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Rotating spin-1 bosons in the lowest Landau level
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We present results for the ground states of a system of spin-1 bosons in a rotating trap. We focus on the
dilute, weakly interacting regime, and restrict the bosons to the quantum states in the lowest Landau level
(LLL) in the plane(disk), sphere, or torus geometries. We map out parts of the zero-temperature phase
diagram, using both exact quantum ground states and LLL mean-field configurations. For the case of a
spin-independent interaction we present exact quantum ground states at angular momehtufor general
values of the interaction parameters, we present mean-field studies of general ground states at slow rotation and
of lattices of vortices and skyrmions at higher rotation rates. Finally, we discuss quantum Hall liquid states at
ultrahigh rotation.

DOI: 10.1103/PhysRevA.69.023612 PACS nuntber03.75.Mn, 05.30.Jp, 73.43.Cd

[. INTRODUCTION tum ground states is expected, with additional structure pro-
vided by the internalspin) degrees of freedom and by the
In recent years, there has been considerable progress jiiesence of additional parameters suchyas
the art of manipulating cold atoms. By varying experimental In this paper we study the ground states of spin-1 atoms in
conditions, a number of quantum states of atomic matte@ rotating harmonic trap, focusing on situations where a trun-
have been realized. In these developments, an exciting theng@tion to the lowest Landau levélLL ) can be justified. We
is the parallel between these states of atomic matter aneonsider generic values of in the repulsive regimey>0,
states of electronic or vortex matter that have been studie@nd also focus on the special cage 0, where the interac-
before. Two important recent advances are the studypiof-  tion has an S(B) symmetry[4]. Before we come to the
full bosons in optical trapsand the analysis obosons in  details of our analysis, we briefly summarize some of the
rotating traps results in the literature for rotating bosons, with either a
Optical traps liberate théhyperfing spin degree of free- single componentscalar caseor several components, such
dom of spin-full atoms, as there is no polarizing magneticas spin 1(vector casg Much of this work is based on the
field. This allows a variety of new phenomena, such as skyrrestriction to the LLL.
mions, monopoles, and disclinations. There are two differ-
ent regimes, depending on the sign of the spin-dependent
interactionc,. If this interaction is repulsived,>0), the
system tends to minimize the total spin and we speak of the The case of vector BEC without rotation has been inves-
antiferromagnetic or “polar” regime. If, on the other hand, tigated, most often by mean-field theory using the spin-1
the interaction is attractivecg<<0) the system will tend to Gross-Pitaevskii equations, or with the further approximation
maximize the total spin. This is the ferromagnetic regime.of neglecting the kinetic-energy ter(the Thomas-Fermi ap-
Examples of such systems are spin-1 Bose-Einstein condeproximatiorn). There are two regimefb], as mentioned al-
sateg BEC) which can be realized by trapping atoms such ageady. In the ferromagnetic regine <0, the ground state
8Rb (c,<0) [1,2] and #Na (c,>0) [3]. In both cases, the has maximum possible spiB=N. Such a spin state can be
ratio y=c,/cy of the spin-dependentc{) and the spin- constructed by condensing all the bosons into a single-
independentd,) parts of the(contacj interaction is small, particle state witt5,= + 1 or as a spin rotation of this. In the
typically a few percent}y|~0.01—0.05. opposite antiferromagnetic regime;>0, the ground state
Rotating the bosons within the trap leads to the formatiorhas minimal spin. Such a spin state can be constructed by
of quantum ground states with a certain amount of vorticitycondensing all the bosons in the saBe=0 single-particle
stored in the system. Upon increasing the rotation rate, apin state or by taking a spin rotation of thiisotice that this
single-componengscalaj condensate with a repulsive inter- is distinct from all of the ferromagnetic staje§his polar
action goes through the following stagép: the nucleation state breaks spin-rotation symmetry, even though the expec-
of a single vortex andi) the formation of a triangulaAbri-  tation value of the total spin, or of the spin density, is very
kosoy lattice of vortices. Theoretical analysis predicts thatclose to zero. The distinct ordered states, which can be
this will be followed by(iii ), a quantum melting of the lattice mapped onto each other by tlieroken symmetries of spin
and the formation ofa series of quantum liquids, where the rotation and phase rotation, are labeled by points in an order-
vorticity is spread uniformly over the system. In the presencgarameter manifoldor target spage For the ferromagnetic
of internal degrees of freedom, such as those associated wittase, this manifold is S@) [5], while for the antiferromag-
the spin states of spin-1 atoms, a similar sequence of quametic or polar case it iS'x S?/7Z, [5,6]. These ordered states

A. Nonrotating condensates and topological excitations
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possess excitations that can be described as topological de- An extensive study of the transition to this regime was
fects in the order, either with a singularity at a point sur-conducted by Cooper, Wilkin, and Gurd4], who per-
rounded by a “core” or without a singularity at all. We de- formed exact diagonalization studies in the LLL in a toroidal
scribe these in more detail in the Appendix, but those thageometry. They predicted that the vortex lattice melts into a
carry nonzero vorticity are relevant to the rotating casequantum disordered phase at a critical valye 6 —10 of the

which we discuss next. filling factor v=N/N,,, with N, the number of vortices and
N the number of bosons. They also found that the quantum
B. Slow rotation: Vortices and skyrmions state is incompressible at=k/2<v., with k=0,1,2 ...,

If the number of bosons in a rotating trap is sufficiently ?nld obslerved .ttrrl]atthth;gr(()jugd stateR?zaIk/ 2thaveH Sltljbft?n'
large, the effect of slow rotation can be studied in a meani'fs]over aps wi e Read-RezalffR) quantum Hall states
field framework. For a single species of bosons with repul-—"= . . .

d'e sp P The RR states are incompressible quantum Hall fluids.

sive interactions, the rotation is accommodated through thg?_h ial caske—1 is the Lauahlin statel6] for b "
creation of singular vortices, with vanishing particle density 28172pe\(;\;ﬁi|ga§1e7<= '25 st:tez?:%hénl\jo%il]?eoar d ?S?;;;n,,

at the vortex cores. As the rotation rate is increased frorri tate[17]. The RR quantum Hall states possess a specific

zero, there is a critical frequency at which a single vorteX“order-k” clustering property: there is a so-called composite-

first appears in the system, followed by additional vortices aboson order parametdi8,1d, an operator that creatds

still higher rotation. With a spin degree of freedom, the sys- . . S
. : bosons, and two vortices, and is the minimal order parameter
tem has several components in which to store the angul

) - a({he one that creates the smallest number of bosthias has
momentum. There is the possibility that a vortex core for ON€ong-range(“off-diagonal’ ) order. Such order implies that

Spin component. is filled by anpther spin compongnt, Ie.adithe quasiparticles over these liquids &geantized vortices
to coreless vortices or “skyrmions.” In such configurations, . o . ; o
in the liquid, carrying fractional vorticity X/ analogous to a

the total particle density is nowhere zero, and there is fractional magnetic fluxb/d, that occurs in certain quan-
smooth spin texture. Mean-field states of this type for rotat- 9 0 d

ing spin-1 bosons have been investigated theoretically b%um Hall states in electronic systems. In quantum Hall lig-
solving the spin-full Gross-PitaevskiGP) equationg 710 ids, the Hall conductivity implies a fundamental quasiparti-

= + I I
For attractive interactions, in contrast, the BEC remains in éé Ilgct(i gﬁrgli (1he_c1(}3qn)t/§€ o:‘nngStlrt;I t())(];st:nes ;:nhgr?c?ta(t); ﬂ:rea
compact blob, without any vortices, all the way up to the ' g trap,

; . the same argument implies that a fractional particle number
maximum rotation frequencithe trap frequendy (g=*=1/2 for the RR statgss present in the quasipatrticle,

relative to the background density. Furthermore, Kor1
there are nonlocal degrees of freedom associated with these
When several vortices are present in a rotating scalar bajuasiparticles, that is, the ground states with more than three
son condensate with repulsive interactions, they line up in guasiparticles are degenerate in the limit where all the sepa-
triangular (Abrikosov) vortex lattice[11,12. In a vector rations go to infinity. As these degrees of freedom are of a
BEC one expects to find similar lattices, built from the core-nonlocal, topological nature, they do not couple to local
less vortices just described. The details of all this depengrobes and the degeneracy is protected in the large separa-
crucially on the relative strengthy=c,/cy of the spin- tion limit. For the casek=2 there is an interpretation in
dependent interaction. For=0, where the S(B) symmetry terms of a Majorana fermion in each vortex ca]. Fur-
between the different spin components is not broken, thé¢her evidence for the appearance of the Moore-Read state
lattice that is expected upon rotation is composed of threavas recently provided by Regnault and JolicoE2Lt], who
intertwined triangular lattices. The vortex cores do not over-observed the low-lying two-particle branch in numerical
lap, so that the density i@lmos}) uniform. This lattice has simulations, upon adding one flux quantum in a spherical
been shown to be independent of the strength of the interaggeometry. They also found evidence for other quantum Hall
tion by Kita et al.[13]. The vortex lattice shows a rich phase states not in the RR series.
diagram, however, when the interaction is spin-dependent.
For a range of positive values af, a square lattice com- E. Outline
posed ofw disclinations has been predictgt3].

