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Theory of output coupling for trapped fermionic atoms

P. A. S. Pires Filho, C. L. Cesar, and L. Davidovich
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We develop a dynamic theory of output coupling for fermionic atoms initially confined in a magnetic trap.
We consider an exactly soluble one-dimensional model, with a spatially localizedd-type coupling between the
atoms in the trap and a continuum of free-particle external modes. The transient dynamics of the atoms, as they
leave the trap, is investigated in detail. Two important special cases are considered for the confinement
potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that the trap population does not
vanish in the infinite-time limit. For weak coupling, the infinite-time spectral distribution of the outgoing atoms
exhibits peaks corresponding to the initially occupied energy levels in the trap; the heights of these peaks
increase with the energy. As the coupling gets stronger, the infinite-time spectral distribution is displaced
towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling
between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the
continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which
contributes to the spectral distribution of the outgoing beam more strongly than the other modes. This effect is
especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-
reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasimono-
chromatic antibunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.

DOI: 10.1103/PhysRevA.69.023615 PACS number~s!: 03.75.Pp, 03.75.Ss, 32.80.Pj
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I. INTRODUCTION

The demonstration of the first atom lasers@1–5# has led to
questions that are reminiscent of those asked when the
optical lasers were put to work. What is the dynamical b
havior and the statistics of the outgoing beam? How mo
chromatic it is? Atoms offer an interesting twist to the
questions, since they may have bosonic or fermionic beh
ior, while for photons only the bosonic character manife
itself. One may then ask how the statistical properties of
trapped atoms affect the outgoing beam.

At zero temperature, one may guess that the behavio
the outgoing beam should be markedly different in the t
cases, since for fermions there would be a multitude of po
lated trapping levels, due to the Pauli exclusion princip
while for a bosonic gas all the atoms would be in the grou
state. One expects therefore that fermionic systems sh
exhibit a richer dynamics, at zero temperature, as comp
to bosonic systems, which have been described by one-l
models@6–12# or mean-field theories@13,14#. Also, coher-
ence properties of fermionic beams are expected to be q
different from their bosonic-beam counterparts. Inde
while bosonic beams coming from thermal sources exhib
bunching effect, antibunching has already been experim
tally demonstrated for electron beams@15–17#.

A simple model for a beam of fermionic atoms extract
from a trap was analyzed some years ago@18#. More re-
cently, the so-called input-output formalism developed
photons@19,20# and applied to bosonic atoms@6# was gen-
eralized to fermionic species@21#.

One should note that effects concerning the multile
structure of the trap should also appear in a non-mean-
theory for bosonic atom lasers with a nonzero temperat
problem that has been addressed very little, and only wi
1050-2947/2004/69~2!/023615~16!/$22.50 69 0236
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the Popov approximation@22# for trapped systems@23,24#.
Theoretical work on degenerate fermionic gases has b

greatly stimulated by the first propositions of a superflu
BCS-like state@25–27#, the obtainment of the first sample
of degenerate fermionic gases@28,29#, and some other recen
developments@30–34#. Theoretical studies have conce
trated on the analysis of the BCS state@35–38# and its exci-
tation energies@39#, as well as on comparisons between fe
mionic and bosonic properties@40,41#.

In the present work, we develop a dynamic theory of o
put coupling, for fermionic atoms initially confined in a mag
netic trap. The outgoing atoms are considered as free
ticles. Our method can be easily generalized, however
account for a gravitational field. We consider a on
dimensional model, with a spatially localizedd-type cou-
pling between the atoms in the trap and the continuum
external modes. No external replenishment of the trap is c
sidered, so that this model leads to a decay of the popula
in the trap and a nonstationary outgoing atomic beam.

For an arbitrary confinement potential, we obtain gene
time-dependent expressions for the atomic operators co
sponding to trapped and free atoms, the trapping-level po
lations, the spectral distribution, and the first- and seco
order correlation functions of the atomic outgoing bea
From these general expressions, we particularize the re
for two important special cases: the infinite box and the h
monic oscillator. In order to identify more clearly the fe
tures associated with the fermionic nature of the trapped
oms, we compare our results with the correspond
properties for a bosonic beam.

Of special interest is the infinite-time spectral distributi
of the nonstationary outgoing beam. It differs markedly fro
the corresponding distribution previously calculated
single-level bosonic models, which leads to a single appro
©2004 The American Physical Society15-1
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PIRES FILHO, CESAR, AND DAVIDOVICH PHYSICAL REVIEW A69, 023615 ~2004!
mately Lorentzian peak@12#. For weak coupling, we find a
distribution that reflects the structure of the discrete levels
the trap, exhibiting peaks that get higher and narrower as
energy increases. As the coupling gets stronger, the ato
spectral distribution is displaced towards a set of new en
gies that characterize ‘‘dressed states’’ of the fermions in
trap. These dressed states result from the coupling betw
the unperturbed fermionic states in the trap and the
trapped continuum. In the strong-coupling limit, there is
reinforcement of the lowest-energy dressed mode, wh
contributes to the spectral distribution of the outgoing be
more strongly than the other modes. This effect is especi
pronounced for the infinite box, which indicates that the
ficiency of the mode-reinforcement mechanism depends
the steepness of the confinement potential. In this cas
striking effect occurs: the fermionic beam becomes quasi
nochromatic, in spite of the large number of energy lev
populated in the initial trapped fermionic system. As e
pected, the fermionic second-order correlation functions
hibit the property of anticorrelation. Under these conditio
we predict therefore a quasimonochromatic antibunched
mionic atomic beam.

The paper is organized in the following way. In the fo
lowing section we introduce the physical model and wr
down the basic Hamiltonian. The eigenvalue spectrum
this Hamiltonian is analyzed in Sec. III, where it is show
for two forms of the trapping potential~infinite box and har-
monic oscillator! that the one-dimensional model always e
hibits a bound state, for any value of the coupling consta
In Sec. IV, we analyze the non-Markovian behavior of t
number of atoms in the trap. The spectral distribution of
outgoing atoms is analyzed in Sec. V. General express
for the field operators and the correlation functions of
outgoing atoms are derived in Sec. VI. The correspond
numerical results are presented in Sec. VII, where comp
sons are made between the bosonic and the fermionic c
Some detailed calculations are presented in Appendixe
and B.

II. THE MODEL

The physical model considers a single atomic species
one-dimensional magnetic trap, with an external electrom
netic field inducing transitions between each trapped le
and a continuum of nontrapped states. We ignore the e
of the magnetic field on the nontrapped state, assuming
instance, that the trapped level corresponds to an electr
spin component11, while the nontrapped state correspon
to the spin component zero. The total spin of the ato
nuclear plus electronic, is assumed to be a half-integer
that the atom is a fermion and we neglect the small effe
due to the nuclear magnetic moment. We model this sys
by an effective Hamiltonian, with a bilinear coupling involv
ing the field operators for the trapped and untrapped ato
The one-particle eigenfunctions of the trapping potential
denoted bywn(x), the corresponding energy levels bein
given by \vn . The untrapped states are identified by t
center-of-mass wave functioncj(x), labeled by a continuous
parameterj, with energy\vj . Thus, if we consider the
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untrapped atoms as free particles with massM, we have
\vj5(\j)2/2M , and \j is the atomic momentum, while
cj(x)5exp(ijx)/A2p @normalized so that*dxcj* (x)cj8(x)
5d(j2j8)]. If the atoms were under the action of a grav
tational field, for instance, thenj would be an Airy-function
index. The coupling is assumed to be spatially localized a
is represented by ad function. While this seems to be a mo
unphysical assumption, one can imagine a realization wh
a very tightly focused pair of Raman laser beams, in a w
trap, would induce the electronic transitions. As long as
beams’ waists are much shorter than the de Broglie wa
length of the atoms, which could be the case for the lowe
energy states, the assumption of ad-function coupling can be
a good one.

