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Rotating spin-1 bosons in the lowest Landau level
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We present results for the ground states of a system of spin-1 bosons in a rotating trap. We focus on the
dilute, weakly interacting regime, and restrict the bosons to the quantum states in the lowest Landau level
~LLL ! in the plane~disk!, sphere, or torus geometries. We map out parts of the zero-temperature phase
diagram, using both exact quantum ground states and LLL mean-field configurations. For the case of a
spin-independent interaction we present exact quantum ground states at angular momentumL<N. For general
values of the interaction parameters, we present mean-field studies of general ground states at slow rotation and
of lattices of vortices and skyrmions at higher rotation rates. Finally, we discuss quantum Hall liquid states at
ultrahigh rotation.
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I. INTRODUCTION

In recent years, there has been considerable progre
the art of manipulating cold atoms. By varying experimen
conditions, a number of quantum states of atomic ma
have been realized. In these developments, an exciting th
is the parallel between these states of atomic matter
states of electronic or vortex matter that have been stu
before. Two important recent advances are the study ofspin-
full bosons in optical trapsand the analysis ofbosons in
rotating traps.

Optical traps liberate the~hyperfine! spin degree of free-
dom of spin-full atoms, as there is no polarizing magne
field. This allows a variety of new phenomena, such as sk
mions, monopoles, andp disclinations. There are two differ
ent regimes, depending on the sign of the spin-depen
interactionc2. If this interaction is repulsive (c2.0), the
system tends to minimize the total spin and we speak of
antiferromagnetic or ‘‘polar’’ regime. If, on the other han
the interaction is attractive (c2,0) the system will tend to
maximize the total spin. This is the ferromagnetic regim
Examples of such systems are spin-1 Bose-Einstein con
sates~BEC! which can be realized by trapping atoms such
87Rb (c2,0) @1,2# and 23Na (c2.0) @3#. In both cases, the
ratio g5c2 /c0 of the spin-dependent (c2) and the spin-
independent (c0) parts of the~contact! interaction is small,
typically a few percent,ugu'0.0120.05.

Rotating the bosons within the trap leads to the format
of quantum ground states with a certain amount of vortic
stored in the system. Upon increasing the rotation rate
single-component~scalar! condensate with a repulsive inte
action goes through the following stages:~i! the nucleation
of a single vortex and~ii ! the formation of a triangular~Abri-
kosov! lattice of vortices. Theoretical analysis predicts th
this will be followed by~iii !, a quantum melting of the lattice
and the formation of~a series of! quantum liquids, where the
vorticity is spread uniformly over the system. In the presen
of internal degrees of freedom, such as those associated
the spin states of spin-1 atoms, a similar sequence of q
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tum ground states is expected, with additional structure p
vided by the internal~spin! degrees of freedom and by th
presence of additional parameters such asg.

In this paper we study the ground states of spin-1 atom
a rotating harmonic trap, focusing on situations where a tr
cation to the lowest Landau level~LLL ! can be justified. We
consider generic values ofg in the repulsive regimec0.0,
and also focus on the special caseg50, where the interac-
tion has an SU~3! symmetry @4#. Before we come to the
details of our analysis, we briefly summarize some of
results in the literature for rotating bosons, with either
single component~scalar case! or several components, suc
as spin 1~vector case!. Much of this work is based on the
restriction to the LLL.

A. Nonrotating condensates and topological excitations

The case of vector BEC without rotation has been inv
tigated, most often by mean-field theory using the spin
Gross-Pitaevskii equations, or with the further approximat
of neglecting the kinetic-energy term~the Thomas-Fermi ap
proximation!. There are two regimes@5#, as mentioned al-
ready. In the ferromagnetic regimec2,0, the ground state
has maximum possible spin,S5N. Such a spin state can b
constructed by condensing all the bosons into a sing
particle state withSz511 or as a spin rotation of this. In th
opposite antiferromagnetic regime,c2.0, the ground state
has minimal spin. Such a spin state can be constructed
condensing all the bosons in the sameSz50 single-particle
spin state or by taking a spin rotation of this~notice that this
is distinct from all of the ferromagnetic states!. This polar
state breaks spin-rotation symmetry, even though the ex
tation value of the total spin, or of the spin density, is ve
close to zero. The distinct ordered states, which can
mapped onto each other by the~broken! symmetries of spin
rotation and phase rotation, are labeled by points in an or
parameter manifold~or target space!. For the ferromagnetic
case, this manifold is SO~3! @5#, while for the antiferromag-
netic or polar case it isS13S2/Z2 @5,6#. These ordered state
©2004 The American Physical Society12-1
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possess excitations that can be described as topologica
fects in the order, either with a singularity at a point s
rounded by a ‘‘core’’ or without a singularity at all. We de
scribe these in more detail in the Appendix, but those t
carry nonzero vorticity are relevant to the rotating ca
which we discuss next.

B. Slow rotation: Vortices and skyrmions

If the number of bosons in a rotating trap is sufficien
large, the effect of slow rotation can be studied in a me
field framework. For a single species of bosons with rep
sive interactions, the rotation is accommodated through
creation of singular vortices, with vanishing particle dens
at the vortex cores. As the rotation rate is increased fr
zero, there is a critical frequency at which a single vor
first appears in the system, followed by additional vortices
still higher rotation. With a spin degree of freedom, the s
tem has several components in which to store the ang
momentum. There is the possibility that a vortex core for o
spin component is filled by another spin component, lead
to coreless vortices or ‘‘skyrmions.’’ In such configuration
the total particle density is nowhere zero, and there i
smooth spin texture. Mean-field states of this type for ro
ing spin-1 bosons have been investigated theoretically
solving the spin-full Gross-Pitaevskii~GP! equations@7–10#.
For attractive interactions, in contrast, the BEC remains i
compact blob, without any vortices, all the way up to t
maximum rotation frequency~the trap frequency!.

C. Lattices of vortices and skyrmions

When several vortices are present in a rotating scalar
son condensate with repulsive interactions, they line up
triangular ~Abrikosov! vortex lattice @11,12#. In a vector
BEC one expects to find similar lattices, built from the co
less vortices just described. The details of all this dep
crucially on the relative strengthg5c2 /c0 of the spin-
dependent interaction. Forg50, where the SU~3! symmetry
between the different spin components is not broken,
lattice that is expected upon rotation is composed of th
intertwined triangular lattices. The vortex cores do not ov
lap, so that the density is~almost! uniform. This lattice has
been shown to be independent of the strength of the inte
tion by Kita et al. @13#. The vortex lattice shows a rich phas
diagram, however, when the interaction is spin-depend
For a range of positive values ofg, a square lattice com
posed ofp disclinations has been predicted@13#.

D. Scalar boson quantum liquids

As the rotation increases, quantum fluctuations beco
more and more important and beyond a critical rotation r
the vortex lattice is expected to melt. The resulting state
matter is disordered, and it has a large amount of vortic
stored in it. In this regime, a number of quantum liquid sta
have been proposed. Based on the analogy with the phy
of electrons in a strong perpendicular magnetic field in t
dimensions~2D!, the boson quantum liquid states can
characterized as fractional quantum Hall liquids.
02361
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An extensive study of the transition to this regime w
conducted by Cooper, Wilkin, and Gunn@14#, who per-
formed exact diagonalization studies in the LLL in a toroid
geometry. They predicted that the vortex lattice melts int
quantum disordered phase at a critical valuenc.6 –10 of the
filling factor n5N/Nv , with Nv the number of vortices and
N the number of bosons. They also found that the quan
state is incompressible atn5k/2,nc , with k50,1,2, . . . ,
and observed that the ground states atn5k/2 have substan-
tial overlaps with the Read-Rezayi~RR! quantum Hall states
@15#.

The RR states are incompressible quantum Hall flui
The special casek51 is the Laughlin state@16# for bosons at
n51/2, while thek52 state is the Moore-Read ‘‘Pfaffian
state @17#. The RR quantum Hall states possess a spec
‘‘order-k’’ clustering property: there is a so-called composit
boson order parameter@18,19#, an operator that createsk
bosons, and two vortices, and is the minimal order param
~the one that creates the smallest number of bosons! that has
long-range~‘‘off-diagonal’’ ! order. Such order implies tha
the quasiparticles over these liquids are~quantized! vortices
in the liquid, carrying fractional vorticity 1/k, analogous to a
fractional magnetic fluxF/F0 that occurs in certain quan
tum Hall states in electronic systems. In quantum Hall l
uids, the Hall conductivity implies a fundamental quasipa
cle charge q56nF/F0 in units of the charge of the
electron. In the context of neutral bosons in a rotating tr
the same argument implies that a fractional particle num
(q561/2 for the RR states! is present in the quasiparticle
relative to the background density. Furthermore, fork.1
there are nonlocal degrees of freedom associated with t
quasiparticles, that is, the ground states with more than th
quasiparticles are degenerate in the limit where all the se
rations go to infinity. As these degrees of freedom are o
nonlocal, topological nature, they do not couple to loc
probes and the degeneracy is protected in the large sep
tion limit. For the casek52 there is an interpretation in
terms of a Majorana fermion in each vortex core@20#. Fur-
ther evidence for the appearance of the Moore-Read s
was recently provided by Regnault and Jolicoeur@21#, who
observed the low-lying two-particle branch in numeric
simulations, upon adding one flux quantum in a spheri
geometry. They also found evidence for other quantum H
states not in the RR series.

E. Outline

In previous work@4# we analyzed spin-1 bosons in th
LLL. We identified attractive and repulsive regimes in th
c0-c2 plane, and proposed and analyzed two series of c
tered quantum Hall states@labeled SU(4)k and SO(5)k],
analogous to the RR states, for spin-1 bosons in a rap
rotating trap. We identified the exact ground state forN
spin-1 bosons on the disk with one unit of angular mom
tum per particle, the boson-triplet condensate~BTC!.

In this paper we provide further results on the phase d
gram for spin-1 bosons in the LLL. Employing the SU~3!
symmetry, we discuss how in a slowly rotating system w
c250 the exact quantum ground state evolves from the n
2-2
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ROTATING SPIN-1 BOSONS IN THE LOWEST LANDAU LEVEL PHYSICAL REVIEW A69, 023612 ~2004!
rotating one towards the BTC at angular momentumL5N,
and we compute the ground-state angular momentumL(v)
as a function of the rotation frequencyv. Using LLL-mean-
field theory, we extend the results for slow rotation toc2
Þ0, and discuss the various skyrmion lattices. Furtherm
the two series of quantum Hall states are discussed in d
and we supplement them with a third series.

This paper is organized as follows. In Sec. II we defi
the model by discussing LLL truncation in a disk, sphere,
torus geometry, specifying the interaction Hamiltonian, a
make remarks on the general symmetry properties for l
use. In Sec. III, we study the phase diagram by direct
merical diagonalization. In Sec. IV exact quantum groun
state wave functions and energies for a slowly rotating~an-
gular momentumL<N) system in thec250 limit are
presented. For nonzeroc2, we use a LLL mean-field treat
ment to study the slowly rotating system~in Sec. V! and the
various skyrmion and vortex lattices~in Sec. VI!. In Sec. VII
we discuss the quantum Hall states at ultrahigh rotation
an appendix we discuss the topological classification of
fects.

II. LLL MODEL HAMILTONIAN AND ITS SYMMETRY

In this section we describe the truncation of the space
single-particle states to those in the LLL, and then expl
the use of different geometries~sphere, torus! once this trun-
cation has been made. Then we give the form of the inte
tion Hamiltonian that will be assumed, and some analysis
the symmetries of the model, with particular reference
certain limits and different geometries.

A. Truncation to the lowest Landau level

In a rotating frame of reference the Hamiltonian forN
trapped, weakly interacting spin-1 bosons is

H5(
i

N Fv0

2
~2¹W i

21r i
2!2vW •LW i G1H int . ~1!

HerevW is the frequency of the rotation drive,LW i the angular
momentum of thei th particle, andH int the interaction Hamil-
tonian, which we discuss below. We have set\ and the
harmonic-oscillator lengthl[(\/mbv0)1/2 of the trap~with
v0 the trap frequency andmb the boson mass! equal to one.
Modes in the direction of the rotation axis are frozen o
leaving us effectively with a two-dimensional~2D! system.
The energy eigenvalues of the single-particle part of
Hamiltonian are thenEn,m5(2n1m11)v02mv, with n
>0 the Landau level index andm>2n the z component of
angular momentum, labeling the states within each Lan
level.

