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Influence of radiative damping on the optical-frequency susceptibility
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Motivated by recent discussions concerning the manner in which damping appears in the electric polariz-
ability, we show that~a! there is a dependence of the nonresonant contribution on the damping and that~b! the
damping enters according to the ‘‘opposite sign prescription.’’ We also discuss the related question of how the
damping rates in the polarizability are related to energy-level decay rates.
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I. INTRODUCTION

Several recent papers address the question of how m
rial damping effects should be included in the response o
atom or molecule to an applied electric field@1–5#. We will
consider the simplest case, that of the linear atomic pola
ability, which in the absence of damping is given by t
Kramers-Heisenberg formula,

a i~v!5
e2

3\ (
j

ur j i u2S 1

v j i 2v
1

1

v j i 1v D ~1!

for statei. Herev j i and r j i are the transition~angular! fre-
quency and coordinate matrix element, respectively, betw
statesi and j, and the field frequencyv is assumed to be fa
removed from any of the atomic transition frequenciesv j i .
More generally one associates damping ratesg j i with the
different transitions and writes

a i~v!5
e2

3\ (
j

ur j i u2S 1

v j i 2v2 ig j i
1

1

v j i 1v1 i jg j i
D ,

~2!

where j511 according to the so-called ‘‘opposite sign
prescription andj521 in the ‘‘constant sign’’ prescription
The difference appears only in the nonresonant terms, an
therefore unimportant in most situations. However, the qu
tion of which prescription is the correct one raises some
teresting points, as we shall see, and the purpose of
paper is to address some of these points as well as to an
the question of whether one should takej511 or j521 in
Eq. ~2!.

One might ask first whether a damping term should
pear at all in the nonresonant part of the Kramers-Heisenb
formula, i.e., whether we should in fact takej50 instead of
eitherj511 or j521. An analysis involving the diagonal
ization of the ~two-level! atom-field Hamiltonian in the
rotating-wave approximation, for instance, shows that th
is no damping term in the nonresonant denominator@6#, a
result that is certainly accurate for most practical purpos
In a broader context the issue here is an old one. Thus
1050-2947/2004/69~2!/023814~6!/$22.50 69 0238
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imaginary part of the polarizability~2! implies an absorption
coefficient having the usual Lorentzian form

g

~v2v0!21g2 , ~3!

as well as a nonresonant part

g

~v1v0!21g2 ~4!

for a transition of frequencyv0 and linewidthg, and one
might question whether, as a matter of principle, Eq.~4!
contributes to the absorption line shape. In his considera
of possible corrections to the Weisskopf-Wigner line sha
Lamb@7# noted that ‘‘such a contribution@as Eq.~4!# appears
in some derivations,’’ but added that it would be negligib
compared with the resonant contribution~3!.

The effect of damping on the nonresonant part of the
larizability is not an entirely trivial matter, and the literatu
relating to the subject reveals significant disagreement
some rather basic aspects of dissipation theory. The purp
of this paper is to address the principal points where ther
disagreement and to obtain what we regard as the cor
form of the polarizability when damping is included.

In the following section we consider the problem of th
electric-dipole interaction of a two-level atom with the qua
tized electromagnetic field, assuming that all but one of
field modes are initially unoccupied. Using the rotating-wa
approximation~RWA! for the atomic source field but not fo
the applied field, we obtain exactly the result cited earl
@6#, and in particular we find that there is no contributio
from ~radiative! damping to the nonresonant term in the p
larizability. In Sec. III we go beyond the RWA in the atom
source field and find that the damping now appears in
nonresonant term, and that it does so in accordance with
opposite sign prescription. Section IV presents a discuss
of these results, including their connection to the class
theory of radiative damping. Section V focuses on the fo
of the damping rateg j i , and we argue that, contrary to wh
sometimes appears in the literature,g j i depends on the sum
rather than the difference of the level decay rates. Our c
clusions are summarized in Sec. VI.
©2004 The American Physical Society14-1
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II. DERIVATION OF LINEAR POLARIZABILITY: RWA

The model we consider is described by the Hamiltonia

H5\v0sz1(
k

\vkak
†ak2dEsx

5\v0sz1(
k

\vkak
†ak2 i\(

k
Ck~ak2ak

†!~s1s†!

