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Finite-temperature theory of the trapped two-dimensional Bose gas
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We present a Hartree-Fock-Bogoliub@dFB) theoretical treatment of the two-dimensional trapped Bose
gas and indicate how semiclassical approximations to this and other formalisms have lead to confusion. We
numerically obtain results for the quantum-mechanical HFB theory within the Popov approximation and show
that the presence of the trap stabilizes the condensate against long wavelength fluctuations. These results are
used to show where phase fluctuations lead to the formation of a quasicondensate.
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The question of whether a weakly interacting Bose gashere we have assumed a spatially dependent coupling pa-
can undergo Bose-Einstein condensati&C) when con- rameter, introduced by the many-bodymatrix for the
fined to an effectively two-dimension&2D) geometry has trapped case as proposed in Réfsl., 12
gained significant topical interest with the advent of recent |n a manner identical to the development of the theory in
experiments 1]. It is well known that a 2D homogeneous 3D [13] we assume that the many-body Bose field operator
ideal gas of bosons does not undergo BEC at finite tempergan be decomposed into a mean, condensate part and a fluc-

ture[2]. Indeed it has been rigorously shown that even Wheq P A N~ =
. . = , . uating field operator part such that= () + =+ . The
interactions between the particles are inclufigidhere is no boveg Hamiltznian an then bgadiéggnaiipzeg prlf)vided the

BEC phase transition at finite temperature, although a supe d te ord b th lized G
fluid phase transition in the form of a Kosterlitz-Thouless tOndensate oraer parametgrobeys the generalized Gross-
Pitaevskii equatiofGPBE

(KT) transition[4] can be shown to take place. The KT tran-

sition occurs because of the enhanced importance of fluctua- PR 2

tions in the 2D system yielding a quasicondensate state _ﬁ v +%r2— +g(n.+2n) | ¢=0 ©)

where the length scale for phase coherence is small com- 2m 2 #9(Ne ’

pared to the system size. The observation of such a phase

transition has been reported recenfs] for a 2D gas of and the quasiparticle excitations obey the Bogoliubov-de

dilute hydrogen on a liquid helium surface. For the noninter-GennegBdG) equations

acting gas, Bagnato and Kleppr&] showed that an ideal

gas in a 2D harmonic trap does exhibit a BEC phase. Petrov 2ui—gncvi: Eiu;,

etal. [7] included interactions and showed within the

Thomas-Fermi approximation, that well below there ex-

ists a true condensate while at higher temperatures a quasi-

condensate forms. We are interested in the phase diagram a " 202 212 ~

temperatures below and within this fluctuation regime to in-Where £=—(A7V=/2m)+(mwy/2)r°— u+g(2n.+2n), n

vestigate both the true BEC state and the onset of phase ¢* ¢ is the condensate density andthe noncondensate

fluctuations that lead to the destruction of the BEC. density, which is evaluated by populating the quasiparticle
In 3D, the finite temperature Hartree-Fock-Bogoliubovlevels according to the usual Bose distribution. In the deri-

(HFB) treatment of the trapped Bose gas has proved veryation of these equations we have used the canonical trans-

successfu[8—-10]. It is therefore natural to develop this ap- %)rmation TIIZEi[Ui&i—vi*ZYiT] where the &i satisfy the

Erlggcpoig;ﬁsemz?]fsast'ORtirgagg;?lgfthoeu?l:(?qgtxlrgamgc?]aer\‘/'gr sual Bose commutation relations and we have taken the
: ! ge, T so-called Popov approximation, neglecting anomalous pair
been implemented in 2D, the development of which is the S
averages of the fluctuating field operator.

central result of this article. First let us consider however, a :
simplification to the fully quantum-mechanical implementa- Together, the GPE anq BdG e.quatlons.form a closed set
nd can be solved numerically using techniques analogous to

tion of HFB that has been used to conclude previously thaf! ) X : . .
there is no BEC in an interacting 2D Bose gas. those developed in 3D. This we will describe shortly, but first