We consider the model in which the single-particle sta
are restricted to the (n50) LLL @29#. This is valid when the
interactions are sufficiently weak, as we will explain mome
tarily. The normalized LLL wave functions arefm(z) za

with the orbital partfm(z)}zme2uzu2/2 (z5x1 iy), andza a
three-component complex vector representing the spin s
herea labels the eigenstates of thez component of the spin
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Sz for each particle,a5↑,0,↓. ~Later in the paper it will be
convenient also to use the basis of Cartesian component
spin 1, labeled bym5x,y,z.! When we use second quantiz
tion, we will denote the boson creation and annihilation o
erators for these single-particle states bybma

† ,bma , and the
corresponding occupation numbers bynma[bma

† bma . Also,
we sometimes use the field operatorca(z)5(mbmafm(z).
The single-particle contributions to the Hamiltonian add
to (v02v)L, with L5( iLzi thez component of total angu
lar momentum. We will refer to this geometry as the disk
view of the form of the fluid states~for repulsive interac-
tions! which tend to form a disk or ‘‘pancake,’’ because
the centrifugal force. Note that we must havev<v0, other-
wise the system becomes unstable.

To study the bulk properties of the quantum ground sta
we will eliminate boundary effects by using instead tw
other geometries and taking the limitv→v0. In a spherical
geometry @22#, the orbital part of the LLL single-particle
wave functions isfm(z)}zm/@11(uzu/2R)2#11Nv/2, wherez
represents position on the sphere by stereographic projec
to the plane, andR is the radius of the sphere. The number
orbitals is restricted by the vorticityNv penetrating the
sphere, 0<m<Nv . The Nv11 single-particle orbitals form
a representation of orbital angular momentum equal toNv/2,
see Ref.@22#. In the limit R→`, keepingNv /R2, N and z
constant, the single-particle wave functions on the sph
reduce to those for the disc as above. The total angular
mentum on the sphere is characterized by quantum num
L̃ for the magnitude, andL̃z for thez component. In terms of
L which has eigenvaluesL5( imi as before,L̃z5

1
2 NNv

2L. We emphasize that our definition ofL when used for the
sphere does not have its usual meaning, but is related to
z component in such a way that theNv→` limit agrees with
the plane.

The final geometry we use is the torus. Here the sing
particle wave functions take the formf(z)} f (z)e2y2

in the
Landau gauge, withf a quasiperiodic holomorphic function
With Nv flux quanta,f hasNv zeros in the unit cell. There ar
exactly Nv independent solutions, of the formf (z)
5) i 51

Nv q1(z2zi ut), with t describing the geometry of th
unit cell andzi the zeros off. The use ofq functions ensures
that f is periodic. Many-body states can be classified
their Haldane momentum@23#.

B. Interaction Hamiltonian

In a model description, the Hamiltonian describing t
two-body interactions of a system ofN spin-1 bosons is a
contact interaction, and contains spin-independent (Hn) and
spin-dependent (Hs) terms, of strengthsc0 and c2, respec-
tively,

H int5Hn1Hs52p(
i , j

N

d (2)~r i2r j !@c01c2SW i•SW j #. ~2!

Here c05(g012g2)/3, c25(g22g0)/3, gS54p\2aS /mb ,
andaS (S50, 2) the 2Ds-wave scattering phase shift in th
spin-S channel@5,24#. A factor 2p has been extracted fo
2-3
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later convenience. One can obtain these parameters by
grating over the third direction. Assuming, for example, h
monic confinement with quantum lengthl' in thez direction,
one findsaS

2D5aS
3D/A2p l' when l'! l . For the sphere, the

coordinatesr in this Hamiltonian take values on the surfa
of the sphere, with radiusR.

The use of the LLL reduced Hamiltonian is justified wh
the interactions are weak. Physical quantities evaluated in
full model differ from those in the LLL model by relatively
small corrections whenncS!2v0. Heren is the typical fill-
ing factor ~expectation of the occupation numbers, summ
over a or m) of the single-particle states. Notice that th
condition becomes much less stringent asv→v0 in the re-
pulsive regime, as then the particles spread out into a p
cake and the filling factorn becomes of order 1.

Finally, the LLL Hamiltonian in the rotating frame whic
we wish to analyze is

Hv5~v02v!L1H int . ~3!

Note that we use precisely this definition in the case of
sphere as well as for the disk. It will be useful also to kno
the ground states ofH int for eachL.

C. SU„3… symmetry analysis for c2Ä0

In general, the only symmetry in spin space of the Ham
toniansH int and Hv is spin-rotation symmetry SO(3)spin.
This implies that spin states will come in multiplets of spinS
with degeneracy 2S11 ~with S integer since the particle
have spin 1!. However, atc250, the interaction Hamiltonian
reduces to the spin-independent interactionHn . In this case
the spin-rotation symmetry is enlarged from SO(3)spin to
SU(3)spin. It will be useful to understand what this implie
about the spin multiplets in a finite-size system.

For c250, the spectrum will contain degenerate sp
multiplets labeled by SU~3!-quantum numbers (p,q). These
tuples are the Dynkin indices labeling irreducible repres
tations of dimension dim(p,q)5

1
2 (p11)(q11)(p1q12).

Since SO~3! is embedded in SU~3!, each multiplet can be
decomposed into a set of SO~3! multiplets. These SO~3! spin
quantum numbers can be deduced by using branching r
for SU(3)°SO(3). Thefundamental branching rule state
that a (p,0) or (0,p) multiplet contains S5p,p22,p
24, . . . , 1 (0) forp odd ~even!. Using the fusion rule

~p,0! ^ ~0,q!5~p,q! % ~p21,q21! % •••% ~p2q,0!, ~4!

which is valid forp>q, general branching rules can be d
rived. A multiplet (p,q) with q odd andp>q decomposes in
SO~3! multiplets with highest weightsS according to the
branching rule

~p,q! ° %
i 50

(q21)/2

%
S52i 11

p1q22i

S. ~5!

For q even we find

~p,q!°S %
i 50

(q22)/2

%
S52i 11

p1q22i

SD % S %
j 5(q11)/2

(p/2)

2 j D , p odd,

~6!
02361
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~p,q!°S %
i 50

(q22)/2

%
S52i 12

p1q22i

SD % S %
j 50

(p/2)

2 j D , p even. ~7!

Note that the highest SO~3! spin in an SU~3! multiplet (p,q)
is alwaysS5p1q, and the lowestS50 or 1.

D. Orbital symmetry in spherical geometry

In the plane geometry,H int is invariant under translation
and rotations in the plane. When working on the sphere,
symmetry group is replaced by the rotation group SO(3orb
@strictly, we should say SU(2)orb wheneverNv is odd# of the
sphere. In the limitR→` described above, this symmetr
becomes translations and rotations of the plane. When ta
this limit, we also holdL fixed, and hence many-particl
states of definite SO(3)orb quantum numbers (L̃,L̃z) become
in the limit infinite-dimensional multiplets of the Euclidea
group of the plane. States within each multiplet differ only
the state of the center-of-mass variable~which has coordinate
zc5( izi /N). Thus, if cL is an eigenfunction ofH int at cer-
tain angular momentumL, then there exists a whole ‘‘tower’

of statescL1L8}zc
L8cL with the same interaction energy a

angular momentumL1L8.
We remark that in situations where only a few quantu

orbitals are available to the bosons, the spectrum is larg
determined by symmetry considerations. Particular exam
are the spectrum forNv52 on the sphere, where the exa
N-body energies are given in terms of Casimir invariants
the orbital and spin symmetries@see Eq.~10! below#, and the
case withNv54 on the torus, where the topological dege
eracy, Eq.~25!, below pertaining to particular quantum liqui
states is recovered from the SU~3! spin symmetry.

III. MAIN FEATURES OF THE PHASE DIAGRAM

In this section we make a first pass through the ph
diagram with numerical results on moderate sizes. First
consider the ground states ofH int in the disk geometry for
eachL, then use this to find the ground states ofHv as a
function of v. All this has to be done for general values
c0 , c2.

A. Global structure of the phase diagram

First we point out that the magnitude (c0
21c2

2)1/2 only sets
the overall energy scale, so it can be divided out. Thus
phase diagram can be thought of as a circle, in which a p
on the circle represents a ray in thec0-c2 plane. We wish to
examine this for eachL or later for eachv. In Fig. 1 the
c0-c2 plane is shown with certain special directions (c0
50, c250, g050, g250) that will be important picked ou
later.

For L50, the ground state has total spinS5N for c2
,0 ~ferro regime! and S50 (1) for N even ~odd! for c2
.0 ~antiferro regime!. These states are the way that the b
ken symmetry states described in Sec. I~the ferromagnetic
and polar states, respectively! appear in a finite-size study
For c250, there is a single SU~3! multiplet of spin states,
decomposing into one SO~3! multiplet of each spinS5N,
2-4
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N22, . . . . Thetransition atc250 can thus be viewed a
levels crossing, with a larger degeneracy on the linec250.
As L increases, these two phases atc2Þ0 survive in part of
the phase diagram, as compact drops of fluid, with the ce
of mass carrying all the angular momentum. Meanwhile,
positive c0 axis gradually opens into a region that conta
other phases. By the timeL is >N, thec0-c2 plane contains
the three regions labeled I-A, I-B, and II in Fig. 1.

The ground states in regions I-A and I-B are similar to t
one in the ‘‘attractive’’ regime in the scalar case@25#. The
orbital part of the ground-state wave function is of the fo
C̃(zi)}zc

L . In region I-A (c0,0, c2.0), the spin state is
the same spin singlet as for theL50 ground state, and th
energy @26# becomes@c0N(N21)/22Nc2#. In region I-B
(c2,0, c0,2c2), the spin state is ferro,S5N, giving en-
ergy@25# (c01c2)N(N21)/2,0. At c250, c0,0, the spin
states again form the SU~3! multiplet. In the remaining ‘‘re-
pulsive’’ region II, the ground state is in general not a co
mon eigenstate of thec0 andc2 parts of the interaction, and
the ground-state energy depends nonlinearly on the ratg
5c2 /c0. Note that we have now located the repulsive reg
more precisely than in our previous characterization o
simply asc0.0. Most of the following analysis focuses o
region II only, which can be parametrized byg5c2 /c0
alone.

B. Finite-size results in region II as a function ofv

In Fig. 2 we show the ground-state quantum numb
(L,S) in region II for N56 bosons as a function of th
rotation frequencyv. As the phase diagram for eachv is a
circle ~which in region II can be parametrized byg5c2 /c0
or by f5arctang), we are free to plotv radially. The pa-
rameters are shown in units ofv0 and with c050.25, but
notice that the ground-state quantum numbers can only
pend on the dimensionless ratios of energies (v02v)/c0,
and c2 /c0, so that the structure shown is actually pres
~though with the radial variable rescaled and shifted! for all
parameter values~unlessc0 is too large!. The dashed rays ar
the lines c252c0 , c250 and c25c0/2, and the outer
dashed circle is the locus ofv5v0. The ground-state angu
lar momentumL and spinsSat c250 and as a function ofv

FIG. 1. Overview ofc0-c2 plane, with special regions and d
rections marked.
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are shown in the inset. The degenerate spin values atL<N
are seen to correspond to the following irreducible SU~3!
multiplets: (p,q)5(6,0) for L50, (p,q)5(4,1) for L51,
(p,q)5(2,2) for L52, (p,q)5(1,1) for L53, and (p,q)
5(0,0) for L56. Note also that forc2,0, c0.2c2 the

FIG. 2. Ground-state quantum numbers (L,S) in region II for
N56 spin-1 particles in the planar~disk! geometry, as a function o
the driving frequencyv ~plotted radially! and the ratiog @corre-
sponding to the anglef5arctan(g) with respect to the horizonta
axis#. The special directionsg250, c250, g050 are shown as
double-dotted radial lines. The inset shows a cut along thec250
direction, with the angular momentum given on the vertical a
and the~degenerate! spin valuesS marked at each of the steps. I
this figure, the parametersc0 , c2, andv are in units ofv0, and the
valuec050.25 is used in the main figure as well as in the inset. F
additional discussion, see the main text.
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ground-state spin gradually decreases fromS56 at v50 to
S50.

IV. SLOW ROTATION: EXACT GROUND STATES
AT c2Ä0, LÏN

For larger sizes, a brute-force numerical approach is
feasible, so we develop other approaches. In this section
determine the exact ground-state energies and wave f
tions for slow rotation~angular momentum up to the boso
number,L<N), for c0.0 andc250, exploiting the SU~3!
symmetry described in Sec. II. Some of the ground states
find were described in Ref.@27#. We analyze a system ofN
spin-1 bosons in spherical geometry withNv quanta of vor-
ticity, with the disc geometry emerging as the limitNv
→`. We remark that forN sufficiently large, it becomes
natural to discuss low-energy properties in terms of me
field configurations that break the various symmetries
whose energy is slightly higher than that of the exact qu
tum ground state; this will be discussed in Sec. V.

A. Exact eigenstates ofH n

The ground-state spectrum forc250 and L<N can be
understood by exploiting the SU~3! symmetry of the Hamil-
tonianHn . In our analysis we proceed as follows. We co
sider two series of eigenstates ofHn , in which ~roughly
speaking! the bosons occupy at most the lowest three or
als. Among these eigenstates, we identify the exact quan
ground-states on the disc and the sphere, as a function o
angular momentum. This then allows us to compute thev
dependence of the ground state angular momentum for
eral N at c250.