The effective Hamiltonian is written as

Ĥ5ĤT1ĤF1ĤC . ~1!

In this expression,

ĤT5(
n

\vnân
†ân , ~2!

ĤF5E dj\vjb̂j
†b̂j , ~3!

whereĤT corresponds to the trapped atoms,ân is the anni-
hilation operator for an atom in the trapping-potential eige
stateuwn&, ĤF describes the untrapped atoms, andb̂j is the
operator that annihilates an untrapped atom with wave fu
tion cj(x).

For fermionic atoms, the above operators obey the a
commutation relations:

$ân8ân8
† %5dn,n8 , ~4!

$b̂j8b̂j8
† %5d~j2j8!, ~5!

$ân8b̂j
†%50. ~6!

The coupling part of the Hamiltonian is given, for a ge
eral spatial-dependent coupling, by

ĤC5 i\E dxl~x!Ĉ†~x!F̂~x!1H.c., ~7!

where the field operators are given by

Ĉ~x!5E djcj~x!b̂j , ~8!

F̂~x!5(
n

wn~x!ân . ~9!

In terms of the operatorsb̂j and ân , the interactionĤC
may be written as

ĤC5 i\(
n
E dj gn~j!b̂j

†ân1H.c., ~10!
5-2
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THEORY OF OUTPUT COUPLING FOR TRAPPED . . . PHYSICAL REVIEW A69, 023615 ~2004!
where

gn~j!5E dx l~x!cj~x!wn~x!. ~11!

In the special case of ad-function coupling l(x)
5l̄d(x), Equation~10! reduces to

ĤC5 i\l̄(
n
E djcj* ~0!wn~0!b̂j

†ân1H.c., ~12!

which is the interaction used throughout this paper. With
any loss of generality, the coupling constantl̄ is taken to be
real.

This model may be considered as a multilevel extens
of other systems considered before, which have a single l
interacting with a continuum@42#.

For sufficiently strong coupling, bound states have be
shown to appear in bilinear Hamiltonians involving the i
teraction of a single mode of the electromagnetic field wit
photon reservoir@43#. The corresponding one-dimension
model, with free massive particles as the reservoir, w
shown to exhibit a bound state for any value of the coupl
constant@12#. We may thus suspect that the above Ham
tonian also exhibits bound states. This is proven in the
lowing section, for two special cases of the trapping pot
tial.

III. DIAGONALIZATION OF THE HAMILTONIAN

We generalize in this section the procedure adopted
Ref. @12# for bosons in a single trapped level coupled to
reservoir of free massive particles. The existence of a mu
tude of bound levels in our case does not allow one to re
general conclusions concerning the existence of bound s
for any trapping potential. We consider therefore two spec
examples, the infinite box and the harmonic oscillator, a
show that the coupling given in Eq.~12! leads to the exis-
tence of a single bound state, for any value of the coup
constant.

We take the untrapped atoms as free massive particles~no
gravitational field!, so thatck(0)51/A2p and the Hamil-
tonian of the system may be written as

Ĥ5(
n

\vnân
†ân1E

2`

1`

dk \vkb̂k
†b̂k

1F i\l̄

A2p
(

n
wn~0!ânE

2`

1`

dkb̂k
†1H.c.G , ~13!

where in this case\vk5\2k2/2M .
As in Ref. @12#, we introduce the even and odd operato

ĉk and d̂k , given by

ĉk5
1

A2
@ b̂k1b̂2k#, ~14!
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d̂k5
1

A2
@2b̂k1b̂2k#. ~15!

The operatorsd̂k are not coupled to the trap, so we ca
consider only the operatorsĉk , and write

Ĥ5(
n

\vnân
†ân1E

0

1`

dk \vkĉk
†ĉk

1F i\l̄

Ap
(

n
wn~0!ânE

0

1`

dkĉk
†1H.c.G . ~16!

In order to diagonalize this Hamiltonian, we apply Fano
procedure@44,45#, introducing the operators

Âk5(
n

an~k!ân1E
0

1`

dk8g~k,k8!ĉk8 , ~17!

so that

Ĥ5E
Emin

1`

dk\V~k!Âk
†Âk , ~18!

whereEmin is the lower bound ofĤ.
Since the Hamiltonian given by Eqs.~1!, ~2!, ~3!, and~12!

is quadratic in the atomic operators, the same proced
holds for fermionic and bosonic atoms. We start by calcu
ing the commutator@Âk ,Ĥ#, which yields two equivalent
expressions, obtained by using either Eq.~18! or Eq. ~1! for
Ĥ:

@Âk ,Ĥ#5\V~k!Âk

5\V~k!F(
n

an~k!ân1E
0

1`

dk8g~k,k8!ĉk8G
5(

n
\vnan~k!ân

2
i\l̄

Ap
(

n
wn* ~0!an~k!E

0

1`

dk8ĉk8

1E
0

1`

dk8\vk8g~k,k8!ĉk8

1
i\l̄

Ap
(

n
wn~0!ânE

0

1`

dk8g~k,k8!. ~19!

From this equality we obtain the following equations:

@V~k!2vn#an~k!5
i l̄

Ap
wn~0!E

0

1`

dk8g~k,k8!, ~20!

@V~k!2vk8#g~k,k8!52
i l̄

Ap
(
n8

wn8
* ~0!an8~k!. ~21!
5-3
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We consider first the negative-energy solutions of th
equations, which correspond to bound states.

A. Bound states

For bound states, we may setV(k)52m2, m.0, so that
the bound-state energy isEB52\m2, and let in this case
an(k)→am,n , g(k,k8)→gm(k8), so that Eq.~17! is re-
placed by

Âm5(
n

am,nân1E
0

`

gm~k!ĉk dk ~22!

and Eqs.~20! and ~21! become

am,n52
i l̄

Ap

wn~0!

m21vn
E

0

1`

dkgm~k!, ~23!

gm~k!5
i l̄

Ap

1

m21vk
(
n8

wn8
* ~0!am,n8 . ~24!

Substituting Eq.~24! into Eq. ~23!, we obtain

am,n5
l̄2

p

wn~0!

m21vn
E

0

1` dk

m21vk
(
n8

wn8
* ~0!am,n8 .

~25!

Multiplying the last equation bywn* (0) and summing
over n, we have

(
n

wn* ~0!am,n5
l̄2

p (
n

uwn~0!u2

m21vn

3E
0

1` dk

m21vk
(
n8

wn8
* ~0!am,n8 . ~26!

This equation immediately yields the eigenvalue equat
for m:

2l̄2F~m2!I ~m2!51, ~27!

where

F~y!5(
n

uwn~0!u2

y1vn
, ~28!

I ~y!5
1

2pE0

` dk

y1vk
5A M

2\y
, ~29!

and we have used in Eq.~29! that vk5\k2/2M .
Replacing Eq.~29! into Eq. ~27!, we get the eigenvalue

equation

l̄2A2M

\
F~m2!5m. ~30!