~5!

for a two-level atom~TLA ! with transition dipole momentd
and transition frequencyv0 interacting with the electromag
netic field. Thes operators are the usual Pauli operato
with s and s† the lowering and raising operators for th
TLA. ak and ak

† are the annihilation and creation operato
for field modek, andCk5(d•ek,l /\)(2p\vk /V)1/2, with V
the quantization volume. The subscriptk denotes (k,l),
where k is the wave vector associated with a plane-wa
mode of frequencyvk5ukuc andek,l is a corresponding po
larization unit vector (k•ek,l50,ek,l•ek,l8

* 5dll8 ,l51,2).
The commutation relations for the atom and field ope

tors give the Heisenberg equations of motion

ṡ52 iv0s1(
k

Ck~szak2ak
†sz!, ~6!

ȧk52 ivkak1Ck~s1s†!. ~7!

We have chosen a normal ordering for the field annihilat
and creation operators, which is especially useful in the c
that the applied field is described by a coherent state@Eq.
~11!#. As we are interested only in determining the line
response, the equation of motion forsz will not be needed
for our purposes.

The formal solution of Eq.~7! is

ak~ t !5ak~0!e2 ivkt1CkE
0

t

dt8@s~ t8!1s†~ t8!#eivk(t82t).

~8!

In one version of the RWA we ignore the coupling betwe
the creation operator for the field and the raising operator
the atom; this corresponds, for the purpose of obtaining
equation of motion for the field operators, to the neglect
the termsak

†s† and sak in the Hamiltonian~5!. In this ap-
proximation the equation of motion fors becomes

ṡ~ t !52 iv0s~ t !1(
k

Ck@sz~ t !ak~0!e2 ivkt

2ak
†~0!sz~ t !eivkt#

1(
k

Ck
2E

0

t

dt8sz~ t !s~ t8!eivk(t82t). ~9!

Note that we arenot making a RWA in the free-field opera
tors ak(0) andak

†(0), sothat both annihilation and creatio
free-field operators@ak(0) and ak

†(0)] appear in Eq.~9!.
Rather, we are making the RWA in the part of the field o
02381
,

e

-

n
se

r

r
e
f

-

eratorsak(t) and ak
†(t) that depend on the atom operato

s(t) ands†(t). The terms that are neglected in this appro
mation can be identified by comparing Eqs.~9! and ~22!.

Taking expectation values over the initial atom-field sta
on both sides of Eq.~9!, we have

^ṡ~ t !&52 iv0^s~ t !&1(
k

Ck@^sz~ t !ak~0!&e2 ivkt

2^ak
†~0!sz~ t !&eivkt#

1(
k

Ck
2E

0

t

dt8^sz~ t !s~ t8!&eivk(t82t). ~10!

We assume that the initial field stateucF& corresponds to a
single occupied mode described by a coherent state with

ak~0!ucF&5acucF&, ^cFuak
†~0!5ac* ^cFu ~11!

corresponding to the expectation value

^E~ t !&5 i S 2p\v

V D 1/2

@ace
2 ivt2ac* eivt#[E0 cosvt

~12!

of the applied electric field. Thus

(
k

Ck@^sz~ t !ak~0!&e2 ivkt2^ak
†~0!sz~ t !&eivkt#

52
i

\
dxE0cosvt^sz~ t !&, ~13!

where dx is the component of the dipole matrix eleme
along the direction of the applied field;dx

25d2/3 for the
spherically symmetric atom.

We assume that the operatorsz , which corresponds to the
population inversion, changes sufficiently slowly that w
may take

^sz~ t !s~ t8!&>^sz~ t8!s~ t8!&52^s~ t8!& ~14!

in the integral appearing in Eq.~10!. Since we want to obtain
the polarizability for the TLA in a particular state, we assum
further that the atom remains with high probability in i
initial state. Assuming this initial state to be the lower sta
we approximatêsz(t)& by 21, so that, using Eq.~13! and
the approximation~14!, we replace Eq.~10! by

^ṡ~ t !&52 iv0^s~ t !&1 i
d

\
E0cosvt

2(
k

Ck
2E

0

t

dt8^s~ t8!&eivk(t82t). ~15!

