PHYSICAL REVIEW A 69, 023615 (2004
Theory of output coupling for trapped fermionic atoms
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We develop a dynamic theory of output coupling for fermionic atoms initially confined in a magnetic trap.
We consider an exactly soluble one-dimensional model, with a spatially localipgoe coupling between the
atoms in the trap and a continuum of free-particle external modes. The transient dynamics of the atoms, as they
leave the trap, is investigated in detail. Two important special cases are considered for the confinement
potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that the trap population does not
vanish in the infinite-time limit. For weak coupling, the infinite-time spectral distribution of the outgoing atoms
exhibits peaks corresponding to the initially occupied energy levels in the trap; the heights of these peaks
increase with the energy. As the coupling gets stronger, the infinite-time spectral distribution is displaced
towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling
between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the
continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which
contributes to the spectral distribution of the outgoing beam more strongly than the other modes. This effect is
especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-
reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasimono-
chromatic antibunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.
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[. INTRODUCTION the Popov approximatiof22] for trapped systemf23,24.
Theoretical work on degenerate fermionic gases has been

The demonstration of the first atom lasgts-5] has led to  greatly stimulated by the first propositions of a superfluid
questions that are reminiscent of those asked when the fir@CS-like statg25-27, the obtainment of the first samples
optical lasers were put to work. What is the dynamical be-of degenerate fermionic gasgz8,29, and some other recent
havior and the statistics of the outgoing beam? How monoédevelopments[30—34. Theoretical studies have concen-
chromatic it is? Atoms offer an interesting twist to thesetrated on the analysis of the BCS stf36—3§ and its exci-
guestions, since they may have bosonic or fermionic behavation energie$39], as well as on comparisons between fer-
ior, while for photons only the bosonic character manifestsmionic and bosonic properti¢40,41].
itself. One may then ask how the statistical properties of the In the present work, we develop a dynamic theory of out-
trapped atoms affect the outgoing beam. put coupling, for fermionic atoms initially confined in a mag-

At zero temperature, one may guess that the behavior ofetic trap. The outgoing atoms are considered as free par-
the outgoing beam should be markedly different in the twoticles. Our method can be easily generalized, however, to
cases, since for fermions there would be a multitude of popuaccount for a gravitational field. We consider a one-
lated trapping levels, due to the Pauli exclusion principle dimensional model, with a spatially localize®itype cou-
while for a bosonic gas all the atoms would be in the groundbling between the atoms in the trap and the continuum of
state. One expects therefore that fermionic systems shoukkternal modes. No external replenishment of the trap is con-
exhibit a richer dynamics, at zero temperature, as comparesidered, so that this model leads to a decay of the population
to bosonic systems, which have been described by one-levéi the trap and a nonstationary outgoing atomic beam.
models[6-12] or mean-field theorie§13,14]. Also, coher- For an arbitrary confinement potential, we obtain general
ence properties of fermionic beams are expected to be quitéme-dependent expressions for the atomic operators corre-
different from their bosonic-beam counterparts. Indeedsponding to trapped and free atoms, the trapping-level popu-
while bosonic beams coming from thermal sources exhibit dations, the spectral distribution, and the first- and second-
bunching effect, antibunching has already been experimemrder correlation functions of the atomic outgoing beam.
tally demonstrated for electron beafis—17. From these general expressions, we particularize the results

A simple model for a beam of fermionic atoms extractedfor two important special cases: the infinite box and the har-
from a trap was analyzed some years 4@8]. More re- monic oscillator. In order to identify more clearly the fea-
cently, the so-called input-output formalism developed fortures associated with the fermionic nature of the trapped at-
photons[19,20 and applied to bosonic atoni6] was gen- oms, we compare our results with the corresponding
eralized to fermionic specid21]. properties for a bosonic beam.

One should note that effects concerning the multilevel Of special interest is the infinite-time spectral distribution
structure of the trap should also appear in a non-mean-fieldf the nonstationary outgoing beam. It differs markedly from
theory for bosonic atom lasers with a nonzero temperaturghe corresponding distribution previously calculated for
problem that has been addressed very little, and only withirsingle-level bosonic models, which leads to a single approxi-
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mately Lorentzian peakl2]. For weak coupling, we find a untrapped atoms as free particles with maéswe have
distribution that reflects the structure of the discrete levels ofiwgz(hg)Z/ZM, and 2 ¢ is the atomic momentum, while
the trap, exhibiting peaks that get higher and narrower as thgg(x):equgx)/\/ﬁ [normalized so thaf dxi; (X) ¢ (X)
energy increases. As the coupling gets stronger, the atoms 5(¢— ¢')]. If the atoms were under the action of a gravi-
spectral distribution is displaced towards a set of new enenational field, for instance, thefiwould be an Airy-function
gies that characterize “dressed states” of the fermions in théndex. The coupling is assumed to be spatially localized and
trap. These dressed states result from the coupling betweggrepresented by & function. While this seems to be a most
the unperturbed fermionic states in the trap and the ununphysical assumption, one can imagine a realization where
trapped continuum. In the strong-coupling limit, there is aa very tightly focused pair of Raman laser beams, in a weak
reinforcement of the lowest-energy dressed mode, whickrap, would induce the electronic transitions. As long as the
contributes to the spectral distribution of the outgoing beanbeams’ waists are much shorter than the de Broglie wave-
more strongly than the other modes. This effect is especiallyength of the atoms, which could be the case for the lowest-
pronounced for the infinite box, which indicates that the ef-energy states, the assumption af-function coupling can be
ficiency of the mode-reinforcement mechanism depends og good one.
the steepness of the confinement potential. In this case, a The effective Hamiltonian is written as
striking effect occurs: the fermionic beam becomes quasimo-
nochromatic, in spite of the large number of energy levels H=H;+H:+Hc. (1)
populated in the initial trapped fermionic system. As ex-
pected, the fermionic second-order correlation functions ex- In this expression,
hibit the property of anticorrelation. Under these conditions,
we predict therefore a quasimonochromatic antibunched fer- HTZE ho.ala )
mionic atomic beam. oo

The paper is organized in the following way. In the fol-
lowing section we introduce the physical model and write
down the basic Hamiltonian. The eigenvalue spectrum for
this Hamiltonian is analyzed in Sec. lll, where it is shown, R .
for two forms of the trapping potentidinfinite box and har- whereH corresponds to the trapped atoras,is the anni-
monic oscillatoy that the one-dimensional model always ex- hilation operator for an atom in the trapping-potential eigen-

hibits a bound state, for any value of the coupling constantstate|¢,), Hr describes the untrapped atoms, dﬁ}ds the

In Sec. IV, we analyze the non-Markovian behavior of thegperator that annihilates an untrapped atom with wave func-
number of atoms in the trap. The spectral distribution of thejgn Pe(X).

