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Resonant generation of topological modes in trapped Bose-Einstein gases
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Trapped atoms cooled down to temperatures below the Bose-Einstein condensation temperature are consid-
ered. Stationary solutions to the Gross-Pitaevskii equation~GPE! define the topological coherent modes,
representing nonground-state Bose-Einstein condensates. These modes can be generated by means of alternat-
ing fields whose frequencies are in resonance with the transition frequencies between two collective energy
levels corresponding to two different topological modes. The theory of resonant generation of these modes is
generalized in several aspects: Multiple-mode formation is described; a shape-conservation criterion is derived,
imposing restrictions on the admissible spatial dependence of resonant fields; evolution equations for the case
of three coherent modes are investigated; the complete stability analysis is accomplished; the effects of
harmonic generation and parametric conversion for the topological coherent modes are predicted. All consid-
erations are realized both by employing approximate analytical methods as well as by numerically solving the
GPE. Numerical solutions confirm all conclusions following from analytical methods.
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I. INTRODUCTION

Dilute Bose gases at low temperatures, when almos
atoms are in Bose-Einstein condensate, are well describe
the Gross-Pitaevskii equation~GPE! ~see reviews@1–5#!.
Since the latter is a type of the nonlinear Schro¨dinger equa-
tion, it should possess the whole spectrum of stationary
lutions. In the presence of a trapping potential, the rela
energy spectrum is, in general, discrete. Stationary solut
to the GPE are, by definition, the topological cohere
modes, whose ground state describes the standard B
Einstein condensate, while the higher states correspon
nonground-state Bose-Einstein condensates@6#.

It is worth saying a few words recalling where the nam
topological coherent modescomes from. Different stationary
solutions to the GPE, associated with different energy lev
display principally different spatial shapes, in particular, d
ferent number of zeros. Because of their distinct spatial
pology, the modes are termedtopological. These should no
be confused with elementary collective excitations, defin
by linear Bogoliubov–de Gennes equations. Such elemen
excitations describe small oscillations around a given stat
ary solution and do not change the topology of the lat
Since the GPE is nonlinear, its solutions can also be na
nonlinear modes, which would stress their principal diffe
ence from elementary excitations satisfying the line
Bogoliubov–de Gennes equations. However, the elemen
excitations, produced by strong perturbations, are someti
also called nonlinear. Therefore the term topological, cha
terizing dissimilar modes, seems to be more precise.
topological modes are specified ascoherentdue to the fact
that the GPE can be interpreted as an exact equation
coherent states@7,8#.

The possibility of resonant generation of arbitrary top
logical coherent modes was advanced in Ref.@6#. A particu-
1050-2947/2004/69~2!/023620~16!/$22.50 69 0236
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lar case of vortex creation was suggested in Refs.@9–11#.
The properties of such modes were also studied in R
@12–22# and a dipole topological mode was excited in e
periment @23#. Bose-Einstein condensates with topologic
coherent modes exhibit a variety of interesting featu
which could find many applications. Among these featur
we could mention the following.

Mode locking. This is the effect under which the fractiona
mode populations are locked to stay in the vicinity of th
initial values @6,8,22#. Mathematically, this effect is analo
gous to self-trapping occurring for atoms in double-well p
tentials@24–26#.

Critical dynamics. An abrupt qualitative change of dy
namics of fractional mode populations under an infinite
mally small variation of the pumping paramete
@8,17,21,22#. A mathematically similar effect in the case o
double-well potentials is the dynamic phase transition
tween the Rabi and Josephson regimes@24,25,27#.

Interference patterns. Specific interference fringes arisin
because of differing spatial shapes of different topologi
modes@8,21#.

Interference current. Fastly oscillating current, existing
even inside a single-well trap@8,21#. Such a type of current
arising between two interpenetrating populations, not se
rated by any barrier, is, on occasion, called the internal
sephson effect@28,29#.

Atomic squeezing. Narrowing of the dispersion corre
sponding to the mode population difference, compared to
dispersion related to dipole transitions@8#. A similar feature
is illustrated by two-component condensates@30#.

Irreducible modes. These are the topological modes th
have no linear counterparts, so that they cannot be con
ered as analytical continuations, under increasing of non
earity, of the related linear modes@18,19#. Such modes, in
addition to strong nonlinearity, require the presence of m
©2004 The American Physical Society20-1
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tiwell potentials@31–34#. An investigation of the mode spec
trum in the case of single-well traps shows that in this c
nonlinear modes are reducible and can be treated as an
cal continuations of linear counterparts@6,8,15,35,36#.

In the present paper, we generalize the theory of reso
formation of topological coherent modes and study the f
tures that have not been considered in previous publicati
The most important points are as follows.

~1! The possibility of resonant generation of multiple t
pological coherent modes is described. This can be achie
by subjecting a trapped Bose-Einstein condensate to the
tion of several alternating fields, whose frequencies are tu
to distinct transition frequencies related to different mod
~Sec. II!.

~2! A general criterion is derived, showing when nonline
modes cannot be generated even if the applied alterna
field is in perfect resonance with the corresponding transi
frequency. This condition relates the spatial dependenc
the trapping potential and that of the alternating field~Sec.
III !.

~3! Simultaneous generation of two excited coher
modes is studied in detail. The resulting dynamical syst
describes three coexisting nonlinear modes~Sec. IV!.

~4! The phase portrait of the three-mode dynamical s
tem is investigated. All fixed points are found and their s
bility is analyzed~Sec. VI!.

~5! Harmonic generation of topological modes is shown
exist. This effect is analogous to optical harmonic genera
~Sec. VII!.

~6! Parametric conversion for topological modes is a
other effect having its optical counterpart. To realize t
effect, it is necessary to subject trapped atoms to the ac
of several alternating fields~Sec. VII!.

~7! The principal feature of this paper is that all consid
ation has been done in two ways, by applying approxim
analytical methods and also by numerically solving the GP
Numerical solutions confirm all effects described analy
cally.

II. RESONANT GENERATION OF MULTIPLE MODES

Dilute Bose-condensed gases at low temperature are c
acterized@1–5# by a coherent fieldw(r ,t), which is a wave
function satisfying the GPE

i\
]

]t
w~r ,t !5~Ĥ@w#1V̂!w~r ,t !, ~1!

where the nonlinear Hamiltonian

Ĥ@w#52\2
¹2

2m0
1U~r !1N Asuw~r ,t !u2 ~2!

contains a trapping potentialU(r ) and the interaction inten
sity

As[4p\2
as

m0
, ~3!
02362
e
yti-

nt
-
s.

ed
c-

ed
s

r
ng
n
of

t
m

-
-

n

-
s
on

-
te
.

-

ar-

with m0 being atomic mass;as scattering length; andN the
total number of atoms. The wave function is normalized
unity, so thatuuwuu51. The confining potential can be modu
lated by applying an additional fieldV̂5V(r ,t).

The topological coherent modes are the solutions to
stationary GPE

Ĥ@wn#wn~r !5En wn~r !, ~4!

wheren is a labeling multi-index. The transition frequencie
for two distinct modesmÞn are

vmn[
1

\
~Em2En!. ~5!