We can see that this equation has one and only one s
tion if F(y) is finite when y50, and F(y)→0 when y
02361
e

n

lu-

→`. This will be shown to be the case for the two spec
cases considered in this paper. One should note, howe
that the form of this eigenvalue equation is highly depend
on the dimensionality of the problem. This dependence
quite apparent in the expression for the functionI (y), where
the divergence fory50 disappears if one replaces in E
~29! dk by d3k ~adding up a cutoff to the upper integratio
limit, so that the integral remains finite!. This would imply
the replacement ofm on the right-hand side of Eq.~30! by a
function of m that would not go to zero whenm→0, and
therefore the bound state would appear only for a sufficien
strong coupling. For bosons at zero temperature, the de
dence on the dimensionality of the bound state of the co
sponding Hamiltonian~with just one bound level! was ex-
plicitly demonstrated in Ref.@12#.

The functionsam,n and gm(k) may be obtained in the
following way. We impose the condition$Âm ,Âm

† %51 ~for
bosons we would replace the anticommutator by a comm
tator, with the same results at the end!, obtaining

(
n

uam,nu21E
0

1`

dkugm~k!u251. ~31!

Replacing Eqs.~24! and ~25! into this equation, we ob-
tain, except for an irrelevant overall phase factor that can
absorbed into the definition of the stateswn(0):

(
n

wn* ~0!am,n5
mF~m2!

AF~m2!/22m2F8~m2!
, ~32!

whereF8(m2) is the derivative ofF(y), defined by Eq.~28!,
evaluated aty5m2,

F8~m2!52(
n

uwn~0!u2

~m21vn!2
. ~33!

Taking Eq.~32! into Eqs.~24! and ~25!, we get finally

am,n5
wn~0!m/~m21vn!

AF~m2!/22m2F8~m2!
, ~34!

gm~k!5
i l̄mF~m2!/@Ap~m21vk!#

AF~m2!/22m2F8~m2!
. ~35!

We discuss now the solutions of Eq.~30! for two impor-
tant special cases of trapping potential: the infinite box a
the harmonic oscillator. We show that in both cases ther
one and only one bound state, for any nonvanishing valu
the coupling constant. This implies that Eq.~18! becomes

Ĥ5E
0

1`

dk \vkÂ
†~k!Â~k!2\m2Âm

† Âm , ~36!

wherevk5\k2/2M , 2\m2 is the energy of the bound state
and Âm is the corresponding annihilation operator, given
Eq. ~22!.
5-4
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1. Infinite box

In this case, we have for the trapped particles,

vn5
\p2

2ML2
n25v1n2, ~37!

the corresponding eigenstates being given, for oddn, by

wn~r !5A2

L
cos~knr !, ~38!

whereL is the length of the box.
For evenn, the cosine function is replaced by the si

function, which vanishes forx50. The interaction in Eq.
~12! does not couple these states to the outgoing beam,
they do not contribute to the sum definingF(m2) ~this is a
consequence of the localized nature of the symmetric c
pling!. Thus, only oddn’s ~even wave functions! contribute
to F(m2) , which may be written as

F (box)~m2!5
2

v1L (
n (odd)

1

n21m2/v1

. ~39!

From Eq.~A9! of Appendix A, we have

F (box)~m2!5
p

2LAv1

tanh~pm/2Av1!

m
. ~40!

Therefore, in this caseF(m2) goes to a finite value when
m→0, and vanishes whenm→`. It is clear then that Eq
~30! has a unique solution. In terms of the adimensional c
pling constantd defined by

d5l̄p2/Lv1 , ~41!

the weak-coupling limit corresponds tod!1, so thatm2

!v1, and the hyperbolic tangent may be approximated
its value close to the origin, thus yielding

EB52\m252
d4

~4p!2
\v1 . ~42!

In the strong-coupling limitd@1, we getm2@v1, so that
the hyperbolic tangent may be approximated by 1, and

EB52\m252
d2

2p2
\v1 . ~43!

2. Harmonic oscillator

For the harmonic trap, we have

\vn5\v0~n11/2! ~44!

and

wn~r !5S 1

pd2D 1/4
1

A2nn!
e2r 2/(2d2)Hn~r /d!, ~45!
02361
nd
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where Hn(x) is the Hermite polynomial of ordern and d
5A\/mv0 is the width of the ground state.

Wave functions corresponding to odd values ofn do not
contribute to the sum definingF(m2), which becomes now

F (ho)~m2!5
1

2v0
(

m50

` uw2m~0!u2

m11/41~m2/2v0!

5
1

2v0d

G~1/41m2/2v0!

G~3/41m2/2v0!
, ~46!

where G(x) is the Gamma function@46#. This result is
proven in Appendix B.

Replacing Eq.~46! into Eq. ~30!, we obtain the final ex-
pression for the eigenvalue equation,

2A2v0d82
G~1/41m2/2v0!

G~3/41m2/2v0!
5m, ~47!

whered8 is defined by

d85l̄/2v0d. ~48!

It is easy to verify that Eq.~47! has one and only one solu
tion m.0 for anyd8.

In the weak-coupling limitd8!1, we may neglect the
contribution ofm in the argument of theG functions, thus
getting

EB52\m2528d84FG~1/4!

G~3/4!G
2

\v0 . ~49!

For strong coupling, we use the following identity@46#:

zb2a
G~a1z!

G~b1z!
;11O~z21!. ~50!

Identifying z→m2/2v0 , a→1/4, andb→3/4, we obtain
for d8@1,

EB52\m2528d8 2\v0 . ~51!

B. Positive-energy solutions

From Eqs.~20! and ~21!, we can write forV(k)5vk
>0:

an~k!5
i l̄

Ap

wn~0!

vk2vn
E

0

1`

dk8g~k,k8!, ~52!

g~k,k8!52
i l̄

Ap
(
n8

wn8
* ~0!an8~k!

3FP
1

vk2vk8

1Z~k!d~vk2vk8!G , ~53!

where P stands for the principal part, and we have assu
for the moment, in getting Eq.~52!, thatvkÞvn , for anyn.
5-5
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In these equationsZ(k) is a function to be determined. In
serting Eq.~52! into Eq. ~53!, we obtain the expression fo
Z(k):

Z~k!52
\k

M

p

l̄2F~2vk!
, ~54!

whereF(y) was defined in Eq.~28!, and we have used tha
d(vk2vk8)5(M /\uku)d(k2k8).

Using Eqs.~17!, ~52!, ~53!, and ~54!, and imposing the
condition

$Â~k!,Â†~k8!%5d~k2k8!, ~55!

we obtain

(
n

wn* ~0!an~k!5
\k

M

Ap

l̄Ap21Z2~k!
. ~56!

Therefore,

g~k,k8!5
2 i ~\k/M !

Ap21Z2~k!
FP

1

vk2vk8

1Z~k!d~vk2vk8!G
~57!

and

an~k!5
l̄

Ap

wn~0!

vk2vn

Z~k!

Ap21Z2~k!
. ~58!

From Eqs.~28! and ~54!, it is easy to check thatan(k),
given by Eq.~58!, remains finite whenvk→vn . This allows
one to remove the restrictionvkÞvn , used to get Eq.~52!,
and adopt Eq.~58! as the expression foran(k) for all values
of k.

