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Resonant generation of topological modes in trapped Bose-Einstein gases
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Trapped atoms cooled down to temperatures below the Bose-Einstein condensation temperature are consid-
ered. Stationary solutions to the Gross-Pitaevskii equat®RE define the topological coherent modes,
representing nonground-state Bose-Einstein condensates. These modes can be generated by means of alternat-
ing fields whose frequencies are in resonance with the transition frequencies between two collective energy
levels corresponding to two different topological modes. The theory of resonant generation of these modes is
generalized in several aspects: Multiple-mode formation is described; a shape-conservation criterion is derived,
imposing restrictions on the admissible spatial dependence of resonant fields; evolution equations for the case
of three coherent modes are investigated; the complete stability analysis is accomplished; the effects of
harmonic generation and parametric conversion for the topological coherent modes are predicted. All consid-
erations are realized both by employing approximate analytical methods as well as by numerically solving the
GPE. Numerical solutions confirm all conclusions following from analytical methods.
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[. INTRODUCTION lar case of vortex creation was suggested in Reg¥s.11].
The properties of such modes were also studied in Refs.

Dilute Bose gases at low temperatures, when almost al12—22 and a dipole topological mode was excited in ex-
atoms are in Bose-Einstein condensate, are well described Iperiment[23]. Bose-Einstein condensates with topological
the Gross-Pitaevskii equatiofGPE) (see reviews1-5]). coherent modes exhibit a variety of interesting features
Since the latter is a type of the nonlinear Salinger equa- which could find many applications. Among these features,
tion, it should possess the whole spectrum of stationary sone could mention the following.
lutions. In the presence of a trapping potential, the related Mode locking This is the effect under which the fractional
energy spectrum is, in general, discrete. Stationary solutionmode populations are locked to stay in the vicinity of their
to the GPE are, by definition, the topological coherentinitial values[6,8,22. Mathematically, this effect is analo-
modes, whose ground state describes the standard Bosgsus to self-trapping occurring for atoms in double-well po-
Einstein condensate, while the higher states correspond tentials[24—26.
nonground-state Bose-Einstein condenspiés Critical dynamics An abrupt qualitative change of dy-

It is worth saying a few words recalling where the namenamics of fractional mode populations under an infinitesi-
topological coherent modemes from. Different stationary mally small variation of the pumping parameters
solutions to the GPE, associated with different energy leveld,8,17,21,22 A mathematically similar effect in the case of
display principally different spatial shapes, in particular, dif- double-well potentials is the dynamic phase transition be-
ferent number of zeros. Because of their distinct spatial totween the Rabi and Josephson regirf2$25,27.
pology, the modes are terméapological These should not Interference patternsSpecific interference fringes arising
be confused with elementary collective excitations, definedecause of differing spatial shapes of different topological
by linear Bogoliubov—de Gennes equations. Such elementamnodes[8,21].
excitations describe small oscillations around a given station- Interference current Fastly oscillating current, existing
ary solution and do not change the topology of the lattereven inside a single-well trgi8,21]. Such a type of current,
Since the GPE is nonlinear, its solutions can also be namearising between two interpenetrating populations, not sepa-
nonlinear modes, which would stress their principal differ- rated by any barrier, is, on occasion, called the internal Jo-
ence from elementary excitations satisfying the linearsephson effedt28,29.

Bogoliubov—de Gennes equations. However, the elementary Atomic squeezingNarrowing of the dispersion corre-
excitations, produced by strong perturbations, are sometimesponding to the mode population difference, compared to the
also called nonlinear. Therefore the term topological, characdispersion related to dipole transitiof]. A similar feature
terizing dissimilar modes, seems to be more precise. This illustrated by two-component condensgia§].

topological modes are specified esherentdue to the fact Irreducible modesThese are the topological modes that
that the GPE can be interpreted as an exact equation fdrave no linear counterparts, so that they cannot be consid-
coherent statels/,8]. ered as analytical continuations, under increasing of nonlin-

The possibility of resonant generation of arbitrary topo-earity, of the related linear mod¢$8,19. Such modes, in
logical coherent modes was advanced in R&f. A particu-  addition to strong nonlinearity, require the presence of mul-
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tiwell potentials[31—-34. An investigation of the mode spec- with my being atomic massag scattering length; antll the
trum in the case of single-well traps shows that in this cas¢otal number of atoms. The wave function is normalized to
nonlinear modes are reducible and can be treated as analytinity, so thaf|¢||=1. The confining potential can be modu-

cal continuations of linear counterpaf®;8,15,35,36 lated by applying an additional fied=\V/(r,t).

In the present paper, we generalize the theory of resonant The topological coherent modes are the solutions to the
formation of topological coherent modes and study the feastationary GPE

tures that have not been considered in previous publications.
The most important points are as follows. A N=E r (4
(1) The possibility of resonant generation of multiple to- Lenlen(r)=En en(r),
pological coherent modes is described. This can be achievggheren is a labeling multi-index. The transition frequencies
by subjecting a trapped Bose-Einstein condensate to the afgr two distinct modesn=n are
tion of several alternating fields, whose frequencies are tuned
to distinct transition frequencies related to different modes 1
(Sec. 1. Wmp= ﬁ(Em_ En). (5
(2) A general criterion is derived, showing when nonlinear

modes cannot be generated even if the applied alternating,o trap modulation is resonant if the frequency of an ap-
field is in perfe_ct resonance with the corresponding tranSitiO(r?blied alternating field is tuned close to one of the transition
frequency. This condition relates the spatial dependence dfeq encies(s). This resonant field can induce transitions
the trapping potential and that of the alternating figc.  hopween the considered modes. Everywhere in what follows,
). . . , talking about resonance, we keep in mind the resonant tran-
(3) Simultaneous generation of two excited coherenkjiong petween distinct topological modes. This should not
modes is studied in detail. The resulting dynamical systenyg confused with parametric resonance, when one considers
describes three coexisting nonlinear modgsc. IV). a single mode, whose width can become divergent under

(4) The phase portrait of the three-mode dynamical SySgyqia| conditions on the amplitude of a perturbing f[&d).

tem i; investigated. All fixed points are found and their sta- Previously, the resonant excitation of topological modes
bility is analyzed(Sec. V). ) ) has been considered for the case of a sole resonant field
(5) Harmonic generation of topological modes is shown tocoupling two chosen modés,8]. Now, we turn to the most

exist. This effect is analogous to optical harmonic generationenera case, when there are several alternating fields, so that

(Sec. VID. . . . . the modulating potential is a sum
(6) Parametric conversion for topological modes is an-

other effect having its optical counterpart. To realize this

effect, it is necessary to subject trapped atoms to the action V(r,t)=z [V]-(r)cos{wjt)+Vj’(r)sin(w]-t)] (6)

of several alternating field&Sec. VII). )
7) The principal feature of this paper is that all consider- | _ - . .

ati(gn) has t?een gone in two Ways,pb?/ applying approximaté)f fields with dlffetent frequencies; . Generally, the am_pll-

analytical methods and also by numerically solving the GPE{UdeSVj(r) and V;(r) can also be slow functions of time,

Numerical solutions confirm all effects described analyti-Whose temporal variation is slow compared to that of

cally. cos(;t), such that
1 |av, 1 |av]
Il. RESONANT GENERATION OF MULTIPLE MODES — <1, —|—| <1 @

Dilute Bose-condensed gases at low temperature are char-
acterized 1-5] by a coherent fieldp(r,t), which is a wave If these amplitudes are such slow functions of time, then,

function satisfying the GPE varying them adiabatically, one could induce the Landau-
Zener tunnelind31,33. But here we shall consider only the
9 . R transitions caused by the fastly oscillating eg$(. Each fre-
in—e(r,)=(Hle]+V)e(r.1), (1) quencyw; is assumed to be close to one of the transition

frequencieq5), so that theesonance conditions

where the nonlinear Hamiltonian
mn|

v2 <1, Ap=oj=ony (8
Algl=—t*5 -+ UM+NAJe(rO? ()

®mn

are valid.