We write the first series of eigenstates asup,q,n& I. These
states contain doublets and triplets of spin-1 bosons tha
fully antisymmetric in spin indices and in the orbital indic
~guaranteeing the overall symmetry that is required!. The
different numbers of single bosons, doublets, and triplets
respond uniquely to the values ofN and the quantum num
bers (p,q) of the corresponding SU~3! multiplets. The trip-
lets, which appearn times, are singlets under SU~3!, and so
do not affect the overall SU~3! representation. The highes
spin component (Sz5p1q) of the corresponding SU~3!
multiplet takes the following form~up to normalization!:

up,q,n& I }@eW1•BW ↑
†#p@eW2•~BW ↑

†3BW 0
†!#q@BW 0

†
•~BW ↑

†3BW ↓
†!#nu0&,

~8!

with eW15(1,0,0), eW25(0,0,1), andBW a
†5(b0,a

† ,b1,a
† ,b2,a

† ).
Clearly, the total number of bosons isN5p12q13n. The
energies corresponding to Eq.~8! are

Ep,q,n
I /c05a1

Nvn~n21!1a2
Nvq~q21!1 1

2 p~p21!1a3
Nvnp

1 3
2 qp1a4

Nvnq, ~9!

with

a1
Nv53

11Nv
2220Nv16

4~2Nv23!~2Nv21!
, a2

Nv5
5Nv22

2~2Nv21!
,
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a3
Nv5

7Nv24

2~2Nv21!
, a4

Nv5
5a2

Nv

2
.

This energy is for spherical geometry, and it depends on
numberNv of flux quanta. ForNv→`, Eq. ~9! gives the
energy in a disc geometry;Nv52 gives the energy on a
sphere with three orbitals. On the basis of exact diagonal
tion studies forN56,9,12,15,18 particles, where we hav
seen that only them50,1,2 orbitals acquire a nonzero de
sity, we claim that on the disc forL<N/2, the ground-state
multiplet is preciselyup,q,0& I, with p5N22L, q5L.

On the sphere withNv52, we have obtained a muc
stronger result@28#, namely, a closed form result forall ei-
genvalues ofHn . It turns out that these energies can be giv
in terms of the numberN of bosons, the total angular mo
mentumL̃, and the (p,q) labels of the SU~3! representation,
according to

Ep,q
Nv52/c05 5

18 N~N21!1 1
6 Tp,q

2 1 1
6 L̃~ L̃11!, ~10!

where Tp,q
2 5(p21q21pq)/31p1q is the quadratic Ca-

simir operator for SU~3! in the representation (p,q). Spe-
cializing this expression to the states in series I, by elimin
ing N in favor of n and using the fact thatL̃5p1q,
reproduces the result in Eq.~9! for Nv52.

Analyzing the ground state on the disc forL.N/2, we
identified a second series of statesup,q,n& II . One can think
of the type-II states as having thep single bosons inm51
rather thanm50, so that noweW15(0,1,0). That is not quite
correct for the energy eigenstates, as we will explain bel
but it does give the correct quantum numbers. The state
series I, II share the property of havingp single bosons andq
doublets, leading to SU~3! Dynkin labels (p,q). It may be
illuminating to display the structure of the states in terms
diagrams similar to Young tableaux as in Fig. 3. For t
orbital structure of the highest-weight states in either seri
or II, the lengths of the three rows represent the numbe
bosons in the orbitalsm50,1,2, respectively~in the rough
point of view, which will be corrected below!, while the
differencesp, q, andn in the lengths correspond to the SU~3!
structure. Essentially, these diagrams are ordinary Young
leaux for the states, but with the first two rows exchanged
the case of series II.

For the case of the type-II states, the following correcti
must be made to obtain the energy eigenstates. In the ca
scalar bosons, it is known@29–31# that the ground-state con
figuration atL5p of p bosons is a vortex located at the
center of mass, with wave function) i(zi2zc) with zc

FIG. 3. The structure of the two different series of eigenstate
Hn , displayed in a form similar to Young tableaux. In both cas
the corresponding SU~3! representation has Dynkin labels (p,q).
2-6
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5(izi /p. This state is not entirely restricted to them51 or-
bital, as there are components in which other orbitals in
range 0<m<p are occupied as well. Thep bosons in the
stateup,q,n& II form such a vortex. This complication make
it difficult to write down the closed form expression for th
states in series II; based on numerical analysis for smaN
and mean-field results for largeN ~see Sec. V!, we do pro-
pose the following closed form expression for the cor
sponding energy on the disk:

Ep,q,n
II /c05 33

16 n~n21!1 5
4 q~q21!1 1

4 p~p22!1 25
8 nq

1 11
8 np1qp. ~11!

Note that thep-independent terms in this formula are iden
cal to those for type-I states withNv5`. The stateup,0,0& II ,
has energyp(p22)/4, which is exactly the ground-state e
ergy of a rotating scalar BEC atL5p5N. This justifies the
interpretation of the polarized subsystem withp bosons
forming a vortex at the center of mass. However, it turns
that up,0,0& II will never be the lowest-energy configuratio
for a rotating spin-1 system.

Among the type-I/-II states the following are specia
First, up,0,0& I is the nonrotating ground state, correspond
to the (p,0) multiplet. Second,u0,q,0& gives a wave function
composed of antisymmetrized pairs of bosons, a bos
doublet condensate~BDC! or (0,q) multiplet. Third, u0,0,n&
is composed of three-body singlets. It is a condensate
triplets or boson-triplet condensate@4# ~BTC!; we shall see
that it forms the ground state atL53n5N. The BTC state
can be regarded as a symmetrized version of the core
vortices observed in mean-field studies~see Sec. V for more
on this!.

More generally, the type-I/-II states are examples
‘‘ ~multi! fragmented’’ condensates@32#, see also Ref.@26#, in
the sense that they contain several macroscopically occu
elements in the density matrix. For instance, for the BTC a
for ~any component of! the BDC state we havênma&BDC
5(12dm,2)(12da↓)q/2, ^nma&BTC5n/3. Since the spin is
fixed in these states, (Dna)2[^(na2^na&)2&50, wherena
5(m50,1,2nma . However, within each spin component, th
fluctuations of the boson number between orbitals is of
order of the system size: (Dnma)BDC

2 5q(q12)/12,
(Dnma)BTC

2 5n(n13)/18. This is an indication that, as in th
case of the singlet ground state atL50 in the antiferromag-
netic regime and the related polar mean-field state@26#, it
may be best to think of these states as broken symm
states@33#. That is the approach we will take in Sec. V.

B. Exact ground states atc2Ä0 as a function ofL or v

The ground state of a rotating gas withN spin-1 bosons in
the LLL and a spin-independent (c250) interaction is
formed by a sequence of type-I or -II states lying on a cert
path in (p,q) space asL increases. To find the ground state
a rotating frame of reference, we need to find the grou
state ofHv , Eq.~3!, instead. Since this Hamiltonian contain
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only two energy scales, the ground-state angular momen
per particleL/N can be written as a function of the rati
(v2v0)/(Nc0). For finite boson number this function con
sists of a sequence of steps, as can be seen in Fig. 2. It
out that~thanks to our judicious choices of factors ofN) the
limit N→` with L/N and (v2v0)/(c0N) fixed of this func-
tion exists, and this is the most convenient information
display. In the following we determine the path of the grou
states in (p,q) space as a function ofL, and theL(v)/N
behavior of the ground states in this limit for both the sph
(Nv52) and the disc (Nv5`) in the regimeL/N<1.

1. Ground states on the sphere at NvÄ2

On the sphere, our notion of rotation is such that t
SO(3)orb-angular momentumL̃ decreases as the system r
tates faster and faster. With three orbitals (Nv52) we have
L̃z5N2L ~see Sec. II A!. ~We considerNv52 because this
case can just accommodateL<N.! At L̃5N, we know al-
ready that theuN,0,0& I multiplet forms the ground state. AsL̃
starts to decrease, again a type-I state has the lowest en
the (p,q) path is parametrized by (2L̃2N,N2L̃). Bosons
are gradually added to them51 orbital and form antisym-
metrized pairs with the remaining ones. The point up
which this continues can be found by comparing the energ
of u2L̃2N,N2L̃,0& I and u2L̃2N1t,N2L̃2t,t/3& I. After
minimizing with respect tot this yields the critical SU~3!

indices (p,q)c5(N/3,N/3). At this point, with L̃52N/3,
ground states with a nonzero (n.0) number of triplets be-
come energetically favorable. In the remaining regio
2N/3>L̃>0, type-I states are the ground states followi
the path (p,q)5(L̃/2,L̃/2). Eventually this terminates on th
BTC at L̃50. L/N of the ground state as a function of th
rotation drivev shows a cusp atL̃/N52/3 (L/N51/3), as is
shown in Fig. 4.

FIG. 4. L/N asN→` of the ground state on the disk~bold line!

and on the sphere withNv52 ~dashed line!, as functions ofṽ
5(v2v0)/(c0N) at c250. The horizontal lines mark the value
L/N51/3 and L/N52/3. The cusps in both curves indicate th
point where them52 quantum orbital is first used in the groun
state.
2-7
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2. Ground states on the disk

For a system on the disk (Nv5`), the results are rathe
different. We will again present the ground states in orde
increasing L. At L50, the uN,0,0& I-multiplet forms the
ground state as we know. ForL<N/2 the ground state is
formed by a type I state withn50 and SU~3!-quantum num-
bers (p,q)5(N22L,L). This state terminates on the BD
at L5N/2. In this range, increasingL leads, as on the spher
to more bosons occupying them51 orbital, forming anti-
symmetrized pairs with the ones in them50 orbital. ForL
>N/2, the type-II states have the lowest energy. AsL in-
creases, bosons move from them50 into them51 orbital,
decreasing the number of doublets, and giving type-II sta
at (p,q)5(2L2N,N2L). Comparing the energies o
utN,(12t)N/2,0& II and u(t2s)N,(12t)N/2,sN/3& II , we can
determine the point where it becomes favorable for triplets
enter the ground state. We find a critical angular momen
L5(12tc)N with tc;1/323/N, which approachesL
52N/3 for N large. ForL>2N/3 the number of triplets is
gradually increasing asL grows. Minimizing u2L2N2s,N
2L,s/3& II with respect tos, we find that the ground state i
now the type-II state with s(N,L)53L22N, giving
(p,q,n)5(N2L,N2L,L22N/3). For L5N the ground
state is the BTC withp5q50, n5N/3.

To summarize the above results, for 0<L<N/2 the
ground state is given byuN22L,L,0& I and for N/2<L
<2N/3 by u2L2N,N2L,0& II . In the remaining range 2N/3
<L<N the number of three-body singlets is nonzero, a
the ground state is given byuN2L,N2L,L22N/3& II . Mini-
mizing the energy in a rotating frame of reference leads
the L(v)/N dependence of the ground states forN→`
which is depicted in Fig. 4. In this figure, the curve show
cusp at the point where them52 orbital first enters the
ground-state configuration, which is atL/N52/3 for the disk
with N large. A signature of this cusp in an experimen
system might be a change in the expansion rate~the rate of
change of the outer radius of the drop with respect tov) if
the angular momentum exceeds 2N/3. We shall see that the
cusp survives in the antiferromagnetic regime,c2.0.

It is important to contrast all this with the well-know
behavior of scalar bosons in a rotating trap@25,29#. In the
latter case there is a jump fromL/N50 to L/N51 ~for all
N) when one vortex enters the system, whereas for sp
bosons we find~at N→`) a continuousL(v)/N curve with
a discontinuous slope.

V. SLOW ROTATION: LLL MEAN-FIELD THEORY

At low rotation rates, the typical boson occupation nu
bers ^nma& of the occupied (nmaÞ0) single-particle states
are large compared with 1. In this situation, a mean-field~or
classical! approach to the problem is generally expected
be quantitatively accurate. In such an approach, the bo
operators are replaced by expectation values, which are c
plex c numbers: bma

† →bma* , and the second-quantize
Hamiltonian is then minimized with respect to both the ma
nitude and phase of these numbers to find the ground st
In essence the resulting state is a Bose condensate with
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bosons condensed in one linear combination of the sin
particle states. This typically involves breaking the orbi
and spin symmetries, as well as particle number conse
tion. ~States with definite values of the good quantum nu
bers such asN, S, L can be obtained afterwards by applyin
a projection to the mean-field quantum state@33#.! In the
case of very low rotation, whereL<N, we have seen tha
~neglecting the subtleties that arose for type-II states! the
states essentially involve only them50, 1, and 2 states, so
that the basis set for the mean-field calculation is particula
small. In these cases, the mean occupation numbers o
single-particle states are of orderN, and their energies ex
ceed the exact ground-state energy~which is of orderN2) by
an amount of orderN. We refer to Refs.@34,35# for an ex-
tensive account on mean-field theory for the case of sc
bosons, including the orderN correction related to quantum
fluctuations. In this section we pursue this mean-field cal
lation for this regime. This gives us easy access to the gro
states at largeN for c2Þ0 in region II. In the following
section, we study instead the mean-field states at larger r
tion, which can be assumed to be states in which the tra
lational and rotational symmetry group of the plane is brok
to that of a lattice.