IV. POPULATION IN THE TRAP: NON-MARKOVIAN
BEHAVIOR

One of the consequences of the existence of the bo
state is the failure of the Born-Markov approximation for th
problem. A related consequence is that a fraction of the
oms remains in the cavity, even in the infinite-time limitt
→`. This can be seen by writing down the decomposition
each cavity mode in terms of the eigenmodes of the Ham
tonian:

ân~ t !5E
0

`

an* ~k!Âke
2 i\k2t/2Mdk1am,n* eim2tÂm , ~59!

and replacing the operatorsÂk andÂm by their expressions in
terms of the operatorsân(0) andĉk(0). Onegets then,
02361
nd

t-

f
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ân~ t !5(
n8

F E
0

`

an* ~k!an8~k!e2 i\k2t/2Mdk

1am,n* am,n8e
im2tG ân8~0!

1E
0

`

dk8F E
0

`

dkan* ~k!g~k,k8!e2 i\k2t/2M

1am,n* gm~k8!eim2tG ĉk8~0!. ~60!

This expression exhibits explicitly the coupling betwe
the trap modes, which is induced by the coupling with t
external modes. If initially only the trap modes are pop
lated, and if one is interested only in normal-ordered cor
lation functions, the contribution of the operatorsĉk(0) may
be ignored. This will be always the case in the present pa

If at time t50 only the cavity moden is populated, the
fraction of atoms left in the same mode at a later timet is
given by

^ân
†~ t !ân~ t !&

^ân
†~0!ân~0!&

5U E
0

`

uan~k!u2e2 i\k2t/2Mdk1uam,nu2eim2tU2

.

~61!

The integral vanishes in the infinite-time limit, sinc
an(k) remains finite for all values ofk, and therefore in this
limit the fraction of atoms left in the cavity isuam,nu4. This
result is easy to understand: in order to get the residual po
lation, one must multiply the fraction of atoms in the initi
mode that are in the bound modeÂm , given by uam,nu2, by
the fraction of the cavity modeân present inÂm , which is
also given by uam,nu2. Furthermore, the time-depende
population exhibits oscillations, resulting from the beati
between the integral and the discrete contribution in Eq.~61!.

A similar behavior holds if initially more than one boun
mode is populated, as it is the case for trapped fermion
zero temperature. The residual population of leveln is then
given by

^ân
†ân&~`!5uam,nu2(

n8
uam,n8u

2^ân8
†

~0!ân8~0!&, ~62!

where now(n8uam,n8u
2^ân8

† (0)ân8(0)& is the fraction of the

initial population that is in the bound modeÂm , anduam,nu2

is the fraction of the cavity modeân present in the bound
mode.

An expression for the total residual populationN(`) in-
side the trap may be obtained from Eqs.~62! and ~34!,

N~`!5(
n

^ân
†ân&~`!

5(
n8

uam,n8u
2^ân8

†
~0!ân8~0!&

2m2F8~m2!

2m2F8~m2!2F~m2!
,

~63!
5-6
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THEORY OF OUTPUT COUPLING FOR TRAPPED . . . PHYSICAL REVIEW A69, 023615 ~2004!
whereF8(m2) is, as before, the derivative ofF(y), given by
Eq. ~28!, evaluated aty5m2.

For N bosons at zero temperature, only the term withn8

50 contributes to the above sum, and^ân8
† (0)ân8(0)&5N.

On the other hand, for fermions at zero temperature, the
tial population is the same for all levels~one atom for each
level, since all the trapped atoms have the same spin!, up to
the last occupied one~Fermi surface!. If the number of atoms
is much larger than 1, then one may approximate the sum
the above expression by one with an infinite number
terms. The resulting number is an upper bound for the
sidual population inside the trap, which is actually achiev
whenN→`,

Nmax~`!5F 2m2F8~m2!

2m2F8~m2!2F~m2!
G 2

. ~64!

In the weak-coupling limit (d!1), an approximate ex
pression for Eq. ~63! may be obtained, for the one
dimensional~1D! box and the 1D harmonic oscillator, b
using the results obtained before for the functionF(m2) and
for the bound-state energyEB52\m2. We get thus, for the
1D box,

N~`!5
d8

96 (
n(odd)

^ân
†~0!ân~0!&

n4
, ~65!

and for the harmonic oscillator

N~`!564Apd88FG~1/4!

G~3/4!G
3

3 (
n50

`
~2n!!

22n~n! !2~n11/4!2
^â2n

† ~0!â2n~0!&.

~66!

From these results, we can see that the residual popula
inside the trap is very small in the weak-coupling limit, bei
proportional, both for the box and the harmonic oscillator,
the eighth power of the corresponding dimensionless c
pling constant.

In the strong-coupling limit (d@1), we get both for the
box and the harmonic oscillator that the upper bound for
population inside the trap isNmax(`)51/4. This result, which
is actually achieved when the number of atoms is mu
larger than 1, shows that a substantial fraction of the ato
remains in the trap in the infinite-time limit. This is a dire
consequence of the existence of a bound state of the
Hamiltonian.

We proceed now to the calculation of the spectral dis
bution of the outgoing atomic beam.

V. SPECTRAL DISTRIBUTION OF THE
OUTGOING BEAM

A time-dependent spectral distribution for the outgoi
fermionic beam can be obtained from the expression of
free-atom operators in terms of the operators that diagona
the Hamiltonian:
02361
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ĉk~ t !5E
0

`

dk8g* ~k8,k!e2 ivk8tÂk8~0!1gm* ~k!eim2tÂm~0!.

~67!

From Eqs.~17!, ~22!, and~67!, we get, ignoring the con-
tribution of the operatorsĉk(0) ~since initially the outside
modes are empty, and only normal-ordered correlation fu
tions are considered!:

ĉk~ t !5(
n

F E
0

`

dk8g* ~k8,k!an~k8!e2 ivk8t

1gm* ~k!am,neim2tG ân~0!. ~68!

The time-dependent spectral distribution is given

^b̂k
†(t)b̂k(t)&. This quantity can be expressed in terms

ĉk(t), using that from Eqs.~14! and ~15!,

b̂k5
1

A2
~ ĉk2d̂k!,

b̂2k5
1

A2
~ ĉk1d̂k!, ~69!

and thatd̂k does not couple with the trapped-atoms ope
tors, so that it can be ignored when calculating norm
ordered correlation functions@of course, its presence in Eq
~69! is important to get the correct commutation relations
the operatorsb̂k and ĉk]. One gets then that the time
dependent spectral distribution is given by^ĉk

†(t) ĉk(t)&/2.
The integral in Eq.~68! can be calculated by using Eq

~57! and ~58!. For finite times, one has to consider the co
tributions from the complex poles of the integrand, whi
give rise to exponentially decaying terms. These contri
tions can be handled numerically. An example will be giv
in Sec. VII.

An analytic expression can be obtained in the infinite-tim
limit. Since the contributions from the complex poles of t
integrand in Eq.~68! give rise to exponentially decayin
terms, they will be negligible in this limit, so the releva
contributions come from the principal part and thed function
in Eq. ~57!. One gets then

ĉk~ t !→(
n

F2l̄wn~0!/Ap

vk2vn

e2 ivkt

l̄2~M /\k!F~2vk!1 i

1gm* ~k!am,neim2tG ân~0!. ~70!

We will show in the following that the first term on th
right-hand side of this equation leads, in the weak- a
strong-coupling limits, to narrow peaks, centered around
unperturbed energies of the trapped atoms in the we
coupling case, and around dressed energies of the cou
atoms in the strong-coupling limit. The last term on the rig
5-7
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PIRES FILHO, CESAR, AND DAVIDOVICH PHYSICAL REVIEW A69, 023615 ~2004!
hand side of this equation is the bound-state contribution
can be shown to be much smaller than the remaining term
Eq. ~70! in the regions of the spectral distribution close to t
peaks, so it will be neglected from now on. One gets th
using Eq.~69! and neglecting the contribution fromd̂k ,

b̂k'(
n

F2l̄wn~0!/A2p

vk2vn

e2 ivkt

l̄2~M /\uku!F~2vk!1 i
G ân~0!.