] ) ) ] o The modulating potentigl6) can be presented as
contains a trapping potentiél(r) and the interaction inten-

sity 1 , )
V(r,t)=§2 [Bj(r)e'“i'+ B} (r)e~'“i], )
J

a
A=4mh?—, ©) .
Mo with
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B;(r)=V;(r)—iV/(r). (10) It is worth emphasizing that the presentatidd) ideally
suits for analyzing resonant transitions between the coherent
The modulation can be realized by varying the trapping magtopological modes. And it is solely these modes that are the
netic fields, by invoking laser spoons, or resorting to otheisubject of the present paper. We shall not consider here other

meang 6,8—11]. possible excitations that could be produced by nonresonant
There exist two characteristic quantities, called transitiordlriving fields and studied by means of the known rescaling
amplitudes; one is the matrix element procedure. Nontopological nonresonant breathing-type oscil-

lations have been considered by many authors in the early
A, 5 5 5 days of the BEC researcfsee reviewg1-5]). Therefore
amn=N==(lem|* 2[en "~ [enl), (1) there is no reason of extending the paper by repeating similar
results. This is why here we limit ourselves by treating only
due to the interatomic interactiofd), and another one is the the resonant generation of topological modes, which have
matrix element not been studied earlier.
Aiming at exciting particular modes, one should keep in
1 R mind, in addition to the resonance conditioi®, the sym-
,anzg(gom,Bj@n), (12 metry properties of the corresponding wave functions, for
which the modulating field has to be such that the transition
amplitudes(12) be nonzero. However, even if all above-

related to the amplitudB; =B;(r) of the modulating poten-  nentioned conditions hold true, there exists a rather general
tial (9). Here,(.,.) denotes the usual scalar product of Sehro g ation when the generation of modes is impossible.
dinger theory. To avoid intensive power broadening, these

amplitudes(11) and (12) have to satisfy the inequalities lIl. NO-GO THEOREM FOR MODE GENERATION

an

®Wmn

It may happen that the applied modulating field is not able
to generate higher nonlinear modes, but can only lead to the
oscillation of the initial wave function, without changing its
wherem#n and whose meaning was explained in detail inshape. More precisely, let us start with a wave function
Ref.[8]. Conditions(13) allow for an effective generation of ¢(r,0). After a modulating field/(r,t) begins acting on at-
nonlinear modes by resonant fields. The first of these restriems, the functionp(r,0) is transferred to a functioa(r,t).
tions, briefly speaking, can be reduced to the limitation onWhen theshape-conservation condition
the number of atoms that can be transferred to an excited
coherent modg8]. This limiting number of atoms is close to le(r,t)|=|e(r—a,0) (16)
the critical number of atoms with attractive interactions, for
which the Bose-Einstein condens@EC) preserves its sta-
bility [6,8,38,39. Therefore the resonant generation of non-

linear modes is feasible for atoms with positive as well e dependenca(t). Hence, if we start with a mode(r,0)

neglj_?]tévfostg?éteigg? (lzf)rrllgtrzsn.t modes, being the solutions t(%t can never be transferred to another mode.
polog ' 9 By definition, the initial functiong(r,0)= ¢o(r) presents

the nonlinear elgenproble((rﬂ), do not compulsory form a a nonlinear mode if it satisfies the stationary Gross-Pitaevskii
complete orthonormal basis. However, the moggg) can

®mn

<1, ‘ <1, (13

®mn

holds true for time dependeat=a(t), then the shape of the
atomic cloud does not change in time, but the cloud oscil-
lates as a whole, with its center of mass moving according to

always be normalized, so thit,,||=1. And the se{@,(r)} equation
of all linearly independent functions forms a total b€ - _
permitting one to look for the solution of the Gross- HLeo(r)1¢o(r)=Eo ¢o(r), (17
Pitaevskii equatiorl) in terms of the presentation with the nonlinear Hamiltonia2). We assume that this ini-
| tial mode is real valued, i.e.,
b= t ——E.t], 14
(r0=3 0o i, ) (49 o(1.0)= golr) = g5 7). 19

where c,(t) are unknown functions of time. Note that for AN example for this would be the ground state of a Bose-
some nonlinear eigenproblems, it has been rigorously provelnNstéin condensate. In addition, we are focusingrapped
[40-47 that the set of the corresponding eigenfunctionsdoms, which implies that the confining potent(a(r) in-
forms a complete basis. In our case, it is sufficient to requiréreases towards infinity far=|r|—. Therefore, tharap-

that the functions,(t) are slowly varying, such that ping condition
1 |dc, lime(r,t)=0 (19
_ <1’ (15) r—o
wmp| dt

is valid for allt=0.
and conditions(13) hold true. Then the expansidd4) is Theorem Suppose that atoms in a trapping potential
uniquely defined by means of the averaging technic2s. U(r), being initially in a real mode(r), are subject to the
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action of a modulating fiel&¥/(r,t), so that condition$17)—
(19) are valid. Then the solution of the temporal Gross-
Pitaevskii equation(1) preserves the shape of the initial
mode, satisfying conditiorq16), if and only if the trapping
potential is harmonic,

U(r)=Ag+ Ay T+ Aurerf, (20)
afB

wherea and B are the Cartesian indices, while the modulat-
ing field is linear with respect to the spatial variables,
V(r,t)=Bgy(t)+By(t)-r, (21

Bo(t) and B4(t) being arbitrary functions of time. And the
center-of-mass motioa=a(t) is described by the equation

2

a

Mo +2 (AgptAg)af+B(1)=0. (22
B

dt?