In 2D, with a cylindrically symmetric trapping potential €t US attempt to obtain a semiclassical solution of these
of frequency wo, the grand-canonical many-body Hamil- [equatlons. This is the approach taken by previous authors
14].

tonian is given by

Lvi—gn.u;=—Ejv;, 3)

pen 5 Let us assume that the temperature is large compared to
He | arot _ AoV Mag the energy-level spacing in the trap. We can now replace the
- ryi(r) 2m 2 quasiparticle amplitudes such thaf~ue'? and vj~ve'’
" where the common phaskdefines a quasiparticle momen-
g~y - - tum, p=#%V 6. Neglecting spatial derivatives of v, andp
* 2 v (r)z//(r)) wir), @ (local-density approximationand making a continuum ap-
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proximation for the Bose distribution function, the quasipar-therefore no problem with the infrared divergence seen pre-
ticle excitation spectrum is found to be given by viously and one can integrate to obtain the semiclassical

Hartree-Fock thermal density,
ESC(p’r): \/Agc_(gnc)zi (4) 1 .
~ _ 2 n—
n=— )\2[“’1(1—6 [(1/2)mewgr<+2gn.+2gn ,u]/kT)]’ (6)

where A= (p?/2m)+ smwir?— u+2gn.+2gn and the

c_ondensat_e density is S.t'” calculated via _the GPE. '_I'he derl/'\/hich can be solved self-consistently together with the GPE
sity of excited state particles can now be integrated in closefl

form to give 0 (_)btain a Bose condensed solution. I_nterestingl_y, if one
omits the ground state from the calculation, effectively de-
manding that condensatiotioes notoccur, then it is still
1 t 1 possible to obtain a self-consistent solution for the thermal
n=-— —In[l—exp(—\/tz—sz)]+5—5\/{2_32], density at all temperatures. Therefore, at the level of the
A semiclassical Hartree-Fock approximation, one might con-
5 clude that there is no BEC in the thermodynamic limit for a
2D gas of trapped, interacting bosons.
where  A?2=#227mkT, s=gn./kT, and t=(1/ By removing the lowest-lying state however, one has
KT)(3maw?r2— u+2gn.+2gn). These semiclassical HFB truncated the available state space and so one may expect

equations form a closed set and it is this set of equations thélﬁrf‘t the thermodynamically stable state is the condensed

previous authors have attempted to solve self-consistentlp2S€- This is confirmed by calculating the free energies for
This is not possible however, as the semiclassical approm-he two states. Above the BEC transition temperature the free

mation can only be used consistently at low energy if comEneragy of the condensed and uncondensed solutions are vir-

bined with a Thomas-Fermi approximation for the conden-tua"y indistinguishable, but below the critical temperature

sate[15]. There are therefore no solutions to these equationé.he free energy for the condensed SOIUt'.On IS lower, anf"m'
It is trivial to show that in the Thomas-Fermi limies "9 that W|th|n_ the Hartree-Fock approximation, BEC is the
and the expression for the semiclassical thermal density i@ermodynamlcally favored staj@4]. . :
undefined. Indeed, even for low particle numbers, it can be We now proce.ed to solve the quantum—mechgnlcal, dis-
shown that the arguments of the square roots always conta ete, HFB equa‘uon@Eq_. (2) anq Eq.(3)] sel_f-conS|stentIy.
values at some spatial point that are negatased approach e.methc.)d of solution is described in detail elsewtié@,
zero from below in the Thomas-Fermi limiénd hence this but IS outlined here for <_:om_pleteness. . L
expression is never well defined. The origin of this problem First, the G_PE equation is _solved using an expansion In
lies in the expression for the semiclassical excitation spec§Ome appropriate hasis set with the condensate and noncon-
trum. At low energies, or equivalently long wavelengths, Eq.densate densities set to zero. The solution for the condensate