C. Lattices of vortices and skyrmions

In previous work[4] we analyzed spin-1 bosons in the
LLL. We identified attractive and repulsive regimes in the
Co-C, plane, and proposed and analyzed two series of clus-

As the rotation increases, quantum fluctuations becomeered quantum Hall statedabeled SU(4) and SO(5)],
more and more important and beyond a critical rotation ratenalogous to the RR states, for spin-1 bosons in a rapidly
the vortex lattice is expected to melt. The resulting state ofotating trap. We identified the exact ground state for
matter is disordered, and it has a large amount of vorticityspin-1 bosons on the disk with one unit of angular momen-
stored in it. In this regime, a number of quantum liquid statesum per particle, the boson-triplet condens@dC).
have been proposed. Based on the analogy with the physics In this paper we provide further results on the phase dia-
of electrons in a strong perpendicular magnetic field in twogram for spin-1 bosons in the LLL. Employing the &Y
dimensions(2D), the boson quantum liquid states can besymmetry, we discuss how in a slowly rotating system with
characterized as fractional quantum Hall liquids. ¢,=0 the exact quantum ground state evolves from the non-

D. Scalar boson quantum liquids
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rotating one towards the BTC at angular momentumN, S, for each particle@=1,0,]. (Later in the paper it will be

and we compute the ground-state angular momerit(a) convenient also to use the basis of Cartesian components for
as a function of the rotation frequenay Using LLL-mean-  spin 1, labeled by.=x,y,z) When we use second quantiza-
field theory, we extend the results for slow rotationdp  tion, we will denote the boson creation and annihilation op-
#0, and discuss the various skyrmion lattices. Furthermoregrators for these single-particle stateskﬁ% ,bie,» and the

the two series of quantum Hall states are discussed in detatorresponding occupation numbers ty,=b' b, . Also,

and we supplement them with a third series. we sometimes use the field operaigf(z) == mbmadm(2).

This paper is organized as follows. In Sec. Il we defineThe single-particle contributions to the Hamiltonian add up
the model by discussing LLL truncation in a disk, sphere, 0rto (w,— w)L, with L=3,L,; thezcomponent of total angu-
torus geometry, specifying the interaction Hamiltonian, andar momentum. We will refer to this geometry as the disk in
make remarks on the general symmetry properties for latefiew of the form of the fluid stateéfor repulsive interac-
use. In Sec. lll, we study the phase diagram by direct nutions) which tend to form a disk or “pancake,” because of
merical diagonalization. In Sec. IV exact quantum ground-+he centrifugal force. Note that we must hawes w,, other-
state wave functions and energies for a slowly rotateg  wise the system becomes unstable.
gular momentumL<N) system in thec,=0 limit are To study the bulk properties of the quantum ground states,
presented. For nonzei, we use a LLL mean-field treat- we will eliminate boundary effects by using instead two
ment to study the slowly rotating systein Sec. \} and the  other geometries and taking the limit— w,. In a spherical
various skyrmion and vortex latticém Sec. V). In Sec. VIl geometry[22], the orbital part of the LLL single-particle
we discuss the quantum Hall states at ultrahigh rotation. IRyave functions isp,(z)«<z™[1+ (|z|/2R)?]* N2, wherez
an appendix we discuss the topological classification of derepresents position on the sphere by stereographic projection

fects. to the plane, an® is the radius of the sphere. The number of
orbitals is restricted by the vorticityN, penetrating the
IIl. LLL MODEL HAMILTONIAN AND ITS SYMMETRY sphere, &m=N,. TheN,+1 single-particle orbitals form

In this section we describe the truncation of the space of representation of orbital angular momentum equal 2,

single-particle states to those in the LLL, and then eprainSee Ref[22]. In the fimit R—¢, keepingN, /R", N andz

. ; ; constant, the single-particle wave functions on the sphere
the use of different geometrigsphere, torysonce this trun- reduce to those for the disc as above. The total angular mo-

cation ha_s be_en made._Then we give the form of the mt?racgqentum on the sphere is characterized by quantum numbers
tion Hamiltonian that will be assumed, and some analysis o

the symmetries of the model, with particular reference td- for the magnitude, ant, for thez component. In terms of
certain limits and different geometries. L which has eigenvaluet=3;m; as before,L,=3NN,

—L. We emphasize that our definition ofwhen used for the
sphere does not have its usual meaning, but is related to the

) o zcomponent in such a way that the — oo limit agrees with
In a rotating frame of reference the Hamiltonian f&r e plane.

A. Truncation to the lowest Landau level

trapped, weakly interacting spin-1 bosons is The final geometry we use is the torus. Here the single-
N oo particle wave functions take the forljs\(z)ocf(z)e‘y2 in the
H=>, 70(_V*i2+ r2)—w-Li|+Hiy. (1) Landau gauge, witli a quasiperiodic holomorphic function.
i

With N, flux quantaf hasN, zeros in the unit cell. There are

. . exactly N, independent solutions, of the fornf(z)
Here w is the frequency of the rotation drive; the angular IHil\lilﬁl(Z_ZﬂT), with = describing the geometry of the
momentum of theth particle, andH, the interaction Hamil- it cell andz; the zeros of. The use of functions ensures

tonian, which we discuss below. Welzlzhave getand the  that ¢ is periodic. Many-body states can be classified by
harmonic-oscillator length=(7/m,wo)™* of the trap(with  hejr Haldane momenturf23).

wg the trap frequency anah, the boson magsqual to one.
Modes in the direction of the rotation axis are frozen out,
leaving us effectively with a two-dimensioné2D) system.
The energy eigenvalues of the single-particle part of the In a model description, the Hamiltonian describing the
Hamiltonian are therg, ,=(2n+m+1)w,—mw, with n  two-body interactions of a system &f spin-1 bosons is a
=0 the Landau level index anti=—n the z component of ~ contact interaction, and contains spin-independéty) (and
angular momentum, labeling the states within each Landaapin-dependentH) terms, of strengths, andc,, respec-
level. tively,

We consider the model in which the single-particle states N
are restricted to then(=0) LLL [29]. This is valid when the R
interactions are sufficiently weak, as we will explain momen-  Hint=Hn*Hs= 2”% 83 —rpleotcS-S§l. ()
tarily. The normalized LLL wave functions aré(z) {¢
with the orbital partg&m(z)f><z"‘e*|z‘2’2 (z=x+iy), and{*a  Here co=(go+20,)/3, C,=(0>—0o)/3, gs=4mh?ag/my,
three-component complex vector representing the spin statandag (S=0, 2) the 2Ds-wave scattering phase shift in the
here« labels the eigenstates of tkzecomponent of the spin  spinS channel[5,24]. A factor 2 has been extracted for

B. Interaction Hamiltonian
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later convenience. One can obtain these parameters by inte- (a=2)/2 p+g-2i
grating over the third direction. Assuming, for example, har- (D,Q)'—>< S
monic confinement with quantum lendthin the z direction, i=0 sS=2i+2
one findsa2’=a3 271, whenl, <I. For the sphere, the
coordinates in this Hamiltonian take values on the surface
of the sphere, with radiuB.