Proof. Assume that the shape-conservation condii®)
holds true, and let us show that then the trapping and mod
lating potentials are necessarily such as in E2®). and(21).
For this purpose, it is useful to invoke the presentation

e(r,t)=[e(r,t)|expliS(r,t)}, (23
whereS(r,t) is a real action defining the velocity
h
v(r,t)=—Vg(r,t). (29
Mo

Substituting the presentatiof23) into the GPE(1) yields
[1-5] the continuity equation

J
—|el?+V-(l¢[>v)=0 (25)
ot
and the velocity equation
ov
mOE:_VUeffi (26)
in which the effective potential
h2V? | mo?
= 2_
Uerr=U(N+V(r O+ N Al =5 rm+ =
(27)

Because of the shape-conservation condifib8), one has

da

d| ¢l
= Vel 5

at

Using this in the continuity equatiof25) results in

o v-31)

d
Ve —| | =

v dt

01

from where
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da ¢

= — 4 —
TP

c=c(t).

If here the functionc(t) is not zero, then from the trapping
condition (19) it follows thatv— asr—= hence, the ac-
tion S—o asr—oo. But then the limitr —o of the function
(23) is not defined. Thereforeg(t)=0. Thus, the velocity
(24) becomes

da
V: R

dt 28

=V(1),

which is a function of time only. But then the velocity equa-
tion (26) tells us thatVU.¢; is also a function of time only,
hence the effective potential is linear iin having the form
Uett=Do(t) +Dy(t)-r. (29)
Taking into account that the initial mode is real valued, as is
conditioned by Eg. (18, and employing the shape-

L}:_onservation conditio16), one gets

lo(r,t)|=@o(r—a). (30
Then the effective potentidR7) can be written as
m 2
U
Ueti=U(r)—U(r—a)+V(r,t) +Eo+ (31

Since, according to Eq29), the effective potential is linear
inr, Eqis a constant, and=uv(t) is a function of time, then
the sum of the first three terms in E1) should also be
linear inr, such that

U(r)—U(r—a)+V(r,t)=Uqy(t)+Uq(t)-r. (32
Thence the effective potentiéBl) takes the form
m0U2
Ueff=E0+T+U0(t)+Ul(t)'r. (33)
Comparing Egs(29) and(33), we have
m002
Do(t)=Ep+ +Up(t), Dy(t)=Uqy(t). (34

Equality (32) can be satisfied only if the trapping and modu-
lating potentials are given by EqR0) and(21). Substituting
the latter in Eq.(32), we find

Uo()=Bg()+a-A— 2>, A,za%a’,
apB

Ui"(t)=Bf(t)+% (AuptAg)al. (35)

Combining Eqgs(26), (28), (33), and(35), we obtain Eq(22)
for the center-of-mass motion.
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Now let us show that Eq$20) and(21) are sufficient for  general, there can be three detuninyg, A;;, and As,
the validity of the shape-conservation conditid®). Equa-  satisfying the resonance conditio8). For the transition
tions (25) and(26), with the effective potential27) and with  amplitudes(12), we haveBi,, B13, andB,3. There are six

the initial conditions amplitudes(11) for a;; with i#]j.
Realizing the coupling of three modes by two driving
le(r.0)[=go(r), v(r,0=0 fields, we can create three types of resonant systems, which

may be called, by analogy with the similar situations for
resonant atoms, as cascadeype, andA -type system$45].

In the cascade-type generation, the modes with the transition
frequenciesv,; and wg, are coupled. In th&/-type case, the
transition frequencies ar@,; and w3;. And for the A-type

are equivalent to the GP@) with the initial condition(18).
The latter equation is a nonlinear Sctimger equation,
which, being complimented by the boundary conditi@g),
possesses a unique solutieht]. Hence, Eqs(25) and(26),
with the same boundary conditidf9), enjoy a unique solu-

. . . tem, the transition frequencies asg and ws,.

tion. These equations, under conditiof®)) and (21), do system, he trar U3z

have a solution satisfying the shape-conservation condition Substltl:jt_mg 'St.o .thengl) dﬂé the preser}tat|?r(]1l4) and the

(16), which, according to the aforesaid, is a unique solution £0Tesponding driving fie ¢ )'. we employ Ine averaging

This concludes the proof. techniqueg43]. This pro_cedu_re is absolutely the same as has
One should not confuse the shape-conservation criterioaeﬁn th(_)rrr?ughly (ljte_sctrrl]bed |ntRe[§,f8], SO ‘t’Ye dofno;r:epeatﬁ_

derived here with the known result of the decoupled center: N€re. The result s the system of equations for the coetti-

of-mass motion in a harmonic potential. The criterion of clent functions

shape conservation shows when the wave function retains its de
. . . . _1 _ 2 2
shape under the action of an external alternating field and ' = (a1cy|*+ andcs)ei+Fy,
when the shape is not preserved. The center-of-mass motion t
is a trivial by-product of our theorem. The principal point is de
. 2

the shape conservation. The derived criterion shows that the |—t:(6¥21|01|2+ @pdCsl?)Co+ Fy,

trapping potential may be harmonic, but, if the driving field d
is nonlinear, then, irrespectively of the center-of-mass mo- g
tion, the shape of the wave function will not be conserved. [dCz 2 2
This theorem teaches us that if the trapping potential is 'W_(aﬂ'(:l' + aglCo|9) st F, (36)

harmonic, which is a standard situation, then the modulating
field, being linear inr, is not able to generate topological where the termd=; depend on the type of the generation
modes, even if its alternating temporal parts oscillate in anmethod. For the cascade generation, we have

exact resonance with the corresponding transition frequen-

cies. It is in full agreement with a nonlinear Ehrenfest theo- F1=3B1ce %2,

rem for the mean position and variance of the collective Lo TN At

wave function[11]. To generate such modes, at least one of Fo=3B1,C1€ "2+ 3 Bp3C3€7%7,

the conditiong20) or (21) has to be broken. But if a resonant . Cineg

alternating field is linear and the trapping potential is har- F3=32B%3C2€ %2. (37

monic, then the real initial mode just moves in space, with-
out changing its shape. We have checked this conclusion
numerically solving the GPE under conditiof®)) and(21)
and found a perfect agreement with the theorem.

f we set heren3, agq, ass, agy, andB,3to zero, we return
o the studied earlier two-mode cd$e8]. In the case of the
V-type coupling,

_1 Ayt 1 iAggt
IV. COUPLING OF THREE NONLINEAR MODES F172P12C2 €20+ 2 f1aCa €757,

Several modes can be generated by applying a modulating Fo=3B1,c1e %2, Fy=3p%;cie %8, (39
field (6) containing several corresponding resonant terms. In
general, two cases are admissible: when the excited modé&¥'
are not coupled to each other and when they are coupled. In
the former case, the overall dynamics consists of the motion
of several pairs of modes, each pair being separated in its
motion from other modes. The motion of such separate pairs
of resonant modes has been studied in detail edfi— |, aqdition, from the normalization of the functidi4), we
11,14,17,21,2P Therefore we now concentrate on the casegye
of several coupled modes.

