], yielding

r̂trans
sNd = o

s
PsFp

i
So

k

Lkiâk
†Dsiu0l ^ H.c.G . s3d

Without loss of generality, we take mode 1 to be the mode in
which we wish to improve the photon statistics. We perform
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photodetections on the otherN−1 modes, and examine the
final state in mode 1 conditioned on the results of these
photodetections. It is easy to see that no better result can be
obtained by performing photodetections on fewer thanN−1
modes; this would be equivalent to averaging over the pho-
tocounts for some of the modes. We assume ideal photode-
tection in this analysis in order to determine the best results
possible using linear optics and photodetection.

Before determining the conditional output state, we first
introduce some notation. The total number of photons de-
tected isD, and the maximum possible number of photons in
the N outputs isM. As some of thepi may be equal to zero,
M may be less thanN; M is equal to the number of nonzero
values ofpi. For j .1, nj is the number of photons detected
in modej , andn1 is the photon number in mode 1(the output
mode). We use the notationSn=oi ni (so Sn=D+n1) and
Ss=oi si. In addition, we define the setFs=hi usi =1j, and let
Ys be the set that consists of all vectors comprised of the
elements ofFs.

The conditional state in mode 1 after photodetection in
modes 2 toN is

r̂out
sNd = o

n1=0

N

cn1
un1lkn1u. s4d

Each coefficientcn1
is given by

cn1
= Kknur̂trans

sNd unl, s5d

whereunl is a tensor product of number states in each of the
output modes andK is a normalization constant. Evaluating
cn1

gives

cn1
=

K8

n1!
o

s;Ss=Sn

PsuSs,nu2, s6d

whereK8=K /p j=2
N nj!, and

Ss,n = o
sPYs

sL1,s1
¯ L1,sn1

d ¯ sLN,sSs−nN+1
¯ LN,sSs

d.

s7d

Two figures of merit for the output states are

Rout =
c1

c0
, Gout =

c2/c1

c1/c0
. s8d

The quantityRout is the final ratio between the probabilities
for one and zero photons. Similarly, we define the maxi-
mum initial ratio Rin=pmax/ s1−pmaxd. The figure of merit
Gout characterizes the two-photon contribution, and is
equal to 1/2 for Poisson photon statistics. For the input
Gin=0, as there is no two-photon component.

If the multiphoton component in the output is zero, then
comparingRin and Rout immediately tells us if there is an
improvement in the probability for a single photon. Even if
the multiphoton component is nonzero, usingRout has the
following advantages.

(1) The common constantK8 cancels, so it is possible to
evaluate this quantity analytically.

(2) If RoutøRin, then it is clear thatc1øpmax. Thus we can
determine those cases where there isno improvement.

(3) For pmax!1, c0<1 andRin<pmax. Therefore the im-
provement inRout over Rin is approximately the same as the
improvement in the probability of a single photon overpmax.

Ideally, we would determine the interferometer and detec-
tion pattern such thatRout is maximized, but this does not
appear to be possible analytically. However, we can place an
upper limit onRout in the following way. Let us express the
summation forc0 as

c0 =
K8

N − D
o

s;Ss=D+1
o

k;sk=1
PskuSsk,nu2, s9d

wheresi
k=si except forsk

k=0, nj is the combination of detec-
tions for j .1, andn1=0. The quotient ofN−D takes ac-
count of a redundancy in the sum. Each alternative inputsk

hasN−D zeros, so there areN−D possible alternative values
of s that give the samesk. We may reduce this quotient
slightly if we take account of the fact that some of the inputs
may be vacuum states. The maximum total number of pho-
tons isM, so there areN−M inputs withpi =0. Therefore, if
we limit the first sum in Eq.s9d to s such thatPsÞ0, then the
redundancy isM −D. Therefore we obtain

c0 =
K8

M − D
o

s;PsÞ0

Ss=D+1

o
k;sk=1

PskuSku2

=
K8

M − D
o

s;PsÞ0

Ss=D+1

Ps o
k;sk=1

1 − pk

pk
uSku2, s10d

where Sk=Ssk,n. Since we have limited the sum to terms
where PsÞ0, pk is nonzero, and thus the ratios1−pkd /pk

does not diverge. Sincepk does not exceedpmax, we have the
inequality

c0 ù
K8/Rin

M − D
o

s;Ss=D+1
Ps o

k;sk=1
uSku2. s11d

Here we are able to omit the conditionPsÞ0 because terms
with Ps=0 are zero anyway. We may reexpress the equation
for c1 as

FIG. 1. Schematic setup of the network. We assumeN incoming
modes prepared in the state(2) with different pi.
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c1 = K8 o
s;Ss=D+1

PsU o
k;sk=1

L1kSkU2
. s12d

We therefore obtain

c1 ø K8 o
s;Ss=D+1

Ps o
k;sk=1

uSku2. s13d

Combining Eqs.s11d and s13d gives

Rout =
c1

c0
ø RinsM − Dd. s14d

This yields an upper limit on the ratio between the one-
and zero-photon probabilities. One application of this result
is that it is impossible to obtain one photon with unit prob-
ability, as it would be necessary for this ratio to be infinite.
Another consequence of Eq.(14) is that, forD=M −1 (i.e.,
the number of photons detected one less than the maximum
input number), an improvement can never be achieved. This
case is important because it is the most straightforward way
of eliminating the possibility of two or more photons in the
output mode.