(4) yields imaginary energies. This has been used to conlave function is then used to construt and the process

clude that in 2D BEC cannot take place since the condensatiérated to find a converged solution. One now needs to cal-
is destabilized by long wavelength fluctuatidiisi]. This is culate the noncondensate density. To do this one decouples

simply incorrect. What one is seeing is a failure of the semihe BdG e_quatlczrl? by making the transformation to the aux-
llary functions;~’=u; £ v; . One can thus obtain equations

classical approximation. If the discrete nature of the excita! (+) i )
tion spectrum for the finite-size trap is not retained for thefor "’ andd; "’ separately. These are solved using a fur-
low-energy excitations, and this is the case within the semither basis set expansion, for which we use the basis of ex-
classical approximation, there comes a point where the magited states of the GPE to ensure orthogonality with the con-
nitude of the chemical potential exceeds the magnitude of theensate and to simplify the construction of the matrix
effective potential and the argument in E@) becomes elements. The noncondensate density is then constructed by
negative for lowp. Just because the semiclassical treatmenpopulating the quasiparticle states. This value df inserted
of the HFB formalism fails does not mean that the quantuminto the GPE and the whole process repeated iteratively until
mechanical theory will also. In this case the long wavelengticonvergence.
oscillations, corresponding to thee=0 limit in the semiclas- In contrast to the semiclassical HFB treatment we have no
sical case, are precluded by the finite size of the trap. Therddifficulty in finding self-consistent solutions to the quantum,
fore, to determine whether BEC can take place in 2D, thaliscrete HFB equations and typical results are presented be-
full, numerically expensive, discrete calculation must be unfow. In the numerical solution we nondimensionalize our
dertaken. equations using the natural harmonic-oscillator units. In this
As an aside, it is possible to obtain a well-defined semi-case we take our Rydberg of energy tofe,/2 and in these
classical theory of the trapped 2D gas if one makes the furunits the nondimensional interaction paramegér) takes
ther Hartree-Fock approximatidri6]. This consists of set- values between 0.09 and 0.1. This parameter, in 3D, depends
ting thev(r,p) terms in the semiclassical HFB treatment to only upon thes-wave scattering length however, in 2D g
zero everywhere. The Hartree-Fock excitation spectrum igslso depends upon the strength of the confining potential in
now single particlelike and is just given by, rather than the third dimension. The 2D gas thus represents a system
by the phononlike Bogoliubov spectrum of Eg). There is  where the interparticle interaction strength can be tuned by
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FIG. 1. Quasiparticle excitation frequencies as a function of ~FIG. 2. Fraction of atoms in the condensate as a function of
temperature foN=2000 atoms and the full spatially dependent temperature. The dotted line corresponds to the noninteracting gas
coupling parameter. for comparison.

modulating the confining potential in the direction in a  noteworthy(and critica) that our calculations confirm this

manner analogous to the use of the Feshbach resonancergsult numerically at low temperatures. At higher tempera-
3D [17]. It has even been suggested that the sign of théures the result is still valid, however the excitations are
interaction strengtlfand hence whether the interactions arethose for a condensate in an effective potential which is