The use of the LLL reduced Hamiltonian is justified when
the interactions are weak. Physical quantities evaluated in the
full model differ from those in the LLL model by relatively In the plane geometrl,, is invariant under translations
small corrections whemcs<2wq. Herev is the typical fill-  and rotations in the plane. When working on the sphere, this
ing factor (expectation of the occupation numbers, summedsymmetry group is replaced by the rotation group SQ43)
over a or w) of the single-particle states. Notice that this [strictly, we should say SU(3), whenevemN, is odd] of the
condition becomes much less stringenteats> wg in the re-  sphere. In the limitR—« described above, this symmetry
pulsive regime, as then the particles spread out into a parbecomes translations and rotations of the plane. When taking

@ , p even. (7)

(p/2)
D 2i
j=0

Note that the highest SB) spin in an SW3) multiplet (p,q)
is alwaysS=p+q, and the lowesE=0 or 1.

D. Orbital symmetry in spherical geometry

cake and the filling factor becomes of order 1. this limit, we also holdL fixed, and hence many-particle

Finally, the LLL Hamiltonian in the rotating frame which states of definite SO(3), quantum numbersl(L,) become
we wish to analyze is in the limit infinite-dimensional multiplets of the Euclidean
Ho=(wo— @)L +Hiy. (3)  group of the plane. States within each multiplet differ only in

) ) L the state of the center-of-mass varia@ldich has coordinate
Note that we use precisely this definition in the case of thezc=2izi/N). Thus, if s, is an eigenfunction o, at cer-

sphere as well as for the disk. It will be useful also to know,in angular momenturh, then there exists a whole “tower”

the ground states dfy for eachL. of statestL,oczt'z/;L with the same interaction energy at
angular momentunh +L".

We remark that in situations where only a few quantum

In general, the only symmetry in spin space of the Hamil-orbitals are available to the bosons, the spectrum is largely
toniansH;, and H,, is spin-rotation symmetry SO(3),. determined by symmetry considerations. Particular examples
This implies that spin states will come in multiplets of s@in are the spectrum foN,=2 on the sphere, where the exact
with degeneracy 3+1 (with S integer since the particles N-body energies are given in terms of Casimir invariants of
have spin L However, at,=0, the interaction Hamiltonian the orbital and spin symmetri¢see Eq(10) below], and the
reduces to the spin-independent interactitn In this case case withN,=4 on the torus, where the topological degen-
the spin-rotation symmetry is enlarged from SQ¢3)to  eracy, Eq(25), below pertaining to particular quantum liquid
SU(3)spin- It will be useful to understand what this implies states is recovered from the &) spin symmetry.
about the spin multiplets in a finite-size system.

For c,=0, the spectrum will contain degenerate spin I1l. MAIN FEATURES OF THE PHASE DIAGRAM
multiplets labeled by S(3)-quantum numbersp(q). These _ i i
tuples are the Dynkin indices labeling irreducible represen- [N this section we make a first pass through the phase
tations of dimension digy q)=%(p+1)(q+1)(p+q+2). dlagr'am with numerical results on modgrate sizes. First we
Since S@3) is embedded in S(@3), each multiplet can be consider the grounq statgs bf,; in the disk geometry for
decomposed into a set of 8 multiplets. These S@) spin each.L, then use thls to find the ground stateshHbf as a
quantum numbers can be deduced by using branching ruiddnction of w. All this has to be done for general values of
for SU(3)—S0O(3). Thefundamental branching rule states €o: C2-
that a (,0) or (Op) multiplet contains S=p,p—2,p

C. SU(3) symmetry analysis forc,=0

—4,...,1(0) forp odd (even. Using the fusion rule A. Global structure of the phase diagram
H H H 2+ 2\1/2
(0,0®(09)=(p.q)®(p—1g—1)@---®(p—q,0, (4) First we point out that the magnitudeg(+ c5)~“ only sets

the overall energy scale, so it can be divided out. Thus the
which is valid forp=q, general branching rules can be de- Phase diagram can be thought of as a circle, in which a point
rived. A multiplet (p,q) with q odd andp=q decomposes in ©n the circle represents a ray in tbgc, plane. We wish to
SO(3) multiplets with highest weight$ according to the €xamine this for each or later for eachw. In Fig. 1 the

branching rule Co-C, plane is shown with certain special directionsy (
(q=1)/2 p+g-2i =0, ¢,=0, gg=0, g,=0) that will be important picked out
p— P P s (5) later.
i=0 S=2i+1 For L=0, the ground state has total sp+ N for c,

<0 (ferro regime and S=0 (1) for N even(odd for c,

For g even we find >0 (antiferro regimg These states are the way that the bro-

(a=2)/2 p+q-2i (p/2) ken symmetry states described in Secthle ferromagnetic
pa)—| P P sle| P 2j|, p odd, and polar states, respectivelgppear in a finite-size study.
i=0 S=2i+1 i=(q+1)2 For c,=0, there is a single S3) multiplet of spin states,

(6) decomposing into one 36 multiplet of each spirS=N,
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o
I-A 1 e -
-
“"“.w"
- SU(3)
o
¢ = arctan(vy)
I-B
(L,8) =(0,0)
g2=0

FIG. 1. Overview ofcy-c, plane, with special regions and di-
rections marked.

N—2,.... Thetransition atc,=0 can thus be viewed as
levels crossing, with a larger degeneracy on the tipe 0.
As L increases, these two phasexs£ 0 survive in part of .
the phase diagram, as compact drops of fluid, with the cente*~_
of mass carrying all the angular momentum. Meanwhile, the
positive ¢y axis gradually opens into a region that contains
other phases. By the timeis =N, thecy-c, plane contains
the three regions labeled I-A, 1-B, and Il in Fig. 1.

The ground states in regions I-A and I-B are similar to the
one in the “attractive” regime in the scalar cagg5]. The
orbital part of the ground-state wave function is of the form
W(z)=z5. In region I-A (co<0, c,>0), the spin state is
the same spin singlet as for tthhe=0 ground state, and the
energy[26] becomes cyN(N—1)/2—Nc,]. In region I-B
(c,<0, cg<—cy), the spin state is ferr&=N, giving en-
ergy[25] (co+c,)N(N—1)/2<0. Atc,=0, cy<O0, the spin 18
states again form the $8) multiplet. In the remaining “re- 1
pulsive” region II, the ground state is in general not a com-
mon eigenstate of the, andc, parts of the interaction, and L
the ground-state energy depends nonlinearly on the satio
=c,/cy. Note that we have now located the repulsive region
more precisely than in our previous characterization of it
simply ascy>0. Most of the following analysis focuses on ..
region Il only, which can be parametrized by=c,/c,
alone.

Mo o @

FIG. 2. Ground-state quantum numbets$) in region Il for
o _ ) ) N=6 spin-1 particles in the planédisk) geometry, as a function of
B. Finite-size results in region Il as a function ofw the driving frequencyw (plotted radially and the ratioy [corre-

In Fig. 2 we show the ground-state quantum number§p9nding to the. anglle5=.arctan(y) with respect to the horizontal
(L,S) in region Il for N=6 bosons as a function of the axis]. The special directiong,=0, c;=0, go=0 are shown as
rotation frequencyw. As the phase diagram for eachis a double-dotted radial lines. The inset shows a cut alongethed
circle (which in region Il can be parametrized by=c,/c direction, with the angular momentum given on the vertical axis
or by ¢p=arctan) gwe are free tcr)J plot radially Th(za pg and the(degeneratespin valuesS marked at each of the steps. In

. . . this figure, the parametecs, c,, andw are in units ofwy, and the
rameters are shown in units ef, and with ¢,=0.25, but valuecy=0.25 is used in(t?1e main figure as well as inothe inset. For
notice that the_groun_d—state qugntum numbgrs can only deggitional discussion, see the main text.
pend on the dimensionless ratios of energieg— w)/cg,
and c,/cqy, so that the structure shown is actually present _ i _

(though with the radial variable rescaled and shiftieat all @€ Shown in the inset. The degenerate spin valués<dd
parameter valueinlessc, is too large. The dashed rays are are seen to correspond to the following irreducible(3U
the lines c,=—Cq, C,=0 and c,=cy/2, and the outer Multiplets: (p,q)=(6,0) forL=0, (p,q)=(4,1) for L=1,
dashed circle is the locus of=w,. The ground-state angu- (P.d)=(2,2) forL=2, (p,q)=(1,1) forL=3, and p,q)
lar momentunL and spinsSatc,=0 and as a functionab ~ =(0,0) for L=6. Note also that foic,<0, co>—c, the
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BFD?  AABAL.

q s g p
n

S=0.

ground-state spin gradually decreases figmb6 atw=0 to @

IV. SLOW ROTATION: EXACT GROUND STATES n

AT ¢,=0, L=<N Ip, q,n)I |p,q,n)”

For larger sizes, a brute-force numerical approach is not FiG. 3. The structure of the two different series of eigenstates of
feasible, so we develop other approaches. In this section we, , displayed in a form similar to Young tableaux. In both cases,
determine the exact ground-state energies and wave fun¢re corresponding SB) representation has Dynkin labels, ).
tions for slow rotation(angular momentum up to the boson

number,L<N), for c,>0 andc,=0, exploiting the SB) IN. —4 54N
symmetry described in Sec. Il. Some of the ground states we ag‘vz — a’;‘v: 2
find were described in Ref27]. We analyze a system of 2(2N,—1) 2

spin-1 bosons in spherical geometry witl) quanta of vor-
ticity, with the disc geometry emerging as the liniit,
—oo, We remark that forN sufficiently large, it becomes
natural to discuss low-energy properties in terms of mean-
field configurations that break the various symmetries an
whose energy is slightly higher than that of the exact quan-
tum ground state; this will be discussed in Sec. V.