outgoing atoms is analyzed in Sec. V. General expressions For fermionic atoms, the above operators obey the anti-
for the field operators and the correlation functions of thesommutation relations:

outgoing atoms are derived in Sec. VI. The corresponding

A= | aghogblb,. 3

numerical results are presented in Sec. VI, where compari- {én,éz,}: St s (4)
sons are made between the bosonic and the fermionic cases. '
Some detailed calculations are presented in Appendixes A {6515;}=5(§—§’), (5)
and B.
{a,bl}=0. (6)
Il. THE MODEL

The coupling part of the Hamiltonian is given, for a gen-
The physical model considers a single atomic species in aral spatial-dependent coupling, by

one-dimensional magnetic trap, with an external electromag-
netic field inducing transitions between each trapped level
and a continuum of nontrapped states. We ignore the effect
of the magnetic field on the nontrapped state, assuming, for
instance, that the trapped level corresponds to an electronihere the field operators are given by
spin component+ 1, while the nontrapped state corresponds
to the spin component zero. The total spin of the atom, ﬁ;(x):f d§¢§(x)6§. (8)
nuclear plus electronic, is assumed to be a half-integer, so
that the atom is a fermion and we neglect the small effects
due to the nuclear magnetic moment. We model this system DdX)= @n(X)a,. 9)
by an effective Hamiltonian, with a bilinear coupling involv- n
ing the field operators for the trapped and untrapped atoms. R R R
The one-particle eigenfunctions of the trapping potential are In terms of the operators, anda,, the interactionH
denoted bye,(X), the corresponding energy levels being may be written as
given by w,. The untrapped states are identified by the

center—of-mass_wave functiof(x), Iabe_led by a continuous |:|c=iﬁ2 J dfgn(g)BgénJrH.c., (10)
parameteré, with energyZw,. Thus, if we consider the n

chihf dxA (X)W T(x)D(x)+H.c., 7
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where . 1
dy=—=

“ 2

The operatorsl, are not coupled to the trap, so we can

In the special case of a-function coupling A\(x)  consider only the operatorg, and write
=\ 4(x), Equation(10) reduces to

[—b+b_,]. (15
gn(f):f dAXN(X) Pre(X) @n(X). (11

~ ~ ~ +OC ~ ~
A=> hwnaﬁa,ﬁf dk 7w Clcy
n 0
Ae=iANY, Jdg¢g(0)¢n(0)6§én+ Hc., (12
n

iAN A [T ay
+ TE (pn(O)anf dkg+H.c|. (16
which is the interaction used throughoutE\is paper. Without ™o °
any loss of generality, the coupling constanis taken to be In order to diagonalize this Hamiltonian, we apply Fano’s
real. procedurg 44,45, introducing the operators

This model may be considered as a multilevel extension
of other systems considered before, which have a single level . . +o0 .
interacting with a continuurfi2]. A= an(k)ay+ fo dk" y(k,k")cyr 17)
For sufficiently strong coupling, bound states have been "
shown to appear in bilinear Hamiltonians involving the in- so that
teraction of a single mode of the electromagnetic field with a
photon reservoif43]. The corresponding one-dimensional R +oo
model, with free massive particles as the reservoir, was H= f
shown to exhibit a bound state for any value of the coupling
constant[12]. We may thus suspect that the above Hamil- ] A
tonian also exhibits bound states. This is proven in the fol\WhereEm, is the lower bound ofi.

lowing section, for two special cases of the trapping poten- Since the Hamiltonian given by Eqd), (2), (3), and(12)
tial. is quadratic in the atomic operators, the same procedure

holds for fermionic and bosonic atoms. We start by calculat-

ing the commutatof A, ,H], which vyields two equivalent

expressions, obtained by using either E) or Eq. (1) for
We generalize in this section the procedure adopted i :

Ref. [12] for bosons in a single trapped level coupled to a

reservoir of free massive particles. The existence of a multi- [A, H]=#Q(k)A,

tude of bound levels in our case does not allow one to reach

general conclusions concerning the existence of bound states

for any trapping potential. We consider therefore two specific

examples, the infinite box and the harmonic oscillator, and

show that the coupling given in E¢l2) leads to the exis-

dki Q(K)ALA,, (18

Emin

Ill. DIAGONALIZATION OF THE HAMILTONIAN

=ﬁQ(k){Z an(k)én+f+wdk’y(k,k’)f:k,
n 0

tence of a single bound state, for any value of the coupling :; fronan(k)an
constant. B

We take the untrapped atoms as free massive partictes F N . te .
gravitational field, so thaty,(0)=1/y27 and the Hamil- i ; ¢n (0)an(k) fo dk’cy

tonian of the system may be written as

+o .
+J dk'ﬁwk,y(k,k')ckr
0

~ ~ ~ +OC ~ ~
A=>, ﬁwnagaﬁj dk 7 w,b]by
n — o N
o iAN ~ (7 ,
B F S end, [tk a9
+| — 0)a f dkbl+H.c.|, 13 ™
\/ﬁ = en(0)ay, . bk (13
From this equality we obtain the following equations:
where in this casé w,=7%2k?/2M. _
As in Ref.[12], we introduce the even and odd operators IN J’+°°
R - Q(k)— K)=—=¢,(0 dk’y(k,k"), (20
¢, andd,, given by [Q(K)— wp]an(Kk) \/;‘Pn( ) o ¥( ), (20
=B+ ] (14 [Q(K) — @ ]y(kK') n 2 en(0ag (k). (21)
Ck="F7= —kls — Wy y = ’ dpr .
k \/E k k k1Y \/; < (2N n
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We consider first the negative-energy solutions of these—cc. This will be shown to be the case for the two special

equations, which correspond to bound states.

A. Bound states

For bound states, we may (k)= — u?, ©>0, so that
the bound-state energy Bg=—7%u?, and let in this case

an(K)—a,n, v(kk)—vy,(k'), so that Eq.(17) is re-
placed by
A,;; “wén*fo y,(K)c dk (22
and Eqgs.(20) and(21) become
N en(0) f
a,n=——= dky,(k), 23
M,Nn \/;M2+wn 0 ‘y,u,( ) ( )
ino1
K)\=—=—— *(0 ’ 24
Yu(K) ﬁmwk% or(0)ar, (24)
Substituting Eq(24) into Eq. (23), we obtain
A2 n(0) [+=  dk .
= (0 ’.
Cun™ 0 w’+wyJo ,u,z—i-wk% e (O)aun
(25)

Multiplying the last equation byy?} (0) and summing
overn, we have

|§Dn(0)|2
M2+wn

yz
> er(0)a, =—
n r

>

dk

+ o
X *(0 . (26
| o S 0w @9
This equation immediately yields the eigenvalue equation
for w:
2N F () (u?) =1, 27
where
|¢n(0)?
F(y)= , 28
V=2 T (28)
L v) 1 (= dk M 05
Y)=5- v \/%, (29)

and we have used in EQRY) that w,=#k?/2M.
Replacing Eq(29) into Eg. (27), we get the eigenvalue
equation

_m
N/ ——F(u?)=p.

