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Finite-temperature theory of the trapped two-dimensional Bose gas
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We present a Hartree-Fock-Bogoliubov~HFB! theoretical treatment of the two-dimensional trapped Bose
gas and indicate how semiclassical approximations to this and other formalisms have lead to confusion. We
numerically obtain results for the quantum-mechanical HFB theory within the Popov approximation and show
that the presence of the trap stabilizes the condensate against long wavelength fluctuations. These results are
used to show where phase fluctuations lead to the formation of a quasicondensate.
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The question of whether a weakly interacting Bose g
can undergo Bose-Einstein condensation~BEC! when con-
fined to an effectively two-dimensional~2D! geometry has
gained significant topical interest with the advent of rec
experiments@1#. It is well known that a 2D homogeneou
ideal gas of bosons does not undergo BEC at finite temp
ture @2#. Indeed it has been rigorously shown that even wh
interactions between the particles are included@3# there is no
BEC phase transition at finite temperature, although a su
fluid phase transition in the form of a Kosterlitz-Thoule
~KT! transition@4# can be shown to take place. The KT tra
sition occurs because of the enhanced importance of fluc
tions in the 2D system yielding a quasicondensate s
where the length scale for phase coherence is small c
pared to the system size. The observation of such a p
transition has been reported recently@5# for a 2D gas of
dilute hydrogen on a liquid helium surface. For the nonint
acting gas, Bagnato and Kleppner@6# showed that an idea
gas in a 2D harmonic trap does exhibit a BEC phase. Pe
et al. @7# included interactions and showed within th
Thomas-Fermi approximation, that well belowTc there ex-
ists a true condensate while at higher temperatures a q
condensate forms. We are interested in the phase diagra
temperatures below and within this fluctuation regime to
vestigate both the true BEC state and the onset of ph
fluctuations that lead to the destruction of the BEC.

In 3D, the finite temperature Hartree-Fock-Bogoliub
~HFB! treatment of the trapped Bose gas has proved v
successful@8–10#. It is therefore natural to develop this ap
proach for the 2D gas. Remarkably the quantum-mechan
HFB formalism has, to the best of our knowledge, ne
been implemented in 2D, the development of which is
central result of this article. First let us consider howeve
simplification to the fully quantum-mechanical implemen
tion of HFB that has been used to conclude previously t
there is no BEC in an interacting 2D Bose gas.

In 2D, with a cylindrically symmetric trapping potentia
of frequency v0, the grand-canonical many-body Ham
tonian is given by

H5E d2r ĉ†~r !S 2
\2¹2

2m
1

mv0
2

2
r 22m

1
g~r !

2
ĉ†~r !ĉ~r ! D ĉ~r !, ~1!
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where we have assumed a spatially dependent coupling
rameter, introduced by the many-bodyT-matrix for the
trapped case as proposed in Refs.@11,12#.

In a manner identical to the development of the theory
3D @13# we assume that the many-body Bose field opera
can be decomposed into a mean, condensate part and a
tuating field operator part such thatĉ5^ĉ&1c̃[f1c̃. The
above Hamiltonian can then be diagonalized provided
condensate order parameterf obeys the generalized Gros
Pitaevskii equation~GPE!

S 2
\2¹2

2m
1

mv0
2

2
r 22m1g~nc12ñ! Df50, ~2!

and the quasiparticle excitations obey the Bogoliubov
Gennes~BdG! equations

L̂ui2gncv i5Eiui ,

L̂v i2gncui52Eiv i , ~3!

where L̂52(\2¹2/2m)1(mv0
2/2)r 22m1g(2nc12ñ), nc

5f* f is the condensate density andñ the noncondensate
density, which is evaluated by populating the quasiparti
levels according to the usual Bose distribution. In the de
vation of these equations we have used the canonical tr
formation c̃5( i@ui â i2v i* â i

†# where the â i satisfy the
usual Bose commutation relations and we have taken
so-called Popov approximation, neglecting anomalous p
averages of the fluctuating field operator.

Together, the GPE and BdG equations form a closed
and can be solved numerically using techniques analogou
those developed in 3D. This we will describe shortly, but fi
let us attempt to obtain a semiclassical solution of th
equations. This is the approach taken by previous auth
@14#.