~71!

In view of Eq. ~69!, this equation yieldsb̂k for both signs of
k.

From this expression, and assuming that the initial stat
diagonal in the number representation, one gets the outg
beam spectral distribution in the infinite-time limit:

^b̂k
†b̂k&~`!5(

n

l̄2uwn~0!u2/@2p~vk2vn!2#

@11l̄4~M /\k!2F2~2vk!#

3^ân
†~0!ân~0!&. ~72!

From Eqs.~54! and ~58!, it is easy to see that

^b̂k
†b̂k&~`!5

1

2(n
uan~k!u2^ân

†~0!ân~0!&, ~73!

which shows that the contribution to the spectral distribut
from trap leveln is proportional to the probabilityuan(k)u2
that the atom in this level is in the eigenmode of the to
Hamiltonian with energyvk .

We consider now the specialization of Eq.~72! to the
infinite-box and harmonic oscillator potentials.

A. Infinite box

From Eq.~A8!, we get

F (box)~2vk!5
p2

2v1L

tan~kL/2!

kL
. ~74!

Taking this result, plus Eqs.~37!, ~38!, and~41! into Eq.
~71!, we get, for large times

b̂k~ t !'G~k,t ! (
n51(odd)

1`
dAL/p~kL!2

~kL!22p2n2
ân~0!, ~75!

where

G~k,t !5
2cos~ ukL/2u!e2 i\k2t/2M

i ~kL!2cos~ ukL/2u!1~d2/4!sin~ ukL/2u!
. ~76!

One should note that the singularities in the sum are canc
out by the numerator ofG(k,t).

We discuss now the behavior of these expressions in
limiting cases, corresponding to weak (d!1) and strong
(d@1) coupling. For weak coupling (d!1), the term pro-
portional to cos(ukL/2u) dominates in the denominator o
G(k,t), which exhibits sharp resonances close to valuesk
that correspond to the bound states of the infinite-box po
02361
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tial: kL5np, n odd—these are the zeros of cos(ukL/2u). We
may thus approximate the expression in Eq.~75! by setting,
around each peak,kL5np1bn , ubnu!1, keeping only the
lowest-order terms in the expansions of the trigonome
functions in Eq.~76!, and neglecting small corrections inbn
for the other k-dependent contributions. Neglecting the
corrections means that deviations from the Lorentzian sh
will be ignored here.

One gets then, from Eqs.~75! and ~76!, that, asymptoti-
cally in time,

b̂k~ t !'(
n

b̂k
(n)~ t !, ~77!

where

b̂k
(n)~ t !'

idAL/pe2 i\k2t/2M/2pn

~kL2np!12i ~d/2np!2
ân~0!. ~78!

The infinite-time spectral distribution is then given by th
sum of the contributions from all peaks:

^b̂k
†b̂k&~`!/L5 (

n(odd)

d2

4p3n2

1

~kL2np!21~d/A2np!4

3^ân
†~0!ân~0!&. ~79!

Under the above approximations, each term in the sum
a Lorentzian with width (DkL)FWHM52(d/np)2, and height
increasing with the square ofn. Therefore, the peaks in th
spectral distribution become higher and narrower asn in-
creases, in such a way that the area under each peak is
portional to the state population^ân

†(0)ân(0)& corresponding
to the same value ofn. One should note that the contributio
for each peak stems, in this case, from a single bound s
The total number of peaks is equal to the number of initia
populated states.

For strong coupling,d@1, the term proportional to
sin(ukl/2u) dominates in the denominator of Eq.~76!, imply-
ing that the peaks are shifted towards the values ofk corre-
sponding to the zeroes of sin(ukL/2u). These values, given by
kL52mp, m integer, are precisely midway between th
weak-coupling peaks, and are associated with dressed e
gies of the system, which originate from the interaction b
tween the discrete states through the continuum, as show
Eq. ~60!. Indeed, it is easy to see that, in this case, the s
over n must be kept in the approximation analog to Eq.~78!
of the expression in Eq.~75! aroundkL52mp, m integer.
Therefore, several trap states contribute now to each pea
the spectral distribution.

The complete infinite-time spectral distribution is give
as before, by the sum of the contributions for all peaks:
5-8
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THEORY OF OUTPUT COUPLING FOR TRAPPED . . . PHYSICAL REVIEW A69, 023615 ~2004!
^b̂k
†b̂k&~`!/L5 (

m51

`
1024/pd2

~4A2mp/d!41~kL22mp!2

3 (
n51(odd)

1`
m4

~4m22n2!2
^ân

†~0!ân~0!&.

~80!

This expression differs remarkably from the one in E
~79!. There is now an infinite number of peaks. Each pe
with width (DkL)FWHM532(mp/d)2, is now fed by all the
populations in the trap. For the peak atkL52mp, the stron-
gest contributions come from the two populations withn
52m61 ~first neighbors ofkL52mp), with heights pro-
portional to 1/(4m11)2. The contributions from the secon
neighbors are proportional to 1/9(4m13)2, which is less
than nine times smaller. The contributions from states t
are farther away decrease as 1/n4. This implies that the
height of the peaks decreases as 1/m2, while their width
increases asm2, and that the contribution for each pea
comes mainly from the populations of the first neighbori
trap states. These two states are the main components o
dressed state that contributes to this peak.

B. Harmonic oscillator

Settingm252vk in Eq. ~46!, we get

F (ho)~2vk!5
1

2vod

G„1/42~kd/2!2
…

G„3/42~kd/2!2
…

. ~81!

Inserting this result, plus Eq.~44! into Eq. ~71!, we get

b̂k~ t !'
d8d

A2p
(

m50

1`
w2m~0!ukd/2uJ~kd,t !

~kd/2!22~m11/4!
â2m~0!, ~82!

where

J~y,t !5
G21~1/42y2/4!e2 i\k2t/2M

d82G21~3/42y2/4!1 i uy/2uG21~1/42y2/4!
.

~83!

The spectral distribution of the outgoing beam is given

^b̂k
†b̂k&(`). From Eq.~82!, we can see that, ford8!1, the

peaks of the spectral distribution should be close to the
roes ofG21@1/42(kd/2)2#, while for d8@1 they approach
the zeroes ofG21@3/42(kd/2)2#, which are, as in the
infinite-box case, midway between the weak-coupling pea
These zeroes correspond to the dressed energies of the
monic trap, under strong-coupling conditions.

We obtain now approximate expressions for the spec
distribution in the weak- and strong-coupling regions, by e
panding theG functions about the values ofk that correspond
to the spectral peaks. A useful equality for this purpose i

G21~x!5G~12x!
sin~px!

p
. ~84!
02361
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For weak coupling, the peaks are around (kd/2)25m
11/4, m integer. We get then, by expanding the functions
k in Eq. ~82! around these values, using Eq.~45!, and ap-
proximating the spectral distribution by the sum of the co
tributions from all the peaks:

^b̂k
†b̂k&~`!/d5

d82

2p7/2 (
m

~2m!!/22m~m! !2

@~kd/2!22m21/4#21G̃m
2

3^â2m
† ~0!â2m~0!&, ~85!

where the linewidthG̃m is given by

G̃m5
d82

p

GS m1
1

2
D

m!Am1
1

4

. ~86!