7 (30

cases considered in this paper. One should note, however,
that the form of this eigenvalue equation is highly dependent
on the dimensionality of the problem. This dependence is
quite apparent in the expression for the functi¢y), where

the divergence foly=0 disappears if one replaces in Eq.
(29) dk by d3k (adding up a cutoff to the upper integration
limit, so that the integral remains finjteThis would imply

the replacement g& on the right-hand side of E¢30) by a
function of u that would not go to zero whep—0, and
therefore the bound state would appear only for a sufficiently
strong coupling. For bosons at zero temperature, the depen-
dence on the dimensionality of the bound state of the corre-
sponding Hamiltoniar(with just one bound levelwas ex-
plicitly demonstrated in Ref.12].

The functionse,, , and y,(k) may be obtained in the
following way. We impose the conditiofA, ,AT}=1 (for
bosons we would replace the anticommutator by a commu-
tator, with the same results at the ¢nabtaining

+ oo
> Iaﬂ,n|2+J dk| y,.(K)[?=1. (31
n 0

Replacing Egs(24) and (25) into this equation, we ob-
tain, except for an irrelevant overall phase factor that can be
absorbed into the definition of the stateg(0):

wF(p?)
VF(u?)/2— p?F (u?)’

whereF’ (u?) is the derivative of (y), defined by Eq(28),
evaluated ay= u?,

2 e (0) e, 0= (32

n(0)[?
F'(M2):_2 M

n (M2+wn)2. 39

Taking Eq.(32) into Egs.(24) and(25), we get finally

. (Pn(o)lu’/(lu’2+ wp)
S )2 w7 (i) %
_IF (AT (u+ 0]
VF(?)12— p?F' (u?)

We discuss now the solutions of E@O) for two impor-
tant special cases of trapping potential: the infinite box and
the harmonic oscillator. We show that in both cases there is
one and only one bound state, for any nonvanishing value of
the coupling constant. This implies that EG8) becomes

(36)

w o

~ +OC ~ ~ ~ ~
H:f dk 7w AT(K)A(K) —7 w2AT A
0

wherew,=#%k?/2M, —# u? is the energy of the bound state,

We can see that this equation has one and only one solt&ndAM is the corresponding annihilation operator, given by

tion if F(y) is finite wheny=0, and F(y)—0 wheny

Eq. (22).
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1. Infinite box

In this case, we have for the trapped particles,

f?

_ 2
2M L2

wp n = wlnz, (37

the corresponding eigenstates being given, for mdoly

2
en(r)= \[Ecosknm,

wherelL is the length of the box.

(39

PHYSICAL REVIEW®9, 023615 (2004

where H,(x) is the Hermite polynomial of orden and d
= \hl/mw, is the width of the ground state.

Wave functions corresponding to odd valuesnado not
contribute to the sum defining(?2), which becomes now

2
F(ho)(’uz):ig |@2m(0)]
200 =0 M+ 14+ (u?2w0)

1 T(UA+ pPl2a,)
200d T'(3/4+ u22w)

(46)

where I'(x) is the Gamma functiorf46]. This result is

For evenn, the cosine function is replaced by the sine proven in Appendix B.

function, which vanishes fok=0. The interaction in Eq.

Replacing Eq(46) into Eg. (30), we obtain the final ex-

(12) does not couple these states to the outgoing beam, angtession for the eigenvalue equation,

they do not contribute to the sum definifig?) (this is a

consequence of the localized nature of the symmetric cou-

pling). Thus, only oddh’s (even wave functionscontribute
to F(x?) , which may be written as

2 1
FO)(y2)= — —_— 39
(w7 w1l n(%id) N2+ u?l wy 39
From Eq.(A9) of Appendix A, we have
F(000),2) = T tanh 7T,u./2\/w_1) . 40)

2L, 7

Therefore, in this casE(u?) goes to a finite value when
u—0, and vanishes whep— . It is clear then that Eq.

(30) has a unique solution. In terms of the adimensional cou-

pling constants defined by
5=YW2/Lw1, (41

the weak-coupling limit corresponds <1, so thatu?

<w,, and the hyperbolic tangent may be approximated by

its value close to the origin, thus yielding

(4m)?

In the strong-coupling limit>1, we getu?> w;, so that
the hyperbolic tangent may be approximated by 1, and

2

EB:—ﬁMZ:—Z—Wzﬁwl. (43
2. Harmonic oscillator
For the harmonic trap, we have
ho,=hoy(n+1/2) (44)
and
1/4
gonm:(%) %efz’@dzmn(r/d), (45)

I (1/4+ p?2w0)
2\2wy6' P ——————— =y, 4
T (3Iat p220g) @7
where ' is defined by
8" =N 2w,d. (48)

It is easy to verify that Eq(47) has one and only one solu-
tion ©>0 for any §’.

In the weak-coupling limité’ <1, we may neglect the
contribution of u in the argument of thd" functions, thus
getting

2

r1/4
( ) ﬁwo.

- _ 2 _ 14
Be=—fin"=-85" v 3

(49

For strong coupling, we use the following ident[#6]:

a1“(a+z)
I'(b+2)

b,

~1+0(z7 Y. (50

Identifying z— u?/2w,, a— 1/4, andb—3/4, we obtain
for 6'>1,

Eg=—fAu’=—86"hwy. (51)

B. Positive-energy solutions

From Egs.(20) and (21), we can write forQ (k)= w

=0:

_E en(0) [*= , ,
ao= = vk, (62
kk')——EE *(0)ag (k)
v(K, = \/; v Qon/( an(
x| P +Z(k)5(a)k—wk/) y (53)
Wy~ Wy

where P stands for the principal part, and we have assumed
for the moment, in getting Ed52), that v, # w,,, for anyn.
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In these equationZ(k) is a function to be determined. In-
serting Eq.(52) into Eqg. (53), we obtain the expression for

Z(K):

Ak T
Z(k)=——

= 4
M A2F(—wy) 59

whereF(y) was defined in Eq(28), and we have used that

S(w— o) =(M/A|K|) S(k—k").
Using Egs.(17), (52), (53), and(54), and imposing the
condition

{A(K),AT(K")}=8(k—k'), (55
we obtain
J
2 ¢ (Oan(l)= = PTZQ(T (56)
Therefore,
ke M) s L 0 S o)
7( ’ _\/m W= Wy ( (wk Wy
(57)
and
a2 En@ 2k -

Jm o= on 72+ Z2(k)

From Egs.(28) and (54), it is easy to check that,(k),
given by Eq.(58), remains finite whemw,— w, . This allows
one to remove the restrictioa,# w,, used to get Eq52),
and adopt Eq(58) as the expression far,(k) for all values
of k.