The trap modulation is resonant if the frequency of an
plied alternating field is tuned close to one of the transit
frequencies~5!. This resonant field can induce transition
between the considered modes. Everywhere in what follo
talking about resonance, we keep in mind the resonant t
sitions between distinct topological modes. This should
be confused with parametric resonance, when one consi
a single mode, whose width can become divergent un
special conditions on the amplitude of a perturbing field@37#.

Previously, the resonant excitation of topological mod
has been considered for the case of a sole resonant
coupling two chosen modes@6,8#. Now, we turn to the most
general case, when there are several alternating fields, so
the modulating potential is a sum

V~r ,t !5(
j

@Vj~r !cos~v j t !1Vj8~r !sin~v j t !# ~6!

of fields with different frequenciesv j . Generally, the ampli-
tudesVj (r ) and Vj8(r ) can also be slow functions of time
whose temporal variation is slow compared to that
cos(vjt), such that

1

\v j
U]Vj

]t U!1,
1

\v j
U]Vj8

]t
U!1. ~7!

If these amplitudes are such slow functions of time, th
varying them adiabatically, one could induce the Landa
Zener tunneling@31,33#. But here we shall consider only th
transitions caused by the fastly oscillating cos(vjt). Each fre-
quencyv j is assumed to be close to one of the transit
frequencies~5!, so that theresonance conditions

UDmn

vmn
U!1, Dmn[v j2vmn ~8!

are valid.
The modulating potential~6! can be presented as

V~r ,t !5
1

2 (
j

@Bj~r !eiv j t1Bj* ~r !e2 iv j t#, ~9!

with
0-2
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RESONANT GENERATION OF TOPOLOGICAL MODES IN . . . PHYSICAL REVIEW A69, 023620 ~2004!
Bj~r ![Vj~r !2 iV j8~r !. ~10!

The modulation can be realized by varying the trapping m
netic fields, by invoking laser spoons, or resorting to ot
means@6,8–11#.

There exist two characteristic quantities, called transit
amplitudes; one is the matrix element

amn[N
As

\
~ uwmu2,2uwnu22uwmu2!, ~11!

due to the interatomic interactions~3!, and another one is th
matrix element

bmn[
1

\
~wm ,B̂jwn!, ~12!

related to the amplitudeB̂j5Bj (r ) of the modulating poten-
tial ~9!. Here,(.,.) denotes the usual scalar product of Sch¨-
dinger theory. To avoid intensive power broadening, th
amplitudes~11! and ~12! have to satisfy the inequalities

Uamn

vmn
U!1, Ubmn

vmn
U!1, ~13!

wheremÞn and whose meaning was explained in detail
Ref. @8#. Conditions~13! allow for an effective generation o
nonlinear modes by resonant fields. The first of these res
tions, briefly speaking, can be reduced to the limitation
the number of atoms that can be transferred to an exc
coherent mode@8#. This limiting number of atoms is close t
the critical number of atoms with attractive interactions,
which the Bose-Einstein condensate~BEC! preserves its sta
bility @6,8,38,39#. Therefore the resonant generation of no
linear modes is feasible for atoms with positive as well
negative scattering lengths.

The topological coherent modes, being the solutions
the nonlinear eigenproblem~4!, do not compulsory form a
complete orthonormal basis. However, the modeswn(r ) can
always be normalized, so thatuuwnuu51. And the set$wn(r )%
of all linearly independent functions forms a total basis@8#,
permitting one to look for the solution of the Gros
Pitaevskii equation~1! in terms of the presentation

w~r ,t !5(
n

cn~ t !wn~r !expS 2
i

\
Ent D , ~14!

where cn(t) are unknown functions of time. Note that fo
some nonlinear eigenproblems, it has been rigorously pro
@40–42# that the set of the corresponding eigenfunctio
forms a complete basis. In our case, it is sufficient to requ
that the functionscn(t) are slowly varying, such that

1

vmn
Udcn

dt U!1, ~15!

and conditions~13! hold true. Then the expansion~14! is
uniquely defined by means of the averaging technique@43#.
02362
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It is worth emphasizing that the presentation~14! ideally
suits for analyzing resonant transitions between the cohe
topological modes. And it is solely these modes that are
subject of the present paper. We shall not consider here o
possible excitations that could be produced by nonreson
driving fields and studied by means of the known rescal
procedure. Nontopological nonresonant breathing-type os
lations have been considered by many authors in the e
days of the BEC research~see reviews@1–5#!. Therefore
there is no reason of extending the paper by repeating sim
results. This is why here we limit ourselves by treating on
the resonant generation of topological modes, which h
not been studied earlier.

Aiming at exciting particular modes, one should keep
mind, in addition to the resonance conditions~8!, the sym-
metry properties of the corresponding wave functions,
which the modulating field has to be such that the transit
amplitudes~12! be nonzero. However, even if all above
mentioned conditions hold true, there exists a rather gen
situation when the generation of modes is impossible.

III. NO-GO THEOREM FOR MODE GENERATION

It may happen that the applied modulating field is not a
to generate higher nonlinear modes, but can only lead to
oscillation of the initial wave function, without changing it
shape. More precisely, let us start with a wave funct
w(r ,0). After a modulating fieldV(r ,t) begins acting on at-
oms, the functionw(r ,0) is transferred to a functionw(r ,t).
When theshape-conservation condition

uw~r ,t !u5uw~r2a,0!u ~16!

holds true for time dependenta5a(t), then the shape of the
atomic cloud does not change in time, but the cloud os
lates as a whole, with its center of mass moving according
the dependencea(t). Hence, if we start with a modew(r ,0)
it can never be transferred to another mode.

By definition, the initial functionw(r ,0)5w0(r ) presents
a nonlinear mode if it satisfies the stationary Gross-Pitaev
equation

Ĥ@w0~r !#w0~r !5E0 w0~r !, ~17!

with the nonlinear Hamiltonian~2!. We assume that this ini
tial mode is real valued, i.e.,

w~r ,0!5w0~r !5w0* ~r !. ~18!

An example for this would be the ground state of a Bo
Einstein condensate. In addition, we are focusing ontrapped
atoms, which implies that the confining potentialU(r ) in-
creases towards infinity forr[ur u→`. Therefore, thetrap-
ping condition

lim
r→`

w~r ,t !50 ~19!

is valid for all t>0.
Theorem. Suppose that atoms in a trapping potent

U(r ), being initially in a real modew0(r ), are subject to the
0-3
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action of a modulating fieldV(r ,t), so that conditions~17!–
~19! are valid. Then the solution of the temporal Gros
Pitaevskii equation~1! preserves the shape of the initi
mode, satisfying condition~16!, if and only if the trapping
potential is harmonic,

U~r !5A01A1•r1(
ab

Aabr a r b, ~20!

wherea andb are the Cartesian indices, while the modul
ing field is linear with respect to the spatial variables,

V~r ,t !5B0~ t !1B1~ t !•r , ~21!

B0(t) and B1(t) being arbitrary functions of time. And th
center-of-mass motiona5a(t) is described by the equation

m0

d2aa

dt2
1(

b
~Aab1Aba!ab1B1

a~ t !50. ~22!