For m@1, we find, using Stirling’s approximation, tha
the linewidth of the peak of orderm is given by

G̃m5
d82

pm
, ~87!

while the corresponding height ism3/2/2p2d82.
In the strong-coupling regime the peaks are around

values (kd/2)25m13/4, so that one gets, approximating th
contribution around each peak,

^b̂k
†b̂k&~`!/d5

1

2d82p7/2 (
m50

`

(
n50

` S m1
3

4DG2S m1
3

2D
S m2n1

1

2D 2

3
~2n!!/22n~n!m! !2

F ~kd/2!22m2
3

4G2

1G̃8m
2

^â2n
† â2n~0!&,

~88!

where the linewidth is now given by

G̃8m5
1

d82p

Am1
3

4
GS m1

3

2D
m!

. ~89!

One should note that, in the strong-coupling limit, a
trapped-level populations contribute to each resonance
opposed to the weak-coupling limit, when each resonanc
associated with a single trapping level. The same phen
enon occurred in the infinite-box potential.

In this case, form@1, we have for the linewidth of the
peak of orderm,

G̃8m5
m

d82p
, ~90!

while the corresponding height is proportional tod82/p2Am.
5-9
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VI. FIELD OPERATORS AND CORRELATION
FUNCTIONS

A. Field operators

The time-dependent field operators for the outgoing ato
are given by

Ĉ~x,t !5E
2`

1`

dk
eikx

A2p
b̂k~ t !. ~91!

From Eqs.~68! and ~69!, this can be written in the fol-
lowing form, if we ignore the vacuum terms proportional
ĉk(0) andd̂k(0):

Ĉ~x,t !5(
n

N~n,x,t !ân~0!, ~92!

where

N~n,x,t !5E
0

1` dk

Ap
F E

0

`

dk8g* ~k8,k!an~k8!e2 ivk8t

1gm* ~k!am,neim2tGeikx. ~93!

We may call this the source contribution to the field o
erators. One should note thatN(n,x,0)50, as expected~no
contribution, att50, of the trap modes to the field operato
corresponding to the outgoing atoms!. Indeed, from Eqs.~59!

and ~67!, $ĉk ,ân
†%50 implies that

E
0

`

dk8g* ~k8,k!an~k8!1gm* ~k!am,n50. ~94!

From Eqs.~92! and~93!, we can see that the field operat
corresponding to the outgoing atoms is given by the sum
two contributions, besides the terms proportional toĉk(0)

and d̂k(0),

Ĉ~x,t !5Ĉ (bound)~x,t !1Ĉ (run)~x,t !, ~95!

where the bound-state contribution is given by

Ĉ (bound)~x,t !5(
n
E

2`

1` dk

2Ap
gm* ~k!am,neikxeim2tân~0!,

~96!

and the running-wave part is

Ĉ (run)~x,t !5(
n
E

0

1` dk

Ap
E

0

`

dk8g* ~k8,k!an~k8!e2 ivk8t

3coskx ân~0!. ~97!

The bound-state contribution is readily calculated, by
ing Eqs.~30!, ~34!, and~35!:
02361
s
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f
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Ĉ (bound)~x,t !5
iAp~m/l̄ !e2A2M /\mxeim2t

F~m2!2m2F8~m2!

3(
n

wn~0!

m21vn

ân~0!, ~98!

which exhibits a spatial dependence that decays expo
tially, with a decay constant given byA2M uEBu/\, where
EB52\m2 is the bound-state energy.

For the running-wave part, simple results can be obtai
by replacing directly into Eq.~91! the asymptotic results ob
tained for the operatorsb̂k in the weak- and strong-couplin
limit, for the special cases of the infinite box and the h
monic oscillator. We restrict ourselves here to the infini
box case, in the weak-coupling limit, since the results for
strong-coupling limit and the harmonic oscillator are qu
similar.

Taking Eqs.~77! and ~78! into Eq. ~91!, one gets, in the
weak-coupling limit,

Ĉ (run)~x,t !5
id

p2
A2

L (
n(odd)

N(run)~n,x,t !ân~0!, ~99!

where

N(run)~n,x,t!'E
0

1`dy

n

e2 iy2t cos~yx/L !

@~y2np!12i ~d/2np!2#
,

~100!

andt is the renormalized timet5\t/2ML2.
Equations~99! and ~100! show that the outgoing field

corresponds to a train of wave packets, centered in mom
tum space around the momenta corresponding to the
eigenenergies. The expression in Eq.~100! is closely related
to the Moshinsky function@47,48#, which yields the time-
dependent behavior of a wave packet initially confined in
half space:c(x,0)5u(2x)exp(ikx), Im k,0, whereu(x) is
the Heaviside function@u(x)50 for x,0, u(x)51 for x
.0]:

M ~x,k,t !5
i

2pE2`

1`

dk
eikx2\k2t/2m

k2k
. ~101!

This function exhibits an oscillatory behavior as a functi
of time, the so-called ‘‘diffraction in time’’ effect@47,48#.
This effect, which has been experimentally observed@49#,
appears when a shutter placed atx50 is opened, letting the
initial wave packet, confined to thex,0 region, evolve.
Here, however, the integration is from 0 to infinity, the d
ference stemming from the fact that in our case the outgo
field emerges fromx50 and propagates in both direction
In spite of this difference, we also get here transient effe
that can be described in terms of a diffraction in time. This
clearly shown in Fig. 1, which displays the plot, as a functi
of the renormalized timet, of the magnitude of the expres
sion in Eq.~100! for n51, x520L, andd2/2p250.2. In this
figure, the small-amplitude fringes close to the origin are d
5-10
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THEORY OF OUTPUT COUPLING FOR TRAPPED . . . PHYSICAL REVIEW A69, 023615 ~2004!
to the interference between the wave packet propagating
wards the positive direction with the tail of the packet th
propagates in the negative direction. This tail is present e
at t50, contrary to what happens with the Moshinsky fun
tion, which vanishes exactly forx.0 at the initial time.
Here, whent50, the sum of the tails of all the wave packe
exactly cancels out the bound-state contribution, leading
the vanishing of the source contribution at the initial time

B. Correlation functions

From Eqs.~92! and ~93!, we can calculate the norma
ordered correlation functions of any order for the system
question. Other orderings could also be considered, by k
ing the terms dependent onb̂k(0) in the above expressions

Thus, for an initial state diagonal in the number repres
tation, the first-order coherence is given by

G1~x,x8,t !5^Ĉ†~x,t !Ĉ~x8,t !&

5(
n

N* ~n,x,t !N~n,x8,t !^ân
†ân&~0!. ~102!

For x5x8, this becomes the beam densityI (x,t). The
normalized first-order correlation function is defined as

g1~x,x8,t !5
G1~x,x8,t !

AI ~x,t !I ~x8,t !
. ~103!

The normal-ordered second-order correlation function

G2~x,x8,t !5^Ĉ†~x8,t !Ĉ†~x,t !Ĉ~x,t !Ĉ~x8,t !&,
~104!

may be written, for fermionic atoms, as@50#

G2~x,x8,t !5I ~x,t !I ~x8,t !2uG1~x,x8,t !u2. ~105!

FIG. 1. MagnitudeN1(t)5uN(run)(1,x,t)u of the outgoing wave
packet corresponding to the infinite-box leveln51, at the position
x520L, whereL is the box width, as a function of the renormalize
time t5\t/2ML2.
02361
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The normalized second-order correlation function is d
fined as

g2~x,x8,t !512
uG1~x,x8,t !u2

I ~x,t !I ~x8,t !
512ug1~x,x8,t !u2.