In terms of the complex numbersbma ,bma* , the energy
becomes a quartic polynomial and the ground state can
found by minimizing this polynomial with respect to thes
variables. This is done here with themeanboson number
^N&5(mabma* bma and angular momentum ^L&
5(mambma* bma fixed at the valuesN and L, respectively.
The spin is not constrained at all. Forc250 the Hamiltonian
on the sphere takes the form

Hn5c0(
ab

(
m1•••m4

Vm1m2m3m4
bm1a* bm2b* bm3abm4b ,

~12!

with matrix elements

Vm1•••m4
5

1

2

AS Nv

m1
D S Nv

m2
D S Nv

m3
D S Nv

m4
D

S 2Nv

m31m4
D dm31m4

m11m2. ~13!

This exhibits the dependence on the spatial orbitals. Foc2
Þ0, the matrix elements in the additional term consist
Vm1•••m4

multiplied by matrix elements ofSW i•SW j , which de-

pend on thea1 , . . . ,a4 labels of the bosons. These matr
elements can be found in standard quantum-mechanics t

The fact that mean-field configurations break the vario
symmetries implies that the minima of the mean-field ene
form orbits under the action of these same symmetries. O
disk, and atc2Þ0, one expects and finds that, typically, fro
a generic minimum there are five flat directions leading
adjacent minima with equal energy. These flat directions c
respond to the three generators of the SO~3! spin symmetry,
an overall phase, and an orbital O~2! rotation. For spin-
independent interactions the symmetry orbits are generic
ten dimensional.
2-8
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One convenient quantity to plot is the expectation va

^SW & of the spin, whose length is conserved under global s
rotations. In special cases, this expectation value is axis
metric; in the more general case it is nonaxisymmetric a
the mean-field configuration breaks the orbital O~2! symme-
try. Another useful quantity is the three-component cond
sate wave function~analogous to the familiar spinor for spin
1/2!, which is the expectation value of the field operat
^ca(z)&5(mbmafm(z) ~see Sec. II A!. It is a vector in the
a5↑, 0, ↓ basis. From this we can plot the density in ea
spin component in position space. This could be acces
experimentally if after switching off the trap to allow th
particle cloud to expand, a Zeeman term is switched
which causes the threea components to separate as th
expand.

As an example, we plot in Fig. 5 the 2D density profile
each spin component of two different mean-field groun
state configurations atc250, L5N. The top frame shows
the densities for the condensate proportional to (f0 ,f1 ,f2);
the lower frame shows a configuration that is related to
by an SU~3! rotation. The total density in each of them
50, 1, 2 orbitals is an SU~3! invariant, and it is the same fo
both configurations shown in Fig. 5. The mean-field ene
of these configurations isEMF5 11

48 N2, in agreement with
order N2 term in the energy of the exact quantum~BTC!
ground state, Eq.~9! with Nv52, p5q50, andn5N/3.

First we consider the disc geometry withc250. Carrying
out the mean-field minimizations, we find in terms of,
5L/N that for 0<,<2/3 the number densitieŝnm&
5(abma* bma in the orbitals of the mean-field ground stat
behave like~here and in the remainder of this section, the
numbers are normalized so that they sum to 1! ^n0&51
2,, ^n1&5,, and^n2&50. For 2

3 <,<1 we find ^n0&5 1
3 ,

^n1&5 4
3 2,, and^n2&5,2 2

3 . All this is in agreement with
the results derived from the exact quantum ground state
Sec. IV.

For very small interaction ratiosugu!1, the total densities
in the orbitals remain the same as forg50, but there is

FIG. 5. Two-dimensional density profile of each of the sp
components of two LLL mean-field ground-state configurations
c250, L5N. The upper panels show the axisymmetric spin-vec
configuration„f0(z),f1(z),f2(z)…. The two configurations shar
the same distribution of the total density, and they are related by
SU~3! symmetry. Forc2Þ0, there are similarly distinct profiles
related by SO~3! symmetry.
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nontrivial structure in the spin dependence, leading to s
transitions at critical values of,5L/N, as we will describe
shortly.

In Fig. 6 we have plotted region II of the phase diagra
this time with , radially. The shaded regions show whe
only the first two orbitals (m50,1) are present in the con
densate. One region is a tiny strip near,51 for g>(7
14A2)/17'0.75, where the (m,a)5(1,0) state is occupied
by all the bosons. This state can be seen as a polar vo
since it has the same spin state as the polar BEC. The o
region, centered~roughly! around thec250 axis, contains
states in which both them50 andm51 orbitals are used.

In the antiferromagnetic regime for,<1 there is a large
area where them53 orbital requires a nonzero density;
this area, mean-field theory in which only the first three
bitals are used is not valid. However, around and at
SU~3! axis and around the polar vortex as well as in t
ferromagnetic regime, the density in them53 orbital is very
small for ,<1 and can safely be ignored. Besides, if t
energyHv in a rotating frame@see Eq.~3!# is minimized,
only the states which use the first three orbitalsm50,1,2 are
of interest for,<1. @This is with the exception of the vi-
cinities of the boundaries of region II~see Fig. 1! at g→`
and atg521.#

In the following sections we present results for the LL
mean-field ground state forugu!1, in both the ferromagnetic
and antiferromagnetic regimes, and we discuss the gro
states at,51 for general values ofg.

Our mean-field results pertain to the LLL, relevant for t

t
r

e

FIG. 6. Regions in theg, , plane in which only them50 and
m51 orbitals are present in the mean-field ground state on the
are shaded. The angular coordinate isf5arctang and ,5L/N is
plotted radially. In the shaded strip near,51, a ‘‘polar vortex’’
forms the ground state.
2-9
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regime of weak interactions, and they thus differ from t
mean-field solutions of the GP equations@10,36#. Neverthe-
less, there is agreement on some of the important featu
such as the smooth dependence ofL on v in the ferro regime
and the role of the state with a singlep disclination near,
50.5 in the antiferromagnetic regime@36#.

A. Antiferromagnetic interactions

We now specify the mean-field ground states, given in
form of a three-component condensate wave function,
small, positiveg51e, and for,<1. As before, the conden
sate wave function is a vector in thea5↑,0,↓ basis. In
Table I below we specify the mean occupation numbers
the four states that we found.

Note that the condensates given in this table are spe
representatives of families of condensates that are relate
the SO(3)spin symmetry. There are two critical values,,a

e

54/72A2/7'0.37 and ,b
e51024A524/3(85238A5)1/2

'0.83, where we see a discontinuous rearrangement o
condensate configuration and of^SW &. For nonzerog, these
changes in the condensate are continuous; they become
gular ~discontinuous! only asg→01.

For ,,,a
e , the condensate can be repr

sented by „(l/A2)f0(z),hf1(z),(l/A2)f0(z)… with l
5AN2L, h5AL. Applying SO(3)spin rotations, one
finds alternative representations such as„(1/A2)@lf0(z)
2hf1(z)#,0,(1/A2)@lf0(z)1hf1(z)#…. The SO(3)spin-
invariant quantityu^SW &u2 is found to be

u^SW &u25
N2

p2
,~12, !~z1 z̄!2e22uzu2. ~14!

The state that emerges at,.,a
e corresponds to

„hf1(z),0,lf0(z)…, leading to

TABLE I. Occupation numbers of the LLL mean-field groun
state with small antiferromagnetic interactiong5e.

^n0↑& ^n0↓& ^n10& ^n1↑& ^n20& ^n2↑&

0<,<,a
e 1

2 (12,) 1
2 (12,) , 0 0 0

,a
e<,< 2

3 0 12, 0 , 0 0
2
3 <,<,b

e 0 1
3 0 4

3 2, ,2
2
3 0

,b
e<,<1 0 1

3
4
3 2, 0 0 ,2

2
3
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u^SW &u25
N2

p2
~@12,#2,uzu2!2e22uzu2. ~15!

For ,Þ1/2, the integrated value of^SW & for this state is non-
zero and there is a spontaneous magnetization. In Fig.
two-dimensional plot of̂ SW & at both sides of the spin trans
tion at,5,a

e is shown. The state at 0,,,,a
e can be viewed

as a configuration of twop disclinations off the center of the
trap, while the state in the regime,a

e,,,2/3 ~or possibly
even as far as,b

e) can be understood as a singlep disclina-
tion in the polar state.

The angular momentum for which them52 orbital is first
occupied in the mean-field ground state,,5 2

3 , is robust
against small antiferromagnetic interactions. Forg51e,
2/3,,,,b

e , the condensate can be represented
„tf1(z),sf2(z),jf0(z)…, with j5AN/3, s5AL22N/3,
t5A4N/32L, while for ,b

e,,<1 we have
„2sf2(z),tf1(z),jf0(z)….

In Fig. 8, we have depicted the ground-state angular m
mentum per particle, as a function of the rotation frequenc
v for some positive values ofg. It is seen that upon increas
ing g a semiplateau~a distinguished part of the curve o
which the angular momentum increases gradually! develops.
Upon increasingg further, the semiplateau becomes flatt
and the width decreases, until forg larger than some critica
valuegc'1.19, ,(v) jumps from,50 to an,51 plateau
at a critical frequencyvc given byv02vc'0.15c0N. This
is a transition from the nonrotating state to the polar vort
analogous to what occurs in the scalar boson case.

B. Ferromagnetic interactions

With small negativeg52e the mean-field ground state
for slow rotation are characterized@up to SO(3)spin rotations#
by the occupation numbers given in Table II. Again, we fi
two spin transitions, the first at,a

2e522A2'0.59 and the
second at,b

2e'0.69.
For ,,,a

2e the condensate can be represented
„0,hf1(z),lf0(z)… with l and h as given above. In this
state, the expectation values of the components of the
vector take the following form:

N
¯ 2uzu2
FIG. 7. ~Color! Two-dimensional plot of̂SW & at both sides of the spin transition at,5,a
e . The intensity codes the lengthu^SW &u, while the

color indicates the direction on the spin sphere as in Fig. 10 below. The left and right pictures correspond to Eqs.~14! and~15!, respectively.
2-10
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FIG. 8. The ground-state angular momentum per particle, on the disc as a function ofṽ5(v2v0)/c0N for various interaction strength
and slow rotation. Upper figures: antiferromagnetic regime,f50.1,0.5,0.75. Lower figures: ferromagnetic regime,f520.1,20.3,20.5.
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^Sy&5
N

pA2
A,~12, !~2 i !~z2 z̄!e2uzu2,

^Sz&5
N

p
~12, !e2uzu2. ~16!

The state at ,a
2e,,,2/3 corresponds to

„0,lf0(z),hf1(z)…, leading to a spin vector that vanishes
the center of the disc. The spin textures forg52e, ,
,2/3, can be interpreted as half skyrmions~or merons! ~see
also Sec. V D below!.

For g52e, 2/3,,,,b
2e , the condensate can be repr

sented as„sf2(z),jf0(z),tf1(z)…, with j, s, and t as
above, while for ,b

2e,,<1 we have
„sf2(z),tf1(z),jf0(z)….

In the ferromagnetic regime thev dependence of the
ground-state angular momentum becomes a smooth cu
see Fig. 8.

C. Mean-field configuration at LÄN

Assuming that only the first threem50,1,2 orbitals par-
ticipate in the ground state, we find that the mea
field ground states at ,51 take the form

TABLE II. Mean occupation numbers of the LLL condensate
small ferromagnetic interactiong52e.

^n00& ^n0↓& ^n10& ^n1↓& ^n2↑&

0<,<,a
2e 0 12, , 0 0

,a
2e<,< 2

3 12, 0 0 , 0
2
3 <,<,b

2e 1
3 0 0 4

3 2, ,2
2
3

,b
2e<,<1 0 1

3
4
3 2, 0 ,2

2
3

02361
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„7sf2(z),tf1(z),jf0(z)…, with j5s5Ak6 and t
5A122k6, and with the (1)2 sign corresponding to~anti!
ferromagnetic interactions. The parametersk6 depend ong
according to

k6~g!5
7~19128A2!g21~4264A2!g23

71g21126g29
. ~17!

The orbital occupation numbers, given as

^n10&5122k6 , ^n0↓&5^n2↑&5k6 ~18!

are continuous forg going through 0, but the spin texture
which is sensitive to the phases in the condensate wave f
tion, is not. We find that forg56e, up to an overall con-
stant,

^Sx&5S 17
1

A2
z̄zD ~z1 z̄!e2uzu2,

^Sy&5S 17
1

A2
z̄zD ~2 i !~z2 z̄!e2uzu2,

^Sz&5S 12
1

2
~ z̄z!2De2uzu2. ~19!