Proof. Assume that the shape-conservation condition~16!
holds true, and let us show that then the trapping and mo
lating potentials are necessarily such as in Eqs.~20! and~21!.
For this purpose, it is useful to invoke the presentation

w~r ,t !5uw~r ,t !uexp$ iS~r ,t !%, ~23!

whereS(r ,t) is a real action defining the velocity

v~r ,t ![
\

m0
“S~r ,t !. ~24!

Substituting the presentation~23! into the GPE~1! yields
@1–5# the continuity equation

]

]t
uwu21“•~ uwu2v!50 ~25!

and the velocity equation

m0

]v

]t
52“Ue f f , ~26!

in which the effective potential

Ue f f5U~r !1V~r ,t !1N As uwu22
\2

“

2uwu
2m0uwu

1
m0v2

2
.

~27!

Because of the shape-conservation condition~16!, one has

]uwu
]t

52“uwu•
da

dt
.

Using this in the continuity equation~25! results in

“•F uwu2S v2
da

dt D G50,

from where
02362
-
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v5
da

dt
1

c

uwu2
, c5c~ t !.

If here the functionc(t) is not zero, then from the trappin
condition ~19! it follows that v→` as r→` hence, the ac-
tion S→` asr→`. But then the limitr→` of the function
~23! is not defined. Therefore,c(t)50. Thus, the velocity
~24! becomes

v5
da

dt
5v~ t !, ~28!

which is a function of time only. But then the velocity equ
tion ~26! tells us that“Ue f f is also a function of time only,
hence the effective potential is linear inr , having the form

Ue f f5D0~ t !1D1~ t !•r . ~29!

Taking into account that the initial mode is real valued, as
conditioned by Eq. ~18!, and employing the shape
conservation condition~16!, one gets

uw~r ,t !u5w0~r2a!. ~30!

Then the effective potential~27! can be written as

Ue f f5U~r !2U~r2a!1V~r ,t !1E01
m0v2

2
. ~31!

Since, according to Eq.~29!, the effective potential is linea
in r , E0 is a constant, andv5v(t) is a function of time, then
the sum of the first three terms in Eq.~31! should also be
linear in r , such that

U~r !2U~r2a!1V~r ,t !5U0~ t !1U1~ t !•r . ~32!

Thence the effective potential~31! takes the form

Ue f f5E01
m0v2

2
1U0~ t !1U1~ t !•r . ~33!

Comparing Eqs.~29! and ~33!, we have

D0~ t !5E01
m0v2

2
1U0~ t !, D1~ t !5U1~ t !. ~34!

Equality ~32! can be satisfied only if the trapping and mod
lating potentials are given by Eqs.~20! and~21!. Substituting
the latter in Eq.~32!, we find

U0~ t !5B0~ t !1a•A2(
ab

Aab aaab,

U1
a~ t !5B1

a~ t !1(
b

~Aab1Aba!ab. ~35!

Combining Eqs.~26!, ~28!, ~33!, and~35!, we obtain Eq.~22!
for the center-of-mass motion.
0-4
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Now let us show that Eqs.~20! and~21! are sufficient for
the validity of the shape-conservation condition~16!. Equa-
tions ~25! and~26!, with the effective potential~27! and with
the initial conditions

uw~r ,0!u5w0~r !, v~r ,0!50

are equivalent to the GPE~1! with the initial condition~18!.
The latter equation is a nonlinear Schro¨dinger equation,
which, being complimented by the boundary condition~19!,
possesses a unique solution@44#. Hence, Eqs.~25! and~26!,
with the same boundary condition~19!, enjoy a unique solu-
tion. These equations, under conditions~20! and ~21!, do
have a solution satisfying the shape-conservation condi
~16!, which, according to the aforesaid, is a unique soluti
This concludes the proof.

One should not confuse the shape-conservation crite
derived here with the known result of the decoupled cen
of-mass motion in a harmonic potential. The criterion
shape conservation shows when the wave function retain
shape under the action of an external alternating field
when the shape is not preserved. The center-of-mass mo
is a trivial by-product of our theorem. The principal point
the shape conservation. The derived criterion shows tha
trapping potential may be harmonic, but, if the driving fie
is nonlinear, then, irrespectively of the center-of-mass m
tion, the shape of the wave function will not be conserve

This theorem teaches us that if the trapping potentia
harmonic, which is a standard situation, then the modula
field, being linear inr , is not able to generate topologic
modes, even if its alternating temporal parts oscillate in
exact resonance with the corresponding transition frequ
cies. It is in full agreement with a nonlinear Ehrenfest the
rem for the mean position and variance of the collect
wave function@11#. To generate such modes, at least one
the conditions~20! or ~21! has to be broken. But if a resona
alternating field is linear and the trapping potential is h
monic, then the real initial mode just moves in space, w
out changing its shape. We have checked this conclusion
numerically solving the GPE under conditions~20! and~21!
and found a perfect agreement with the theorem.

IV. COUPLING OF THREE NONLINEAR MODES

Several modes can be generated by applying a modula
field ~6! containing several corresponding resonant terms
general, two cases are admissible: when the excited m
are not coupled to each other and when they are couple
the former case, the overall dynamics consists of the mo
of several pairs of modes, each pair being separated in
motion from other modes. The motion of such separate p
of resonant modes has been studied in detail earlier@6,8–
11,14,17,21,22#. Therefore we now concentrate on the ca
of several coupled modes.

We consider the case of three coupled modes, whose
sition frequencies~5! are enumerated asv21, v31, andv32,
keeping in mind that the related energy levels are such
E1,E2,E3. To couple the modes, it is sufficient to hav
two modulating fields of the possible three that would be
resonance with the corresponding transition frequencies
02362
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general, there can be three detuningsD21, D31, and D32
satisfying the resonance conditions~8!. For the transition
amplitudes~12!, we haveb12, b13, andb23. There are six
amplitudes~11! for a i j with iÞ j .

Realizing the coupling of three modes by two drivin
fields, we can create three types of resonant systems, w
may be called, by analogy with the similar situations f
resonant atoms, as cascade,V-type, andL-type systems@45#.
In the cascade-type generation, the modes with the trans
frequenciesv21 andv32 are coupled. In theV-type case, the
transition frequencies arev21 andv31. And for theL-type
system, the transition frequencies arev31 andv32.

Substituting into the GPE~1! the presentation~14! and the
corresponding driving fields~6!, we employ the averaging
technique@43#. This procedure is absolutely the same as h
been thoroughly described in Refs.@6,8#, so we do not repea
it here. The result is the system of equations for the coe
cient functions

i
dc1

dt
5~a12uc2u21a13uc3u2!c11F1 ,

i
dc2

dt
5~a21uc1u21a23uc3u2!c21F2 ,

i
dc3

dt
5~a31uc1u21a32uc2u2!c31F3 , ~36!

where the termsFi depend on the type of the generatio
method. For the cascade generation, we have

F15 1
2 b12c2eiD21t,

F25 1
2 b12* c1 e2 iD21t1 1

2 b23c3 eiD32t,

F35 1
2 b23* c2 e2 iD32t. ~37!