Let us assume that the temperature is large compare
the energy-level spacing in the trap. We can now replace
quasiparticle amplitudes such thatui'ueiu and v i'veiu

where the common phaseu defines a quasiparticle momen
tum, p5\“u. Neglecting spatial derivatives ofu, v, andp
~local-density approximation! and making a continuum ap
©2004 The American Physical Society16-1



ar

e
se

th
nt
ox
m
n
n

y
b
ta

m
e
q
o
sa

m
ita
he
m
a
th

e
m
gt

er
th
un

m
fu

to

re-
ical

PE
ne
e-

al
the
on-
a

as
pect
sed
for

free
vir-

re
rm-
he

is-

in
con-
sate

cal-
ples
ux-
s

ur-
ex-
on-
rix
d by

ntil

no
,
be-

ur
his

nds

l in
tem
by

GIES et al. PHYSICAL REVIEW A 69, 023616 ~2004!
proximation for the Bose distribution function, the quasip
ticle excitation spectrum is found to be given by

Esc~p,r !5ALsc
2 2~gnc!

2, ~4!

where Lsc5(p2/2m)1 1
2 mv0

2r 22m12gnc12gñ and the
condensate density is still calculated via the GPE. The d
sity of excited state particles can now be integrated in clo
form to give

ñ5
1

l2 H 2 ln@12exp~2At22s2!#1
t

2
2

1

2
At22s2J ,

~5!

where l25\2/2pmkT, s5gnc /kT, and t5(1/

kT)( 1
2 mv0

2r 22m12gnc12gñ). These semiclassical HFB
equations form a closed set and it is this set of equations
previous authors have attempted to solve self-consiste
This is not possible however, as the semiclassical appr
mation can only be used consistently at low energy if co
bined with a Thomas-Fermi approximation for the conde
sate@15#. There are therefore no solutions to these equatio

It is trivial to show that in the Thomas-Fermi limitt5s
and the expression for the semiclassical thermal densit
undefined. Indeed, even for low particle numbers, it can
shown that the arguments of the square roots always con
values at some spatial point that are negative~and approach
zero from below in the Thomas-Fermi limit! and hence this
expression is never well defined. The origin of this proble
lies in the expression for the semiclassical excitation sp
trum. At low energies, or equivalently long wavelengths, E
~4! yields imaginary energies. This has been used to c
clude that in 2D BEC cannot take place since the conden
is destabilized by long wavelength fluctuations@14#. This is
simply incorrect. What one is seeing is a failure of the se
classical approximation. If the discrete nature of the exc
tion spectrum for the finite-size trap is not retained for t
low-energy excitations, and this is the case within the se
classical approximation, there comes a point where the m
nitude of the chemical potential exceeds the magnitude of
effective potential and the argument in Eq.~4! becomes
negative for lowp. Just because the semiclassical treatm
of the HFB formalism fails does not mean that the quantu
mechanical theory will also. In this case the long wavelen
oscillations, corresponding to thep50 limit in the semiclas-
sical case, are precluded by the finite size of the trap. Th
fore, to determine whether BEC can take place in 2D,
full, numerically expensive, discrete calculation must be
dertaken.

As an aside, it is possible to obtain a well-defined se
classical theory of the trapped 2D gas if one makes the
ther Hartree-Fock approximation@16#. This consists of set-
ting thev(r ,p) terms in the semiclassical HFB treatment
zero everywhere. The Hartree-Fock excitation spectrum
now single particlelike and is just given byLsc rather than
by the phononlike Bogoliubov spectrum of Eq.~4!. There is
02361
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therefore no problem with the infrared divergence seen p
viously and one can integrate to obtain the semiclass
Hartree-Fock thermal density,

ñ52
1

l2
@ ln~12e2@(1/2)mv0

2r 212gnc12gñ2m#/kT!#, ~6!

which can be solved self-consistently together with the G
to obtain a Bose condensed solution. Interestingly, if o
omits the ground state from the calculation, effectively d
manding that condensationdoes notoccur, then it is still
possible to obtain a self-consistent solution for the therm
density at all temperatures. Therefore, at the level of
semiclassical Hartree-Fock approximation, one might c
clude that there is no BEC in the thermodynamic limit for
2D gas of trapped, interacting bosons.