IV. POPULATION IN THE TRAP: NON-MARKOVIAN
BEHAVIOR

a(t)= 2 “ at (K) g (K)e Mg

2. A
+C¥Z‘naﬂ‘nrelﬂt anr(o)

+f dk’“ dka: (k) y(k k')~ kM
0 0

+a* yu(K)EH 0 (0). (60)

This expression exhibits explicitly the coupling between
the trap modes, which is induced by the coupling with the
external modes. If initially only the trap modes are popu-
lated, and if one is interested only in normal-ordered corre-
lation functions, the contribution of the operatt&;g{O) may
be ignored. This will be always the case in the present paper.

If at time t=0 only the cavity moden is populated, the
fraction of atoms left in the same mode at a later titrie
given by

(al(t)ay(t))
(ah(0)a,(0))

* 2, —ifk2t/2M 2402t ?
= . |an(k)|%e dk+|alu'n| e'®

(61)

The integral vanishes in the infinite-time limit, since
ay(k) remains finite for all values df, and therefore in this
limit the fraction of atoms left in the cavity isx,, ,|*. This
result is easy to understand: in order to get the residual popu-
lation, one must multiply the fraction of atoms in the initial

mode that are in the bound moég“ given by|aM,n|2, by

the fraction of the cavity moda,, present inA , Which is
also given by|aM a2 Furthermore, the tlme -dependent
population exhibits oscillations, resulting from the beating
between the integral and the discrete contribution in(Ed).

A similar behavior holds if initially more than one bound
mode is populated, as it is the case for trapped fermions at
zero temperature. The residual population of lavés then
given by

(@han) (=) =a,n*2 @, @) (0)an(0)), (62

One of the consequences of the existence of the bounghere now>|a, n,|2<a ,(0)a,(0)) is the fraction of the

state is the failure of the Born-Markov approximation for this
problem. A related consequence is that a fraction of the at-

oms remains in the cavity, even in the infinite-time lirhit

— o0, This can be seen by writing down the decomposition of"
each cavity mode in terms of the eigenmodes of the Hamil-

tonian:

an(t)= Jo @k (KA MM+ ot &HIA | (59)

and replacing the operatofg andA , by their expressions in

terms of the operatora,(0) andc,(0). Onegets then,

|n|t|al population that is in the bound mo% and|a,, |2

is the fraction of the cavity mode,, present in the bound
ode.

An expression for the total residual populatibife) in-
side the trap may be obtained from E¢82) and(34),

N(oo>=§ (alay) (e
2uF' (u?)

2p7F (1) = F(u?)
(63

=2 la,wl¥(ay,(0)2,(0)
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whereF’ () is, as before, the derivative &f(y), given by R o Couth . 2
Eq. (29), evaluated ay= u>. c(t)= fo dk’ y* (K", K)e™ K Ay (0) + vy, (K)e'" A (0).
For N bosons at zero temperature, only the term with 67)

=0 contributes to the above sum, a(‘ﬁd,t,(O)én/(O))=N.

On the other hand, for fermions at zero temperature, the ini- From Egs.(17), (22), and(67), we get, ignoring the con-
tial population is the same for all leve{sne atom for each tribution of the operators,(0) (since initially the outside
level, since all the trapped atoms have the same)spmto  modes are empty, and only normal-ordered correlation func-
the last occupied on@ermi surfacg If the number of atoms  tions are considered

is much larger than 1, then one may approximate the sum in

the above expression by one with an infinite number of A o, , e

terms. The resulting number is an upper bound for the re- Ck(t):; [fo dk’y* (k' k) arn(k" et

sidual population inside the trap, which is actually achieved

henN , : n
wnenee T4 (K) ey 08| 30(0). (69)

2
. (64)

2pF' (p?)
2u’F' (u?) = F(u?)
In the weak-coupling limit §<1), an approximate ex-

pression for Eqg.(63) may be obtained, for the one-
dimensional(1D) box and the 1D harmonic oscillator, by

Nma)(w):

The time-dependent spectral distribution is given by
(b{(t)by(t)). This quantity can be expressed in terms of
ci(t), using that from Eqs(14) and (15),

using the results obtained before for the functfeiu?) and Bk:i(ek_ak),
for the bound-state enerdyg= —7% 2. We get thus, for the J2
1D box,
- - A 1 . .
5 (a}(0)a,(0)) b_=—=(Cetdy), (69)
N(o0)= — _— 6 2
(*)= 36 B " (65) V2

and for the harmonic oscillator and thatd, does not couple with the trapped-atoms opera-

tors, so that it can be ignored when calculating normal-

g T (1/4) 3 ordered correlation function®f course, its presence in Eq.
N()=64\md [ (3/4) (69) is important to get the correct commutation relations for
B the operatorsb, and c,]. One gets then that the time-
(2n)! . . T ~ A
X3 (a],(0)3n(0)). dependent spectral distribution is given @] (t)c,(t))/2.

The integral in Eq(68) can be calculated by using Egs.
66 (57) and (58). For finite times, one has to consider the con-
(66) tributions from the complex poles of the integrand, which

From these results, we can see that the residual populatid@ive rise to exponentially decaying terms. These contribu-
inside the trap is very small in the weak-coupling limit, being tions can be handled numerically. An example will be given
proportional, both for the box and the harmonic oscillator, toin Sec. VII.
the eighth power of the corresponding dimensionless cou- An analytic expression can be obtained in the infinite-time
pling constant. limit. Since the contributions from the complex poles of the

In the strong-coupling limit §>1), we get both for the integrand in Eq.(68) give rise to exponentially decaying
box and the harmonic oscillator that the upper bound for théerms, they will be negligible in this limit, so the relevant
population inside the trap N,,,,,(°)=1/4. This result, which ~ contributions come from the principal part and #h&unction
is actually achieved when the number of atoms is mucHn Ed. (57). One gets then
larger than 1, shows that a substantial fraction of the atoms

n=0 22"(n!)2(n+ 1/4)?

remains in the trap in the infinite-time limit. This is a direct - —Nen(0)/ N7 el
f the exist f a bound state of the total (D=2 = :
consequence of the existence of a bound state of the tota - o= 0n  N(MIAK)F(— wp) +i
Hamiltonian.
We proceed now to the calculation of the spectral distri- .
bution of the outgoing atomic beam. +yu(k)a, """ a,(0). (70

V. SPECTRAL DISTRIBUTION OF THE

OUTGOING BEAM We will show in the following that the first term on the

right-hand side of this equation leads, in the weak- and
A time-dependent spectral distribution for the outgoingstrong-coupling limits, to narrow peaks, centered around the
fermionic beam can be obtained from the expression of theinperturbed energies of the trapped atoms in the weak-
free-atom operators in terms of the operators that diagonalizeoupling case, and around dressed energies of the coupled
the Hamiltonian: atoms in the strong-coupling limit. The last term on the right-
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hand side of this equation is the bound-state contribution. lfial: kL=ns, n odd—these are the zeros of da&(2]). We

can be shown to be much smaller than the remaining terms igyay thus approximate the expression in E&) by setting,
Eq.(70) in the regions of the spectral distribution close to thearoungd each peakL=nm+g,, |84 <1, keeping only the

peaks, so it will be neglected from now on. One gets thenjoyest-order terms in the expansions of the trigonometric

using Eq.(69) and neglecting the contribution from,

—Nen(0)/\2m

Wy— Wp

e— i wkt

NAMIAIK)F(— wy) +i

ng a,(0).
(71)

In view of Eq.(69), this equation yield$, for both signs of
k.