Note that in the antiferromagnetic case, the expectation va
of the spin vector is vanishing on the circlez̄z5A2, while in
the ferromagnetic case we see a single-skyrmion texture

^SW & nonvanishing everywhere. Figure 9 shows the spin t
ture at,51 for g56e.
2-11



. The

REIJNDERSet al. PHYSICAL REVIEW A 69, 023612 ~2004!
FIG. 9. ~Color! The spin texture atl 51 for g56e. The left side is the antiferromagnetic case, the right is the ferromagnetic case
color coding is as in Fig. 10.
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From Eq.~17! it is possible to derive the critical antifer
romagnetic interaction ratio for which the polar vortex a
pears, by simply solvingk1(g)50. The critical value found
then isg* 5(714A2)/17'0.75 ~see Fig. 6!. If g increases
towardsg* , the density in them53 orbital acquires a smal
value. So, strictly speaking, the states discussed here ar
the true mean-field ground state in the whole intermed
region. Aroundg50 andg5g* , however,̂ n3a& is zero and
the value ofg* is in agreement with numerical results.

In the ferromagnetic regime, upon loweringg the param-
eter k2 gradually decreases fromk251/3 at g50 to k2

5121/A2 at g521, with the corresponding occupatio
numbers given in Eq.~18!.

D. The sphere withNvÄ1,2

It is instructive to perform LLL mean-field theory on
system of spin-1 bosons in a spherical geometry, withNv
51 or Nv52, meaning that 2 or 3 orbitals are available
the particles. To compare with the disc as before, we w

these results in terms of,5( 1
2 Nv2L̃)/N. Notice, however,

that by flattening out the sphere by stereographic project
the results are qualitatively similar to those for the disk wh
only the first two or three orbitals are occupied. This is
pecially true for the states atNv52, ,51. Even though the
topological classification of textures~see the Appendix! does
not strictly apply to the plane, the form of the spin textur
on the sphere is a useful guide to those in the disc fo,
<1.

For the caseNv51 ~two orbitals on the sphere!, we men-
tion the following results. With 0,g<p/4 the ground-state
configuration is the same as the one we found on the disk
,,,a

e . This configuration can be interpreted as twop dis-
clinations at opposite poles of the sphere. Forp/4<g,p/2
all bosons occupy thea50 spin component, forming a pola
state with a single vortex. In the ferromagnetic regime, w
very smallg we find the same spin transition as the one
the disk at,5,a

2e . With Nv51 this transition lies at,
51/2. These configurations can be interpreted as a half s
mion ~or meron! in the spin texture, with the spin densit
vanishing at one point on the sphere, around which the s
density winds around the equator inSW space, passing ove
one pole at the opposite end of the sphere. If the interac
is deformed by increasingNv towardsNv→`, the location
of the spin transition is gradually shifted towards,5,a

2e .
With finite ferromagnetic interaction (Nv51 again!, there is
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a finite region where the core traces a path over the sp
~from the south pole to the north pole, as, increases! and
connects the two sides of the transition. The interaction
ergy is clearly independent of,. This region is bounded by
g(,)52uarctan(2,21)u for 0<,<1.

For Nv52 andg50, the occupation numbers, summe
over spin, in the three available orbitals are given by^n0&
512,, ^n1&5,, and ^n2&50 for 0<,< 1

3 , followed by
^n0&5 5

6 2 1
2 ,, ^n1&5 1

3 , ^n2&5 1
2 ,2 1

6 for 1
3 <,<1. These

mean-field results agree with the exact quantum ground-s
results obtained in Sec. IV.

For Nv52 and small ferromagnetic interactions,g5
2e, the mean occupation numbers in the condensate
given in Table III @up to SO(3)spin and SO(3)orb rotations#.
In the trajectory from,50 to ,51 there are no spin transi
tions. The,51 state, which haŝn0↓&5^n10&5^n2↑&5 1

3 , is
the mean-field ground state for arbitrary ferromagnetic s
interactions, 0.g.21. It is a single-skyrmion texture with
both uniform number density and magnitude of the spin d
sity, and is discussed further in the Appendix.

In the caseNv52, and small antiferromagnetic interac
tions, g51e, for 0<,< 1

3 the mean occupation numbe
per orbital of the condensate are the same as in the ferrom
netic case, but the spin structure is different. For,> 1

3 the
spin expectation values in them50 and 2 orbitals become
nonzero~without a discontinuity! and are not linear functions
of ,. Sinceu^SW m51&u250 and the number density is consta
in the m51 orbital, the spin state describing the bosons
this orbital can be arranged by an SO~3! rotation to be
(0,1,0)/A3. The vectors representing the bosons in them
50, 2 orbitals then are simply constructed. Together w
the previously mentioned vector they form a mutually o
thogonal set which minimizesHn . Provided that the spin
vectors are properly normalized, the energy can be expre
in terms of one parametera(,), which is connected to the
spin densities by cos@2a(,)#5u^SW0&u/^n0&5u^SW2&u/^n2&. Mini-
mizing the energy with respect toa(,) gives

TABLE III. Mean occupation numbers of the LLL mean-fiel
ground state in spherical geometry,Nv52, with small ferromag-
netic interactiong52e.

^n0↓& ^n10& ^n2↑&

0<,< 1
3 12, , 0

1
3 <,<1 5

6 2
1
2 , 1

3
1
2 ,2

1
6

2-12
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a~, !5arccosFA1

2
1

1
4
Al~ 2

3 2l!

124l16l2
G , ~20!

with l5 1
2 (,2 1

3 ). The maximum of the antiferromagnet
energy is not dependent on the angular momentum and lie
a5p/2. In the ferromagnetic case this point minimizes t
energy, corresponding exactly to the occupation number
Table III.

At ,51, there are solutions with uniform density, with a
unbroken SO~3! subgroup of the SO(3)orb3SO(3)spin sym-
metry, as the limiting case of the previous,,1 states. This
case is also discussed in the Appendix. There are also s
tions in which the orbital distribution in the mean-field co
figuration of the ground state is not unique. For instan
among the degenerate states at largeg we find the polar
vortex with ^n10&51 and a configuration witĥn20&5^n00&
5 1

2 .

E. Comparison with finite-size exact states

It is of interest to try to match the mean-field states w
ground states found in diagonalization studies, such as th
shown in Fig. 2 for the disc. Since these have definite val
of the quantum numbers, they can be compared with
mean-field states only by projecting the latter to compone
with definite quantum numbers@33#. For eachN andL, the
value of the spin picked out should reflect the form of t
interaction, and should presumably be the maximal value
the ferromagnetic regime, and the minimal value in the a
ferromagnetic. For the spin-independent casec250, the
lowest SU(3)spin quantum numbers are favored as grou
states.

We will not attempt to identify all the states in Fig. 2 i
this way, but only some of the more prominent. We ha
already mentioned that the mean-field state at,51 andc2
50 corresponds to the BTC singlet state. Since the me
field state has equal mean occupation of (m,a)5(0,↓),
(1,0), and (2,↑), it does contain a unique singlet compone
which is exactly the BTC state. Whenc2 is turned on, the
quantum numbers remain at (L,S)5(6,0), but the state will
be slightly altered in its details. The corresponding skyrm
spin textures on the sphere are also discussed in the Ap
dix.

The BDC multiplet atL5N/2 for c250 that uses only
m50, 1 also deserves comment. This corresponds in m
field theory to theNv51 case discussed above and in t
Appendix. Whenc2,0, it becomes a half skyrmion o
meron, which survives for all21<g<0. This meron has no
projection to spin 0, and anyway for this regime maxim
spin is expected in the ground state. Indeed, forN56 the
corresponding (L53) state hasS53. The whole regime
L/N<1 for ferromagnetic interactions resembles what o
expects for skyrmions, that is,L ~corresponding toN2L̃ on
the sphere! decreasing asS increases, asS5N2L @37#. For
c2.0 and L5N/2, the lowest-spin part of the BDC sta
becomes the ground state.
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At larger positive g, there is a prominent region o
(L,S)5(6,0) in theN56 data. At the largestg, we expect
that this can be identified~in the same sense as the preced
discussion or as in Ref.@26#! with the polar vortex state o
this section.~In a finite-size study, one would not expect
see a transition from the BTC state atc250 to this polar
vortex with the same quantum numbers at largeg.! The
jump from L50 to L56 expected from the mean field i
seen in Fig. 2. At smallerg, a (3,0) region is seen. We
speculate that this state corresponds to a singlep disclination
at the center of the trap~with a second one at infinity or the
opposite pole on the sphere!, and that the region correspond
to ,a

e,,,2/3 in the mean-field results. Notice also th
prominent semiplateaus near,50.5 in the plots in Fig. 8 at
largerg.

VI. VORTEX AND SKYRMION LATTICES

Upon driving the system faster, multiple skyrmions a
induced. These are expected to form a lattice and can be
treated in a~quantum Hall! mean-field analysis. Such a
analysis was performed by Kitaet al. @13#, who found a
range of different lattices forc2.0, depending on the rela
tive strength toc0 and the rotation. By including higher Lan
dau levels, they were able to show that some of these latt
are qualitatively identical at high and low rotation. Nearc2
50, the~scalar! vortex breaks up into three vortices, one f
each spin component, forming a triangular lattice. Forc2
>0.069c0, the vortex splits into twop disclinations, which
make up a square~antiferromagnetic! lattice.

We have carried out a program, similar to Mueller and H
@38#, appropriate for a mean field LLL description of a mu
ticomponent condensate. The LLL approximation~in the
limit v→v0) fixes the vortex lattice spacing to be equal
the harmonic-oscillator length. Note that this is differe
from the Thomas-Fermi regime, where the distance is fix
by the number of vortices, as the density of bosons is
same as in a nonrotating trap.

Under the assumption that the vortices in each spin co
ponent form a Bravais lattice, we can choose the one-par
wave functions to be the torus wave functions withNv flux
quanta~typically, Nv51 or Nv52). For a scalar condensat
the lattice is completely specified by the geometryt of the
torus. This wave function is periodic up to a gauge transf
mation, equivalent to requiringA8(r 8)5A(r ).

In the case of multicomponent condensates, howe
more general boundary conditions are possible. We o
need to demand

c8~r1L i !5eiL i (r ) Ui c~r !, ~21!

whereL i( i 51,2) define the geometry andL i is the gauge
transformation mentioned above. The matricesU1 and U2

should commute,U1U2U1
21U2

2151, to obtain single-valued
wave functions.

We require thatU1 and U2 commute with the Hamil-
tonian, so that the energy of a unit cell is well defined. F
gÞ0, this impliesUiPSO(3)spin. The common eigenvec
tors of U1 , U2 then have eigenvalues (1,eiw1,e2 iw1) and
2-13
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FIG. 10. ~Color! The different lattices found in rotating spin-1 boson condensates. The first picture is the Hammer-Aitoff projec

the colors on the spin sphere. Top and bottom correspond, respectively, to the north and south pole. The intensity codesu^SW &u, the size of the
spin vector. Other pictures are the spin expectations at different ratiosc2 /c0 : f520.1, 20.05, 0.01, 0.016, 0.04, 0.1, 0.54, 0.7, and 0
The last picture shows the density, as the spin vanishes.
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(1,eiw2,e2 iw2). With an overall SO(3) rotation, we can fi
the direction of the vector with eigenvalue 1 to be paralle
ẑ in spin space. With this, the unit cell of the magnetic ord
~seen in the spin density which is gauge invariant, for
ample! is larger than that of the density, but always conta
an integer number of the latter.

Using this approach, we can confirm a large part of
phase diagram of Kitaet al. @13#, but we also find additiona
phases in the ground states at largeg. These are polar
phases, for which we use a unit cell with a single-flux qua
tum. We will usef5arctang as the parameter. The minim
zation procedure uses a simplex downhill algorithm in
geometryt and the phasesw1 ,w2. The wave function is
obtained from the polynomial free energy by using a con
gate gradient algorithm, starting from a random point. T
wave function in general is unique up to a phase an
SO(3) rotation along theẑ axis.

The phases we obtain, as illustrated in Fig. 10, are
follows.

Ferro lattice. A major part of the ferromagnetic phas
diagram (2p/4<f<20.08) is covered by a lattice with
Nv52 flux quanta in the unit cell. This is the same lattice
one obtains for the spin-1

2 bosons with full SU(2) symmetry
or, equivalently, the quantum Hall ferromagnet with t
Landéfactorg50. If we consider the spin-1 to be compos
of two spin-1/2 particles, thenNv52 for the spin-1 bosons
corresponds toNv51 for the spin-12 particles. This structure
is related to theNv52 skyrmions discussed in the Appendi

Skyrmion-vortex lattice.At f'20.08, it becomes benefi
cial to include vortices~‘‘merons’’!. The unit cell now has
Nv53, with both a skyrmion and a vortex. Based on dire
computations in disc geometry~see below!, we expect that
this phase does not extend tof50, but that there are othe
phases in the weakly ferro regime20.02,f,0.

Triangular vortex lattice.Exactly atf50, the nodes in
the three components are arranged in a triangular lattice.
lattice can be realized withNv53 and w15w250. The
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mean-field componentsbmm (m50,1,2) form a unitary
@U(3)# matrix. This lattice is not shown in Fig. 10, as th
SO(3)-spin is not well defined.