attractive or repulsivecan be changed by tuning the confin- modified by the addition of the potentiaa from the static
ing potential in the third directiof7]. thermal cloud. The condensate effectively sees a weaker har-
In Fig. 1 we display the low-lying excitation spectrum as monic potential and hence the=0 mode has a slightly
a function of temperature for the trapped gas of 208®  |ower frequency. Above the critical temperature, the excita-
atoms. Shown are the lowest lyimy=1, m=2, andm=0 tjon frequencies, of course, go over to those of the thermal
quasiparticle, or collective, modes up to the critical temperagas. Similarly, at high temperaturésear the critical tem-
ture. We point out that the results shown are those of th@eraturg¢ the m=1 mode no longer satisfies the Kohn theo-
HFB-Popov equations. In three dimensions, in the presencem precisely. This is again due to the presence of the poten-
of significant direct driving of the thermal cloud, the theory tjal from the thermal cloud. The effective potential in which
fails to predict shifts in the frequencies above abouflQ.6 the condensate oscillates is no longer harmonic and the Kohn
[18]. These are related to the dynamics of the thermal clougheorem broken. As discussed previougg], if the full dy-
not included in this theory. The excitation spectrum showmamics of the thermal cloud were included, then the Kohn
should be valid in experiments where the condensate itheorem would be satisfied at all temperatures.
driven directly. In Fig. 2 we show the condensate fraction as a function of
In the three-dimensional asymmetric case this approximatemperature. It is clear that at temperatures below the critical
tion is valid only below 0.8.. However, we include the temperature we obtain a macroscopic occupation of the
higher temperatures for the symmetrical case where thground state, which implies BEC. This however is not suffi-
theory in 3D does not fail. Then=1 mode is the Kohn cient. For true condensation we require a well-defined phase
mode[19] and clearly satisfies the generalized Kohn theorempver the entire condensate. In 3D this is true for all tempera-
to within our resolution, apart from a slight deviation neartures belowT, except for a small region near the critical
the critical temperature. The quadrupote<2) and breath-  temperature often referred to as the Ginzburg region. In this
ing (m=0) modes are well defined and nowhere look likeregion phase fluctuations prohibit the formation of a true
going soft(approaching zero frequency as an indication of ancondensate. In a uniform 2D gas this region extends all the
instability). We therefore conclude there are well defined soway toT=0 and is what prevents the formation of a BEC. In
lutions to the quantum-mechanical HFB equations, in a mangig. 3 we plot the off-diagonal correlation functiogt)(0,r)
ner exactly the same as in 3D, for all temperatures below thg21] showing that only at low temperatures is therecher-
critical temperature. entcondensate with a correlated phase spanning the conden-
It is important to note that, at low temperatures, the fre-sate. As the temperature is increased the coherence begins to
quency of the lowest-lyingn=0 mode, or breathing mode, decay on a length scale less than the dimensions of the gas.
is at precisely 2, independent of the interaction strength. In analogy with Petrowet al.[7], if we expand the field op-

This result was predicted some time ago by Pitaevskii anq\.rator as=d+ o= \/ﬁeiqs then we can ex
= = press the non-
Rosch[20], purely from symmetry arguments. Indeed, theycondensate density as ﬁ:<5w5&>:<(562/4n0)

show rigorously that the existence ofvg oscillations is en- AR ~2 i
sured by the underlying S@,1) symmetry of thefull quan- +i[én,¢]/2+n. ). At low temperatures density fluctua-

tum theory Hamiltoniarfior the interacting harmonically con- tions are suppressed and this yieﬁ!s\c~<<}52>. Using the
fined 2D gas with a contact interaction. It is therefore Thomas-Fermi approximation Petrost al. conclude that
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1.00 ' ' ' ' ' ' ' coulddescribe the quasicondensate has recently been formu-
lated[22], but has yet to be implemented.
In conclusion, we have shown that the presence of the

0.75- trap stabilizes the condensate against long wavelength fluc-
tuations. This is true not only for density fluctuations, but for
° phase fluctuations as well, which are included in our formal-
e 0.50- ism via the contribution to the noncondensate density from
a0 low-energy quasiparticles. Our work is consistent with
025 Petrovet al.[7]. A 2D trapped dilute gas of weakly interact-

ing bosons therefore does undergo BEC, forming a pure con-
densate at temperatures below a transition region mgar
Although this conclusion has been reached by, among others,
0 025 05 075 100 Petrovet al.[7] and Bagnato and Kleppng8], the converse
conclusion has also appeared in the literafdd. The pros-
pect of performing the HFB calculation has been proposed as

FIG. 3. Single-particle correlation function for the 2D Bose gasa means of clarifying the ISSU@I’I. addltlon to the above
as a function of position at 0.05, 0.1, 0.35, 0.75, and 019ZBom refer_ence_s, see for example, Bayindir and Tangga]), but
right to left, showing decreasing correlation length as a function of© this point no one had done so. We have now performed

temperature. Lengths are scaled with the size of the condengate (IS calculation and unambiguously shown that BEC does
at each temperature. occur for the 2D trapped interacting gas when the discrete

nature of the energy spectrum is taken into consideration.
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