We seek a solution of Eq.~15! of the form

^s~ t !&5se2 ivt1reivt, ~16!

with s and r constants to be determined. This implies
4-2
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i ~v02v!se2 ivt1 i ~v01v!reivt

5
idx

2\
E0~e2 ivt1eivt!2@g2~v!2 iD2~v!#se2 ivt

2@g1~v!2 iD1~v!#reivt, ~17!

where

g6~v!5Re(
k

Ck
2E

0

t

dt8ei (vk6v)(t82t)

→ V

8p3

2p

\VE d3kvk(
l

ud•ek,lu2pd~vk6v!

5
d2

4p2\c3E dVV3pd~V6v!E
0

p

du sin3u

5
2d2

3\c3E
0

`

dVV3d~V6v!5
2d2v3

3\c3 U~7v!

~v.0! ~18!

and

D6~v!5
2d2

3p\c3PE
0

`dVV3

V6v
~19!

for t@1/v, whereU is the unit step function. Note that th
damping rateg2(v) is frequency-dependent@8#. @D6(v) is
obviously divergent but, as discussed in Sec. IV, this has
direct bearing on our conclusions regarding the effect
damping on the polarizability.# To obtain the polarizability
a(v) we write

p5dx^sx&5dx~^s&1^s†&!52dx Re@~s1r * !e2 ivt#

[Re@a~v!E 0e2 ivt# ~20!

for the induced dipole moment. This yields

a~v!5
d2

3\ S 1

v02v2D2~v!2 ig2~v!

1
1

v01v2D1~v!1 ig1~v! D . ~21!

Note thatg1(v)50, and that therefore there is no dampi
contribution to the second~nonresonant! term. g2(v0) is
half the radiative decay rate of the upper state in the abse
of any applied field.

III. DERIVATION OF LINEAR POLARIZABILITY
WITHOUT RWA

Let us now recalculate the polarizability, this time reta
ing both terms inside the integral of Eq.~8!, i.e., without
making the RWA in the~source! field produced by the atom
under consideration. Then Eq.~9! is replaced by
02381
o
f

ce

-

^ṡ~ t !&52 iv0^s~ t !&2 i
dx

\
E0 cosvt^sz~ t !&

1(
k

Ck
2E

0

t

dt8@^sz~ t !s~ t8!&

1^sz~ t !s†~ t8!&#eivk(t82t)

2(
k

Ck
2E

0

t

dt8@^s†~ t8!sz~ t !&

1^s~ t8!sz~ t !&#e2 ivk(t82t), ~22!

when we take expectation values as before. The approxi
tions tantamount to Eq.~14! are

^sz~ t !s~ t8!&>^sz~ t8!s~ t8!&52^s~ t8!&,

^sz~ t !s†~ t8!&>^sz~ t8!s†~ t8!&5^s†~ t8!&,

^s†~ t8!sz~ t !&>^s†~ t8!sz~ t8!&52^s†~ t8!&,

^s~ t8!sz~ t !&>^s~ t8!sz~ t8!&5^s~ t8!&, ~23!

where we use the equal-time identitiessz(t)s(t)
52s(t)sz(t)52s(t). Using these approximations in Eq
~22!, together with the approximation̂sz(t)&>21 in the
second term, we obtain the non-RWA extension of Eq.~15!

^ṡ~ t !&52 iv0^s~ t !&1
idx

\
E0 cosvt1(

k
Ck

2E
0

t

dt8

3@2^s~ t8!&1^s†~ t8!&#eivk(t82t)2(
k

Ck
2E

0

t

dt8

3@2^s†~ t8!&1^s~ t8!&#e2 ivk(t82t). ~24!