If we set herea13, a31, a23, a32, andb23 to zero, we return
to the studied earlier two-mode case@6,8#. In the case of the
V-type coupling,

F15 1
2 b12c2 eiD21t1 1

2 b13c3 eiD31t,

F25 1
2 b12* c1 e2 iD21t, F35 1

2 b13* c1 e2 iD31t, ~38!

and for theL-type generation,

F15 1
2 b13c3 eiD31t, F25 1

2 b23c3 eiD32t,

F35 1
2 b13* c1 e2 iD31t1 1

2 b23* c2 e2 iD32t. ~39!

In addition, from the normalization of the function~14!, we
have

uc1u21uc2u21uc3u251. ~40!

Each ci5ci(t) defines the dynamics of the correspondi
fractional mode populationuci u2.

It is important to stress that Eqs.~36! are obtained by
employing the standard averaging method@43#, taking into
0-5
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YUKALOV, MARZLIN, AND YUKALOVA PHYSICAL REVIEW A 69, 023620 ~2004!
account the existence of two time scales, slow and fast,
lated to the inequalities~13! and~15!. In this averaging pro-
cedure, one substitutes expansion~14! into the GPE~1! and
averages over time fastly oscillating functions. As a resul
this, the so-called time-reversed or counterrotating te
vanish, so that on the right-hand side of Eqs.~36! there are
no terms likec1* c2

2 or c2* c3
2. It is well known that, even if

such terms would be added, they do not produce a signifi
change in the solutions. Omitting these terms is essent
equivalent to the widely known rotating-wave approximati
@45#. The derivation of equations forcn(t), with all related
mathematical details has been thoroughly described in R
@6,8,22#.

Though Eqs.~36! look differently for different types of
mode generation related to distinct termsFi , the mathemati-
cal structure of these equations is, actually, the same.
may notice the following symmetry properties. TheV-type
equations can be obtained from the cascade-type one
interchanging the indices 1 and 2 and by replacingb21 by
b12* . Similarly, theL-type equations can be derived from th
cascade-type equations by interchanging the indices 2 an
with the replacementb32→b23* . The relationD i j 52D j i has
to be taken into account. Because of this symmetry, i
sufficient to consider just one type of Eqs.~36!, for instance,
that corresponding to the cascade generation.

The functionsci(t) are complex valued. Hence, Eqs.~36!
present a system of six differential equations. However, i
possible to show that they define a four-dimensional dyna
cal system. To prove this, we involve the notation

cj5ucj uexp~ ip j !, ~41!

wherep j5p j (t) is a real-valued phase. Also, we write

b i j 5bi j exp~ ig i j !, bi j [ub i j u. ~42!

Introduce the population differences

s[uc2u22uc1u2, p[uc3u22uc2u2 ~43!

and the relative phases

x[p22p11g121D21t, y[p32p21g231D32t.
~44!

The fractional mode populations can be expressed thro
the variables~43! as

uc1u25 1
3 ~122s2p!, uc2u25 1

3 ~11s2p!,

uc3u25 1
3 ~11s12p!.

Then Eqs.~36! for the cascade generation can be reduced
the system of four equations

ds

dt
5 1

3 A11s2p~b23A11s12psiny

22b12A122s2psinx!,
02362
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dp

dt
5 1

3 A11s2p~b12A122s2p sinx

22b23A11s12p siny!,

dx

dt
5a1s1d1p1

3b12scosx

2A~11s2p!~122s2p!

2 1
2 b23A11s12p

11s2p
cosy1d2 ,

dy

dt
5a2p1d3s1

3b23 pcosy

2A~11s2p!~11s12p!

1 1
2 b12A122s2p

11s2p
cosx1d4 , ~45!

in which

a1[ 1
3 ~a121a1312a212a23!,

a2[ 1
3 ~a321a3112a232a21!,

d1[ 1
3 ~a212a1212a1322a23!,

d2[D211
1
3 ~a122a211a132a23!,

d3[ 1
3 ~a232a3212a3122a21!,

d4[D321
1
3 ~a232a321a212a31!.

Thus, the set of six equations~36! is really equivalent to a
four-dimensional dynamical system~45!.

We have numerically investigated the behavior of so
tions to Eqs.~45! for various parametersa i , bi j , and d i .
The latter parameter, playing the role of an effective det

FIG. 1. Mode locked regime for the case of three coupled n
linear modes. Parameters area i j 5a, bi j 50.35a, andd i50. Initial
conditions ares0521, p050, x05y050. Time is measured in
units of a21. The population differencess(t) ~solid line! andp(t)
~dashed line! are shown.
0-6
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FIG. 2. Mode unlocked regime for the three-mode case. All parameters and initial conditions are the same as in Fig. 1, ebi j

50.55a. Again, time is shown in units ofa21. The population differences:~a! s(t); ~b! p(t).
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ing, was assumed to be small,d i!1. Different initial condi-
tions have been considered in the range21<s0<1, 21
<p0<1, 0<x0<2p, 0<y0<2p. For smallbi j !a i , the
solutions for the population differencess andp demonstrate
a kind of nonlinear Rabi oscillations in the mode lock
regime, whens(t) andp(t) do not cross the zero line, bein
always either above or below it, depending on initial con
tions. This mode locked regime is the same as in the cas
two modes, studied earlier@8,14,17,21,22#. The difference
with the two-mode case is that the Rabi-type oscillatio
look slightly more complicated, being quasiperiodic but n
periodic. Increasingbi j results in the increase of the oscilla
tion amplitudes, and, after a critical value ofbi j , the mode
unlocked regime arises, when eithers(t), or p(t), or both of
them, oscillate in the whole interval@21,1#. To illustrate
these two regimes, we present numerical calculations acc
plished for equal parametersa i j 5a with the initial condi-
tions s0521, p050, x05y050. Figure 1 shows the mod
locked regime, whens(t),0 for all t>0, andp(t) is also
negative for almost allt. Figure 2 demonstrates the mod
unlocked regime, whens(t)P@21,1#, while p(t) is yet al-
most always negative. Increasing furtherbi j leads to the situ-
ation, when p(t) starts also oscillating in the interva
02362
-
of
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@21,1#. However, at largebi j , the temporal behavior o
solutions becomes quite unstable resembling chaotic mot
To better understand what happens, it is necessary to s
the phase portrait of the dynamical system, that is, one ha
find the fixed points and to analyze their stability. Howev
before turning to this task, we will compare the results of t
averaging method described above with those of a direct
merical simulation of the GPE for several special cases.