~106!

The minus sign in the above expression accounts for
antibunching property of fermionic beams. This secon
order correlation function is analyzed numerically, for t
special cases considered in this paper, in Sect. VII.

For bosonic atoms at zero temperature, the second-o
correlation does not depend on the position, while for a th
mal distribution it exhibits the bunching effect@50#.

VII. NUMERICAL RESULTS

We compute now the behavior of the output atomic bea
for zero temperature. We study the spectral distribution
both a fermionic and a bosonic output beam, and also
second-order correlation function of the outgoing fermion
beam.

Our main numerical results are shown in Figs. 2–7.

A. Spectral distribution of the output beam

We consider first the spectral distribution^b̂k
†(`)b̂k(`)&

of the output beam in the long-time limit. In the following
we take the initial number of particles inside the trap to
N521, so that the sums over the contributions of the t
levels will involve eleven terms~since only even state
couple to the continuum!. The actual shape of the spectr
distribution depends strongly on the value of the adim
sional parametersd and d8, defined, respectively, by Eqs
~41! and ~48!. The spectral distribution for fermions trappe
by an infinite box is displayed in Fig. 2, while the distribu
tion corresponding to a harmonic potential is displayed
Fig. 3.

We can see that for small values ofd andd8, the peaks in
the spectral distribution can be simply interpreted as re
nances associated with the unperturbed trap levels co
sponding to even eigenstates, consistently with the prev
analysis. One should notice that the height of the pe
grows withk ~the widths of the peaks cannot be seen, with
the scale of the figures!. In fact, in the weak-coupling limit
the approximate expressions given by Eqs.~79! and~85! lead
to excellent fits to the spectra exhibited in Figs. 2 and 3.

For larger values ofd and d8, the peaks are shifted to
wards the strong-coupling dressed energies, as discuss
Secs. V A and V B. Another important feature, also discus
in those sections, is the relative amplitude of the peaks.
see that, in the strong-coupling limit, the first peak is t
highest one, the amplitude of the successive peaks dec
ing now with the energy. This feature is especially pr
nounced for the infinite box. In this case, we have the
markable feature that the outgoing beam has an accentu
monochromatic character, in spite of the multitude of bou
levels of the infinite box. Again, there is excellent agreem
of the strong-coupling plots with the approximate expre
5-11



nd
a
d
a
ite
f
W

on

st
e
it
ac
t
.
in

gs

tri-
ls

e is
ab-
il-

e-
ong
te

pen-
ate

rre-
ic
in
es

ns
a-

le
rs
lin
a

se
ou
os
ea
um
r

k-

last

nite
or-
ite-

PIRES FILHO, CESAR, AND DAVIDOVICH PHYSICAL REVIEW A69, 023615 ~2004!
sions given by Eqs.~80! and ~88!.
In Figs. 4 and 5, we study the behavior of the correspo

ing bosonic systems, initially in the ground state. For sm
values ofd andd8, the peak is related to the only occupie
level of the system. For stronger couplings, new peaks
pear, around energy levels corresponding to the exc
trapped states, which get populated as a consequence o
interaction between the ground state and the continuum.
note that this effect is absent in models that treat the bos
system as a single trapped level.

The results shown so far correspond to the spectral di
bution of the outgoing atoms in the infinite-time limit. Th
behavior of the time-dependent spectral distribution for fin
times is very simple in the case of weak coupling: then, e
level behaves independently of the others, so that as
population of each trap level decays, as discussed in Sec
the population of the corresponding free-space mode
creases, finally getting to the distributions displayed in Fi
2 and 3.

FIG. 2. Normalized spectral distribution^bk
†bk&/L of the outgo-

ing fermionic beam, for an infinite-box potential of lengthL, for
different coupling strengths:~a! d50.1, ~b! d510, ~c! d5100.
Initially, there are 21 atoms in the trap, corresponding to 11 coup
levels. The peaks in~a! are centered around the wave numbe
corresponding to the energy levels inside the trap. As the coup
strength increases@~b!#, the peaks are displaced towards the situ
tion displayed in~c!, where the resonances are related to ‘‘dres
states’’ of the system trap plus environment. While for weak c
pling the height of the peaks increases with the energy, the opp
happens in the strong-coupling limit, when the lowest-energy p
is higher than the others. In these pictures only positive wave n
bers are shown, since the complete graphic is symmetric with
spect tokL/250. Also, the totality of eleven peaks in the wea
coupling case is not displayed in~a!.
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For strong coupling, the dynamics of the spectral dis
bution is more involved, since now the different trap leve
interact with each other through the continuum, and ther
a strong probability, for finite times, that the atoms are re
sorbed into the trap~this phenomenon shows up in the osc
latory behavior of the atomic population in the trap!. Figure
6 exhibits the approach to the infinite-time limit of the tim
dependent spectral distribution, for the special case of str
coupling, and for an infinite-box potential. One should no
that the relative heights of the spectral peaks are time de
dent, their precise relationship being related to the intric
transient behavior of the system.

B. Second-order correlation for fermions

Figure 7 displays the behavior of the second-order co
lation function as a function of the distance, for the fermion
case. The anticorrelation of fermions is clearly exhibited
all cases. For strong coupling, this correlation function go
very fast to one.

VIII. CONCLUSIONS

We have shown that the dynamics of trapped fermio
with an output coupling may exhibit very interesting fe

d

g
-
d
-
ite
k
-

e-

FIG. 3. Normalized spectral distribution̂bk
†bk&/d of the outgo-

ing fermionic beam, for a harmonic potential, whered is the
ground-state width, for different coupling strengths:~a! d850.1, ~b!
d851, ~c! d850.1. The behavior is similar to the one in Fig. 2.~a!
displays eleven peaks, the first one being barely visible and the
one corresponding to the Fermi surface for theN521 trapped at-
oms. In the strong-coupling regime, one gets instead an infi
number of peaks with decreasing amplitude. The relative imp
tance of the first peak is less pronounced here than in the infin
box case.
5-12
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THEORY OF OUTPUT COUPLING FOR TRAPPED . . . PHYSICAL REVIEW A69, 023615 ~2004!
tures. The main source of these features, which is also
most challenging aspect of this problem, as compared to
corresponding situation for bosons at zero temperature, is
multitude of energy levels of the trap that are necessa
populated, due to the Pauli principle.

In view of the complexity of the problem, our strategy
this paper was to deal with a model simple enough so th
was possible to obtain some analytic handle on it, yet su
ciently rich to demonstrate interesting features of this s
tem. The assumption of ad-type coupling indeed greatly
simplified the solution of the problem, while still keeping th
main feature of leading to a coupling between the trap eig
states mediated by the continuum. This coupling has rem
able effects in the strong-coupling limit, leading to clear s
natures of dressed energies in the infinite-time spec
distribution of the output beam. The same kind of coupling
present in the bosonic case, albeit its effects are less dram
if only the ground state is initially populated~which is the
situation when the temperature is zero!.