It is important to note that in Eqs.~23! we have used the
commutation relations betweensz(t) and s(t), s†(t), and
have obviously not made the approximation thatsz could be
replaced by21. The latter approximation is made only i
the second term of Eq.~22!, wheresz multiplies the applied
field but no atom operator, so that the approximation d
not violate the commutation relations from which we o
tained the equations of motion. The two approximations
different: that made in Eq.~23! assumes thatsz(t) varies
little on time scales;1/vk for field frequenciesvk;v that
will contribute significantly to the variation of̂ s(t)&,
whereas that made in replacinĝsz(t)&E0 cosvt by
2E0 cosvt assumes that the atom remains with high pro
ability in its lower state because the field frequency lies o
side the absorption linewidth. The difference between th
two approximations involvingsz turns out to be irrelevan
for the final results when the RWA is made, as is clear fro
Eq. ~14!.

We again have a solution of the form~16!, now withs and
r satisfying

Xs1Ur * 5
dx

2\
E0 ,
4-3
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Vs1Yr* 5
dx

2\
E0 , ~25!

where

X5v02v2@D2~v!2D1~v!#2 i @g2~v!1g1~v!#,

U5@D2~v!2D1~v!#1 i @g2~v!1g1~v!#,

Y5v01v1@D2~v!2D1~v!#1 i @g2~v!1g1~v!#,

V5@D2~v!2D1~v!#1 i @g2~v!1g1~v!#. ~26!

Assuming thatg6(v) and D6(v) are small in magnitude
compared tov06v, we have

s>
dxE0

2\

1

X

5
dxE0

2\

1

v02v2@D2~v!2D1~v!#2 i @g2~v!1g1~v!#

r * >
dxE0

2\

1

Y

5
dxE0

2\

1

v01v1@D2~v!2D1~v!#1 i @g2~v!1g1~v!#

~27!

and, from Eq.~20!,

a~v!5
d2/3\

v02v2@D2~v!2D1~v!#2 i @g2~v!1g1~v!#

1
d2/3\

v01v1@D2~v!2D1~v!#1 i @g2~v!1g1~v!#
.

~28!

IV. DISCUSSION

In contrast to the RWA result~21!, D6(v) and g6(v)
appear in both the resonant and nonresonant terms of
~28!. Consider first the physical significance ofD6(v), as-
suming that the frequencyv of the initially occupied field
mode is sufficiently close tov0 that we may take

D2~v!'D2~v0!5
2d2

3p\c3PE
0

` dVV3

V2v0
~29!

and focusing only on the resonant term ina(v). In a more
complete analysis involving the transformation from the fu
damental minimal-coupling form of the Hamiltonian to th
electric-dipole form, it is found that the additional ter
2p*d3P'

•P' appearing in the transformed Hamiltonian h
the effect of replacing Eq.~29! by @9#

D2~v0!'
2d2v0

2

3p\c3PE
0

` dVV

V2v0
. ~30!
02381
q.

-

With this modification it is seen thatD(v0)[D2(v0)
2D1(v0) is simply the~unrenormalized! TLA radiative fre-
quency shift, i.e., the difference in the radiativelevelshifts of
the two levels@10#. In general, however, the approximatio
~30! is not applicable, and the radiative level shifts\D6(v)
depend on the frequency of the initially occupied mode.
the polarizability Eq. ~28!, the frequency shiftD(v)
[D2(v)2D1(v) adds to the field frequencyv in both the
resonant and nonresonant terms, whereas in the RWAD1(v)
does not appear in the resonant term andD2(v) does not
appear in the nonresonant term. In other words, the R
does not correctly include the radiative frequency shift as
difference in the radiative level shifts of the TLA.

The expressions for the level shifts\D6(v) are specific
to the TLA model, but are easily generalized to the case o
real atom. This extension, even with the standard renorm
ization procedures, still leaves us with divergent level sh
in the nonrelativistic approximation. A high-frequency cuto
mc2/\ results in Bethe’s approximation to the Lamb sh
@10#. Since this procedure is very well known, and we are
any case only concerned with the form in which the radiat
corrections appear in the polarizability, and not their nume
cal values, we will simply assume henceforth that the f
quency shift has been accounted for in writingv06v.