Square ladder.The triangular vortex lattice of thec250
case is essentially unchanged up tof50.0143, being
squeezed only. However, the SU(3) symmetry is brok
This spin shows a ladder structure, where adjacent lad
are shifted by 3/2 rung spacings.

Canted ladder. 0.0143<f<0.0193. The ladder structur
stays intact, however, the rungs are now canted.

Triangular ladder. 0.0193<f<0.069.
Squarep disclination. At f'0.069, there is a first orde

phase transition to the squarep-disclination lattice. Only the
↑ and↓ components are present in this lattice.

Squeezedp disclination. 0.428<f<0.62. The lattice is
squeezed in one direction and expanded in the other.

Triangular p disclination. 0.62<f<0.786. Atf'0.62,
there is a first-order phase transition to a triangu
p-disclination lattice.

Polar Abrikosov. Beyondf'0.786, thep disclinations
are unstable and the systems prefer to have only one com
nent, such that̂SW &50 everywhere. The vortices of this com
ponent form an Abrikosov lattice, with vanishing density
the cores.

The phases atf.0.428, and atf,0 have not been ob
served before. Figure 10 shows the spin texture in the v
ous lattices, with colors coding the direction of the spin ve
tor and the intensity marking its length, so that black regio
indicate places where all components of the spin vector v
ish. ~For the lattice atf50.9, which is the polar Abrikosov
lattice, the spin density vanishes and we plotted the part
density instead.! The particle density is finite in all lattice
except the polar Abrikosov one.

To check whether the ansatz is sufficiently general in
complete phase diagram, we have supplemented the a
analysis by direct numerical computations of LLL mean-fie
ground states in a disc geometry, withv,v0. Since no pe-
2-14
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ROTATING SPIN-1 BOSONS IN THE LOWEST LANDAU LEVEL PHYSICAL REVIEW A69, 023612 ~2004!
riodic structure is imposed, the lattices form spontaneou
These computations show that the torus correctly reprodu
the dominant phases such as the square lattice ofp disclina-
tions and the skyrmion and skyrmion-vortex lattices. In t
region 20.02,f,0 the two geometries showed differe
lattice structures, possibly due to finite-size effects. We le
conclusive results in this region for future work.

At special values ofw1 ,w2, when they are both of the
form pp/q (p,q integer!, it is possible to realize the lattic
by using a larger unit cell and identical phases for all th
spin components. An example of this is the triangular latt
at c250, wherew152w252p/3. In this case, we can rea
ize the same lattice by using a torus with three flux qua
and w15w250. The other example is the squa
p-disclination lattice, which can be described by using t
flux quanta. This can be compared to the spin-1/2 situa
@38#, where the lattice atg125g15g2 @unbroken SU(2)
symmetry# can equivalently be described by using a tor
with two flux quanta@13,39#.

VII. QUANTUM HALL LIQUIDS

In the LLL approximation, the filling fractionn defines
the average number of bosons in an orbital. Upon increa
the rotation further, and thus reducingn, the discreteness o
the occupation numbers becomes important. Mean-fi
theory becomes less useful due to quantum fluctuations
some point, the condensate is destroyed, and a sequen
quantum fluids takes over. In the scalar case, the critican
was estimated to benc'10 by the Lindemann criterion@14#
~that is, the average fluctuation in the position of the vortic
equals the separation between them!. Explicit calculation of
small systems have confirmed this transition and foundnc
'6 –10. A similar transition will occur in the spin-1 cas
although we have not calculated the appropriatenc . We ex-
pect this to be of the same order of magnitude as in the sc
case. In the present section we investigate the quantum
fluids that appear within region II of the phase diagram
this regime.

In the extreme limitv→v0 (n→0), we can analyze the
quantum liquids analytically in a part of the phase diagra
as we can explicitly find the zero-energy eigenstates of
Hamiltonian. Two of the series we propose, the SU(4)k and
the SO(5)k series, have a member of this form fork51. The
third series consists of a generalization of a family of fra
tional quantum Hall~QH! states, the hierarchy/composi
fermion states, to spin-1 particles. We present some num
cal results on small sizes, which unfortunately are proba
not conclusive for the nature of the states, due to the res
tion to insufficiently large sizes.

A. SU„4…k series

It is straightforward to construct zero-energy states atc2
50. The repulsive contact interaction dictates that the w
function should have a node whenever two particles are
the same place. Furthermore, two bosons with the same
should have a double zero in order to maintain a symme
wave function. In terms of the components of the wave fu
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tion for given valuesm5x,y,z of the spin for each particle
we can write such a state down@4,27,40# ~as in Ref.@15#, we
add a tilde to the wave function to indicate that it has to
multiplied by the usual Gaussian factors for the plane, or
rational factors for the sphere—see Sec. II!

C̃2,2,2,1,1,1~z1
x , . . . ,zNx

x ;z1
y , . . . ,zNy

y ;z1
z , . . . ,zNz

z !

5 )
m5x,y,z

)
i , j

~zi
m2zj

m!2 )
m8,m9

)
i , j

~zi
m82zj

m9!, ~22!

wherena denotes the number of particles with spina. The
lowest angular momentumL for which this state can be re
alized is whenNx5Ny5Nz5N/3. Notice thatL5N(2N/3
21), and the filling factor, which can be defined asn
5 limN→`N2/(2L), is n53/4. This state is a straightforwar
generalization of both the Laughlinn51/2 state for spinless
particles, and the (2,2,1) Halperin spin-singlet state for sp
1/2 bosons. The full state forNx5Ny5Nz5N/3 is an
SU(3)spin singlet @(p,q)5(0,0)#, and arguments similar to
Laughlin’s plasma mapping show that, moreover, it h
short-range spin correlations. Because the state vani
whenever the particles are at the same point, this state
zero-energy eigenstate for all values ofc0 , c2. However, it
will only be the ground state@at L5N(2N/321)] whenH int
is positive, that is, in the regiong0 , g2.0, within region II.
For larger values ofL, there are many more zero-energ
eigenstates, so the ground states are degenerate in the
dow g0 , g2.0. On minimizingHv with respect toL, this
implies that the lowest possible filling factor asv→v0 from
below isn53/4 in this regime~within the model in Sec. II!.

The state in Eq.~22! is an exact eigenstate, but in gener
we are not able to find the exact highly correlated grou
states ofH int . Instead, we seek to understand numerical
sults, and make predictions for the physics at larger sizes
using ~among other techniques! trial wave functions. These
states, which are not generally exact for any known tw
body interaction, serve as paradigms for the phases of m
in the thermodynamic limit, as they possess interest
~‘‘universal’’ ! properties such as the quantum numbers a
statistics of their excitations that are robust against sm
changes in the Hamiltonian, until some phase boundar
passed~this philosophy has been discussed, e.g., in R
@15#!. One way to produce trial wave functions, which a
closely connected to their universal properties, is to use c
formal field theory~CFT!. We will show how to obtain wave
functions from a CFT in somewhat more detail in the follow
ing section. The CFT describing Eq.~22! is SU(4)1, so fol-
lowing a strategy in Read-Rezayi@15#, and motivated by the
analogous results for scalar bosons@14#, we can consider a
series, SU(4)k , wherek51,2, . . . .These states have filling
factor >3/4, and are explicitly SU(3)spin invariant. Hence
we expect them to be relevant nearc250.

The trial states we consider have wave functions, in s
components~generalizing those in Refs.@41,42# to spin 1!,

C̃~$zi%!5Sgroups)
groups

C̃2,2,2,1,1,1. ~23!
2-15
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In this construction theN53pk bosons are first partitione
into k groups, each withp particles of each spin compone
x, y, z.

For each group we write a HalperinC̃2,2,2,1,1,1factor, and
these are multiplied together. Finally, the symmetrization
erationS over all ways of dividing the particles into group
is applied. The angular momentum isL5N@2N/(3k)21#
and the filling factor~as N→` at fixed k) is thereforen
53k/4. It happens that if we putk5N/3, the state containsk
groups of three bosons each, and the state is exactly thL
5N BTC. However, we do not believe this is particular
significant, as the BTC state is the unique SU(3)spin singlet
state atL5N.

The states~23! are zero-energy eigenstates of a Ham
tonian consisting of a (k11)-body interaction:

HSU(4)k
5V (

i 1,•••, i k11

d~zi 1
2zi 2

!•••d~zi k
2zi k11

!.

~24!

The interaction is positive forV.0, so all eigenstates hav
E>0. This interaction penalizesk11 particles at the sam
point. Therefore, zero-energy eigenstates are those in w
the wave function vanishes if anyk11 coordinates coincide
regardless of the spins. One can see that the above fun
has this property, even before the symmetrization o
groups, as for anyk11 particles, at least two must be in th
same group, forcing the function to vanish. For less thak
11 particles at the same point, it does not necessarily v
ish. In fact, for eachk, ~23! is the unique zero-energy eigen
state ofHSU(4)k

with lowest angular momentumL.
For the same Hamiltonian on a torus, there are again z

energy states, at least forN divisible by 3k. For these cases
the degeneracy of these SU(4)k ground states is

1

6
~k11!~k12!~k13!. ~25!

We have verified that this result, which can be inferred fro
the CFT connection, is reproduced by exact diagonaliza
of the Hamiltonian, Eq.~24!, on the torus.

Like other incompressible QH states, the phases of ma
exemplified by the trial states~23! possess pointlike quas
particle excitations which may have fractional particle nu
ber ~relative to the background density! and/or spin. The par-
ticle number associated with the elementary quasiparti
can be found once it is understood that, similar to the
states@15#, the SU(4)k states are clustered states, in whi
particles occur in clusters of 3k @in an SU(3)spin-singlet#.
Then a similar argument to that given in Sec. I shows t
they carry chargeq561/4. They also have spin 1. Th
quasiholes, at which there is a deficiency of particle num
can be studied as zero-energy eigenstates ofHSU(4)k

, and
fairly explicit trial wave functions can be found using th
relation with CFT.

The statistics of quasiparticles in 2D can be defined
terms of adiabatically dragging them along paths, keep
them well separated, to exchange them. For the SU(k
02361
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states, in the casek51, the statistics are ‘‘Abelian’’; the
wave function acquires a phase factor when two particles
exchanged, just as for the Laughlin states. Fork.1, how-
ever, the statistics becomes ‘‘non-Abelian’’@15,17#. This
means that there is a degeneracy, when the positions o
quasiparticles are fixed~in general, this is true only when th
quasiparticles are well separated, though for the (k11)-body
Hamiltonian and for quasiholes it is exact for any sepa
tion!. In terms of the trial functions~23! and their generali-
zation to quasiholes, this degeneracy is caused by the s
metrization procedureS, which destroys the ‘‘group’’
quantum number of the~quasi! particles@41#. The general
framework to obtain these degeneracies from CFT has b
worked out and agrees with numerical results for the Moo
Read, RR, and other states@17,43–46#. We expect the same
framework to apply here. When the quasiparticles are
changed adiabatically, the effect is a matrix operation wit
these spaces of degenerate states, described by the bra
matrices of the corresponding CFT@17#—hence the term
non-Abelian statistics.

B. SO„5…k series

Similar to the SU(4)k case, the SO(5)k states can be writ-
ten in the form

C̃k
SO(5)~$zi%!5Sgroups@PgroupsC̃k51

SO(5)#, ~26!

where now

C̃k51
SO(5)~$zi%!5PS zW i•zW j

zi2zj
D)

i , j
~zi2zj !. ~27!

Here the spin states for all the particles are included exp
itly ~the product of spin stateszW i being the tensor product!
PMi j denotes the Pfaffian of an antisymmetric matrixMi j .
In the present case theN52kp particles are partitioned into
k groups, with 2p particles in each. The particles in eac
group form an SO(3)spin singlet. The product over thes
groups is then symmetrized. The state as a whole is cle
an SO(3)spin singlet, and has angular momentumL
5N@N/(2k)21#, so the filling factor isn5k.

The k51 case, which closely resembles the Moore-Re
paired state@17# but for spin-1 particles, is the exact groun
state of our two-body HamiltonianH int wheng050. That is

because, in the stateC̃1
SO(5), two particles are found at the

same point only if they have total spin 0. Again, the grou
state as above is the unique zero-energy eigenstate a
stated angular momentum, but at largerL there are many
more zero-energy states. Son51 is the lowest filling factor
possible atg050. This implies that in finite size on the dis
a boundary between ground states with theL values of the
SU(4)1 and SO(5)1 states must run intov5v0 at g050
~this is for N divisible by 6, but there will be similar state
ments for other values!. Such behavior is seen in Fig. 2. Fo
g0,0 (g.1/2), we do not know the exact lowestn that
occurs asv→v0 from below. The SO(5)1 state can be in-
terpreted in terms of BCS spin-singlet complex-p-wave pair-
2-16
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ing of composite fermions, in which the Pfaffian represe
the pairing in position space@17,20#.