V. DIRECT NUMERICAL SIMULATION OF TIME
EVOLUTION

Although the averaging technique is a well ground
mathematical method@43,46#, it is interesting to show tha
the main effects, described above, also appear in a d
numerical simulation of the time evolution described by E
~1!. One important reason is that the results of the averag
procedure are basically independent of the details of the t
ping potential, while a direct numerical simulation is affect
by it. We consider two cases: In an anharmonic potential
conditions for the validity of Eq.~36! can well be met and
reasonable agreement can be expected. On the other ha
a harmonic trap the averaging method may break down.
e
FIG. 3. The three nonlinear coherent modes of lowest energy for 100087Rb atoms in two different trapping potentials. The solid lin
corresponds to the ground state, the dashed~dotted! line to the first~second! excited mode, respectively.~a! Harmonic trap with frequency
vz5600 s21; ~b! anharmonic trap of the formU0z4 with U0510232 J/mm4.
0-7
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FIG. 4. Mode coefficients averaged over a time of 3 ms for a BEC in an anharmonic trap}z4 driven resonantly by a slightly subcritica
linear potential.~a! Results of direct numerical simulation;~b! predictions of the averaging method~see text for more details!. Solid line,
uc1(t)u2; dashed line,uc2(t)u2; dotted line,uc3(t)u2.
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will demonstrate both situations using the numerical meth
and parameter settings which are described in the Appen

A. Anharmonic trap with linear driving field

The case of an anharmonic trapping potential is m
suited to demonstrate the benefits of the few-mode avera
method. We considered a BEC moving in a potential of
form U0z4 with U0510232 J/mm4 and a linear driving po-
tential of the formV15b1z @in the notation of Eq.~6!# which
was tuned to resonance with thew1→w2 transition so that
v15(E12E0)/\'610 s21. In the absence of the driving
potential the BEC can occupy several stationary nonlin
coherent modes, three of which are displayed in Fig. 3. T
respective parameters appearing in Eq.~6! are found to be
a125121.7 s21, a13546.3 s21, a215144.2 s21, a23
588.9 s21, a31591.8 s21, anda325111.9 s21.

As predicted by the averaging method our simulat
showed a critical behavior: Forb1 below a certain value
bc'7.3310233 J/mm the population transferred to the fir
excited state is bounded to be smaller than about 0.5.
example for this behavior can be seen in Fig. 4~a! which
corresponds to a slightly subcritical value ofb156.9
310233 J/mm. For b1.bc this upper bound suddenly dis
appears and the population of the first excited states can
almost all values between 0 and 1. This can be seen in
5~a! which displays the time evolution for a slightly supe
critical driving field with b157.7310233 J/mm.
02362
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The corresponding predictions of the averaging techni
can be seen in Figs. 4~b! and 5~b!, respectively. Since the
period and amplitude of the populationsuci u2 are strongly
varying around the critical value ofb1, we have chosen the
values b151.0310232 J/mm for Fig. 4~b! and b151.02
310232 J/mm for Fig. 5~b!, which are close to the critica
value as predicted by the averaging method. The found c
cal values ofbc are in reasonable agreement, the differen
being of about 25%, which is, actually, the accuracy of t
averaging technique for the given set of parameters.

B. Harmonic trap with anharmonic driving field

This case serves as an example of how the breakdow
the conditions~13! and ~15! results in wrong predictions o
the mode expansion method. The case of a harmonic tra
a very special case with this respect: if, in the absence
interaction, the transition between two neighboring mode
resonantly driven, then this is also the case for a transi
between any other neighboring modes. It therefore is ne
possible to consider only a small number of states beca
other states are quickly populated as well. Only if one
sufficiently far away from resonance a few-mode model c
be expected to work well, but then the transition rate b
tween those modes is also low. These conclusions rem
qualitatively also valid in the presence of interaction.

To demonstrate the breakdown of the mode expans
method we consider a harmonic potential of the fo
FIG. 5. The same as Fig. 4, but for a slightly supercritical driving force.
0-8
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FIG. 6. Mode coefficients averaged over a time of 5.3 ms for a BEC in a harmonic trap driven resonantly by a screened cubic
~a! Weak driving force with b150.786310233 J/mm3 and b250.344310233 J/mm3. ~b! Strong driving force with b151.967
310233 J/mm3 andb250.859310233 J/mm3. Solid line, uc1(t)u2; dashed line,uc2(t)u2; dotted line,uc3(t)u2.
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Uz(z)5m0vz
2z2/2 with vz5600 s21, and a screened cubi

driving field which, in the notation of Eq.~6!, is given by
Vi(z)5b iz

3exp(2z2/w2), i 51,2, with w54.9 mm. We in-
troduced the exponential screening since a purely cubic d
ing field plus a harmonic potential is unbounded from belo
A linear driving field cannot be used because, according
the theorem given above, it only leads to an oscillation of
BEC without changing its shape. The two driving freque
cies are chosen to be at resonance with thew1→w2 transi-
tion, v15(E12E0)/\'536 s21, and thew2→w3 transition,
v25(E22E1)/\'568 s21.

The relative strength of the two driving fields was chos
to achieve (w2 ,V1w1)5(w3 ,V2w2) by setting the appropri-
ate values forb1 andb2. The results are shown in Fig. 6. Fo
weak driving fields, b150.786310233 J/mm3 and b2
50.344310233 J/mm3, one achieves reasonable agreem
with the predictions of the averaging procedure, see F
6~a!. For a strong driving force with b151.967
310233 J/mm3 andb250.859310233 J/mm3 the excitation
of higher modes becomes significant, which is not surpris
because the driving field provides more energy which
also excite higher levels. This behavior can be seen in
6~b! which also indicates that the time evolution devia
strongly from the predictions of the averaging method.

VI. STATIONARY SOLUTIONS AND STABILITY ANALYSIS

To find out the stationary solutions for the dynamics
the three-mode case and to analyze the stability of these
lutions, it is convenient to work with the variables

f j[ucj u ~ j 51,2,3! ~46!

and the relative phases~44!. The fractional mode population
are expressed through the amplitudes~46! asnj5 f j

2 .
Using the variablesf j , x, andy one can rewrite Eqs.~36!

for the cascade generation in the form

d f1

dt
5 1

2 b12 f 2 sinx,

d f2

dt
52 1

2 b12 f 1 sinx1 1
2 b23 f 3 siny,
02362
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d f3

dt
52 1

2 b23 f 2 siny,

dx

dt
5D212a21 f 1

21a12 f 2
21~a132a23! f 3

2

1b12

f 2
22 f 1

2

2 f 1f 2
cosx2b23

f 3

2 f 2
cosy,

dy

dt
5D321~a212a31! f 1

22a32f 2
21a23f 3

2

1b12

f 1

2 f 2
cosx1b23

f 3
22 f 2

2

2 f 2f 3
cosy. ~47!

There are here yet too many parameters because of whic
analysis of Eqs.~47! is yet too complicated. To simplify the
consideration, we may involve a realistic approximatio
when there is no detuning, the amplitudesbi j , due to the
applied alternating fields, are taken to be the same, and
parametersa i j are close to each other. That is, we set

a[a i j , b[
bi j

a
, D i j 50. ~48!

It is also convenient to measure time in units ofa21. To
return back to time units, one should replacet by at. Then
Eqs.~47! reduce to

d f1

dt
5

b

2
f 2 sinx,

d f2

dt
52

b

2
f 1 sinx1

b

2
f 3 siny,

d f3

dt
52

b

2
f 2 siny,

dx

dt
5 f 2

22 f 1
21b

f 2
22 f 1

2

2 f 1f 2
cosx2b

f 3

2 f 2
cosy,
0-9
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dy

dt
5 f 3

22 f 2
21b

f 1

2 f 2
cosx1b

f 3
22 f 2

2

2 f 2f 3
cosy. ~49!

In addition, because of Eqs.~40! and ~46!, there is the rela-
tion

f 1
21 f 2

21 f 3
251. ~50!

This relation is automatically supported by Eqs.~49! as well
as by Eqs.~47!, provided it is valid for the initialf i(0).
Equations~49! are much easier to analyze than Eqs.~47!. At
the same time, the mathematical structure of these equa
is similar, so the behavior of their solutions should be clo
to each other.