Thus

a~v!5
d2

3\ S 1

v02v2 ig~v!
1

1

v01v1 ig~v! D , ~31!

whereg(v)5g2(v)1g1(v). Just asD(v), ig(v) is ef-
fectively an addition to the applied field frequencyv. Unlike
the frequency shift, however, the damping rateg(v) is half
the sum of the decay ratesg6(v) of the two levels. Of
course the decay rateg1(v) of the ground state in our two
level model is zero but, as discussed in the following secti
Eq. ~31! is valid more generally when the decay rate of t
lower level of the transition is not zero. That is, the dampi
rate appearing in the contribution to the polarizability fro
any given transition involves half the sum of the decay ra
of the two levels of the transition.

Regardless of whether the lower-level decay rate v
ishes, the non-RWA result~31! shows that both the resonan
and nonresonant contributions to the polarizability have
nonvanishing damping term in their denominators, t
damping term being half the upper-level decay rate. In p
ticular, it is seen that the damping appears according to
opposite sign prescription, i.e.,j511 is the correct choice
in the dispersion formula (2!. The same conclusion wa
reached by different lines of reasoning by Buckingham a
Fischer@2#.

Note that, ifg is taken to be a~positive! constant, inde-
pendent of frequency, then the opposite sign prescriptio
consistent with the causality requirement that the polariza
ity should be analytic in the upper half of the complexv
plane @11#. But in general the decay rates are in fact fr
quency dependent@8#, and causality is ensured only if th
model used to calculateg(v) is itself causal. In fact, as
recalled below, radiative damping provides an example
which this is not the case.
4-4
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In one approach to a classical calculation of the natu
line shape, one considers the solutionx(t)5A0e2gt sin(v0t)
of a damped dipole oscillator with resonance frequencyv0.
The line shape is taken to be proportional to the squa
modulus of the Fourier transform

a~v!5
A0

2pE0

`

dte2gteivt sin~v0t !

}S 1

v02v2 ig
1

1

v01v1 ig D ~32!

and is seen to be consistent with the opposite sign pres
tion. In contrast to this, an old paper by Weisskopf@12# im-
plies the result

a~v!}S 1

v02v2 ig
2

1

v01v2 ig D , ~33!

which is consistent with the constant sign prescription. Ho
ever, since this result is based on the integral appearin
Eq. ~32!, it seems that Eq.~33! involves a sign error or per
haps just a typographical error.

Since the absorption coefficient may for our purposes
taken to be proportional to the imaginary part ofa(v), Eq.
~31! implies an absorption line shape proportional to

L~v!5
g

~v02v!21g2 2
g

~v01v!21g2 . ~34!

The same result, forg taken to be a constant, was obtain
on the basis of the Lorentz model by Van Vleck and We
skopf @13#, who noted that the minus sign in the nonreson
term must be used because the excitation of the molecu
here accompanied by emission rather than absorption
light quantum, a process which is excluded when the RWA
made@14#.

It is also of interest to compare the result~31! with the
corresponding result given by the classical theory of rad
tive damping based on the equation

ẍ1v0
2x2

2e2

3mc3 x
. . .

5
e

m
E0 cosvt. ~35!

The polarizability of the classical dipole oscillator describ
by this equation is

acl~v!5
e2/m

v0
22v22

2

3
~ ie2/mc3!v3

5
e2

2mv08
S 1

v082v2 igcl~v!
1

1

v081v1 igcl~v!
D ,

~36!

where v085Av0
22gcl

2 (v) and gcl(v)5(e2/3mc3)v2. The
replacements e2/2mv08→e2f 1/2mv08 and e2v2/3mc3

→e2f 2v2/3mc3, where f 152mv08d
2/e2\ and f 2(v)
02381
l

d

ip-

-
in

e

-
t
is
a

is

-

5(2mvd2/e2\), make the classical result~36! equivalent to
Eq. ~31!. These replacements involving effective oscillat
strengthsf 1 and f 2 are the usual substitutions required to p
classical oscillator results in agreement with some of the c
responding quantum-mechanical expressions.

v3 in the denominator of Eq.~36!, or in other words the
third derivative ofx in Eq. ~35!, leads to a pole in the uppe
half of the complexv plane, thus violating the causalit
requirement that the polarizability be analytic in the upp
half plane. The nonrelativistic theory of radiative reaction
well known to be acausal, but the acausality occurs on s
a short-time scale that relativistic quantum effects must
taken into account. For most practical purposes the acau
ity is of no consequence. Thus, for instance, Eq.~36! leads to
the correct extinction coefficient (}v Im@a(v)#) due to
Rayleigh scattering.