We consider the case of three coupled modes, whose tran- |c1|?+]|c,|?+]cs?=1. (40)
sition frequencieg5) are enumerated as,;, ws1, andwsy,
keeping in mind that the related energy levels are such tha&ach c;=c;(t) defines the dynamics of the corresponding
E,<E,<Ej. To couple the modes, it is sufficient to have fractional mode populatiofc;|?.
two modulating fields of the possible three that would be in It is important to stress that Eq$36) are obtained by
resonance with the corresponding transition frequencies. lemploying the standard averaging metHd@], taking into

d for theA-type generation,
F1=3B13C3€'%%,  F,=3Bc €03,

Fy=3B1sCre 4+ 3 B,c 07 14e2, (39

023620-5



YUKALOV, MARZLIN, AND YUKALOVA PHYSICAL REVIEW A 69, 023620 (2004

account the existence of two time scales, slow and fast, re- dp |, _
lated to the inequalitie€l3) and (15). In this averaging pro- a3 V1+s—p(bi/1—2s—psinx
cedure, one substitutes expansi@d) into the GPE(1) and

averages over time fastly oscillating functions. As a result of —2bys1+s+2psiny),

this, the so-called time-reversed or counterrotating terms

vanish, so that on the right-hand side of E(R6) there are dx 3b,,SCOSX

no terms likec¥c3 or cic3. It is well known that, even if d—=als+ op+

such terms would be added, they do not produce a significant t 2(1+s—p)(1-2s—p)
change in the solutions. Omitting these terms is essentially Ttst2p

equivalent to the widely known rotating-wave approximation —1b,31\ /Tcoser 5y,

[45]. The derivation of equations far,(t), with all related
mathematical details has been thoroughly described in Refs.

[6,8,22. dy st 3b,3pcosy
Though Eq_s.(36) look differently for different types of dp  ¥2PTosS 2J(1+s—p)(1+s+2p)
mode generation related to distinct terfs the mathemati-
cal structure of these equations is, actually, the same. We . 1-2s—p
may notice the following symmetry properties. Thietype +3byp mCOSXJF O4) (45)

equations can be obtained from the cascade-type ones by
interchanging the indices 1 and 2 and by replacig by in which
B7,. Similarly, theA-type equations can be derived from the

cascade-type equations by interchanging the indices 2 and 3, a1=3(a1t a1t 2a— azg),
with the replacemenBs,— B53. The relationA ;= —Aj; has . et D
to be taken into account. Because of this symmetry, it is a=3(agt ast2as3~az),
sufficient to consider just one type of E¢86), for instance, .

; ; 01=3(ay— aypt+2a13— 2as3)
that corresponding to the cascade generation. 17 31%21 *12 13 23

The functionsc;(t) are complex valued. Hence, E86)
present a system of six differential equations. However, it is
possible to show that they define a four-dimensional dynami-
cal system. To prove this, we involve the notation

— 1
0,=A01+ (1= axt+ agz— azg),
1
03=73 (a3~ agpt2az—2ay),

= 1 _ —
c;=|c;lexp(im)), (41) 04=Azpt+ 3(ag— azyt az—az).

Thus, the set of six equatior{86) is really equivalent to a
four-dimensional dynamical syste(b5).

B . . We have numerically investigated the behavior of solu-
Bi=byexplivy),  by=[Bl. (42) tions to Eqgs.(45) for various parameters;, bj;, and §;.
The latter parameter, playing the role of an effective detun-

where ;= (t) is a real-valued phase. Also, we write

Introduce the population differences

0.2 1 s(t), p(t)

s=|cy|®—[cy|?,  p=lcs|®—|cy|? (43

and the relative phases

X=my,— i+ yiot Aogt,  y=m3— o+ vzt Agit.
(44)

The fractional mode populations can be expressed through'“__

the variableg43) as o

|ci|?=3(1—-2s—p), |c/?°=3(1+s—p),
08

|cs|?=%(1+s+2p).

-1.0

Then Eqgs(36) for the cascade generation can be reduced to
the system of four equations

o} ' 1(I)0 ' 2(IJO ' 360 ' 460 ' 5(I)0 ' G(I)O
t
d FIG. 1. Mode locked regime for the case of three coupled non-
S . linear modes. Parameters arg= «, b;;=0.35, ands;=0. Initial
—_— l J— ’ 1] 1 1
V1+s=p(bzsy1+s+2psiny conditions ares,=—1, py=0, Xg=Yo=0. Time is measured in

dt *
units of &~ . The population differences(t) (solid line) and p(t)
—2b;,\/1—2s—psinx), (dashed lingare shown.
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s(t) p(t)
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054 ]
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FIG. 2. Mode unlocked regime for the three-mode case. All parameters and initial conditions are the same as in Fig. I; except
=0.55x. Again, time is shown in units of . The population differencega) s(t); (b) p(t).

ing, was assumed to be smaf|<1. Different initial condi- [—1,1]. However, at largeb;;, the temporal behavior of
tions have been considered in the rangé<sy<1, —1  solutions becomes quite unstable resembling chaotic motion.
<po=1, 0=xo=2m, 0<yg<2m. For smallbj<a;, the To better understand what happens, it is necessary to study
solutions for the population differencesand p demonstrate the phase portrait of the dynamical system, that is, one has to
a kind of nonlinear Rabi oscillations in the mode lockedfind the fixed points and to analyze their stability. However,
regime, whers(t) andp(t) do not cross the zero line, being before turning to this task, we will compare the results of the
always either above or below it, depending on initial condi-averaging method described above with those of a direct nu-
tions. This mode locked regime is the same as in the case ofierical simulation of the GPE for several special cases.

two modes, studied earligB8,14,17,21,2R The difference
with the two-mode case is that the Rabi-type oscillations
look slightly more complicated, being quasiperiodic but not
periodic. Increasingp;; results in the increase of the oscilla-
tion amplitudes, and, after a critical value lof , the mode Although the averaging technique is a well grounded
unlocked regime arises, when eittst), or p(t), or both of  mathematical methof43,46], it is interesting to show that
them, oscillate in the whole intervl—1,1]. To illustrate  the main effects, described above, also appear in a direct
these two regimes, we present numerical calculations acconmumerical simulation of the time evolution described by Eq.
plished for equal parameterg; =« with the initial condi-  (1). One important reason is that the results of the averaging
tionssg=—1, pg=0, Xg=Y,=0. Figure 1 shows the mode procedure are basically independent of the details of the trap-
locked regime, whes(t)<O for all t=0, andp(t) is also  ping potential, while a direct numerical simulation is affected
negative for almost alt. Figure 2 demonstrates the mode by it. We consider two cases: In an anharmonic potential the
unlocked regime, wheg(t) e[ —1,1], while p(t) is yet al-  conditions for the validity of Eq(36) can well be met and
most always negative. Increasing furthgrleads to the situ- reasonable agreement can be expected. On the other hand, in
ation, when p(t) starts also oscillating in the interval a harmonic trap the averaging method may break down. We

V. DIRECT NUMERICAL SIMULATION OF TIME
EVOLUTION

y(z) ¥ (@)
08

PN
*o=06

-08
(a) (b)