This energy is for spherical geometry, and it depends on the
numberN, of flux quanta. ForN,—~, Eq. (9) gives the
energy in a disc geometr)NU—Z gives the energy on a
phere with three orbitals. On the basis of exact diagonaliza-
ion studies forN=6,9,12,15,18 particles, where we have
seen that only then=0,1,2 orbitals acquire a nonzero den-
sity, we claim that on the disc fdr=N/2, the ground-state
multiplet is precisely|p,q,0)!, with p=N—-2L, q=L.
On the sphere wittN,=2, we have obtained a much
The ground-state spectrum fep=0 andL<N can be stronger resulf28], namely, a closed form result fall ei-
understood by exploiting the 8) symmetry of the Hamil-  genvalues of,. It turns out that these energies can be given
tonianH,. In our analysis we proceed as follows. We con-in terms of the numbeN of bosons, the total angular mo-
sider two series of eigenstates Bf,, in which (roughly ~mentumL, and the p,q) labels of the S(B) representation,
speaking the bosons occupy at most the lowest three orbit-ccording to
als. Among these eigenstates, we identify the exact quantum
ground-states on the disc and the sphere, as a function of the Equ:2/ =SEN(N-1)+ 472 +iT(@T+1), (10

A. Exact eigenstates oH ,

angular momentum. This then allows us to compute d¢he P
dependence of the ground state angular momentum for gegyhere T2 ,=(p?+q°+pa)/3+p+q is the quadratic Ca-
eralN atc,=0. simir operator for S(B) in the representationp(q). Spe-

|
We write the first series of eigenstates|ps,n)’. These C|al|2|ng this expression to the states in series |, by eliminat-
states contain doublets and triplets of spin-1 bosons that are
Ag N in favor of n and using the fact that=p+q,

fully antisymmetric in spin indices and in the orbital indices ' reproduces the result in @) for N,— 2.

(guaranteeing the overall symmetry that is requirethe . :

different numbers of single bosons, doublets, and triplets cor- Analyzing the ground state on the d|:SC for-N/2, we
respond uniquely to the values bfand the quantum num- 'dentified a second series of stat@sq,n)". One can think
bers (,q) of the corresponding S@) multiplets. The trip-  Of the type-Il states as having tiesingle bosons im=1
lets, which appean times, are singlets under $8), and so  rather thatm=0, so that nowe;=(0,1,0). That is not quite

do not affect the overall S@) representation. The highest correct for the energy eigenstates, as we will explain below,
spin component ¥=p+q) of the corresponding S@)  but it does give the correct quantum numbers. The states in

multiplet takes the following fornfup to normalization series |, Il share the property of havipgingle bosons and
doublets, leading to S@@) Dynkin labels f,q). It may be
|p,q,n)' x[e;- B%r]p[ez. (Bk Bg)]q[B$~ (B}LX BI)]“|O>, |II.um|nat|ng'to'd|spIay the structure of thel sta’ges in terms of
) diagrams similar to Young tableaux as in Fig. 3. For the

orbital structure of the highest-weight states in either series |
with e;=(1,0,0), e,=(0,0,1), and BT—(bOQ, 1a,b .). orll, the lengths of the three rows represent the number of
Clearly, the total number of bosonss=p+2q+3n. The bosons in the orbitalsm=0,1,2, respectively(in the rough
energies corresponding to E@) are point of view, which will be corrected below while the
N N . \ differences, q, aljdn in the Ieljgths corresponq to the &Y
Ico=a;’'n(n—1)+a,"q(q—1)+3p(p—1)+a,°np structure. Essentially, thes.e dlagrgms are ordinary Young ta}b-
\ leaux for the states, but with the first two rows exchanged in
+3qp+a,’ng, (9  the case of series Il.

For the case of the type-Il states, the following correction
with must be made to obtain the energy eigenstates. In the case of
) scalar bosons, it is know[r29—31] that the ground-state con-

1IN, —20N,+6 N, ON,—2 figuration atL=p of p bosons is a vortex located at their

1 4(2N —-3)(2N,—1)’ %2 - 2(2N,—1)’ center of mass, with wave functiofi;(z;—2z;) with z;

pqn
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=2,z /p. This state is not entirely restricted to the=1 or- 1
bital, as there are components in which other orbitals in the
range O=m=p are occupied as well. The bosons in the osl

state|p,q,n)" form such a vortex. This complication makes
it difficult to write down the closed form expression for the
states in series Il; based on numerical analysis for siall ~, 06
and mean-field results for large (see Sec. Y, we do pro- N
pose the following closed form expression for the corre- 04l
sponding energy on the disk:

02

EII

ban/Co=%n(n—1)+ q(q—1)+ 7 p(p—2)+ F nq

+ Y np+qp. (11) 05 04 03 _ 02z 01 0

w

) . . . . FIG. 4. L/N asN—o of the ground state on the digkold line)
Note that thep-independent terms in this formula are identi- and on the sphere withl,=2 (dashed ling as functions ofe

P I
cal to those for type-| staFes \,N'mv_oo' The state}p,0,0} ' =(w—wg)/(cyN) at c,=0. The horizontal lines mark the values
has energy(p—2)/4, which is exactly the ground-state en- | ;N—1/3 andL/N=2/3. The cusps in both curves indicate the

ergy of a rotating scalar BEC &t=p=N. This justifies the  pqint where them=2 quantum orbital is first used in the ground
interpretation of the polarized subsystem withbosons gtate.

forming a vortex at the center of mass. However, it turns out

that |p,0,0)" will never be the lowest-energy configuration
for a rotating spin-1 system. only two energy scales, the ground-state angular momentum

Among the type-l/-Il states the following are special. PE€" particleL/N can _b(_a written as a functi_on of t_he ratio
First, |p,0,0)! is the nonrotating ground state, corresponding(® ~ @0)/(NCo). For finite boson number this function con-
to the (,0) multiplet. Second0,g,0) gives a wave function SISt of a sequence of steps, as can be seen in Fig. 2. It turns
Composed of antisymmetrized pairs of bosons, a bosorut that(thanks to our jUdiCiOUS choices of faCtorSN)): the
doublet condensat@DC) or (0g) multiplet. Third,|0,0n)  limit N—co with L/N and (o — wo)/(coN) fixed of this func-
is composed of three-body singlets. It is a condensate dfon exists, and this is the most convenient information to
triplets or boson-triplet condensdté] (BTC); we shall see display. In the following we determine the path of the ground
that it forms the ground state At=3n=N. The BTC state states in p,q) space as a function df, and theL(w)/N
can be regarded as a symmetrized version of the corele§ghavior of the ground states in this limit for both the sphere
vortices observed in mean-field studisge Sec. V for more (N,=2) and the discl,=) in the regimeL/N=<1.
on this.