In Eqs.~49!, there is the sole dimensionless parameteb,
defined in Eq.~48!. Since the parametera can be positive as
well as negative, thenb can, generally, be of both signs to
But Eqs.~49! enjoy a nice symmetry property, being invar
ant under the change

b→2b, x→x6p, y→y6p. ~51!

Therefore, in what follows, it is sufficient to consider on
the case of positiveb>0.

There exists a special solution of Eqs.~49!, for which

f 15 f 3 , x52y ~52!

for all times t>0. Then the problem reduces to a kind of
two-mode case described by the equations

d f1

dt
5

b

2
f 2 sinx,

d f2

dt
52b f1 sinx,

dx

dt
5 f 2

22 f 1
21b

2 f 2
221

2 f 1f 2
cosx.

This reduction, however, becomes possible as a result o
approximation when all interaction amplitudesa i j 5a are
assumed to be equal. More precisely, the minimal requ
ments necessary for the existence of solution~52! are

a125a32, a135a31, b125b23, D215D32. ~53!

It is feasible, in principle, to choose such modulating fie
and a trapping potential that Eqs.~53! be valid. In addition,
the initial conditions are to be such thatf 1(0)5 f 3(0).

The stationary solutions of Eqs.~49! are obtained by
equating to zero their right-hand sides, keeping in mind t
bÞ0 andf 2 is not identically zero. The corresponding fixe
point equations for the phase differences are

sinx5siny50, cosx561, cosy561. ~54!

The equations for the amplitudes are rather cumbersome
we shall not write them down. We shall solve these equati
numerically, calculating the fixed-point amplitudesf i*
02362
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5fi* (b) as functions of the pumping parameterb and then
finding the related stationary solutions

ni* ~b![u f i* ~b!u2 ~55!

for the fractional mode populations. Simultaneously, we
complish the stability analysis by calculating the Jacob
matrix for Eqs.~49!, evaluated at the related fixed point
The eigenvalues of this matrix define the characteristic
ponents characterizing the type of stability@47#.

The first stationary solution is given byx* 5y* 50 and
n1* 5n3* . The related mode populations~55! are shown in
Fig. 7. This fixed point is neutrally stable, being a center w
the characteristic exponentsL150 and imaginary L2

5L3* , L45L5* . Whenb varies in the interval 0.1<b<1,
the absolute values ofL2,3 and L4,5 change in the range
0.192<uL2,3u<0.865 and 0.351<uL4,5u<1.755.

The second fixed point is defined byx* 5y* 5p and the
branch I in Fig. 8~a! for n1* 5n3* and in Fig. 8~b! for n2* .
This fixed point is also a center with the characteristic ex
nents L150 and imaginaryL25L3* , L45L5* . For b
P@0,1#, one hasuL2,3u;uL4,5u;1.

The third fixed point corresponds tox* 5y* 5p and the
branch II in Figs. 8~a! and 8~b! for n1* 5n3* andn2* , respec-
tively. The characteristic exponents areL150 and realL2
52L3 , L452L5, which shows that this point is unstabl
The absolute values areuL2,3u;uL4,5u;0.1. The solution ex-
ists for 0<b<b0* , with b0* 50.198.

The fourth fixed point is given byx* 5y* 5p and the
branch III in Figs. 8~a! and 8~b! for n1* 5n3* and n2* . The
characteristic exponents areL150, imaginary L25L3* ,
and realL452L5, with uL2,3u;uL4,5u;0.1. This solution
is unstable and exists under 0<b<b0* , with b0* 50.198.

The fifth fixed point is described byx* 5y* 5p and the
branch I in Fig. 9 forn1* (b), n2(b), andn3* (b), respectively.
The characteristic exponents areL150 and imaginaryL2

5L3* , L45L5* , which shows that this point is a center. Th

FIG. 7. Stationary solutions for the casex* 5y* 50 and n1*
5n3* as functions of the pumping parameterb: stable n1* (b)
5n3* (b) ~solid line!; stablen2* (b) ~dashed line!.
0-10
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FIG. 8. Stationary solutions related to the fixed pointx* 5y* 5p andn1* 5n3* as functions of the pumping parameterb. Stable branch
I ~solid line!, unstable branch II~dashed line!, and unstable branch III~dashed line!: ~a! n1* (b)5n3* (b); ~b! n2* (b).
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solution exists forb in the range 0<b<bc* , with bc*
50.639, whereuL2,3u;1 anduL4,5u<0.967.

The sixth fixed point corresponds tox* 5y* 5p and the
branch II in Fig. 9 forn1* (b), n2* (b), andn3* (b). The related
characteristic exponents areL150, imaginary L25L3* ,
and realL452L5. This tells that this point is unstable. Th
solution exists for 0<b<bc* , with bc* 50.639, where
uL2,3u<0.896 anduL4,5u<0.457.

The stationary solutions for the casen1* Þn3* are, actually,
invariant under the interchange of the indices 1 and 3.
concreteness, we accept thatn1* .n3* , as is shown in Fig. 9.
Formally, there is also the seventh fixed point, for whi
x* 5y* 52p and n1* 5n3* . But this is just the first point
shifted inx* andy* by 2p.

Selecting from all available fixed points only those th
corresponds to stable stationary solutions, we have th
such cases: the pointx* 5y* 50, n1* 5n3* , depicted in Fig.
7; the pointx* 5y* 5p, n1* 5n3* , shown in Fig. 8 as the
branch I; and the pointx* 5y* 5p, n1* .n3* , presented as
the branch I in Fig. 9.

Recall that these three stable fixed points exist under
validity of conditions~53!. In reality, it can be quite difficult
to satisfy these conditions exactly. But if these conditions
not valid, then the sole stable point that remains is the p
x* 5y* 5p, n1* .n3* , which is shown as the branch I in Fig
9. This stationary solution exists only forb<bc* . For larger
pumping parametersb.bc* , there are no stable~or neutrally
stable! fixed points. Hence, the motion for such largeb will
be chaotic.

VII. HARMONIC GENERATION AND PARAMETRIC
CONVERSION

Employing the presentation~14! in the GPE~1!, and in-
volving the averaging technique@43#, we come to the equa
tions for cn(t), such as Eqs.~36!. This procedure defines a
initial approximation forcn(t), which can be called the guid
02362
r
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e

e
nt

ing centers and labeled ascn
(0)(t). It is possible to obtain

corrections to the guiding centers by using the followi
steps of the averaging technique@43,46#. Then we can find
the higher approximationscn

(k)(t) describing the fractiona
mode populationsucn

(k)(t)u2. To obtain the higher approxima
tions for cn(t), we may proceed as follows.

Let us present the solution to the temporal equation~1! as

w~r ,t !5(
n

cn~ t !wn~r ,t !, ~56!

where againcn(t) is a slow function of time, compared t
the fast functionwn(r ,t). For any fast function of timeF(t),
we define the averaging

^F&[ lim
t→`

1

tE0

t

F~ t !dt ~57!

over fast oscillations. In particular,

^exp$ i ~v12v2!t%&5D~v12v2![H 1, v15v2

0, v1Þv2 .