FIG. 3. The three nonlinear coherent modes of lowest energy for $RI® atoms in two different trapping potentials. The solid line
corresponds to the ground state, the dadldetted line to the first(secondl excited mode, respectivelgg) Harmonic trap with frequency
®,=600 s'%; (b) anharmonic trap of the forry yz* with Uy=10"32 J/um®.
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FIG. 4. Mode coefficients averaged over a time of 3 ms for a BEC in an anharmoniz 2fagiriven resonantly by a slightly subcritical
linear potential(a) Results of direct numerical simulatiofly) predictions of the averaging methd@ske text for more detajlsSolid line,
|c1(t)|%; dashed line|c,(t)|?; dotted line,|ca(t)|?.

will demonstrate both situations using the numerical methods The corresponding predictions of the averaging technique
and parameter settings which are described in the Appendixan be seen in Figs.(d) and %b), respectively. Since the
period and amplitude of the populatiohs|? are strongly
) o o varying around the critical value ¢&,, we have chosen the
A. Anharmonic trap with linear driving field values B;=1.0x10"3 J/um for Fig. 4b) and B,=1.02
The case of an anharmonic trapping potential is most< 1032 J/um for Fig. 5b), which are close to the critical
suited to demonstrate the benefits of the few-mode averagingalue as predicted by the averaging method. The found criti-
method. We considered a BEC moving in a potential of thecal values ofg; are in reasonable agreement, the difference
form Ugz* with Ug=10"%* J/um* and a linear driving po-  heing of about 25%, which is, actually, the accuracy of the

tential of the formV, = 8,z [in the notation of Eq(6)] which  ayeraging technique for the given set of parameters.
was tuned to resonance with tlg — ¢, transition so that

w,=(E;—Eg)/h~610 s 1. In the absence of the driving
potential the BEC can occupy several stationary nonlinear
coherent modes, three of which are displayed in Fig. 3. The This case serves as an example of how the breakdown of
respective parameters appearing in E8).are found to be the conditions(13) and(15) results in wrong predictions of
@;,=121.7 s, «@;3=463s?t,  a,=14425s' a,; the mode expansion method. The case of a harmonic trap is
=88951 a3=918s% andag=111.9 st a very special case with this respect: if, in the absence of
As predicted by the averaging method our simulationinteraction, the transition between two neighboring modes is
showed a critical behavior: FgB; below a certain value resonantly driven, then this is also the case for a transition
Bc~7.3x10 % J/um the population transferred to the first between any other neighboring modes. It therefore is never
excited state is bounded to be smaller than about 0.5. Apossible to consider only a small number of states because
example for this behavior can be seen in Figg)4vhich  other states are quickly populated as well. Only if one is
corresponds to a slightly subcritical value ¢@;=6.9 sufficiently far away from resonance a few-mode model can
X 10733 J/jum. For 8;> 3. this upper bound suddenly dis- be expected to work well, but then the transition rate be-
appears and the population of the first excited states can takeeen those modes is also low. These conclusions remain
almost all values between 0 and 1. This can be seen in Figjualitatively also valid in the presence of interaction.
5(a) which displays the time evolution for a slightly super- To demonstrate the breakdown of the mode expansion

B. Harmonic trap with anharmonic driving field

critical driving field with 8,=7.7x 103 J/um. method we consider a harmonic potential of the form
leil? lei?
L .

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.1 02 03 0.4 \/ost[s]
@ . . . . . "

0.1 0.2 0.3 0.4

FIG. 5. The same as Fig. 4, but for a slightly supercritical driving force.
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FIG. 6. Mode coefficients averaged over a time of 5.3 ms for a BEC in a harmonic trap driven resonantly by a screened cubic potential.
(@ Weak driving force with 8,=0.786x10"%J/um® and 8,=0.344<10 % J/um®. (b) Strong driving force with 8,=1.967
X103 J/um? and 8,=0.859x 10732 J/um®. Solid line,|c,(t)|?; dashed line|c,(t)|?; dotted line,|c5(t)|2.

U,(2) = mow2z?/2 with »,=600 s !, and a screened cubic
driving field which, in the notation of Eq6), is given by
Vi(2) = BiZ’exp(—Z2W?), i=1,2, withw=4.9 um. We in-
troduced the exponential screening since a purely cubic driv-
ing field plus a harmonic potential is unbounded from below.

dfs )
T b3 f;siny,

DX A an 2t a2t (e azg 2
=Ap—an fi+appfi+(ag—ax)fs

A linear driving field cannot be used because, according to dt

the theorem given above, it only leads to an oscillation of the fg_ f% fa

BEC without changing its shape. The two driving frequen- + b1y CoSXx—by35—cosy,
. . : 2f,f, 2f,

cies are chosen to be at resonance with ¢hes ¢, transi-

tion, w;=(E;— Eo)lﬁ%53;6 s 1, and thep,— @5 transition, g

w,=(E,—E{)/fi~568 s *. ay _ _ 2_ 2 2

The relative strength of the two driving fields was chosen at ~ ezt (@ as) 1= agfat azfs

to achieve ¢,,Vi¢1)=(¢3,Vo¢,) by setting the appropri-

ate values fop3; andB,. The results are shown in Fig. 6. For

weak driving fields, 8;,=0.786x10 2 J/um® and B,

=0.344x 10 3 J/um®, one achieves reasonable agreement

with the predictions of the averaging procedure, see FigThere are here yet too many parameters because of which the

6(a). For a strong driving force with 8,=1.967 analysis of Eqs(47) is yet too complicated. To simplify the
X102 J/um? and 8,=0.859<10 23 J/um?® the excitation consideration, we may involve a realistic approximation,

of higher modes becomes significant, which is not surprisingvhen there is no detuning, the amplitudgg, due to the

because the driving field provides more energy which carapplied alternating fields, are taken to be the same, and the

also excite higher levels. This behavior can be seen in Figoarametersy;; are close to each other. That is, we set

6(b) which also indicates that the time evolution deviates

strongly from the predictions of the averaging method.

f2—f2
f1 3 2
+ b122—f2 COSX+ bngZfs cosy. 47

b;:
aEaij, bE%, A”:O (48)
VI. STATIONARY SOLUTIONS AND STABILITY ANALYSIS

To find out the stationary solutions for the dynamics oflt is also convenient to measure time in units @f*. To
the three-mode case and to analyze the stability of these séeturn back to time units, one should replddey at. Then
lutions, it is convenient to work with the variables Egs.(47) reduce to

fi=lc| (j=12,3 (46) %=gfzsinx,
and the relative phasé44). The fractional mode populations
are expressed through the amplitudés) as njzsz.
Using the variable$;, x, andy one can rewrite Eq$36)
for the cascade generation in the form

df,__ b b
W_ E 1SINX E 3Siny,

dfy . dfs __ b, o
E=%b12fzsmx, qi ~ o f2siny,
2 2
df, ) ) dX_ 2 .2 f5—f1 fs
H:—%b12f15|nx+%b23f3s|ny, a_fz—fl+b2f1f2 COSX_bz_fzcosy,
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dy , .,  f1 f2—f2 n’,(b), n’,(b)
_ = — JR— 0.54
at f3 f2+b2fzcosx+b 27,14 cosy. (49 ]
In addition, because of Eq#40) and (46), there is the rela- My T

tion

f24+f2+f3=1. (50)

This relation is automatically supported by E¢49) as well
as by Eqs.(47), provided it is valid for the initialf;(0).