From this expression, and assuming that the initial state is
diagonal in the number representation, one gets the outgoing

beam spectral distribution in the infinite-time limit:

N @n(0)|?/[27(w,— 0n)?]
[1+ N (M/EK)2FA(— wy)]

<616k>(°°):;

X (a}(0)ay(0)). (72)
From Egs.(54) and(598), it is easy to see that
nin 1 - A
(BB (=)= 52 an(K)*(@}(0)ay(0), (79

functions in Eq.(76), and neglecting small corrections #
for the otherk-dependent contributions. Neglecting these
corrections means that deviations from the Lorentzian shape
will be ignored here.

One gets then, from Eq$75) and (76), that, asymptoti-
cally in time,

(77

where

i 5\L/ e HKUM D

0).
(KL—n)+ 2i (8/2nr)2 2(0)

b{"(t)~ (79

The infinite-time spectral distribution is then given by the
sum of the contributions from all peaks:

which shows that the contribution to the spectral distribution

from trap leveln is proportional to the probabilitye,(k)|?

that the atom in this level is in the eigenmode of the total (blb)()/L= >

Hamiltonian with energyw, .
We consider now the specialization of E{2) to the
infinite-box and harmonic oscillator potentials.

A. Infinite box
From Eq.(A8), we get

m?  tan(kL/2)

FO%(— o= 20l KL

(74

Taking this result, plus Eq$37), (38), and(41) into Eq.
(71), we get, for large times

= sJLlm(kL)2.

b (t)~G(k,t a.(0), 75
K(D)~G( >n:12(odd)(ku2_w2n2 2(0), (75
where
—cog [KL/2|)e~ kM
g|kL/2]) 76

G(kt)= i(kL)2cog|KL/2|)+ (8% 4)sin([kL/2])

52 1
nlodd) 473n? (KL—nm)2+(8/\2nm)?

x(al(0)a,(0)). (79

Under the above approximations, each term in the sum is
a Lorentzian with width AKL) pyyum= 2(8/nr)?, and height
increasing with the square of Therefore, the peaks in the
spectral distribution become higher and narrowemais-
creases, in such a way that the area under each peak is pro-

portional to the state populatiga,'(0)a,(0)) corresponding
to the same value of. One should note that the contribution
for each peak stems, in this case, from a single bound state.
The total number of peaks is equal to the number of initially
populated states.

For strong coupling,6>1, the term proportional to
sin(kl/2]) dominates in the denominator of E6), imply-
ing that the peaks are shifted towards the valuek obrre-
sponding to the zeroes of sjki(/2|). These values, given by
kL=2mm, m integer, are precisely midway between the
weak-coupling peaks, and are associated with dressed ener-
gies of the system, which originate from the interaction be-

One should note that the singularities in the sum are cancelad/een the discrete states through the continuum, as shown in

out by the numerator oB(k,t).

Eq. (60). Indeed, it is easy to see that, in this case, the sum

We discuss now the behavior of these expressions in twaver n must be kept in the approximation analog to E¢B)

limiting cases, corresponding to wealk<€1) and strong
(6>1) coupling. For weak couplingd<1), the term pro-

of the expression in Eq.75) aroundkL=2ms, m integer.
Therefore, several trap states contribute now to each peak in

portional to codkL/2|) dominates in the denominator of the spectral distribution.

G(k,t), which exhibits sharp resonances close to valuds of

The complete infinite-time spectral distribution is given,

that correspond to the bound states of the infinite-box poteras before, by the sum of the contributions for all peaks:
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L * 102457 82 For weak coupling, the peaks are arourkd/2)?=m
(bby) (=) /L= > 2 5 +1/4, minteger. We get then, by expanding the functions of
m=1 (4y2mm/8)*+(kL—2mm) k in Eq. (82 around these values, using E¢5), and ap-
+oo m proximating the spectral distribution by the sum of the con-
% (AN 0)aL(0)). tributions from all the peaks:
n:].(Odd) (4m2_n2)2< n( ) n( )>

82 (2m)!1/22M(m!)?
>

272 W [(kdi2)2—m—1/42+T?

(80) (biby)(0)/d=

This expression differs remarkably from the one in Eq. . .
(79). There is now an infinite number of peaks. Each peak, X(al(0)ay,(0)), (85
with width (AKL) pym= 32(m/ 5)2, is now fed by all the ~
populations in the trap. For the peakkdt=2mr, the stron-  where the linewidtH’,, is given by
gest contributions come from the two populations with

=2m=1 (first neighbors ofkL=2ms), with heights pro- r m+£

portional to 1/(4n+ 1)2. The contributions from the second . 87 2

neighbors are proportional to 1/9té+3)2, which is less Mry=———F—. (86)
than nine times smaller. The contributions from states that m | / +1

are farther away decrease asi*l/ This implies that the mym 4

height of the peaks decreases am?l/while their width _ _ o o
increases asn®, and that the contribution for each peak ~For m>1, we find, using Stirling's approximation, that
comes mainly from the populations of the first neighboringthe linewidth of the peak of ordenis given by

trap states. These two states are the main components of the - 82
dressed state that contributes to this peak. IN'y=——7, (87)
m
B. Harmonic oscillator while the corresponding height i8®%2725'2,
Settingu?= — w, in Eq. (46), we get In the strong-coupling regime the peaks are around the
’ values kd/2)?>=m-+3/4, so that one gets, approximating the
1 (14— (kd/2)?) contribution around each peak,
FMO)(— ) = 5o ~ (81) 3 3
wod T (3/4- (kd/2)?) L m+Z)r2 me s
AT _
Inserting this result, plus Eq44) into Eq. (71), we get <bkbk>(°°)/d_25;2ﬂ_7/2 mZ:O nZO (m—n+ 1)?
oo 2
R ! ©om(0)|kd/2|I(kd,t) .
by(t)~ > > am(0), (82 (2n)1/227(nim!)2
V27 m=0 (kd/2)°—(m+1/4) — (83 2,0 (0)),
where [(kd/Z)Z—m—Z +I72
F—1(1/4_y2/4)e—iﬁk2t/2M (89)
Iy.H= 820 ~X(3/4—y2/4) +i|y/2|T " L(1/4—y?i4) where the linewidth is now given by
(83 3 3
1 m-+ ZF m+3
The spectral distribution of the outgoing beam is given by f'm= (89)
(bfby)(=). From Eq.(82), we can see that, fof' <1, the 8'%m m!