More generally, the type-l/-Il states are examples of 1. Ground states on the sphere at,k 2
* (mult)) fragmented” condensat¢82], see also Ref26],in  On the sphere, our notion of rotation is such that the
the sense.that they contain ;everal. macroscopically occupi (3),-angular momenturl. decreases as the system ro-
elements in the density matrix. For instance, for the BTC an ates faster and faster. With three orbitall, &2) we have
for (any component ¢fthe BDC state we havénma)enc L,=N—L (see Sec. Il A (We consideN,=2 because this
=(1-6m2)(1—6,,)a/2, (Nmy)sTc=n/3. Since the spinis 2 _ : v
fixed in these statesAn,)2=((n,—(n,))?)=0, wheren,  Case can just accommodadte=N.) At L=N, we know zil-
=3 1-012me- However, within each spin component, the ready that théN,0,0)' multiplet forms the ground state. As
fluctuations of the boson number between orbitals is of thestarts to decrease, again a type-| state has the lowest energy;
order of the system size: AQmq)3pc=0(0+2)/12, the (p,q) path is parametrized by {(2-N,N—T). Bosons
(Anpm.)arc=n(n+3)/18. This is an indication that, as in the are gradually added to thm=1 orbital and form antisym-
case of the singlet ground statelat 0 in the antiferromag- metrized pairs with the remaining ones. The point up to
netic regime and the related polar mean-field sf&@, it  which this continues can be found by comparing the energies
may be best to think of these states as broken symmetryf |2 —N,N—L,0)' and |[2L—N+t,N—L—t,t/3)". After
stated33]. That is the approach we will take in Sec. V. minimizing with respect ta this yields the critical S(B)
indices (,q).=(N/3,N/3). At this point, with L=2N/3,
ground states with a nonzera*0) number of triplets be-
come energetically favorable. In the remaining region,

o ) T 2N/3=L=0, type-l states are the ground states followin
the LLL and a spin-independentc{=0) interaction is P 9 9

formed by a sequence of type-I or -l states lying on a certaif® Path 0,0) =(L/2L/2). Eventually this terminates on the
path in (p,q) space a& increases. To find the ground state in BTC atL=0. L/N of the ground state as a function of the
a rotating frame of reference, we need to find the groundotation drivew shows a cusp dt/N=2/3 (L/IN=1/3), as is
state ofH,,, EqQ.(3), instead. Since this Hamiltonian contains shown in Fig. 4.

B. Exact ground states atc,=0 as a function ofL or @

The ground state of a rotating gas whtspin-1 bosons in
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2. Ground states on the disk bosons condensed in one linear combination of the single-
particle states. This typically involves breaking the orbital

and spin symmetries, as well as particle number conserva-
tion. (States with definite values of the good quantum num-

ground state as we know. Far<N/2 the ground state is P€rs such adl, S L can be obtained afterwards by applying

formed by a type | state with=0 and SUY3)-quantum num- & projection to the mgan-field quantum stgR3]) In the

bers ,q)=(N—2L,L). This state terminates on the BDC case of very low rotaﬂpn, where<N, we have seen that
atL=N/2. In this range, increasingleads, as on the sphere, (neglecting the sqbtlehes that arose for type-Il satee

to more bosons occupying the=1 orbital, forming anti- states esser_ltlally involve only tr_m:o, 1, apd 2. state;, SO
symmetrized pairs with the ones in the=0 orbital. ForL that the basis set for the mean-field calcula_ltlon is particularly
=N/2, the type-ll states have the lowest energy. lAf- small. In tr_\ese cases, the mean occupation numpers of the
creasés, bosons move from the=0 into them=1 orbital, single-particle states are of ordil Qnd .thEII’ energlzes ex-
decreasing the number of doublets, and giving type-II stategeed the exact ground-state enefgyiich is of ordem") by

at (p.q)=(2L—N,N—L). Comparing the energies of an amount of ordeN. We rgfer to Refs[34,35 for an ex-

ItN, (1—t)N/2,0)" and|(t—s)N,(1—t)N/2sN/3)", we can tensive account on mean-field theory for the case of scalar

determine the point where it becomes favorable for triplets t ?S(S;t?:;stio':gulg'?ﬁi;hszgzgaﬂvsgrriiggg :ﬁ?ﬁi;_gg%ngﬂu_
enter the ground state. We find  critical angular momentu lation for thié regime. This ivespus easy access to the ground
L=(1-ty)N with t.~1/3—3/N, which approachesL gime. 9 y g

=2N/3 for N large. ForL=2N/3 the number of triplets is states at largd fqr c,#0 In region _”' In the following
: ) A section, we study instead the mean-field states at larger rota-
gradually increasing ak grows. Minimizing|2L—N—s,N

" L,s/3)!! with respect tos, we find that the ground state is tion, which can be assumed to be states in which the trans-

now the type-ll state withs(N,L)=3L-2N, giving lational and rotgtlonal symmetry group of the plane is broken
to that of a lattice.
(p,q,nN)=(N—L,N—L,L—2N/3). For L=N the ground *
. T - In terms of the complex numbets,, by, the energy
state is the BTC witip=q=0, n=N/3. becomes a quartic polynomial and the ground state can be
To summarize the above results, for<Q<N/2 the d poly 9

T found by minimizing this polynomial with respect to these
ground state is given ij—ZL,L,O}' and for N/2<L . . .
<2N/3 by [2L—N,N—L,0)". In the remaining range /3 variables. This is done here with thmeanboson number

— *
<L=<N the number of three-body singlets is nonzero, anJ_Ng_Emg*b”B“bm? dand h angi]ulzr\l rgﬁmentum .<L|>
the ground state is given BN —L,N—L,L—2N/3)". Mini-  _ ~maMBn,Dm, fixed at the valuedN and L, respectively.

mizing the energy in a rotating frame of reference leads td "€ SPin is not constrained at all. Foy=0 the Hamiltonian

the L(w)/N dependence of the ground states fér— o on the sphere takes the form
which is depicted in Fig. 4. In this figure, the curve shows a

For a system on the disk\(,==), the results are rather
different. We will again present the ground states in order o
increasingL. At L=0, the |N,0,0)'-multiplet forms the

cusp at the point where the=2 orbital first enters the Ho=Co2, 2 Vinmmum,Dh oD% s0mabm, s
ground-state configuration, which islatN= 2/3 for the disk aB myomg ST TRE TR TR
with N large. A signature of this cusp in an experimental (12
system might be a change in the expansion (tte rate of with matrix elements
change of the outer radius of the drop with respecijoif
the angular momentum exceedil/3. We shall see that the \/ N\ [N,V (NN,
cusp survives in the antiferromagnetic regimg;>0. ( )( )( )( )

It is important to contrast all this with the well-known Vv _1 M/ \ M2/ \ Ma/ \ M4/ cony +m, (13
behavior of scalar bosons in a rotating tf@5,29. In the MM 2 2N, Mg+ My’
latter case there is a jump froldN=0 to L/N=1 (for all Ma+m,

N) when one vortex enters the system, whereas for spin-1
bosons we findat N— ) a continuoud_(w)/N curve with  This exhibits the dependence on the spatial orbitals.dzor
a discontinuous slope. #0, the matrix elements in the additional term consist of

Vin,--m, multiplied by matrix elements o‘f;, . §j , which de-

V. SLOW ROTATION: LLL MEAN-FIELD THEORY pend on thex,, ... ,a, labels of the bosons. These matrix
elements can be found in standard quantum-mechanics texts.

At low rotation rates, the typical boson occupation num-  The fact that mean-field configurations break the various
bers(nm,) of the occupied ff,,#0) single-particle states symmetries implies that the minima of the mean-field energy
are large compared with 1. In this situation, a mean-field  form orbits under the action of these same symmetries. On a
classical approach to the problem is generally expected tadisk, and at,+0, one expects and finds that, typically, from
be quantitatively accurate. In such an approach, the bosaa generic minimum there are five flat directions leading to
operators are replaced by expectation values, which are coradjacent minima with equal energy. These flat directions cor-
plex ¢ numbers: bl ,—b*_ , and the second-quantized respond to the three generators of the(®@pin symmetry,
Hamiltonian is then minimized with respect to both the mag-an overall phase, and an orbital(2) rotation. For spin-
nitude and phase of these numbers to find the ground statdadependent interactions the symmetry orbits are generically
In essence the resulting state is a Bose condensate with then dimensional.
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+++ FHET iy #_#*H&
i

FIG. 5. Two-dimensional density profile of each of the spin
components of two LLL mean-field ground-state configurations at
c,=0, L=N. The upper panels show the axisymmetric spin-vector
configuration(¢o(2), #1(2),¢»(2)). The two configurations share
the same distribution of the total density, and they are related by the
SU(3) symmetry. Forc,#0, there are similarly distinct profiles
related by S@) symmetry.