Equations(49) are much easier to analyze than E@). At 0.1+

the same time, the mathematical structure of these equations ]

is similar, so the behavior of their solutions should be close 0.0 ———,

tO eaCh Other. 0.0 0.2 04 0.6 0.8 1.0
In Egs.(49), there is the sole dimensionless paraméter b

defined in Eq(48). Since the parameter can be posjtive as FIG. 7. Stationary solutions for the casé&=y*=0 andn*
well as negative, theh can, generally, be of both signs too. —n% as functions of the pumping parametbr stable n* (b)

But Eqgs.(49) enjoy a nice symmetry property, being invari- =nZ(b) (solid line); stablenZ (b) (dashed ling
ant under the change

b——-b, x—x*xw, y—y=*m. (51 =f*(b) as functions of the pumping parameterand then
] o o ] finding the related stationary solutions
Therefore, in what follows, it is sufficient to consider only
the case of positivé=0.
There exists a special solution of E¢49), for which n’(b)=|f}(b)|? (55

fi=f3, x=-y (52 . . .
for the fractional mode populations. Simultaneously, we ac-

for all timest=0. Then the problem reduces to a kind of a complish the stability analysis by calculating the Jacobian

two-mode case described by the equations matrix for Egs.(49), evaluated at the related fixed points.
The eigenvalues of this matrix define the characteristic ex-
dfy b _ ponents characterizing the type of stabilig7].
gt~ 2 f2sinx, The first stationary solution is given by* =y* =0 and
ni =nj . The related mode populatior{§5) are shown in
df, ) Fig. 7. This fixed point is neutrally stable, being a center with
W:_b f; sinx, the characteristic exponentd ;=0 and imaginary A,
=A%, Ay2=A%Z. Whenb varies in the interval 0&b=<1,
ax ., 2f§_l the absolute values ah,3; and A, s change in the range
azfz—flerlecosx. 0.192<|A, 4=<0.865 and 0.35&%|A 45 =<1.755.

The second fixed point is defined &y =y* =7 and the
- . % g *

This reduction, however, becomes possible as a result of tH¥@nch I'in Fig. 8a) for ny =n3 and in Fig. §b) for n; .

approximation when all interaction amplitudes; =« are This fixed point is also a center with the characteristic expo-

assumed to be equal. More precisely, the minimal requiredents A;=0 and imaginaryA,=A3, A;=Ag. For b

ments necessary for the existence of soluti®) are €[0,1], one hagA,d~[Asd~1.
The third fixed point corresponds & =y* =7 and the

12~ (K30, 13— X317, b12: b23, A21:A32. (53) branCh Il'in F|gS Sa) and gb) fOI’ ni =I’l§ and n; , I’eSpec-
_ _ o ~ tively. The characteristic exponents akg=0 and realA,
It is feasible, in principle, to choose such modulating fields— —As, A,=—As, which shows that this point is unstable.
and a trapping potential that Eq&3) be valid. In addition,  The absolute values afa, 4 ~|A, 4 ~0.1. The solution ex-
the initial conditions are to be such thiai(0)= f5(0). ists for 0<b=<b? , with b} =0.198.

The stationary solutions of Eqg$49) are obtained by The fourth fixed point is given by* =y* =7 and the
equating to zero their right-hand sides, keeping in mind thag . nch 11 in Figs. 8a) and 8b) for n* =n% andn% . The
b#_O andfz_is not identically zero. The corresponding fixed- characteristic exponents arg;=0, imaginary A,=A% ,
point equations for the phase differences are and realA ;= — Ag, with [A,d~|A,q~0.1. This solution

sinx=siny=0, cosx=+1, cosy==1. (54) IS unstable and exists undexb=bj , with b =0.198.
The fifth fixed point is described by* =y* =7 and the
The equations for the amplitudes are rather cumbersome, atianch | in Fig. 9 fom? (b), n,(b), andnj (b), respectively.
we shall not write them down. We shall solve these equation3he characteristic exponents afg=0 and imaginaryA,
numerically, calculating the fixed-point amplitudef =A%, Ay,=A%, which shows that this point is a center. The
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FIG. 8. Stationary solutions related to the fixed poitit=y* = 7 andn} =n% as functions of the pumping parameterStable branch
I (solid line), unstable branch I{dashed ling and unstable branch I(dashed ling (a) n} (b)=n3(b); (b) n3 (b).

solution exists forb in the range &b<b}, with b}
=0.639, whergA,4~1 and|A,5<0.967.

The sixth fixed point corresponds 1§ =y* =7 and the
branch Il in Fig. 9 fom? (b), n} (b), andnj (b). The related

characteristic exponents ark;=0, imaginary A,=Aj,

ing centers and labeled as”)(t). It is possible to obtain
corrections to the guiding centers by using the following
steps of the averaging technig[#3,46. Then we can find
the higher approximationsﬁk)(t) describing the fractional
mode population{x:ﬁk)(t)|2. To obtain the higher approxima-

and realA ,= — A 5. This tells that this point is unstable. The tions for c,(t), we may proceed as follows.

solution exists for G&b=<by, with by=0.639, where
|A,4=<0.896 and A, §<0.457.
The stationary solutions for the casg+nj are, actually,

invariant under the interchange of the indices 1 and 3. For

Let us present the solution to the temporal equatioras

ﬂMF;Cwan, (56)

concreteness, we accept thgt>n3 , as is shown in Fig. 9.
Formally, there is also the seventh fixed point, for whichwhere agairc,(t) is a slow function of time, compared to
x* =y*=27 and n} =n% . But this is just the first point the fast functionp,(r,t). For any fast function of tim&(t),
shifted inx* andy* by 2. we define the averaging

Selecting from all available fixed points only those that
corresponds to stable stationary solutions, we have three
such cases: the point =y* =0, n} =n} , depicted in Fig.
7; the pointx* =y* =, nj =n3, shown in Fig. 8 as the
branch I; and the poink* =y* =4, nf >n%, presented as oOver fast oscillations. In particular,
the branch | in Fig. 9.

Recall that these three stable fixed points exist under the
validity of conditions(53). In reality, it can be quite difficult
to satisfy these conditions exactly. But if these conditions are
not valid, then the sole stable point that remains is the poinThe functionse,(r,t) can be taken such that
X* =y* =1, n} >nj , which is shown as the branch | in Fig.
9. This stationary solution exists only for<b} . For larger
pumping parametets>b? , there are no stabl@r neutrally
stablg fixed points. Hence, the motion for such largevill

T
ml;J F(t)dt (57

(Fy=1
- 0

—

1, wW1= Wy

<eXp{i(ﬁ’l_wz)t}>:A(w1_w2)E|

0, (l)]_#(l)z.