peaks of the spectral distribution should be close to the ze- , , .
roes of '~ Y[ 1/4— (kd/2)?], while for 6'>1 they approach One should note Fhat, in th_e strong-coupling limit, all
the zeroes ofl'~[3/4— (kd/2)?], which are, as in the trapped-level populations qontrllblljte to each resonance, as
infinite-box case, midway between the weak-coupling peak2PPosed to the weak-coupling limit, when each resonance is
These zeroes correspond to the dressed energies of the hgpSociated with a single trapping level. The same phenom-
monic trap, under strong-coupling conditions. enon ogcurred in the infinite-box potentlal.. _

We obtain now approximate expressions for the spectral !N this case, fom=>1, we have for the linewidth of the
distribution in the weak- and strong-coupling regions, by ex-P&ak of ordem,
panding thd" functions about the values &fthat correspond

to the spectral peaks. A useful equality for this purpose is T = m (90)
m ]
5/2
P10 =r(1-x 2 84 ’
00=T (1= —"—. (84) while the corresponding height is proportional&d/ 2 /m.
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VI. FIELD OPERATORS AND CORRELATION R i\/;(,u,/:)e_ V“ZM?ﬁMxeip,zt
FUNCTIONS \I,(bound)(x,t): a - -
F(p?)—uF' (1)

A. Field operators

The time-dependent field operators for the outgoing atoms «S ¢n(0) 2.(0), 98
are given by noult o,
~ B - which exhibits a spatial dependence that decays exponen-
\P(X't)_J’_m dkEbk(t)' (1) tially, with a decay constant given by2M|Eg|/%, where
Eg=—#u? is the bound-state energy.
From Egs.(68) and (69), this can be written in the fol- For the running-wave part, simple results can be obtained
lowing form, if we ignore the vacuum terms proportional to by replacing directly into Eq(91) the asymptotic results ob-
ak(o) andak(O): tained for the operatorg, in the weak- and strong-coupling

limit, for the special cases of the infinite box and the har-
monic oscillator. We restrict ourselves here to the infinite-

\If(x,t)z}n‘, N(n,x,t)an(0), (92 pox case, in the weak-coupling limit, since the results for the
strong-coupling limit and the harmonic oscillator are quite
where similar.
Taking Eqgs.(77) and (78) into Eq. (91), one gets, in the
weak-coupling limit,
N(n,x,t)= f \/_ f dk’ v* (k' K) an(k')e Tex't
Py )= \[L > NMU(n xt)a,(0), (99
. ) n(odd)
+ 9% (K) @, et e, (93)
where
We may call this the source contribution to the field op- - —iy?r
erators. One should note thid{n,x,0)=0, as expecte@no N, x, 7)~ f+ d_y € cogyx/L) ’
contribution, at=0, of the trap modes to the field operators N [(y—nm)+2i(s/2n)?]
corresponding to the outgoing atomdeed, from Eqs(59) (100

- P
and(67), {cx,an}=0 implies that and 7 is the renormalized time=#At/2ML2.

. Equations(99) and (100 show that the outgoing field
f dk’ y* (k' K)ay (k') + yz(k)%’n:o_ (94) corresponds to a train of wave packets, centered in momen-
0 tum space around the momenta corresponding to the trap
eigenenergies. The expression in ELP0) is closely related
From Eqs(92) and(93), we can see that the field operator to the Moshinsky functiorj47,48, which yields the time-
corresponding to the outgoing atoms is given by the sum ofiependent behavior of a wave packet initially confined in a
two contributions, besides the terms proportionalc{¢0) half spacei(x,0)= 6(—x)exp(kx), Im k<0, wheref(x) is
andak(O), t>h((e)]Heaviside functiori (x)=0 for x<0, #(x)=1 for x

W (x,t) =W boundy y ) 4 pr(rum(x t), (95) ox—hc2tfom

M(xkt)_—f i (101)

where the bound-state contribution is given by —k
This function exhibits an oscillatory behavior as a function
r (boundy ) — E f yu(k)a Lekxelny (0), of time, the so-called “diffraction in time” effecf47,48.
This effect, which has been experimentally obser{44],
(96) appears when a shutter placedkatO is opened, letting the
initial wave packet, confined to the<O region, evolve.
Here, however, the integration is from O to infinity, the dif-
e dk ference stemming from the fact that in our case the outgoing
Ir (run) _ LA R N a—iopt field emerges fronx=0 and propagates in both directions.
TG ; f \/;fo dky™ (K k) an(k?)e o In spite of this difference, we also get here transient effects
that can be described in terms of a diffraction in time. This is
X coskx a,(0). (97) clearly shown in Fig. 1, which displays the plot, as a function
of the renormalized time:, of the magnitude of the expres-
The bound-state contribution is readily calculated, by ussion in Eq.(100) for n=1, x=20L, and6%/27?=0.2. In this
ing Egs.(30), (34), and(35): figure, the small-amplitude fringes close to the origin are due

and the running-wave part is
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The normalized second-order correlation function is de-
16 //\ fined as
1.4] // \\ ,
\ |G1(x,x",1)]
1.2 / \ ’ —q Tl q ’ 2
- / \\ gZ(X=X !t) 1 |(X,t)|(x”t) 1 |gl(X,X ,t)| .
£ / \ (106)
2 0.8] / \
/’ | The minus sign in the above expression accounts for the
06 / \ antibunching property of fermionic beams. This second-
04 / \ /\\ order correlation function is analyzed numerically, for the
/ ! / \ special cases considered in this paper, in Sect. VII.
0.2 /,/ W \ ,,/\/ For bosonic atoms at zero temperature, the second-order
i vV correlation does not depend on the position, while for a ther-
0 1 2 3L 5 6 7 mal distribution it exhibits the bunching effel&0].

FIG. 1. MagnitudeN,(7)=|N"(1x,7)| of the outgoing wave VIl. NUMERICAL RESULTS
packet corresponding to the infinite-box levet 1, at the position

x=20L, wherelL is the box width, as a function of the renormalized

We compute now the behavior of the output atomic beam,
time r=#At/2ML2.

for zero temperature. We study the spectral distribution of

both a fermionic and a bosonic output beam, and also the

to the interference between the wave packet propagating tgecond-order correlation function of the outgoing fermionic

wards the positive direction with the tail of the packet thatb€am. _ o

propagates in the negative direction. This tail is present even Our main numerical results are shown in Figs. 2-7.

att=0, contrary to what happens with the Moshinsky func-

tion, which vanishes exactly fox>0 at the initial time.