A peculiar characteristic of the system here consider
also present in one-dimensional single-mode boson mod
is the presence of a bound mode of the coupled system
any value of the coupling constant. This implies a nonMa
ovian behavior of this system, and has two important con

FIG. 4. Normalized spectral distribution^bk
†bk&/L of the outgo-

ing bosonic beam, for an infinite-box potential of lengthL, for
different coupling strengths:~a! d50.1, ~b! d510, ~c! d5100. For
weak coupling@~a!# there is only one peak, which corresponds
the initially occupied trap level. As the coupling strength increas
new peaks appear, although only the first one remains relati
important. As before, this is an effect of the coupling of the tr
levels through the continuum. In this figure only the positive wa
numbers are shown, as in Fig. 2.
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quences: the probability of finding the atoms in the trap
oscillatory, and a fraction of the atoms remains in the tr
even in the infinite-time limit. For strong coupling, this fra
tion approaches 1/4 when the number of atoms is m
larger than 1. This bound mode should be, however, hig
sensitive to an external potential like a gravitational field.

Since in the model here considered there is no exte
replenishing of the trap, the outgoing beam has a nonstat
ary nature. For finite times, it displays a very intricate d
namics, which results from the combined effect of a train
wave packets, with transient behavior that exhibits the
called ‘‘diffraction in time’’ effect, and which overlap with
the bound-state wave function.

In the infinite-time limit, however, it is possible get a
analytical expression for the spectral distribution of the o
going atoms. In the strong-coupling limit, and for a ste
trapping potential, the outgoing atomic beam exhibits
markable features, for large times: it is quasimonochroma
and it displays antibunching. It is interesting to remark th
the combination of these two features is highly desirab
although hard to achieve, in light beams. Indeed, the gen
tion of low-noise laser light has been an intense field
research@51#, since the first experimental observations
antibunching@52# and sub-Poissonian statistics@53#. For the
fermionic beams considered here, antibunching comes
quite naturally. On the other hand, we have shown that,
der certain conditions, it is also possible to get here, in
infinite-time limit, a quasimonochromatic spectral distrib

s,
ly

FIG. 5. Normalized spectral distribution̂bk
†bk&/d of the outgo-

ing bosonic beam, for a harmonic potential, whered is the ground-
state width, for different coupling strengths:~a! d850.1; ~b! d8
510, ~c! d85100. ~c! clearly displays both the energy displac
ment and the emergence of new peaks, in the strong-coupling c
5-13
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PIRES FILHO, CESAR, AND DAVIDOVICH PHYSICAL REVIEW A69, 023615 ~2004!
tion, in spite of the large number of occupied energy levels
the trap. This could be especially helpful for some appli
tions recently envisaged for fermionic atomic beams, li
for instance, the development of low-noise atomic interf
ometers@54#.

The investigation of more realistic situations, includin
for instance, the presence of a gravitational field, will be
object of further consideration.
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APPENDIX A: SUM FOR THE INFINITE BOX

In this appendix, we calculate the sum in Eq.~39!.
From Ref.@55# we have the following result:

p cot~pz!5
1

z
1 (

m51

` F 1

z2m
1

1

z1mG , ~A1!

so that

FIG. 6. Normalized spectral distribution^bk
†bk&/L of the outgo-

ing fermionic beam, for an infinite-box potential of lengthL, in the
strong-coupling regime (d5100), for the renormalized timet
5\t/2ML2 equal to~a! t50.5, ~b! t52, ~c! t55. Fort510 one
recovers the infinite-time spectral distribution displayed in Fig. 2~c!.
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n
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p cot~pz!5z (
m52`

`
1

z22m2
. ~A2!

In our case, we have the sum

S5 (
m51(odd)

`
1

z22m2
, ~A3!

which may be written as

S5 (
m51

`
1

z22m2
2 (

m51(even)

`
1

z22m2
. ~A4!

Setting in the second summ52n, we may write

S5
1

2 F (
m52`

`
1

z22m2
2 (

n52`

`
1

z22~2n!2G , ~A5!

so that, from Eq.~A2!,

FIG. 7. Normalized second-order correlation function of the o
put fermionic beam as a function of the dimensionless positionR:
~a! Harmonic oscillator (R5x/d, d being the ground-state width!;
~b! infinite-box potential (R5x/L, L being the box length!. The
dimensionless timet, defined ast5\t/2ML2 for the box and as
t52\t/Md2 for the harmonic oscillator, is taken equal to 10. T
full-line curves ~shown in detail in the insets! correspond tod,d8
5100, while the dotted curves correspond tod,d850.1. Anticorre-
lation is clearly exhibited in all cases.
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S5
p

2 Fcot~pz!

z
2

cot~pz/2!

2z G . ~A6!

Since

cot~x!5
1

2 FcotS x

2D2tanS x

2D G , ~A7!

we finally obtain

(
m51 (odd)

`
1

z22m2
52

p

4

tan~pz/2!

z
, ~A8!

which leads to Eq.~74!.
Also, lettingz→ iz, we get

(
m51 (odd)

`
1

z21m2
5

p

4

tanh~pz/2!

z
, ~A9!

which when applied to Eq.~39! leads to Eq.~40!.

APPENDIX B: SUM FOR THE HARMONIC OSCILLATOR

In this appendix, we evaluate the sum in Eq.~46!. We start
by proving the identity

S5 (
m50

` uw2m~0!u2

z1m
5

1

Apd2
3

ApG~z!

G~z11/2!
, ~B1!

whereG(z) is the Gamma function,d5A\/mv0 is the width
of the ground state of the harmonic oscillator, and, from E
~45!,

w2m~0!5S 1

pd2D 1/4
1

A22m~2m!!
H2m~0!, ~B2!

whereHn(x) is the Hermite polynomial of ordern, with ~see
Ref. @46#, p. 777!

H2m~0!5~21!m
~2m!!

m!
. ~B3!

Replacing these two last expressions into Eq.~B1!, we
obtain
.

M
J

n,

02361
.

S5
1

Apd2 (
m50

`
~2m!!

22m~m! !2

1

z1m
. ~B4!

Let us consider now the functionM (z)5ApG(z)/G(z
11/2), and prove thatS5M (z). The functionM (z) is a
meromorphic function, with poles on the nonpositive int
gers in the complex plane:z52m, m50,1,2,3, . . . . There-
fore, we may write@56#

M ~z!5 (
m50

`
Res@M ~z!,2m#

z1m
. ~B5!

The residues in the above equation are given by

Res@M ~z!,2m#5 lim
z→2m

~z1m!
ApG~z!

G~z11/2!

5
Ap~21!m

m!G~2m11/2!
. ~B6!

We use now that

1

G~1/22m!
5

sinS p

2
2mp DG~m11/2!

p
, ~B7!

G~m11/2!5
~2m!!G~1/2!

22mm!
, ~B8!

andG(1/2)5Ap, and replace Eqs.~B6!, ~B7!, and~B8! into
Eq. ~B5!, obtaining finally

ApG~z!

G~z11/2!
5 (

m50

`
~2m!!

22m~m! !2

1

z1m
, ~B9!

which proves the desired identity.
It follows then immediately that

(
m50

` uw2m~0!u2

m11/41~m2/2v0!
5

1

d

G~1/41m2/2v0!

G~3/41m2/2v0!
.

~B10!
ls,

ys.

ys.

ys.
@1# M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G
Townsend, and W. Ketterle, Phys. Rev. Lett.78, 582 ~1997!.

@2# B.P. Anderson and M.A. Kasevich, Science282, 1686~1998!.
@3# J.L. Martin, C.R. McKenzie, N.R. Thomas, J.C. Sharpe, D.

Warrington, P.J. Manson, W.J. Sandle, and A.C. Wilson,
Phys. B32, 3065~1999!.

@4# E.W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerso
S.L. Rolston, and W.D. Phillips, Science283, 1705~1999!.
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