<f @E(f,t)¢n(r,t)dr>=5mn- (58)

be chaotic. Then the amplitudes,(t) in Eq. (56) can be obtained as
VII. HARMONIC GENERATION AND PARAMETRIC Cn(t)=< j (p:;(r,t)zp(r,t)dr>, (59
CONVERSION
Employing the presentatiofi4) in the GPE(1), and in-  and the normalization
volving the averaging technigyd3], we come to the equa-
tions forc,(t), such as Eq9.36). This procedure defines an E e, (H)]2=1 (60)
initial approximation forc,,(t), which can be called the guid- w o
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FIG. 9. Stationary solutions associated with the fixed prifnty* =7 andnj >n} as functions ob. Stable branch (solid line) and
unstable branch I{dashed ling (a) n} (b); (b) n3(b); (c) n}(b).
is valid. For instance, taking,(r,t) in the form cWt)=cOt), (64)
which follows from the rulg(62).

To derive the second-order approximation &Q(t), we
write

go(n")(r,t):gon(r)exp( —%—Ent), (61)

we come back to Eq(l4), with all Egs. (58)-(60) being
evidently satisfied. (1) i

Equation(59) can be employed as a relation for an itera- en (RO =[en(r) T xn(r,)]exg — 2 Eqt]. (65
tive procedure defined by the rule

Here ¢,(r) is a stationary topological mode given by the

(k+1) /4y — (K)* (k) eigenproblem4), and y,(r,t) has to be found by substitut-
Ch () <f en (NDe (r,t)dr>, (62) ing Eq.(65) into the GPEK1). In the case of modulating field
(9), the correcting ternmy,(r,t) can be written as
where
Xn(RO=2 [up(ne '“it+ui(neet],  (66)
pO(r =2 ci?(Oep’(r.0). (63) j

wherej=1,2,..., and allw;>0 can be ordered so that 0
Starting from the guiding centerélo)(t) and the form(61), Sw S wys---. The functionsu,;(r) andv,;(r) satisfy the
we get equations
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(ALen]—En+N A{ @nl?—fi0))un+ N Ag 92 vy

:_%(PHBJ*’

(H[(Pn]_En+N As|(Pn|2+hwj)Unj+N As((P:)Z Unj

1

where ¢,= ¢,(r). Using the first-order form65) in Egs.
(63) and (62), we obtain the second-order approximation

c@(t)=cOt)+ > cO(t)! X [(en,Umi)

R em) 1A (@ = 0nm) + 2 [(@n V)
+ (Uni» om) JA (@i + ©pm)
+Z [(Un; vumj)A(wi_wj+wnm)

]

+ (Up aU*mj)A(wi+wj+ ®nm)

+(U:i vumj)A(wi+wj_ ®nm)

+(vhi vm) A0~ 0j— onm ]|, (68)

in which (u,v) denotes the corresponding scalar product.
This formula is valid for an arbitrary number of alternating
resonant fields. In the case of just one resonant field, there

should be no summation over the indidgeandj in Eq. (68).

PHYSICAL REVIEW 89, 023620 (2004

c?=cO() + e[ (¢1,05) + (U1, 92) JA (01~ w3y)
F[(@1,032) +(U12,92) JA (W~ w39)
+(U11,03) A (201 — w51) + (U12,03) A (2w~ w3y)
F[(U11,05) + (Ug2,03) JA (@01 + 0~ w3y
F[(U12,U20) + (v 22,01) JA (w2~ @1~ w2},

P =c(t) +c[(@2,u1n) + (v31,01) ]A (w1~ w2)
T[(@2,U12) + (03, 01) JA (W~ wp1)
+ (031, U1) A (2w1— wz1) + (V37,U1) A(2w,— w31)
+[(v31,U12) + (v35,U1) JA (@1 + W~ w5y)
+[(Uz1,U1) + (011,022 JA (w2~ w1~ w21}

Expressiong70) show that one alternating field, with a
frequencyw, can induce transitions between two topological
modes, provided that one of the following equations is valid:

(71)

W= Wy, 2(1):(021. (72)
And Egs.(71) demonstrate that two alternating fields, with
frequenciesv; andw,, can realize intermode transitions un-
der one of the resonance conditions:

W= Wy, W= W31,

201=wy1, 20wy,

w1t W= Wy, Wr— W= wWoy. (73

Formula(68) shows what are the conditions on the alternat-G0ing to the higher-order approximations in the iterative
ing fields, which induce resonant transitions between topoProcedure62), we see that, in addition to the standard reso-

logical modes. These conditions depend on the number of tHe&NCe conditions as = w,; Or w;=w,;, there appear the

modulating fields involved.

Consider the case of two resonantly coupled topological

modes, when

cOt)=0 (n#1,2), (69)

and is nonzero only fon=1,2, as follows from the averag-
ing technique for the guiding centdi®,8]. And suppose that
there is the sole alternating field with a frequensy= w.
Then the nontrivial population amplitudes are

cP()=cOt) + D [(e1,05) +(Up,02)JA(0— wyy)
+c0(t)(up,03)A(2w— wy),
1) =c(t) +cPD[(@2,u1) + (05 . 01)JA (0~ w2)
+cO(1) (03 U A (20— wyy), (70)
which results from Eq(68), taking into account thatv,

=T Wy1.
If there are two alternating fields, so thgt 1,2 in Eq.

conditions ofharmonic generation

kw=w21 (k:2,3, . .), (74)
when there is the sole alternating field, or the conditions of

parametric conversion

; (£ w))=wy, (75)

if several alternating fields modulate the trapping potential.
The prediction of nonlinear harmonic generation using the
averaging method is in excellent agreement with a respective
numerical simulation for a harmonic potential of the form
U,(2) = mow?z?/2, with »,=600 s *. To demonstrate har-
monic generation we employed a harmonic driving field of
the form (6) with V,(z)=8z> and driving frequencyw,
=(E,—E,)/(2h)~552 s 1. For a sufficiently strong driv-
ing field (8=1.1x10 2 J/um?, roughly half the strength
of the trapping potentialwe observed a strongly enhanced
population of the second excited mo@scitation of the first
excited state is forbidden by parity conservajiorhe result
for the time-averaged coefficients is shown in Fig. 10 and

(68), then for the nonzero population amplitudes, one has demonstrates a population of up to 30% in this mode, far
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leif for the GPE, with realistic physical parameters, show that the
! simultaneous generation of several topological modes is also
0.8 feasible.
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600 60 APPENDIX: DESCRIPTION OF NUMERICAL
4 ” ALGORITHMS
jz\ 290 Our numerical simulations are performed for a BEC that
 — 35— “lum] v — 5—— *[km] obeys the GPE with an external potential of the fddrr)
) s =U,(r,)+U,(2), i.e., atransverse and a longitudinal trap-
] s 1=04435 el s 1=0-1465 ping potential. We consider a quasi-one-dimensional situa-
tion for which the energy required to create excited states of
600 60 . . .
the transverse trapping potentid| (r, ) is much higher than
N “ any other energy. The wave function then takes the approxi-
ﬂ 20 mate form o(r,t)=¢, (r,)¥(z,t), where ¢, (r,) is the
Ea— g zlum] SR 5 Zlum] transverse ground state. By integrating over the transverse
(b) coordinatesr, one can show thaty fulfils a one-