Here, whert=0, the sum of the tails of all the wave packets . . P ~

exactly cancels out the bound-state contribution, leading to We consider first _the spectrall dlstr.|b|.,|t|QbE(oo)bk(oo).>

the vanishing of the source contribution at the initial time. ©f the output beam in the long-time limit. In the following,

we take the initial number of particles inside the trap to be

N=21, so that the sums over the contributions of the trap

B. Correlation functions

levels will involve eleven termgsince only even states
From Egs.(92) and (93), we can calculate the normal- couple to the continuum The actual shape of the spectral

ordered correlation functions of any order for the system irdistribution depends strongly on the value of the adimen-
question. Other orderings could also be considered, by keegional parameter$ and ¢’, defined, respectively, by Egs.
ing the terms dependent dn(0) in the above expressions. (41 @nd(48). The spectral distribution for fermions trapped
Thus, for an initial state diagonal in the number represenPY @n infinite box is displayed in Fig. 2, while the distribu-
tation, the first-order coherence is given by 'I[;Qn gorrespondmg to a harmonic potential is displayed in
ig. 3.
We can see that for small values ®tnd é’, the peaks in
the spectral distribution can be simply interpreted as reso-
. Vet nances associated with the unperturbed trap levels corre-
:; N*(n,x,H)N(n,x",t)(apan)(0). (109 gsponding to even eigenstates, consistently with the previous
analysis. One should notice that the height of the peaks
For x=x', this becomes the beam densltfx,t). The grows withk (the yvidths of the p_eaks cannot be seen, _Wi_thin
normalized first-order correlation function is defined as the scale of the figuresin fact, in the weak-coupling limit

the approximate expressions given by E@®) and(85) lead

A. Spectral distribution of the output beam

Gi(x,x", D) =(¥Tx,H ¥ (x' 1))

Gy ) to excellent fits to the spectra exhibited in Figs. 2 and 3.

X, X't , . i

gr(x X" 1) = |(1 - (103 For larger values of and 6, the peaks are shifted to
VIOGH (X,

wards the strong-coupling dressed energies, as discussed in
Secs. V Aand V B. Another important feature, also discussed
The normal-ordered second-order correlation function, in those sgctions, s the relati.ve a_mplitude qf the peal_<s. we
see that, in the strong-coupling limit, the first peak is the
A - - - highest one, the amplitude of the successive peaks decreas-
Go(x,X', 1) =(¥T(x", W (X, )W (x,H) W (X',1)), ing now with the energy. This feature is especially pro-
(104 nounced for the infinite box. In this case, we have the re-
markable feature that the outgoing beam has an accentuated
may be written, for fermionic atoms, §S0] monochromatic character, in spite of the multitude of bound
levels of the infinite box. Again, there is excellent agreement
Go(x,x" 1) =1(x, )1 (x",t)—|G(x,x",1)]2. (105  of the strong-coupling plots with the approximate expres-
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~ FIG. 2. Normalized spectral d_istributic(rh)lbk}/L of the outgo- FIG. 3. Normalized spectral distributigibjb,)/d of the outgo-
ing fermionic beam, for an infinite-box potential of lendth for ing fermionic beam, for a harmonic potential, whedeis the

different coupling strengthsta) 6=0.1, (b) =10, (c) 6=100. round-state width, for different coupling strengtte: 5’ =0.1, (b)
Initially, there are 21 atoms in the trap, corresponding to 11 couple% =1, (c) 8 =0.1. The behavior is similar to the one in Fig.(2)
levels. The peaks irf@) are centered around the wave NUMDErS yish oy eleven peaks, the first one being barely visible and the last
corresponding to the energy levels inside the trap. As the coupling corresponding to the Fermi surface for e 21 trapped at-
strength increaseigb)], the peaks are displaced towards the situa-j s | the strong-coupling regime, one gets instead an infinite
tion displayed in(c), where the resonances are related to “dressednumber of peaks with decreasing amplitude. The relative impor-

st_ates” of the system trap pl_us environment. While for weak COUtance of the first peak is less pronounced here than in the infinite-
pling the height of the peaks increases with the energy, the opposiig,, .ase

happens in the strong-coupling limit, when the lowest-energy peak

is higher than the others. In these pictures only positive wave num- For strong coupling, the dynamics of the spectral distri-

bers are shown, since the complete graphic is symmetric with rebution is more involved, since now the different trap levels

spect tokL/2=0. Also, the totality of eleven peaks in the weak- interact with each other through the continuum, and there is

coupling case is not displayed {g). a strong probability, for finite times, that the atoms are reab-
. . sorbed into the trafthis phenomenon shows up in the oscil-
sions given by Eqsi80) and(88). latory behavior of the atomic population in the trapigure

_InFigs. 4 and 5, we study the behavior of the correspondg oy hipjts the approach to the infinite-time limit of the time-
ing bosonic systems, initially in the ground state. For smallyependent spectral distribution, for the special case of strong
values ofé and &', the peak is related to the only occupied ., 5jing and for an infinite-box potential. One should note
level of the system. For stronger couplings, new peaks aBnat the relative heights of the spectral peaks are time depen-

pear, around energy levels corresponding to the excitefl  "yheir precise relationship being related to the intricate
trapped states, which get populated as a consequence of the

interaction between the ground state and the continuum. dnsient behavior of the system.
note that this e_ffect is absent in models that treat the bosonic B. Second-order correlation for fermions
system as a single trapped level. ) _ i

The results shown so far correspond to the spectral distri- Figure 7 displays the behavior of the second-order corre-
bution of the outgoing atoms in the infinite-time limit. The lation function as a function of the distance, for the fermionic
behavior of the time-dependent spectral distribution for finitec@Se. The anticorrelation of fermions is clearly exhibited in
times is very simple in the case of weak coupling: then, eaclqll cases. For strong coupling, this correlation function goes
level behaves independently of the others, so that as théey fast to one.
population of each trap level decays, as discussed in Sec. 1V,
the population of the corresponding free-space mode in-
creases, finally getting to the distributions displayed in Figs. We have shown that the dynamics of trapped fermions
2 and 3. with an output coupling may exhibit very interesting fea-