The functionswn(r ,t) can be taken such that

K E wm* ~r ,t !wn~r ,t !dr L 5dmn . ~58!

Then the amplitudescn(t) in Eq. ~56! can be obtained as

cn~ t !5 K E wn* ~r ,t !w~r ,t !dr L , ~59!

and the normalization

(
n

ucn~ t !u251 ~60!
0-11
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FIG. 9. Stationary solutions associated with the fixed pointx* 5y* 5p andn1* .n3* as functions ofb. Stable branch I~solid line! and
unstable branch II~dashed line!: ~a! n1* (b); ~b! n2* (b); ~c! n3* (b).
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is valid. For instance, takingwn(r ,t) in the form

wn
(0)~r ,t !5wn~r !expS 2

i

\
En t D , ~61!

we come back to Eq.~14!, with all Eqs. ~58!–~60! being
evidently satisfied.

Equation~59! can be employed as a relation for an iter
tive procedure defined by the rule

cn
(k11)~ t !5 K E wn

(k)* ~r ,t !w (k)~r ,t !dr L , ~62!

where

w (k)~r ,t ![(
n

cn
(k)~ t !wn

(k)~r ,t !. ~63!

Starting from the guiding centerscn
(0)(t) and the form~61!,

we get
02362
-

cn
(1)~ t !5cn

(0)~ t !, ~64!

which follows from the rule~62!.
To derive the second-order approximation forcn(t), we

write

wn
(1)~r ,t !5@wn~r !1xn~r ,t !#expS 2

i

\
En t D . ~65!

Here wn(r ) is a stationary topological mode given by th
eigenproblem~4!, andxn(r ,t) has to be found by substitut
ing Eq.~65! into the GPE~1!. In the case of modulating field
~9!, the correcting termxn(r ,t) can be written as

xn~r ,t !5(
j

@un j~r !e2 iv j t1vn j* ~r !eiv j t#, ~66!

where j 51,2, . . . , and allv j.0 can be ordered so that
<v1<v2<•••. The functionsun j(r ) andvn j(r ) satisfy the
equations
0-12



c
g
e

at
po
f t

ica

-
t

s

a
al

lid:

th
-

ve
o-

of

al.
the
tive
m
-
of

d

nd
far

RESONANT GENERATION OF TOPOLOGICAL MODES IN . . . PHYSICAL REVIEW A69, 023620 ~2004!
~Ĥ@wn#2En1N Asuwnu22\v j !un j1N As wn
2 vn j

52 1
2 wn Bj* ,

~Ĥ@wn#2En1N Asuwnu21\v j !vn j1N As~wn* !2 un j

52 1
2 wn* Bj , ~67!

where wn5wn(r ). Using the first-order form~65! in Eqs.
~63! and ~62!, we obtain the second-order approximation

cn
(2)~ t !5cn

(0)~ t !1(
m

cm
(0)~ t !H(

i
@~wn ,umi!

1~vni* ,wm!#D~v i2vnm!1(
i

@~wn ,vmi* !

1~uni ,wm!#D~v i1vnm!

1(
i j

@~uni ,um j!D~v i2v j1vnm!

1~uni ,vm j* !D~v i1v j1vnm!

1~vni* ,um j!D~v i1v j2vnm!

1~vni* ,vm j* !D~v i2v j2vnm!#J , ~68!

in which (u,v) denotes the corresponding scalar produ
This formula is valid for an arbitrary number of alternatin
resonant fields. In the case of just one resonant field, th
should be no summation over the indicesi and j in Eq. ~68!.
Formula~68! shows what are the conditions on the altern
ing fields, which induce resonant transitions between to
logical modes. These conditions depend on the number o
modulating fields involved.

Consider the case of two resonantly coupled topolog
modes, when

cn
(0)~ t !50 ~nÞ1,2!, ~69!

and is nonzero only forn51,2, as follows from the averag
ing technique for the guiding centers@6,8#. And suppose tha
there is the sole alternating field with a frequencyv1[v.
Then the nontrivial population amplitudes are

c1
(2)~ t !5c1

(0)~ t !1c2
(0)~ t !@~w1 ,v2* !1~u1 ,w2!#D~v2v21!

1c2
(0)~ t !~u1 ,v2* !D~2v2v21!,

c2
(2)~ t !5c2

(0)~ t !1c1
(0)~ t !@~w2 ,u1!1~v2* ,w1!#D~v2v21!

1c1
(0)~ t !~v2* ,u1!D~2v2v21!, ~70!

which results from Eq.~68!, taking into account thatv12
52v21.

If there are two alternating fields, so thatj 51,2 in Eq.
~68!, then for the nonzero population amplitudes, one ha
02362
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c1
(2)5c1

(0)~ t !1c2
(0)$@~w1 ,v21* !1~u11,w2!#D~v12v21!

1@~w1 ,v22* !1~u12,w2!#D~v22v21!

1~u11,v21* !D~2v12v21!1~u12,v22* !D~2v22v21!

1@~u11,v22* !1~u12,v21* !#D~v11v22v21!

1@~u12,u21!1~v22,v11!#D~v22v12v21!%,

c2
(2)5c2

(0)~ t !1c1
(0)$@~w2 ,u11!1~v21* ,w1!#D~v12v21!

1@~w2 ,u12!1~v22* ,w1!#D~v22v21!

1~v21* ,u11!D~2v12v21!1~v22* ,u12!D~2v22v21!

1@~v21* ,u12!1~v22* ,u11!#D~v11v22v21!

1@~u21,u12!1~v11,v22!#D~v22v12v21!%. ~71!

Expressions~70! show that one alternating field, with
frequencyv, can induce transitions between two topologic
modes, provided that one of the following equations is va

v5v21, 2v5v21. ~72!

And Eqs.~71! demonstrate that two alternating fields, wi
frequenciesv1 andv2, can realize intermode transitions un
der one of the resonance conditions:

v15v21, v25v21,

2v15v21, 2v25v21,

v11v25v21, v22v15v21. ~73!

Going to the higher-order approximations in the iterati
procedure~62!, we see that, in addition to the standard res
nance conditions asv5v21 or v i5v21, there appear the
conditions ofharmonic generation

kv5v21 ~k52,3, . . .!, ~74!

when there is the sole alternating field, or the conditions
parametric conversion

(
j

~6v j !5v21, ~75!

if several alternating fields modulate the trapping potenti
The prediction of nonlinear harmonic generation using

averaging method is in excellent agreement with a respec
numerical simulation for a harmonic potential of the for
Uz(z)5m0vz

2z2/2, with vz5600 s21. To demonstrate har
monic generation we employed a harmonic driving field
the form ~6! with V1(z)5bz2 and driving frequencyv1
5(E22E1)/(2\)'552 s21. For a sufficiently strong driv-
ing field (b51.1310232 J/mm2, roughly half the strength
of the trapping potential! we observed a strongly enhance
population of the second excited mode~excitation of the first
excited state is forbidden by parity conservation!. The result
for the time-averaged coefficients is shown in Fig. 10 a
demonstrates a population of up to 30% in this mode,
0-13
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YUKALOV, MARZLIN, AND YUKALOVA PHYSICAL REVIEW A 69, 023620 ~2004!
more than is to be expected in the absence of interaction
in the case of an anharmonic driving field~see above! we
also find a substantial~30%! excitation of other modes for a
strong driving field.