. , ) dimensional GPE of the form
FIG. 10. Time evolution of a BEC trapped and driven by har-

monic potentials(a) Mode coefficients averaged over a time of 5.3 o B2 g2 R
ms (the lines have the same meaning as in Fig(d) spatial prob- ih—=| — —2+ U,(2)+N AZ| ¢|2+V o, (Al)
ability density at different time steps. The effect of harmonic gen- at 2Mg gz

eration of population in the second excited state can clearly be seen ) .
in both figures. with an effective coupling parameter A,

=A@, (r,))|*dr, , whereby the integral over the trans-

than is to b ted in the ab fint . verse ground state is of the order of the transverse width
more than IS 1o be expected In the absence ot interaction. A?quared. The details of this reduction can be found in review
in the case of an anharmonic driving fielsee abovewe

: . T [2].
also find a substantiaB0%) excitation of other modes for a In this appendix we shall present the methods used for a

str(_?_rr\]g ?nvmghﬁeld. . i d i . direct numerical solution of the one-dimensional GPE for
€ terms harmonic generation and parametric Conversioftaant sjtuations discussed in the preceding sections. We

are used here by analogy with nonlinear optics, where theraenerally consider a BEC of 1009/Rb atoms fn,=1.45
exist analogous phenomeid5]. Similar effects occur as %10 kg, a.=5.4 nm) with a transverse width Oof ,Zlm_

well for elementary excitations of Bose-Einstein condensateg, . one-dimensionélD) simulation described a time evolu-
[48-50. As we have shown, such effects may also arise foEion of 500 ms using 10discrete time steps. It was per-

topological coherent modes. . __formed on a grid of 512 spatial points extending over a range
In conclusion, the resonant generation of topologlcalOf 26 um

modes seems to provide a feasible mechanism for creating
novel states of trapped Bose gases, containing the combina- . ) . . . o
tions of several such modes. Here, we have considered th&' Numerical S|mulat|or.1 of time evolution and determination
resonant generation realized by modulating the trapping po- of nonlinear coherent modes
tential. Note that another possibility of imposing resonant To simulate the time evolution governed by E41) we
perturbations could be done by inducing periodic variationshave employed the well-known split-step Fourier method
in the atomic scattering lengtfb1,52. The latter case re- [53]. As initial condition we used the ground-state nonlinear
quires that the atoms are in a state close to a Feshbach resmherent modepy(z) associated with the potentibl,(z) in
nance. the absence of a driving field(z,t). This ground state as
As we mentioned in the Introduction, a dipole topologicalwell as higher nonlinear coherent modes were numerically
mode was successfully generated in experinj@3]. The determined by an imaginary-time propagation followed by a
resonant method of vortex creation was analyzed in detail iself-consistent fieldSCH method.
Refs.[9-11]. Thus, the possibility of generating a single to-  The imaginary-time propagation was described, for in-
pological mode is well justified. The mode can be of anystance, in Ref[54]. Very roughly speaking it is a method to
nature, whether dipole or vortex. The method of resonanbbtain a kind of a small-temperatueorresponding to large
generation works for any mode. Our numerical simulationdgmaginary time collective wave function which approaches
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the ground-state wave function for very large times. It usu-and turned out to be very suitable for our case. The three
ally gives excellent results for the ground state but fails tononlinear coherent modes of lowest energy for a harmonic
reproduce excited nonlinear coherent modes unless certapotential and an anharmonic potential are displayed in Fig. 3.
symmetry requirements are fulfilled. We used this method for We have checked if the nonlinear coherent modes ob-
intermediate imaginary times to obtain a better trial wavetained in this way are indeed stationary solutions of the non-
function ¢(© for the following SCF procedure. This step is linear Schrdinger equation by propagating them for a suffi-
not necessary but helps to improve the speed of the numertiently long time using the split-step algorithm. All modes
cal algorithm. were found to be perfectly stationary: their density does not
The SCF method consists in inserting the trial wave funcchange and their phase remains spatially homogeneous apart
tion ¢ into the nonlinear interaction part of EGAL1). It~ from the sharp phase jump hy that appears at the zeros of
thus provides a kind of potential term and turns &fl) into  the excited states, and apart from areas with extremely low
a linear equation fors. We then solved for the stationary densities(less than about 10° of the peak densitywhere
eigenstates of this equation. One of these states is then choumerical errors lead to a strongly fluctuating phase.
sen to become a new trial wave functigit®) and then the
procedure is iterated until the overlap betweef!) and 2. Comparison to averaging procedure
¢"" 1) deviates by less thaa from 1 (we have choser
=10 '%. The choice of the appropriate new trial wave func-
tion depends on the problem at hand. In the case of a 1
Schralinger equation with a confining potential, the eigen-
states are real and the numidy of zeros of each nonlinear
coherent mode turned out to be a good criterion for the ne )
trial wave function. To determine the ground state we pickecFi (1) = (¢i, (t))exp(Eity /i) with  t;=1At,1=0,1,2 .. ..
theN,=0 eigenstate in each iteration. For the excited coherSince the nonlinear coherent modgsare not orthogonal the
ent modedN,=1 and 2 was the respective choice. sum 2;[c;(t,)|? is not unity and the individual coefficients
The convergence of the SCF method is the slower thé@re oscillating on short-time scales.
higher the excited state one is looking for, and it even can To obtain the coefficients;(t;) corresponding to the av-
fail to converge foNy=2. We therefore implemented a con- eraging procedure we stored the wave function at a total
vergence acceleration scheme based on Anderson mixing agmber ofN; time steps K; was typically on the order of
described in Ref[55]. In short, this scheme enhances the1000 and defined the averaged coefficients as
usual SCF algorithm by adding a kind of memory in the

To compare the result of the direct numerical simulation
lxsli'[h that obtained by the averaging procedure we first pro-
jected the numerical solutiog(z,t) found using the split-
step method on the respective nonlinear coherent mode to
X&)btain as an intermediate result the nonaveraged coefficients

N
sense thato(""1) may depend not only o™ but on pre- &
vious trial wave functions, too. In practice, this memory lasts Ci(T“)'_Na ;1 Ci(Tat 1), (A2)

for 3—6 iterations. To implement this scheme one first writes

¢("1) as a superposition of the previous trial wave func-

tions. Then one minimizes the deviation of this function fromwhereN, is the number of steps we averaged over apd
the previous trial wave function with respect to the superpo<=NynAt, n=0,1,2 .... GenerallyN,=10 to N,=32 re-
sition coefficients. This leads to a simple linear system ofsulted in a fairly smooth time evolution of the coefficients
equations for the coefficients of the superposition. Andersoie;(t) which can directly be compared to the results of the
mixing can speed up convergence by orders of magnitudaveraging procedure.
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