VIIl. CONCLUSIONS
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FIG. 4. Normalized spectral distributidib;b,)/L of the outgo-
ing bosonic beam, for an infinite-box potential of lendth for
different coupling strengthga) §=0.1, (b) §=10, (c) §=100. For
weak coupling[(a)] there is only one peak, which corresponds to ~10, () &' =100. (¢) clearly displays both the energy displace-

the initially occupied trap level. As the cqupllng strengt.h mcrea.sesm(ent and the emergence of new peaks, in the strong-coupling case.
new peaks appear, although only the first one remains relatively

important. As before, this is an effect of the coupling of the trapquences: the probability of finding the atoms in the trap is
levels through the continluum. In this figure only the positive wavegscillatory, and a fraction of the atoms remains in the trap,
numbers are shown, as in Fig. 2. even in the infinite-time limit. For strong coupling, this frac-
tion approaches 1/4 when the number of atoms is much
tures. The main source of these features, which is also thiarger than 1. This bound mode should be, however, highly
most challenging aspect of this problem, as compared to theensitive to an external potential like a gravitational field.
corresponding situation for bosons at zero temperature, is the Since in the model here considered there is no external
multitude of energy levels of the trap that are necessarilyeplenishing of the trap, the outgoing beam has a nonstation-
populated, due to the Pauli principle. ary nature. For finite times, it displays a very intricate dy-
In view of the complexity of the problem, our strategy in namics, which results from the combined effect of a train of
this paper was to deal with a model simple enough so that iivave packets, with transient behavior that exhibits the so-
was possible to obtain some analytic handle on it, yet sufficalled “diffraction in time” effect, and which overlap with
ciently rich to demonstrate interesting features of this systhe bound-state wave function.
tem. The assumption of a-type coupling indeed greatly In the infinite-time limit, however, it is possible get an
simplified the solution of the problem, while still keeping the analytical expression for the spectral distribution of the out-
main feature of leading to a coupling between the trap eigengoing atoms. In the strong-coupling limit, and for a steep
states mediated by the continuum. This coupling has remarkrapping potential, the outgoing atomic beam exhibits re-
able effects in the strong-coupling limit, leading to clear sig-markable features, for large times: it is quasimonochromatic,
natures of dressed energies in the infinite-time spectradnd it displays antibunching. It is interesting to remark that
distribution of the output beam. The same kind of coupling isthe combination of these two features is highly desirable,
present in the bosonic case, albeit its effects are less dramatidthough hard to achieve, in light beams. Indeed, the genera-
if only the ground state is initially populate@vhich is the tion of low-noise laser light has been an intense field of
situation when the temperature is zero research[51], since the first experimental observations of
A peculiar characteristic of the system here consideredantibunching52] and sub-Poissonian statistics3]. For the
also present in one-dimensional single-mode boson modelfsrmionic beams considered here, antibunching comes out
is the presence of a bound mode of the coupled system, fauite naturally. On the other hand, we have shown that, un-
any value of the coupling constant. This implies a nonMark-der certain conditions, it is also possible to get here, in the
ovian behavior of this system, and has two important conseinfinite-time limit, a quasimonochromatic spectral distribu-

FIG. 5. Normalized spectral distributigibjb,)/d of the outgo-
ing bosonic beam, for a harmonic potential, wheris the ground-
state width, for different coupling strength&@) 6'=0.1; (b) &’

023615-13
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FIG. 6. Normalized spectral distributidib.b,)/L of the outgo- Y 2 4 6 8 10
ing fermionic beam, for an infinite-box potential of lendthin the R :
strong-coupling regime §=100), for the renormalized time ) ) )
=#t/2ML2 equal to(a) r=0.5, (b) 7=2, (c) 7="5. Forr=10 one FIG. 7. Normalized second-order correlation function of the out-

put fermionic beam as a function of the dimensionless poskion
(a) Harmonic oscillator R=x/d, d being the ground-state width
tion, in spite of the large number of occupied energy levels in(b) infinite-box potential R=x/L, L being the box length The

X . i ' _ 2
the trap. This could be especially helpful for some applica_dlmensmnless timer, defined asr=#t/2ML“ for the box and as

tions recently envisaged for fermionic atomic beams, like 7=2ht/Md? for the harmonic oscillator, is taken equal to 10. The

for i he d | £l . . ; full-line curves(shown in detail in the insetsorrespond tos, &’
or instance, the development of low-noise atomic interfer-_ 100, while the dotted curves correspondit@’ =0.1. Anticorre-

recovers the infinite-time spectral distribution displayed in Fig).2

0meters_[54]. o o . . . lation is clearly exhibited in all cases.
The investigation of more realistic situations, including,
for instance, the presence of a gravitational field, will be the o 1
object of further consideration. _
7 col{ 7z) = Zm;x ey (A2)
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APPENDIX A: SUM FOR THE INFINITE BOX s=> - > . (A4)
m=1 22—m2 m=1(even) Zz—m2
In this appendix, we calculate the sum in Eg§9).
From Ref.[55] we have the following result: Setting in the second sum=2n, we may write
1 <[ 1 1| < 1 - 1
cot(mz)= -+ — Al == - —_—
 col(72) z mE:l z—-m z+m/’ (AL) S 2 m;x 22_m? n;m 22— (2n)2 ' (AS)
so that so that, from Eq(A2),
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m[cot(wz) cot(wz/2) 1 & (@2my 1
=5 — : (A6) S= . (B4)
z z Jmrd? m=0 22M(m!)? z+m
Since . .
Let us consider now the functioM(z)=\#I'(z)/T(z
1 X X +1/2), and prove thaS=M/(z). The functionM(2) is a
cotx) =3 CO[(E —ta"<§ (A7) meromorphic function, with poles on the nonpositive inte-
gers in the complex plang=—-m, m=0,1,2,3. ... There-
we finally obtain fore, we may write[56]
- 1 7 tan(wz/2) ~ Re§M(z),—m]
. M(z)= _— . B5
mzlE(odd) 2-m> 4 z 7 (A8) @ ”‘Z:O z+m ®9
which leads to Eq(74). The residues in the above equation are given by
Also, lettingz—iz, we get
’ ’ L (@)
- 1 tanh(nzf2) o) ResM(2),—m]= lim (z+m)x ey
m=1(odd) Z2+m? 4 z ’
_ Vm(=yn
which when applied to Eq39) leads to Eq(40). - mIT(—m+1/2)° (B6)
APPENDIX B: SUM FOR THE HARMONIC OSCILLATOR We use now that
In this appendix, we evaluate the sum in Etp). We start o
by proving the identity 1 sin 5 —mm |I(m+1/2)
. = : (B7)
- ean(@)F_ 1 Vel @) T'(1/2=m) ™
i ztm g2 T(z+1/2)°

(2m)IT(1/2)

+ =
Mim+ 1=

, B8
wherel’(2) is the Gamma functiord= JA/Mwy is the width (B8)

of the ground state of the harmonic oscillator, and, from Eq.
(45), andI'(1/2)= /=, and replace Eqs$B6), (B7), and(B8) into
Eq. (B5), obtaining finally

8

®2m(0)=

1 1/4 1
ﬁ) im0 82 @ (et 1 ®9)

[(z+1/2)  #=0 22M(m1)2 z+m’

3

whereH ,(x) is the Hermite polynomial of order, with (see

Ref.[46], p. 777 which proves the desired identity.
It follows then immediately that

o (2m)!
Hom(0)=(—1) m (B3) . , )
' > loom(0)[2 1 T(L/A+ u/2a)
Replacing these two last expressions into Ejl), we Mm=0 m+1/4+(u?2wy) 9 T(3/4+ u?2wy)
obtain (B10)
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