More generally, for eachk there is a Hamiltonian for
which the SO(5)k states are exact zero-energy eigensta
again given by a (k11)-body interaction:

HSO(5)k
5V (

i 1,•••, i k11
d~zi 1

2zi 2
!•••d~zi k

2zi k11
!

3Pk11~ i 1 , . . . ,i k11!. ~28!

This interaction includes a projectorPk11( i 1 , . . . ,i k11) of
the spin state of thek11 particles concerned onto total sp
k11.

For generalk, these states can be considered to be buil
out of clusters of 2k particles in a spin singlet. From this fac
we can obtain the fractional particle number of the elem
tary quasiparticles,q561/2. Also, the quasiparticle spin i
1/2, which is fractionalized compared with the spin 1 of t
underlying bosons, and so the number of these quasipart
must be even. Fork51, there are also excitations with ze
particle number that behave as fermions with spin 1. In t
case, the universal properties may be understood by a sim
extension of the methods of Ref.@20# to this case.

Because it is difficult to see through the symmetrizat
operationS, we will provide some details on the conform
field theory behind these states. Such a CFT description
lows us to obtain more insight into the topological prop
ties, such as degeneracies and braiding. For example, to
tain the degeneracy of ground states on the torus, CFT
us that we only need to know the number of nontrivial re
resentations at levelk. In the case at hand, this number tur
out to be 1

2 (k11)(k12). Again, we verified this numbe
using exact diagonalization of the (k11)-body interaction.

The chiral algebra of the CFT which describes these st
is based on the SO(5)k affine Kac-Moody algebra. so(5) is
rank-2 Lie algebra, which contains mutually commuti
so(3) and u(1) Lie subalgebras, which we can identify w
the symmetries under SO(3)spin and number conservation. I
these subalgebras, the generators are respectivelyS1, S2, Sz
and c, respectively. According to the CFT-QH correspo
dence@17#, we can also obtain the quantum Hall state wa
functions as correlators in the chiral part of a CFT, in whi
the particles~bosons! should be represented by fields th
have Abelian braiding properties. In the present case@and the
SU(4)k case is similar#, the bosons correspond simply to
different triplet of current operators of the SO(5)k affine
Kac-Moody algebra. Thus the wave function, now in sp
components, can be written as

C̃~$zi%!5 lim
z`→`

z`
N/k^e2 iNwc /Ak~z`!Ja1

~z1!•••JaN
~zN!&,

~29!

with Ja (a5↓, 0, ↑) an SO(3)spin triplet of currents in the
affine Lie algebra, which carry U(1) charge11. The cur-
rents are shown in the so(5) weight lattice~Fig. 11!, asC↑ ,
C0 , C↓ . The operator whose position tends to` represents
a background charge, such that the total U(1) charge of
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operators is zero~as it must be in order that the correlator b
nonzero!. The currents can be expressed as

Ja~z!5ca~z!eibW a•wW /Ak~z!, ~30!

where ca is a parafermion field, of conformal weight
21/k for the long roots and 121/2k for the short roots. The
vertex operatoreibW a•wW /Ak(z) contains the two free boso
fields wc ~charge! and ws ~spin!, with bW the position in the
root lattice. For Ja these arebW ↑5(1,1), bW 05(1,0), bW ↓
5(1,21).

The parafermions simplify when we specialize to the ca
k51, where they reduce to the identity operator for the lo
roots (C↑ andC↓ , in particular! and a Majorana fermion for
the short roots (C0). The correlator can then be readily wri
ten down, as the correlation functions for Majorana fermio
is well known

^c~z1!•••c~zn!&5PS 1

zi2zj
D . ~31!

This reproduces the SO(5)1 wave function, in the same wa
as for the spinless Moore-Read state@17#.

We note that the same SO(5)k algebra was used in an
other construction@47#, which was for a system of spin-1/
particles. The present case differs in that the phys
SO(3)spin symmetry is embedded differently in SO(5), be-
cause of the different spin of the underlying particles.

Wave functions for zero-energy states containing qua
holes can also be written down as chiral correlators, wh
now contain vertex operators for primary fields of th
SO(5)k algebra that represent the quasiholes. For thek51
case, these contain~in the scalar field plus Majorana fermio
language! a spin field for the Majorana fermion, and give
rise to quasihole wave functions analogous to those for
Moorse-Read state@17,43#.

C. Composite fermions

Alternative QH states to the rather exotic series in
previous two sections can be constructed by applying c

FIG. 11. Roots and weights of the algebra so~5!. The condensate
operatorsC are associated with roots~filled symbols! and the fun-
damental excitationsf correspond to the weights of the spino
representation~open symbols!.
2-17
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ventional methods to spin-1 bosons. One such approach
in the case of scalar bosons, is to map the bosons onto c
posite fermions, by attaching~say! one vortex to each boson
These fermions see a reduced effective magnetic field,
one can construct an incompressible state when an int
number of Landau levels in the effective magnetic field
filled with all three components. This construction giv
states with filling factors n53p/(3p61), which are
SU(3)spin singlets.

One can interpret the Moore-Read state as thep-wave
pairing of composite fermions@17#. In this case,p-wave
SO(3)-singlet pairing is possible~in contrast to the spin-1/2
case! and indeed, we have seen that the SO(5)1 state can be
interpreted this way. In the SU(3) symmetric case atn51,
no two-particle SU(3)-singlet pairing is possible and the
are two options for the system. One is to form a Fermi liqu
the other is to spontaneously break the symmetry and f
(p,q)5(2,0) pairs. Note that this last possibility includes t
SO(3) singlet and thus can be continuously connected to
SO(5)1 state.

D. Vortex lattices without polar order, and nematic QH liquids

The earlier discussion of QH liquid states focused on s
glets under SO(3)spin, with short range spin correlations.
is interesting to wonder also if QH liquids with some form
spin ordering could occur. One possibility would be a fer
magnetic QH liquid. Such states can be easily written do
by using any wave function for a QH state of spinle
bosons, with all the boson spins in thea5↑ state~or a global
spin rotation of this!. One might expect these to occur in th
ferromagnetic (c2,0) part of region II, but in fact we see n
sign of them: leaving aside the skyrmion textures in the B
at low L, at largerL all ground states are spin singlets. W
note that for spin-1/2 electrons, spin-polarized states can
cur, e.g., atn51, even for spin-independent interaction, d
to exchange effects. However, the exchange effects are
sumably different for bosons.

A more feasible-looking possibility is QH states with p
lar spin order, perhaps in the antiferromagnetic regionc2
.0. In the regime at largeg where mean-field theory pre
dicts the Abrikosov vortex lattice, the spin order is polar.
the polar state, the vector condensate can be written

^cm&5eiwnm , with w the phase andn̂ a real vector. In the
Abrikosov lattice, the magnitude of the vectorn̂ and the
phasew vary to give a triangular lattice of vortices. We ca
now imagine that quantum fluctuations destroy either par
the order~restoring either the phase or the spin-rotation sy
metry! without the other. When the U(1) and translation
symmetry that are broken in the vortex lattice are restor
the ground state is a QH fluid. For large quantum fluctuati
one might expect that the QH liquid has restored SU(2)spin
symmetry. However, the two transitions at which these sy
metries are restored are independent, and the transi
could in principle occur in either sequence as we go
smallern. The intermediate phase in which spin symmetry
restored but not the phase would be a vortex lattice i
boson paired state, a BEC of boson pairs. This would
characterized by having a nonzero expectation value
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(mcm(z)cm(z), which is invariant underc→2c. ~Such a
vortex lattice would also be possible with vortices containi
a half unit of vorticity each, instead of integers as we assu
otherwise, and this might be reached by restoring symm
in the p-disclination lattice state.!

The other possible sequence of transitions would be
in which the intermediate phase is a QH liquid with restor
translational and phase symmetry, but still has the polar
der, which breaks SU(2)spin. The single-boson expectatio
^cm(z)& would be zero, but if we look at the composi
operatorcm

† (z)cm8(z), this can have an expectation valu
This matrix has a trace equal to the density, which is unifo
by assumption. The traceless Hermitian matrix obtained
subtracting off the trace contains antisymmetric and symm
ric parts. The~imaginary! antisymmetric part corresponds t
a spin-1 irreducible tensor that is simply the spin dens
which is assumed to be zero here. The~real! symmetric part
corresponds to a spin-2 irreducible tensor. This is the or
parameter of a polar or nematic state, which represen
vector n̂, but is invariant undern̂→2n̂, so it parametrizes
S2/Z25RP2. Trial wave functions for these nematic qua
tum Hall states can be written down as those for sca
bosons, times a spin state such asa50 for all bosons or as a
spin rotation of this.

It would not be surprising if such nematic QH liquid
occurred in the phase diagram at largeg, now that the cor-
responding~polar Abrikosov! vortex lattices are known to be
present. In finite size, the ground state would always be
spin @33#, S50 or 1, and there need be no transition sep
rating it from a state at the sameL, S with short-range cor-
relations, such as the SO(5)1 state atg050. Thus the ap-
pearance of such nematic order in a QH fluid of spin
bosons in the thermodynamic limit cannot yet be ruled o

E. Numerical results

To examine how well the proposed states describe the
ground states, we have performed exact diagonalization
small systems. In the regimeL<N, we have used both the
disc and sphere geometries. As we have seen, these re
differ somewhat. But when looking at fast rotation, howev
where the filling factor is of order 1, the system is spread
into a pancake. It makes sense to focus attention on the
terior of the disc and avoid edge effects. This can be done
using an edgeless geometry such as the sphere or torus.
we will be interested in the ground states in which~unlike
the work earlier in this paper! we find the ground states with
out constrainingL. QH liquid ground states will usually then
show up asL̃50 states. At finite sizes on the sphere, su
ground states that form a sequence of sizes tending to a
ticular filling factor n in the thermodynamic limit lie on a
sequence of the formNv5N/n2s @22#. Heres is known as
the shift, and its appearance is connected with the coup
of the particles to the curvature of the sphere. The values
depends on the liquid state, not only onn. Nv can be ob-
tained from the angular momentum on the disc asL

5NNv/2 ~all states haveL̃50). That is, when the states i
theC̃ notation are written for the sphere, one can takeNv as
2-18
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ROTATING SPIN-1 BOSONS IN THE LOWEST LANDAU LEVEL PHYSICAL REVIEW A69, 023612 ~2004!
small as possible, so thatNv equals the highest power of an
zi appearing in the wave function~see Sec. II!. For QH
ground states, this will usually mean thatL̃50. For the
SU(4)k ground states, we haveNv54N/(3k)22, while for
the SO(5)k ground statesNv5N/k22. We will compare the
results of numerical solution for the ground states with th
series of trial states.

The SU(4)k states withk5N/3 are the exact ground
states forc250 at Nv52 on the sphere. It is not surprisin
that they are eigenstates, because they are the only S
singlet states, as in the case ofL5N for the disc.

As a further test for the SU(4)k states, we have looked a
sizes (N,Nv) at which such a ground state could lie fork
.1. SinceN must be divisible by 3k, such sizes increas
rapidly even fork52. The next case after the trivial BTC fo
k52 is N512, Nv56. Here it turns out that the overla
square of the exact ground state forc250 with the trial state
is @48# u^SU(4)2ug.s.&u250.915 226.

The SO(5)1 state was shown to be an exact ground st
for c0.0, g050. The higher members of this series, ho
ever, had a vanishing overlap with the ground states throu
out the phase diagram.

As a further test of our proposed wave functions, we ha
performed calculations for torus geometries. On the to
one simply hasn5N/Nv for the finite-size sequence o
ground states that tend to a fluid of filling factorn in the
thermodynamic limit. We saw in the mean-field analysis
the skyrmion lattice that the lattice can only be observ
when the number of flux quanta is a multiple of 3. Howev
at low filling factors, we expect to see quantum Hall states
n53k/4. To be able to observe these,Nv has to be a multiple
of 4. Unfortunately, this implies torus sizes which are t
large to observe both the quantum liquids and the skyrm
lattice.

To see if the proposed wave functions are good can
dates, we are therefore forced to look at tori which frustr
the mean-field skyrmion lattice. The cases we considered
Nv53,4,6. ForNv54, we find that the ground states a
exactly given by the SU(4)k series. However, as for the BTC
states on the sphere, this is due to the fact that the
ground states, which are SU(3)spin singlet states, span th
space of all SU(3)spin singlets on the torus, which has dime
sion equal to Eq.~25!, the degeneracy of SU(4)k torus
ground states. Clearly this must be independent of the ge
etry of the torus~described byt), and we verified this in
some cases.

In Fig. 12 we have plotted the particle-hole excitation g

D~N!5NS E~N21!

N21
1

E~N11!

N11
22

E~N!

N D , ~32!

whereE(N) is the ground-state energy forN particles, for
Nv54. In the thermodynamic limit, this quantity will exhib
upward peaks at filling factors that correspond to inco
pressible states.

For Nv56 ~Fig. 13!, we focused on the state atn53/2,
N59, which corresponds tok52. We have calculated th
overlap squared with the SU(4)2 state to be 0.939 804. An
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other feature in theNv56 plot is the state atn51 (N
56). This could be a precursor to a paired composite
mion state; however, the overlap with the SO(5)1 state was
small.