¢ = arctan(y)
One convenient quantity to plot is the expectation value

(S) of the spin, whose length is conserved under global spin y=-1"

rotations. In special cases, this expectation value is axisym-

metric; in the more general case it is nonaxisymmetric and FIG. 6. Regions in they, ¢ plane in which only then=0 and

the mean-field configuration breaks the orbitdPOsymme-  m=1 orbitals are present in the mean-field ground state on the disk

try. Another useful quantity is the three-component condenare shaded. The angular coordinategis arctary and € =L/N is

sate wave functioanalogous to the familiar spinor for spin- plotted radially. In the shaded strip neé=1, a “polar vortex”

1/2), which is the expectation value of the field operator,forms the ground state.

(U (2))=Zbmadm(Z) (see Sec. Il A It is a vector in the

a=71, 0, | basis. From this we can plot the density in eachnontrivial structure in the spin dependence, leading to spin

spin component in position space. This could be accesseddansitions at critical values af=L/N, as we will describe

experimentally if after switching off the trap to allow the shortly.

particle cloud to expand, a Zeeman term is switched on, In Fig. 6 we have plotted region Il of the phase diagram,

which causes the three components to separate as theythis time with ¢ radially. The shaded regions show where

expand. only the first two orbitals ifh=0,1) are present in the con-
As an example, we plot in Fig. 5 the 2D density profile in densate. One region is a tiny strip near1 for y=(7

each spin component of two different mean-field ground-+4./2)/17~0.75, where therfi,a) = (1,0) state is occupied

state configurations at,=0, L=N. The top frame shows by all the bosons. This state can be seen as a polar vortex,

the densities for the condensate proportionalgg,(®1 , ¢»); since it has the same spin state as the polar BEC. The other

the lower frame shows a configuration that is related to thigegion, centeredroughly) around thec,=0 axis, contains

by an SU3) rotation. The total density in each of the  states in which both them=0 andm=1 orbitals are used.

=0, 1, 2 orbitals is an S(3) invariant, and it is the same for In the antiferromagnetic regime fdr<1 there is a large

both configurations shown in Fig. 5. The mean-field energyarea where then=3 orbital requires a nonzero density; in

of these configurations i€ye=5N?, in agreement with this area, mean-field theory in which only the first three or-

order N2 term in the energy of the exact quantuBTC) bitals are used is not valid. However, around and at the

ground state, Eq9) with N,=2, p=q=0, andn=N/3. SU(3) axis and around the polar vortex as well as in the
First we consider the disc geometry with=0. Carrying ferromagnetic regime, the density in the=3 orbital is very

out the mean-field minimizations, we find in terms 6f small for <1 and can safely be ignored. Besides, if the

=L/N that for 0<¢<2/3 the number densitiegn,) energyH, in a rotating framesee Eq.(3)] is minimized,

=3 b} .bm. in the orbitals of the mean-field ground statesonly the states which use the first three orbitals 0,1,2 are

behave like(here and in the remainder of this section, theseof interest for{ <1. [This is with the exception of the vi-

numbers are normalized so that they sum jo(dg)=1 cinities of the boundaries of region (ee Fig. 1 at y—x

—¢€, {n))=¢, and(n,)=0. Fori<¢<1 we find(ng)=3, and aty=—1.]

(n))=3%—¢, and(n,)=¢—3. All this is in agreement with In the following sections we present results for the LLL

the results derived from the exact quantum ground states imean-field ground state fog|<1, in both the ferromagnetic

Sec. IV. and antiferromagnetic regimes, and we discuss the ground
For very small interaction ratidy| <1, the total densities states at =1 for general values of.

in the orbitals remain the same as fpr=0, but there is Our mean-field results pertain to the LLL, relevant for the
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TABLE |. Occupation numbers of the LLL mean-field ground N2

state with small antiferromagnetic interactigr- e. |<§>|2:_2([1_g]_g|z|2)26*2|2|2_ (15)
v
(Nop) (No) (ng)  (N1p) (g (Nzp)

os¢<¢: 3(1-¢) 3(1-¢€) ¢ 0 0 0 For ¢ #1/2, the integrated value ¢B) for this state is non-
i<t<3% 0 1-¢ 0 14 0 0 zero and there is a spontaneous magnetization. In Fig. 7 a
f<i=<(s 0 1 0 3-¢ ¢-% 0 two-dimensional plot of S) at both sides of the spin transi-
i<t<1 0 z i-¢ o0 0 (-3 tion at¢ =€ is shown. The state at<0¢ <3 can be viewed

as a configuration of twer disclinations off the center of the
trap, while the state in the regim&<¢<2/3 (or possibly
regime of weak interactions, and they thus differ from thegyen as far a€f) can be understood as a singtedisclina-
mean-field solutions of the GP equatidri®,36. Neverthe-  {ion in the polar state.

less, there is agreement on some of the important features, 1 angular momentum for which the=2 orbital is first
such as the smooth dependencé o o in the ferro regime occupied in the mean-field ground state=2, is robust

and the role of the state with a singte disclination neaw against small antiferromagnetic interactions. Fpr + e,

=0.5 in the antiferromagnetic regini8e. 2/3<¢<(f, the condensate can be represented as
(7¢1(2),0¢,(2),EPo(2)), with £é=\N/3, o= L—2N/3,
A. Antiferromagnetic interactions 7=4N/3—-L, while  for ¢f<¢<1 we have

We now specify the mean-field ground states, given in thd — 0 ®2(2), 7¢1(2), £ $o(2)).
form of a three-component condensate wave function, for In Fig. 8, we have depicted the ground-state angular mo-
small, positivey= + ¢, and for¢<1. As before, the conden- mentum per particlé as a function of the rotation frequency
sate wave function is a vector in the=1,0,| basis. In @ for some positive values of. It is seen that upon increas-
Table | below we specify the mean occupation numbers offg ¥ @ semiplateaua distinguished part of the curve on
the four states that we found. which the angular momentum increases gradiialgvelops.
Note that the condensates given in this table are specifigpon increasingy further, the semiplateau becomes flatter
representatives of families of condensates that are related [®nd the width decreases, until ferlarger than some critical
the SO(3),i, symmetry. There are two critical valueg;  value y.~1.19, {(w) jumps from¢=0 to an{=1 plateau
=4/7—\2/7~0.37 and ¢5=10-45-4/3(85-38,5)¥2  ata critical frequencyo. given by wo— w.~0.15,N. This
~0.83, where we see a discontinuous rearrangement of tHé & transition from the nonrotating state to the polar vortex,
. . = analogous to what occurs in the scalar boson case.
condensate configuration and (8). For nonzeroy, these
changes in the condensate are continuous; they become sin-
gular (discontinuousonly asy—0". B. Ferromagnetic interactions

For ¢<¢;, the condensate can be repre- \yin small negativey= — e the mean-field ground states
sented by (M2)po(2), 761(2),(M2)o(2)) With N for slow rotation are characterizdp to SO(3 ), rotationd

=JN-L, #7=\L. Applying SO(3),, rotations, one py the occupation numbers given in Table II. Again, we find
finds alternative representations such @8/V2)[\¢o(2)  two spin transitions, the first at; “=2—2~0.59 and the

- 7]¢1(Z)],0,(l/\/§)£)\ bo(2) + 1¢1(2)]). The SOBir  second afj “~0.69.

invariant quantityl(S)|? is found to be For €<{.¢ the condensate can be represented by

) 0,7¢1(2),\po(2)) with X and » as given above. In this

- N — ’ ; .
2 N 2.-2/7 state, the expectation values of the components of the spin
(S 71.2€(1 ) (z+2)%e ' (14) vector take the following form:
N —
The state that emerges at>¢{; corresponds to = Jt(1=0)(z+ e 1??
(7¢1(2), 0\ ¢o(2)), leading to (S0 w2 ( J(z+2) ’

FIG. 7. (Colon Two-dimensional plot ofS) at both sides of the spin transition &t {5 . The intensity codes the lengttS)|, while the
color indicates the direction on the spin sphere as in Fig. 10 below. The left and right pictures correspondlé) Bqs.(15), respectively.
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FIG. 8. The ground-state angular momentum per partica the disc as a function @= (w — wg)/coN for various interaction strengths
and slow rotation. Upper figures: antiferromagnetic regighe,0.1,0.5,0.75. Lower figures: ferromagnetic reginges —0.1,—0.3,~0.5.