The terms harmonic generation and parametric conver
are used here by analogy with nonlinear optics, where th
exist analogous phenomena@45#. Similar effects occur as
well for elementary excitations of Bose-Einstein condensa
@48–50#. As we have shown, such effects may also arise
topological coherent modes.

In conclusion, the resonant generation of topologi
modes seems to provide a feasible mechanism for crea
novel states of trapped Bose gases, containing the comb
tions of several such modes. Here, we have considered
resonant generation realized by modulating the trapping
tential. Note that another possibility of imposing resona
perturbations could be done by inducing periodic variatio
in the atomic scattering length@51,52#. The latter case re
quires that the atoms are in a state close to a Feshbach
nance.

As we mentioned in the Introduction, a dipole topologic
mode was successfully generated in experiment@23#. The
resonant method of vortex creation was analyzed in deta
Refs.@9–11#. Thus, the possibility of generating a single t
pological mode is well justified. The mode can be of a
nature, whether dipole or vortex. The method of reson
generation works for any mode. Our numerical simulatio

FIG. 10. Time evolution of a BEC trapped and driven by h
monic potentials.~a! Mode coefficients averaged over a time of 5
ms ~the lines have the same meaning as in Fig. 4!; ~b! spatial prob-
ability density at different time steps. The effect of harmonic ge
eration of population in the second excited state can clearly be
in both figures.
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for the GPE, with realistic physical parameters, show that
simultaneous generation of several topological modes is
feasible.
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APPENDIX: DESCRIPTION OF NUMERICAL
ALGORITHMS

Our numerical simulations are performed for a BEC th
obeys the GPE with an external potential of the formU(r )
5U'(r')1Uz(z), i.e., a transverse and a longitudinal tra
ping potential. We consider a quasi-one-dimensional sit
tion for which the energy required to create excited states
the transverse trapping potentialU'(r') is much higher than
any other energy. The wave function then takes the appr
mate form w(r ,t)5w'(r')c(z,t), where w'(r') is the
transverse ground state. By integrating over the transv
coordinates r' one can show thatc fulfills a one-
dimensional GPE of the form

i\
]c

]t
5S \2

2m0

]2

]z2
1Uz~z!1N Azucu21V̂D c, ~A1!

with an effective coupling parameter Az
[As* uw'(r')u4 dr' , whereby the integral over the trans
verse ground state is of the order of the transverse w
squared. The details of this reduction can be found in rev
@2#.

In this appendix we shall present the methods used fo
direct numerical solution of the one-dimensional GPE
different situations discussed in the preceding sections.
generally consider a BEC of 100087Rb atoms (m051.45
310225 kg, as55.4 nm) with a transverse width of 7mm.
Our one-dimensional~1D! simulation described a time evolu
tion of 500 ms using 107 discrete time steps. It was pe
formed on a grid of 512 spatial points extending over a ran
of 26 mm.

1. Numerical simulation of time evolution and determination
of nonlinear coherent modes

To simulate the time evolution governed by Eq.~A1! we
have employed the well-known split-step Fourier meth
@53#. As initial condition we used the ground-state nonline
coherent modew0(z) associated with the potentialUz(z) in
the absence of a driving fieldV(z,t). This ground state as
well as higher nonlinear coherent modes were numeric
determined by an imaginary-time propagation followed by
self-consistent field~SCF! method.

The imaginary-time propagation was described, for
stance, in Ref.@54#. Very roughly speaking it is a method t
obtain a kind of a small-temperature~corresponding to large
imaginary time! collective wave function which approache

-

-
en
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the ground-state wave function for very large times. It u
ally gives excellent results for the ground state but fails
reproduce excited nonlinear coherent modes unless ce
symmetry requirements are fulfilled. We used this method
intermediate imaginary times to obtain a better trial wa
function w (0) for the following SCF procedure. This step
not necessary but helps to improve the speed of the num
cal algorithm.

The SCF method consists in inserting the trial wave fu
tion w (0) into the nonlinear interaction part of Eq.~A1!. It
thus provides a kind of potential term and turns Eq.~A1! into
a linear equation forc. We then solved for the stationar
eigenstates of this equation. One of these states is then
sen to become a new trial wave functionw (1) and then the
procedure is iterated until the overlap betweenw (n) and
w (n11) deviates by less than« from 1 ~we have chosen«
510214). The choice of the appropriate new trial wave fun
tion depends on the problem at hand. In the case of a
Schrödinger equation with a confining potential, the eige
states are real and the numberN0 of zeros of each nonlinea
coherent mode turned out to be a good criterion for the n
trial wave function. To determine the ground state we pick
theN050 eigenstate in each iteration. For the excited coh
ent modesN051 and 2 was the respective choice.

The convergence of the SCF method is the slower
higher the excited state one is looking for, and it even c
fail to converge forN0>2. We therefore implemented a con
vergence acceleration scheme based on Anderson mixin
described in Ref.@55#. In short, this scheme enhances t
usual SCF algorithm by adding a kind of memory in t
sense thatw (n11) may depend not only onw (n) but on pre-
vious trial wave functions, too. In practice, this memory la
for 3–6 iterations. To implement this scheme one first wri
w (n11) as a superposition of the previous trial wave fun
tions. Then one minimizes the deviation of this function fro
the previous trial wave function with respect to the super
sition coefficients. This leads to a simple linear system
equations for the coefficients of the superposition. Ander
mixing can speed up convergence by orders of magnit
ys

n

A

A
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and turned out to be very suitable for our case. The th
nonlinear coherent modes of lowest energy for a harmo
potential and an anharmonic potential are displayed in Fig

We have checked if the nonlinear coherent modes
tained in this way are indeed stationary solutions of the n
linear Schro¨dinger equation by propagating them for a suf
ciently long time using the split-step algorithm. All mode
were found to be perfectly stationary: their density does
change and their phase remains spatially homogeneous
from the sharp phase jump byp that appears at the zeros o
the excited states, and apart from areas with extremely
densities~less than about 10213 of the peak density! where
numerical errors lead to a strongly fluctuating phase.

2. Comparison to averaging procedure

To compare the result of the direct numerical simulati
with that obtained by the averaging procedure we first p
jected the numerical solutionc(z,t) found using the split-
step method on the respective nonlinear coherent mod
obtain as an intermediate result the nonaveraged coeffici
c̃i(t l)ª„w i ,c(t l)…exp(iEitl /\) with t l5 lDt,l 50,1,2, . . . .
Since the nonlinear coherent modesw i are not orthogonal the
sum ( i uc̃i(t l)u2 is not unity and the individual coefficient
are oscillating on short-time scales.

To obtain the coefficientsci(t l) corresponding to the av
eraging procedure we stored the wave function at a t
number ofNt time steps (Nt was typically on the order of
1000! and defined the averaged coefficients as

ci~Tn!ª
1

Na
(
l 51

Na

c̃i~Tn1t l !, ~A2!

whereNa is the number of steps we averaged over andTn
ªNanDt, n50,1,2, . . . . GenerallyNa510 to Na532 re-
sulted in a fairly smooth time evolution of the coefficien
ci(t) which can directly be compared to the results of t
averaging procedure.
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