V. RELATION OF DAMPING IN THE POLARIZABILITY
TO LEVEL DECAY RATES

These considerations are easily extended beyond the
level model, with the result that the linear atomic polarizab
ity has the form

a i~v!5
e2

3\ (
j

ur j i u2S 1

v j i 2v2 ig j i ~v!

1
1

v j i 1v1 ig j i ~v! D . ~37!

The damping rateg j i (v) has a ‘‘dephasing’’ contribution
associated, for instance, with elastic collisions, as well a
contribution associated with the decay rate of the atom
statesi and j.

Various authors have calculated or assumed—erroneo
in our opinion—thatg j i involves thedifferencein the decay
rates of the statesi and j @5,15,16#. In addition to the
Heisenberg-picture calculation leading to the conclusion t
g j i involves the sum rather than the difference of ener
level decay rates, as presented in this paper, the follow
simple argument can be used. Letci(t) and cj (t) be the
~Schrödinger-picture! probability amplitudes for statesi and
j, and letg i andg j be the decay rates of these states. Th
ci* (t)cj (t) andci(t)cj* (t), which determine the polarizabil
ity, decay at exp@2(1/2)(g i1g j )t#, and so the linewidth in
the polarizability must involve the sum ofg i and g j rather
than the difference. Sushchinskii@15#, for instance, expresse
his results in terms of complex energiesEi85Ei2(1/2)iG i

and their differencesEi82Ej85Ei2Ej2(1/2)i (G i2G j ),
whereas the appropriate differences entering into the po
izability areEi8* 2Ej8 andEi82Ej8* .

Finally we note that Andrewset al. @17# have stated a
polarizability sum rule which in the simplest case of t
linear polarizability can be expressed as( ia i(v)50. A
physical plausibility argument for this sum rule can be a
duced as follows. Ifpi is the probability that the atom is in
statei, then the linear polarizability at field frequencyv is
4-5
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a~v!5(
i

pia i~v!. ~38!

Consider the idealized limit in which all thepi are equal.
Then the polarizability and therefore the induced emission
absorption rate at frequencyv are proportional to just
( ia i(v). But if all the states are equally populated the n
induced emission and absorption rate must vanish, imply
the polarizability sum rule conjectured by Andrewset al.
From the expression~37! it follows that this sum rule is
satisfied only ifg j i is symmetric ini and j, i.e., g j i must
involve the sum rather than the difference ofg i andg j . ~We
note that, in the case of theconstantsign prescription for the
damping terms in the polarizability, the polarizability su
rule would be satisfied only ifg j i were antisymmetricin i
and j.!

VI. SUMMARY

Following a standard, nonrelativistic approach, we ha
considered specifically the case of a two-level atom inter
ing with the quantized electromagnetic field, one mode
which is initially occupied and described by a coherent sta
Working in the Heisenberg picture, we calculated the po
izability with and without making the RWA for the atomi
source field. In the RWA we obtained a known result, and
particular the nonresonant contribution to the polarizabi
was found to have no damping factor in its denomina
y
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Going beyond the RWA, however, we found that both t
resonant and nonresonant contributions to the polarizab
have the radiative damping rate in their denominators,
that the polarizability has a form that is consistent with t
so-called opposite sign prescription for including the dam
ing.

The radiative frequency shift appearing in the non-RW
expression for the polarizability depends on the radiat
level shifts in the correct way, i.e., it is the difference of th
two level shifts. The damping rate appearing in the non-RW
expression for the polarizability is half thesumof the radia-
tive decay rates of the two levels, in contrast to the differen
of the decay rates that has been obtained or assume
some treatments. The fact that the polarizability depe
symmetrically on the decay rates of the energy levels
consistent with the polarizability sum rule of Andrew
et al. @17# when the~correct! opposite sign prescription is
used.
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