N i (F05(2),7$1(2) £b0(2)), with é=o=\k. and 7

(S)= —\/—\/f(l—f)(—l)(Z— z)e 17, =/1-2k., and with the () — sign corresponding tnti

72 ferromagnetic interactions. The parametersdepend ony
according to

N 2
=_—(1—¢)e 4
(Sp=2(1=0e . (16 () T(19+28\2)y2+ (42 4\2)y—3 an
=\Y)= .
The state at  €,°<€<2/3 corresponds to 71y +126y-9
O\ do(2),m$1(2)), leading to a spin vector that vanishes at _ ) )
the center of the disc. The spin textures for—e, € The orbital occupation numbers, given as
< 2/3, can be interpreted as half skyrmidies meron$ (see
also Sec. VD below (N =1-2k., (ng;)=(ny;)=k- (18)

For y=—¢, 2/3<¢<{, ¢, the condensate can be repre-
sented adop(2),E¢ho(2),791(2)), with &, o, and 7 as  are continuous fory going through 0, but the spin texture,
above, while for €, °<¢€=<1 we have  which is sensitive to the phases in the condensate wave func-
(02(2),791(2),EPo(2)). tion, is not. We find that fory==*¢, up to an overall con-

In the ferromagnetic regime the dependence of the stant,
ground-state angular momentum becomes a smooth curve;

see Fig. 8. 1_ o ,
(S)= ( 15 —zz|(z+2z)e 17",
C. Mean-field configuration atL=N \/E
Assuming that only the first threm=0,1,2 orbitals par- .
ticipate in the ground state, we find that the mean- =" i anlZ?
field ground states at ¢=1 take the form (Sp={1+ \/EZZ (=D)(z=2)e" ",
TABLE Il. Mean occupation numbers of the LLL condensate for 1
small ferromagnetic interactiop= —e. (S,)= ( 1— E(;Z)z) o172 (19)
(Noo) (no) (N1 (ny)) (nzp)
O<f<{(-¢ 0 1—¢ ¢ 0 0 Note that in the antiferromagnetic case, the expectation value
a J—
0 <t<3 1—¢ 0 0 ¢ 0 of the spin vector is vanishing on the cirde= 2, while in
Zop<i;€ L 0 0 ‘g (-2 the ferromagnetic case we see a single-skyrmion texture with
“e<p<1 0 1 ¢ 0 -2 (é) nonvanishing everywhere. Figure 9 shows the spin tex-

ture at€ =1 for y=*e.
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FIG. 9. (Color The spin texture at=1 for y= * €. The left side is the antiferromagnetic case, the right is the ferromagnetic case. The
color coding is as in Fig. 10.

From Eq.(17) it is possible to derive the critical antifer- a finite region where the core traces a path over the sphere
romagnetic interaction ratio for which the polar vortex ap- (from the south pole to the north pole, ésincreasesand
pears, by simply solving, (y)=0. The critical value found connects the two sides of the transition. The interaction en-
then isy* =(7+42)/17~0.75(see Fig. 6. If y increases ergy is clearly independent d@f. This region is bounded by
towardsy*, the density in then=23 orbital acquires a small y({)=—|arctan(Z—1)| for 0O<¢<1.
value. So, strictly speaking, the states discussed here are not For N,=2 and y=0, the occupation numbers, summed
the true mean-field ground state in the whole intermediat®ver spin, in the three available orbitals are given(hby)

region. Aroundy=0 andy=y*, however{ns,) iszeroand =1-¢, (n;)=¢, and(n,)=0 for 0<¢<3, followed by
the value ofy* is in agreement with numerical results. (no)=2—3¢€, (n)=3, (n,)=3¢—¢% for $<¢<1. These

In the ferromagnetic regime, upon loweringthe param- mean-field results agree with the exact quantum ground-state
eter k_ gradually decreases frok_=1/3 at y=0 to k_ results obtained in Sec. IV.
=1-1/{2 at y=—1, with the corresponding occupation ~ For N,=2 and small ferromagnetic interactiong=
numbers given in E¢(18). —¢€, the mean occupation numbers in the condensate are

given in Table Ill[up to SO(3),, and SO(3), rotationd.
In the trajectory fromf =0 to € =1 there are no spin transi-
tions. Thet =1 state, which haéng)=(nip)=(nz)=3, is

It is instructive to perform LLL mean-field theory on a the mean-field ground state for arbitrary ferromagnetic spin
system of spin-1 bosons in a spherical geometry, Wth interactions, 0> y>—1. It is a single-skyrmion texture with
=1 orN,=2, meaning that 2 or 3 orbitals are available to both uniform number density and magnitude of the spin den-
the particles. To compare with the disc as before, we writsity, and is discussed further in the Appendix.
these results in terms (ﬁ:(%Nu_t)/N. Notice, however, In the caseN,=2, and small antiferromagnetic interac-
that by flattening out the sphere by stereographic projectiorfions, y=+e¢, for 0=¢<j; the mean occupation numbers
the results are qualitatively similar to those for the disk whenPer orbital of the condensate are the same as in the ferromag-
only the first two or three orbitals are occupied. This is esetic case, but the spin structure is different. er3 the
pecially true for the states &, =2, ¢=1. Even though the spin expectation values in the=0 and 2 orbitals become
topological classification of texturésee the Appendixdoes nonzero(withgut a discontinuityand are not linear functions
not strictly apply to the plane, the form of the spin texturesof ¢. Since|[(S,,—1)|?=0 and the number density is constant
on the sphere is a useful guide to those in the discéfor in the m=1 orbital, the spin state describing the bosons in
=<1. this orbital can be arranged by an & rotation to be

For the casé\, =1 (two orbitals on the spheyewe men-  (0,1,0)A/3. The vectors representing the bosons in te
tion the following results. With & y=< /4 the ground-state =0, 2 orbitals then are simply constructed. Together with
configuration is the same as the one we found on the disk fathe previously mentioned vector they form a mutually or-
{<{;. This configuration can be interpreted as twadis-  thogonal set which minimizesl,. Provided that the spin
clinations at opposite poles of the sphere. Fdd<y<w/2  vectors are properly normalized, the energy can be expressed
all bosons occupy the=0 spin component, forming a polar in terms of one parameter(£), which is connected to the
state with a single vortex. In the ferromagnetic regime, withspin densities by c@za(f)]z|(§)>|/(n0>=|<§2>|/<n2>. Mini-
very smally we find the same spin transition as the one ONmizing the energy with respect @(¢) gives
the disk at¢=¢,“. With N,=1 this transition lies at’
=1/2. These configurations can be interpreted as a half skyr- TABLE Ill. Mean occupation numbers of the LLL mean-field
mion (or meron in the spin texture, with the spin density ground state in spherical geometfy, =2, with small ferromag-
vanishing at one point on the sphere, around which the spifetic interactiony=—e.
density winds around the equator §1$pace, passing over
one pole at the opposite end of the sphere. If the interaction (o)) (N0 (n2p)
is deformed by increasindl, towardsN,—o°, the location o<¢ 1—¢ ¢ 0
of the spin transition is gradually shifted towarfls- ¢ ©. i<e ¢
With finite ferromagnetic interactionN,=1 again, there is

D. The sphere withN,=1,2

AR
= Wik

oo
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(=Y
Nl
x
ol
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. At larger positive y, there is a prominent region of
0= E+ AVA(GE =N 20 (L,S)=(6,0) in theN=06 data. At the largesy, we expect
a(¢)=arcco 2 1—4ax+672] (20 that this can be identifie@n the same sense as the preceding

discussion or as in Ref26]) with the polar vortex state of
this section.(In a finite-size study, one would not expect to

with A=1(¢—1). The maximum of the antiferromagnetic see a transition from the BTC state @t=0 to this polar

energy is not dependent on the angular momentum and lies ypreex with t_he Sam(i quantum numbers at largg '_I'he .
a= /2. In the ferromagnetic case this point minimizes thelUMP fromL=0 to L=6 expected from the mean field is

energy, corresponding exactly to the occupation numbers i€ iN Fig. 2. At smallery, a (3,0) region is seen. We
Table Il speculate that this state corresponds to a singlésclination