By removing the lowest-lying state however, one h
truncated the available state space and so one may ex
that the thermodynamically stable state is the conden
phase. This is confirmed by calculating the free energies
the two states. Above the BEC transition temperature the
energy of the condensed and uncondensed solutions are
tually indistinguishable, but below the critical temperatu
the free energy for the condensed solution is lower, confi
ing that within the Hartree-Fock approximation, BEC is t
thermodynamically favored state@14#.

We now proceed to solve the quantum-mechanical, d
crete, HFB equations@Eq. ~2! and Eq.~3!# self-consistently.
The method of solution is described in detail elsewhere@13#,
but is outlined here for completeness.

First, the GPE equation is solved using an expansion
some appropriate basis set with the condensate and non
densate densities set to zero. The solution for the conden
wave function is then used to constructnc and the process
iterated to find a converged solution. One now needs to
culate the noncondensate density. To do this one decou
the BdG equations by making the transformation to the a
illary functionsc i

(6)[ui6v i . One can thus obtain equation
for c i

(1) and c i
(2) separately. These are solved using a f

ther basis set expansion, for which we use the basis of
cited states of the GPE to ensure orthogonality with the c
densate and to simplify the construction of the mat
elements. The noncondensate density is then constructe
populating the quasiparticle states. This value ofñ is inserted
into the GPE and the whole process repeated iteratively u
convergence.

In contrast to the semiclassical HFB treatment we have
difficulty in finding self-consistent solutions to the quantum
discrete HFB equations and typical results are presented
low. In the numerical solution we nondimensionalize o
equations using the natural harmonic-oscillator units. In t
case we take our Rydberg of energy to be\v0/2 and in these
units the nondimensional interaction parameterg(r ) takes
values between 0.09 and 0.1. This parameter, in 3D, depe
only upon thes-wave scattering lengtha however, in 2D,g
also depends upon the strength of the confining potentia
the third dimension. The 2D gas thus represents a sys
where the interparticle interaction strength can be tuned
6-2
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modulating the confining potential in thez direction in a
manner analogous to the use of the Feshbach resonan
3D @17#. It has even been suggested that the sign of
interaction strength~and hence whether the interactions a
attractive or repulsive! can be changed by tuning the confi
ing potential in the third direction@7#.

In Fig. 1 we display the low-lying excitation spectrum
a function of temperature for the trapped gas of 200087Rb
atoms. Shown are the lowest lyingm51, m52, andm50
quasiparticle, or collective, modes up to the critical tempe
ture. We point out that the results shown are those of
HFB-Popov equations. In three dimensions, in the prese
of significant direct driving of the thermal cloud, the theo
fails to predict shifts in the frequencies above about 0.6Tc
@18#. These are related to the dynamics of the thermal cl
not included in this theory. The excitation spectrum sho
should be valid in experiments where the condensate
driven directly.

In the three-dimensional asymmetric case this approxi
tion is valid only below 0.6Tc . However, we include the
higher temperatures for the symmetrical case where
theory in 3D does not fail. Them51 mode is the Kohn
mode@19# and clearly satisfies the generalized Kohn theor
to within our resolution, apart from a slight deviation ne
the critical temperature. The quadrupole (m52) and breath-
ing (m50) modes are well defined and nowhere look li
going soft~approaching zero frequency as an indication of
instability!. We therefore conclude there are well defined
lutions to the quantum-mechanical HFB equations, in a m
ner exactly the same as in 3D, for all temperatures below
critical temperature.