Next we investigate situations in which the single-photon
contribution can be enhanced. AsM øN andDù0, the up-
per limit on the improvement inRout is simplyN. This is also
the upper limit on how farc1 can be increased abovepmax.
We now consider a scheme that gives a linear improvement
in Rout, though not as high asN. In order to obtain a large
value for the ratioRout, we want the inequality in Eq.(13) to
be as close to equality as possible. In turn, this means that we
want the vectorssL1kd and sSkd to be as close to parallel as
possible. For this, we consider the interferometer given by

L12 = − e, L22 = Î1 − e2,

L1i = Îs1 − e2d/sN − 1d, L2i = e/ÎN − 1, s15d

for i Þ2 (the values ofL ji for j .2 do not enter into the
analysis). Heree is a small number, and we will ignore terms
of ordere or higher. Now letpi =pmax, and consider the mea-
surement record where zero photons are detected in modes 3
to N, so the number of photons detected in mode 2 isD. To
determinecn1

, note first thatL22@L2i for i Þ2, so we may
ignore those terms in the sum forSs,n whereL22 does not
appear. Each term has magnitudeL11

n1L22L21
D−1 [14], and there

areDsD+n1−1d! such terms. Therefore, provideds2=1,

Ss,n < DsD + n1 − 1d ! L11
n1L22L21

D−1. s16d

In the summation forcn1
, we haves N−1

D+n1−1d different combi-
nations of inputs such thatSs=D+n1 ands2=1. Combining
these results, we have

cn1
<

K8

n1!
pmax

D+n1s1 − pmaxdN−D−n1

3
sN − 1d ! D2sD + n1 − 1d!

sN − D − n1d!
L11

2n1L22
2 L21

2D−2

< K9S Rin

N − 1
Dn1 sD + n1 − 1d!

n1 ! sN − D − n1d!
. s17d

We have combined those factors that do not depend onn1
into a new constantK9, and usedL11<1/ÎN−1.

Using Eq.(17) we find that

Rout < Rin
DsN − Dd

N − 1
. s18d

The maximum improvement inRout is obtained for D
= dN/2e, whereRout<RinbN2/4c / sN−1d. Here d e denotes the
ceiling function andb c denotes the floor function. The
multiplicative factorbN2/4c / sN−1d is larger than 1 for all
Nù4. Thus we find that, provided there are at least four
modes, we may obtain an improvement inRout. For pmax
!1, c1<pmaxbN2/4c / sN−1d. For largeN, the probability of
a single photon increases approximately asN/4. This is
linear with N, but does not achieve the upper bound ofN.

Although we find an improvement in the measureRout, the
two-photon contribution is not negligible. Using the measure
Gout, we find

Gout =
c2/c1

c1/c0
<

sD + 1dsN − D − 1d
2DsN − Dd

. s19d

For D= dN/2e, this measure is close to 1/2, so the two-photon
component is similar to that for a Poisson distribution. By
taking D=N−2, it is possible to obtain an improvement in
Rout of about a factor of 2, with a value ofGout about half
that for a Poisson distribution. However, this two-photon
contribution is still much greater than for good single-
photon sourcesf10g.

The multiphoton contributions are especially important
for largerpmax. Although the improvement inRout is indepen-
dent of pmax, the multiphoton component means that im-
provements inc1 are obtained only for values ofpmax below
1/2. That is, this method can only be used to obtain improve-
ments in the probability of a single photon up to 1/2, but not
to make the probability of a single photon arbitrarily close to
1.

The above method only givesc1.pmax for four or more
modes. We will now show that it is impossible to obtain an
improvement in the probability of a single photon with fewer
than four modes, and for various combinations of detections
with larger numbers of modes. We first examine the caseD
=0. Then there is only one term in the sum forc0, and c0
=K8P0. The expression forc1 becomes

c1 = K8o
k=1

N
pk

1 − pk
P0uL1ku2 ø K8Rino

k=1

N

P0uL1ku2

= K8RinP0 = c0Rin. s20d

Thus we have shown thatRoutøRin, so c1øpmax. Hence
there can be no improvement in the photon statistics if
zero photons are detected.

We can also obtain a similar result for the caseD=1,
provided all the inputpi are equal. In that case, we have

c0 = K8o
k

pmax

1 − pmax
P0uL2ku2 = K8RinP0. s21d

The value ofc1 is given by
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c1 =
1

2
K8o

k
o

l;lÞk

Rin
2 P0uL1lL2k + L1kL2lu2

ø
1

2
K8Rin

2 P0o
k,l

uL1lL2k + L1kL2lu2 = K8Rin
2 P0. s22d

Thus we again findRoutøRin, so c1øpmax.
These results clearly eliminate the possibility of improv-

ing the probability of finding one photon with a two-mode
interferometer. We have shown that detecting zero photons
does not give an improvement, and if one photon is detected,
then we must haveM −D=1 or 0, so there again can be no
improvement. Along the same lines we can also eliminate the
three-mode interferometer.

We have shown that it is impossible to improve the effi-
ciency of a single-photon source by channelling more than
one low-efficiency single-photon state into a linear optical
interferometer and detecting all but one of the photons. This
eliminates the most straightforward scheme for obtaining an

output state with no more than one photon. It is possible to
obtain an improvement for more general detection results,
but at the expense of nonzero probabilities for two or more
photons. We have not proven that it is impossible to obtain
an improvement in the probability of a single photon while
restricting to zero probability for two or more photons; how-
ever, numerical searches indicate that it is unlikely.
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