F. The boundaries of region II

The behavior at the phase boundaries I-A/II and I-B
~see Fig. 1! deserves special attention. At the boundary I-
II, where g5c2 /c0521, the Hamiltonian simplifies asg2

50 and only the contact interaction which projects onto
spin-singlet channel remains. As a result of this, large deg
eracies occur. For example, all fully polarized statesS
5N) have zero-energy. We have not obtained analytic
pressions for these degeneracies. That they are not due t
specific geometry was observed on the torus. The zero
ergy states are not sensitive to changes in the geometry
examples of these degeneracies, we have in Fig. 14 tabu
the L̃, S quantum numbers of the zero-energy states forN
56, Nv52 and forN55, Nv53 on the sphere, and forN
56 particles in the disk geometry.

FIG. 12. Particle-hole excitation gapD(N) vs n, for Nv54, in
a rectangular geometry,a/b5A3/2. The peaks can be interpreted
an indication of incompressibility of the corresponding states.
N53, 6, and 9 we verified that the ground states, which are
generate, are exactly the SU(4)k quantum Hall trial states withk
51, 2, and 3, respectively.

FIG. 13. Particle-hole excitation gapD(N) vs n, for Nv56, in
a rectangular geometry,a/b5A3/3.
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VIII. CONCLUSION

In this paper we have studied the phase diagram of sp
bosons in a rotating trap, within the LLL approximation, u
ing a variety of techniques~numerical diagonalization
mean-field theory, and analytical constructions!. We concen-
trated on certain regimes. These were~i! low rotation, such
that the angular momentumL is less than or equal to th
particle numberN, where the system is beginning to conta
some vorticity; ~ii ! higher rotation, where the bulk of th
fluid accommodates vorticity and is occupied by a lattice
~possibly coreless! vortices, which we considered as infini
periodic structures;~iii ! the quantum Hall regime, in which
the vortex lattices are replaced by translationally invari
quantum fluids, which we considered in edgeless geome
~unfortunately, for spin-1 bosons the finite-size restrictio
are here very severe!. The transition regions between the
regimes, namely, that in which the system contains a sm
number~larger than two! of vortices, and that at the critica
filling factor at which the vortex lattices are replaced by t
quantum liquids, were not considered. The results sho
rich variety of phases as the interaction parameters, e
cially the ratio of the coefficients of spin-dependent and sp
independent interaction terms, are varied. The results
tained here, especially those at lower rotations which sho
be more easily accessible, should motivate further exp

FIG. 14. Degeneracies of zero-energy ground states on
sphere atg521 for N56, Nv52 ~top left!, N55, Nv53 ~top
right!, andN56, Nv5`. All multiplicities refer to highest weight
states of the orbital SO~3! symmetry.
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APPENDIX: CLASSIFICATION OF TOPOLOGICAL
DEFECTS

Here we continue the discussion of the topological clas
fication of defects or excitations.

In Sec. I we explained the appearance of two types
ordered BECs for spin-1 bosons. In these the order is c
stant in space. More generally, a condensate will prefe
have the same type of order locally at almost all points
order to lower the energy, but there are types of excitation
which the order as described by a point in the order para
eter manifold can vary in space. Excitations of this type t
are stable under continuous deformations of the or
~known as topological defects! can be classified by method
from topology. One type is those in which the order brea
down ~possible, the density goes to zero! at a point in space
~we consider two space dimensions here!. These are classi
fied by the fundamental or first homotopy groupp1 of the
manifold. Such objects exist, for example, in the case o
one-component ~scalar! condensate, where the orde
parameter manifold is the circleS1. For vector condensates
an example is the polar state, for whichp1(S13S2/Z2)
5Z, the group of integers. Because these involve the ph
of the condensate~related to theS1 part of the manifold!
winding as one encircles the singular point, these object
both examples are vortices that are relevant when vorticit
forced into the system. In the polar state, the vortices of
smallest vorticity carry a half unit of vorticity~in the usual
units!, because of theZ2 divided out, and are also referred t
as p disclinations. For the case of the ferromagnetic sta
p1„SO(3)…5Z2, so that two nontrivial vortices can annih
late one another@5#.

The other main type of topological defect is sometim
called a coreless vortex or skyrmion. In these the order ex
and varies within the order-parameter manifold everywh
in space. The topological classification requires identifyi
points at infinity, as if space were a sphere. For trivial bou
ary conditions~those that allow the constant ordered grou
state!, the topological defects are classified by the seco
homotopy groupp2 of the manifold. This isZ in the polar
case, and trivial in the ferromagnetic case. However, if
wish to classify the vortices that carry the nonzero vortic
in a rotating condensate, then the boundary conditions m
be modified to allow a nonzero vorticity on the sphere~this
modification has the form of the Dirac string familiar for
magnetic monopole!. In the polar case, the presence of n

he
2-20
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vorticity may force vortices into the ground state. Wheth
the ground state containsp disclinations or vortices of large
vorticity each, depends on the detailed energetics, but
should note that as the total vorticity is an integerNv , the
number ofp disclinations~more generally, the number o
vortices that carry half-integer vorticity! must be even. On
the other hand, the defects above that are classified byp2
carry no vorticity. For the ferromagnetic case, there are co
less vortices or skyrmions which are topologically nontriv
textures in the order and carry nonzero vorticity quantized
integers. We will discuss these configurations in more de
below.

We now come to the borderline case in which the int
action is spin-independent@SU(3)spin invariant#, c250. This
is a useful starting point for smallg also. The discussion is
easily generalized to the case of ann-component order pa
rameter with an SU(n) invariant interaction. In such a cas
the target space is described by a complexn-component vec-
tor of unit length, proportional to the expectation value of t
boson operator, which lies inU(n)/U(n21)[S2n21. For
n.1, p15p250, so this space has neither point-singu
vortices nor skyrmions without vorticity. Forn51, there are
the well-known point-singular vortices with one unit of vo
ticity each, and forn.1 the presence of nonzero vorticity o
the sphere induces skyrmions with integer vorticity in t
condensate, as we will now see.

In more detail, the Bose condensate on a sphere with
ticity present is described by the expectation value of
field operator̂ cm(z)& asz ranges over the sphere. Thus t
possible condensates form the space of sections of a com
vector bundle. Such bundles are classified topologically~for
each number of componentsn.0) by their first Chern class
which is simply the~integer! number of vorticesNv that we
have been using, or the number of flux quanta in the mo
pole at the center of the sphere@22#. Restricting the bosons
to the LLL means considering only the ‘‘holomorphic’’ se
tions of the same bundles. The LLL mean field theory p
formed in Sec. V simply finds such holomorphic sections
lowest mean-field energy. Condensates in which there areNv
vortices at which the density~magnitude squared of the con
densate! vanishes always exist; simply take the condens
entirely in one spin component. The question we will purs
here is the existence of coreless vortices or skyrmions w
nonzero vorticity, in which the condensate is nonzero at
points on the sphere. These correspond to nonsingular
figurations of the order as described above.

The nicest configurations of all, which serve to illustra
the most elementary skyrmions, are those in which the d
sity is uniform over the sphere.@Note that for repulsive spin
independent interactions with SU(n)spin symmetry, the
ground state makes the density as uniform as possible.# It is
convenient to study these in the LLL in terms of their co
ponentsbmm , m51, . . . ,n, andm50, . . . ,Nv . These com-
ponents form a matrixB, with m labeling rows andm label-
ing columns. The density is uniform if and only if

BB†}I , ~A1!

whereI is the identity matrix~that is,B† is proportional to an
02361
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isometry!. Solutions to this condition exist only when
<Nv<n21. For Nv.n21, skyrmions will still occur, but
the density will not be completely uniform.

We now specialize ton53 again, and consider the speci
casesNv51 andNv52 for which uniform density conden
sates exist. ForNv51, m50, 1 only, soB is a 233 matrix.
A solution of Eq.~A1! for B† is a complex number times a
isometry of C2 into C3. Thus this means picking a two
dimensional subspace of the spin spaceC3. Notice that
SU(2)orb acts by multiplication ofB on the left, while
SU(3)spin acts by multiplication~by the transpose! on the
right, and the phase symmetry under U~1! acts on either side
of B. Then the full space of solutions to Eq.~A1!, for
fixed mean particle number, is parametrized
SU(2)orb3SU(3)spin3U(1)/@SU(2)3U(1)#, where the de-
nominator represents the subgroup of SU(3)spin which has
the same action as SU(2)orb3U(1) on a particular solution
B. This manifold is equivalent to SU(3)/Z3. If we consider a
quantum state in which bosons condense in one conden

in this family, then we can analyze it in terms ofN, L̃, L̃z ,
and SU(3)spin quantum numbers (p,q). It is easy to see tha
there can be no SU(3)spin singlets forNv51 as construction
of such a singlet requires the use of three distinct orbit
Thus the broken-symmetry states cannot be averaged
SU~3! spin rotations to produce an SU~3! singlet@the closest
one can get would be the BDC of Sec. IV, and we belie
that state should be interpreted in this way#. Nonetheless, we
have shown the existence of configurations with single u
of vorticity. We have now analyzed the space of solutio
with uniform density using the full SU(3)spin symmetry
group. For generalc2Þ0, this symmetry is broken. In this
case, the form of the lowest-energy solution depends on
energetics, and the manifold of lowest-energy condens
~orbit of the solution under the broken symmetries! is a sub-
manifold of that above with a lower dimension that depen
on which solution is chosen. Results of this analysis ha
been given in Sec. V.

Similarly, for Nv52, there are three orbitals, and the m
trix B is now 333. We see directly from Eq.~A1! that a
solution for B is proportional to a unitary matrix, and th
manifold of solutions is therefore U~3!. In terms of the sym-
metries present forc250 @i.e., using SU(3)spin symmetry#,
this manifold arises as SU(3)spin3SO(3)orb3U(1)/SO(3)
3Z3. In this case the SO~3! in the denominator, which is the
unbroken subgroup of the spin and orbital symmetries, ha
be embedded into SU~3! as the group of 333 orthogonal
matrices. The U~1! transformations cannot be removed usi
the orbital or spin symmetry groups.

The uniform-density skyrmions forNv52 andc2Þ0 can
be found by using a careful choice of basis. For the fer
magnetic casec2,0, one expects that at each point on t
sphere there should be a nonzero~in fact, largest possible!
spin density, though its orientation varies over the sphere
we use the basis of single-particleSz eigenstates in the se
quencea5↓,0,↑, then one such solution is given byB
}diag(1,21,1). In the particular solution given, the sp
density is↓ at the north pole (z50 in stereographic coordi
2-21
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nates!, ↑ at the south pole (z→`), and the orientation else
where on the sphere can be found by the relation of spin
orbital rotations as described in the previous paragraph
fact, the spin densitŷ SW & itself wraps around the sphere
being (0,0,21) at the north pole, (0,0,1) at the south po
and in thexy plane at the equator. This solution is the,51
solution discussed in Sec. V. Other solutions are obtained
multiplication of B by an element of SO(3)3U(1).
The space of these solutions forms the manif
SO(3)spin3SO(3)orb3U(1)/SO(3).SO(3)3U(1), a sub-
manifold of the full U~3! we had before. The solutionB
5diag(0,21,0) we began with here was chosen to be inva

ant under the diagonal SO~3! subgroup generated byL̃W 1SW .
The other solutions, obtained by acting with either SO(3orb
or SO(3)spin, are invariant under a similar subgroup wi

generatorsL̃W plus a~fixed! SO~3! rotation ofSW . These solu-
tions are very similar to the basic skyrmions for the spin-
case, which appear in then51 QH effect for electrons@37#,
even though here for spin 1 they haveNv52. In fact those
solutions for a condensate of spin-1/2 bosons correspon
the n52 component case with a contact interaction a
SU~2! symmetry, as discussed briefly above.

In the antiferromagnetic regimeg.0 for Nv52, one ex-
N

tt.
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pects a different mean-field ground state. Asg→01, the
ground state should approach a point in a submanifold of
U~3! manifold of uniform density states. Presumably th
submanifold is a different one from that forg,0, where the
solutions always lie in the set we just described. In fact,
expect that the ground states selected atg→01 are those
with the lowest spin density at each point on the sphere
large g, the spin order at each point should take the po
form, with vanishing spin density. This presumably cann
happen with a uniform density. One expects the preced
uniform density solutions to persist at small positiveg, and
then ~possibly, above a nonzero critical value ofg) for the
density to become nonuniform. At large enoughg, we ex-
pect theNv52 solution to contain two polar vortices, eac
with vorticity one. These correspond to solutions found
Sec. V.

For each of the manifolds that describe lowest-ene
mean-field solutions, we can consider the configurat
space of a point moving on this manifold, and then quant
this motion ~this is known as semiclassical quantization
the collective coordinates!. This should reproduce the ful
space of states for theN→` limit for these casesNv51,2,
but we will not go into these details here.
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