It is important to note that, at low temperatures, the f
quency of the lowest-lyingm50 mode, or breathing mode
is at precisely 2v0, independent of the interaction strengt
This result was predicted some time ago by Pitaevskii
Rosch@20#, purely from symmetry arguments. Indeed, th
show rigorously that the existence of 2v0 oscillations is en-
sured by the underlying SO~2,1! symmetry of thefull quan-
tum theory Hamiltonianfor the interacting harmonically con
fined 2D gas with a contact interaction. It is therefo

FIG. 1. Quasiparticle excitation frequencies as a function
temperature forN52000 atoms and the full spatially depende
coupling parameter.
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noteworthy~and critical! that our calculations confirm this
result numerically at low temperatures. At higher tempe
tures the result is still valid, however the excitations a
those for a condensate in an effective potential which
modified by the addition of the potential 2gñ from the static
thermal cloud. The condensate effectively sees a weaker
monic potential and hence them50 mode has a slightly
lower frequency. Above the critical temperature, the exc
tion frequencies, of course, go over to those of the ther
gas. Similarly, at high temperatures~near the critical tem-
perature! the m51 mode no longer satisfies the Kohn the
rem precisely. This is again due to the presence of the po
tial from the thermal cloud. The effective potential in whic
the condensate oscillates is no longer harmonic and the K
theorem broken. As discussed previously@13#, if the full dy-
namics of the thermal cloud were included, then the Ko
theorem would be satisfied at all temperatures.

In Fig. 2 we show the condensate fraction as a function
temperature. It is clear that at temperatures below the crit
temperature we obtain a macroscopic occupation of
ground state, which implies BEC. This however is not su
cient. For true condensation we require a well-defined ph
over the entire condensate. In 3D this is true for all tempe
tures belowTc except for a small region near the critic
temperature often referred to as the Ginzburg region. In
region phase fluctuations prohibit the formation of a tr
condensate. In a uniform 2D gas this region extends all
way toT50 and is what prevents the formation of a BEC.
Fig. 3 we plot the off-diagonal correlation function,g(1)(0,r )
@21# showing that only at low temperatures is there acoher-
entcondensate with a correlated phase spanning the con
sate. As the temperature is increased the coherence beg
decay on a length scale less than the dimensions of the
In analogy with Petrovet al. @7#, if we expand the field op-

erator asĉ5f1dĉ5An̂ei f̂ then we can express the non
condensate density as ñ5^dĉ†dĉ&5^(dn̂2/4nc)
1 i @dn̂,f̂#/21ncf̂

2&. At low temperatures density fluctua
tions are suppressed and this yieldsñ/nc;^f̂2&. Using the
Thomas-Fermi approximation Petrovet al. conclude that

f FIG. 2. Fraction of atoms in the condensate as a function
temperature. The dotted line corresponds to the noninteracting
for comparison.
6-3
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phase fluctuations lead to the formation of a quasiconden
at temperatures of aroundT5Tc/2 for our parameters. In ou
case we find that the condensate persists to approxima
this temperature, but above this the phase becomes ill
fined and the system is best described as a quasiconden
This is consistent with our numerical calculation of the c
relation function. An alternate treatment of the 2D gas wh

FIG. 3. Single-particle correlation function for the 2D Bose g
as a function of position at 0.05, 0.1, 0.35, 0.75, and 0.925Tc from
right to left, showing decreasing correlation length as a function
temperature. Lengths are scaled with the size of the condensatr con

at each temperature.
,

ev

v

v.
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coulddescribe the quasicondensate has recently been fo
lated @22#, but has yet to be implemented.

In conclusion, we have shown that the presence of
trap stabilizes the condensate against long wavelength
tuations. This is true not only for density fluctuations, but f
phase fluctuations as well, which are included in our form
ism via the contribution to the noncondensate density fr
low-energy quasiparticles. Our work is consistent w
Petrovet al. @7#. A 2D trapped dilute gas of weakly interac
ing bosons therefore does undergo BEC, forming a pure c
densate at temperatures below a transition region nearTc .
Although this conclusion has been reached by, among oth
Petrovet al. @7# and Bagnato and Kleppner@6#, the converse
conclusion has also appeared in the literature@14#. The pros-
pect of performing the HFB calculation has been proposed
a means of clarifying the issue~in addition to the above
references, see for example, Bayindir and Tanatar@23#!, but
to this point no one had done so. We have now perform
this calculation and unambiguously shown that BEC do
occur for the 2D trapped interacting gas when the discr
nature of the energy spectrum is taken into consideration
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