At ¢=1, there are solutions with uniform density, with an at the center of the trafwith a second one at infinity or the

unbroken SC8) subgroup of the SO(3),X SO(3)pn SYM- oppoesite pole on the spheranq that the region _corresponds
metry, as the limiting case of the previois 1 states. This © {a<{<2/3 in the mean-field results. Notice also the
case is also discussed in the Appendix. There are also solffominent semiplateaus neé=0.5 in the plots in Fig. 8 at
tions in which the orbital distribution in the mean-field con- largery

figuration of the ground state is not unique. For instance,

among the degenerate states at laggeve find the polar VI. VORTEX AND SKYRMION LATTICES

volrtex with {n,g)=1 and a configuration witkin,g) =(Ngo)

Upon driving the system faster, multiple skyrmions are
2: induced. These are expected to form a lattice and can be well
treated in a(quantum Hall mean-field analysis. Such an
analysis was performed by Kitat al. [13], who found a
range of different lattices foc,>0, depending on the rela-

It is of interest to try to match the mean-field states withtive strength tac, and the rotation. By including higher Lan-
ground states found in diagonalization studies, such as thosfau levels, they were able to show that some of these lattices
shown in Fig. 2 for the disc. Since these have definite valueare qualitatively identical at high and low rotation. Negr
of the quantum numbers, they can be compared with the-Q, the(scalaj vortex breaks up into three vortices, one for
mean-field states only by projecting the latter to componentgach spin component, forming a triangular lattice. Egr
with definite quantum numbef83]. For eachN andL, the  =0.06%,, the vortex splits into twar disclinations, which
value of the spin picked out should reflect the form of themake up a squar&ntiferromagneticlattice.
interaction, and should presumably be the maximal value in \We have carried out a program, similar to Mueller and Ho
the ferromagnetic regime, and the minimal value in the anti{3g], appropriate for a mean field LLL description of a mul-
ferromagnetic. For the spin-independent case=0, the  ticomponent condensate. The LLL approximati@in the
lowest SU(3}),, quantum numbers are favored as groundlimit w— w,) fixes the vortex lattice spacing to be equal to
states. the harmonic-oscillator length. Note that this is different

We will not attempt to identify all the states in Fig. 2 in from the Thomas-Fermi regime, where the distance is fixed
this way, but only some of the more prominent. We havepy the number of vortices, as the density of bosons is the
already mentioned that the mean-field state atl andc, same as in a nonrotating trap.
=0 corresponds to the BTC singlet state. Since the mean- Under the assumption that the vortices in each spin com-
field state has equal mean occupation of,¢)=(0,l),  ponent form a Bravais lattice, we can choose the one-particle
(1,0), and (2}), it does contain a unique singlet componentwave functions to be the torus wave functions with flux
which is exactly the BTC state. Whegy is turned on, the quanta(typically, N,=1 orN,=2). For a scalar condensate,
quantum numbers remain dt,8) =(6,0), but the state will  the lattice is completely specified by the geometrgf the
be slightly altered in its details. The corresponding skyrmiontorus. This wave function is periodic up to a gauge transfor-
spin textures on the sphere are also discussed in the Appemation, equivalent to requiring’ (r’)=A(r).

dix. In the case of multicomponent condensates, however,

The BDC multiplet atL=N/2 for c,=0 that uses only more general boundary conditions are possible. We only
m=0, 1 also deserves comment. This corresponds in meameed to demand

field theory to theN,=1 case discussed above and in the

Appendix. Whenc,<0, it becomes a half skyrmion or P (r+L) =€ U; (r), (21
meron, which survives for alt- 1< y=<0. This meron has no

projection to spin 0, and anyway for this regime maximalwherelL;(i=1,2) define the geometry anti; is the gauge
spin is expected in the ground state. Indeed,Net6 the  transformation mentioned above. The matrités and U,
corresponding I(=3) state hasS=3. The whole regime should commutelJ,U,U; U, =1, to obtain single-valued
L/N=<1 for ferromagnetic interactions resembles what ongyave functions.

expects for skyrmions, that i, (corresponding toN—L on We require thatU,; and U, commute with the Hamil-
the sphergdecreasing aSincreases, aS8=N—L [37]. For  tonian, so that the energy of a unit cell is well defined. For
C,>0 andL=N/2, the lowest-spin part of the BDC state y#0, this impliesU; e SO(3),. The common eigenvec-
becomes the ground state. tors of U;, U, then have eigenvalues E1%1,e"'¢1) and

E. Comparison with finite-size exact states

023612-13



REIJNDERSet al. PHYSICAL REVIEW A 69, 023612 (2004

FIG. 10. (Color) The different lattices found in rotating spin-1 boson condensates. The first picture is the Hammer-Aitoff projection of
the colors on the spin sphere. Top and bottom correspond, respectively, to the north and south pole. The intenk{iﬁﬂcddesize of the

spin vector. Other pictures are the spin expectations at different @ticg: ¢=—0.1, —0.05, 0.01, 0.016, 0.04, 0.1, 0.54, 0.7, and 0.9.
The last picture shows the density, as the spin vanishes.

(1,'92,e7'¢2), With an overall SO(3) rotation, we can fix mean-field componentd,,, (m=0,1,2) form a unitary

the direction of the vector with eigenvalue 1 to be parallel tol U(3)] matrix. This lattice is not shown in Fig. 10, as the

7 in spin space. With this, the unit cell of the magnetic order>C(3)-spin is not well defined.

(seen in the spin density which is gauge invariant, for ex- Sduare ladderThe triangular vortex lattice of the,=0

ampl@ is larger than that of the density, but always containst@se is essentially unchanged up #=0.0143, being

an integer number of the latter. squeezed only. However, the SU(3) symmetry is broken.
Using this approach, we can confirm a large part of thelhis spin shows a ladder structure, where adjacent ladders

phase diagram of Kitat al.[13], but we also find additional are shifted by 3/2 rung spacings.

phases in the ground states at large These are polar Canted ladder0.0143< ¢=<0.0193. The ladder structure

phases, for which we use a unit cell with a single-flux quan-stays intact, however, the rungs are now canted.

tum. We will use¢= arctany as the parameter. The minimi- Triangular ladder 0.0193< ¢=<0.069.

zation procedure uses a simplex downbhill algorithm in the Squaren disclination At ¢~0.069, there is a first order

geometry 7 and the phaseg;,¢,. The wave function is phase transition to the squatedisclination lattice. Only the

obtained from the polynomial free energy by using a conju-} and | components are present in this lattice.

gate gradient algorithm, starting from a random point. The Squeezedr disclination 0.428< ¢<0.62. The lattice is

wave function in general is unique up to a phase and &queezed in one direction and expanded in the other.

SO(3) rotation along the axis. Triangular 7 disclination 0.62< ¢=<0.786. At ¢$~0.62,
The phases we obtain, as illustrated in Fig. 10, are athere is a first-order phase transition to a triangular
follows. mr-disclination lattice.

Ferro lattice. A major part of the ferromagnetic phase  Polar Abrikosov Beyond ¢~0.786, thew disclinations
diagram ( m/4<¢=<—0.08) is covered by a lattice with are unstable and the systems prefer to have only one compo-

N, =2 flux quanta in the unit cell. This is the same lattice asnent, such thatS)=0 everywhere. The vortices of this com-
one obtains for the spip-bosons with full SU(2) symmetry ponent form an Abrikosov lattice, with vanishing density at
or, equivalently, the quantum Hall ferromagnet with thethe cores.
Landefactorg=0. If we consider the spin-1 to be composed  The phases a$>0.428, and ap<0 have not been ob-
of two spin-1/2 particles, theN,=2 for the spin-1 bosons served before. Figure 10 shows the spin texture in the vari-
corresponds tdN, =1 for the sping particles. This structure ous lattices, with colors coding the direction of the spin vec-
is related to théN, =2 skyrmions discussed in the Appendix. tor and the intensity marking its length, so that black regions
Skyrmion-vortex latticeAt ¢~ —0.08, it becomes benefi- indicate places where all components of the spin vector van-
cial to include vorticeg“merons”). The unit cell now has ish. (For the lattice aip=0.9, which is the polar Abrikosov
N, =3, with both a skyrmion and a vortex. Based on directlattice, the spin density vanishes and we plotted the particle
computations in disc geomet(gee beloy, we expect that density instead.The particle density is finite in all lattices
this phase does not extend ¢o=0, but that there are other except the polar Abrikosov one.
phases in the weakly ferro regime0.02< ¢<<0. To check whether the ansatz is sufficiently general in the
Triangular vortex lattice Exactly at =0, the nodes in complete phase diagram, we have supplemented the above
the three components are arranged in a triangular lattice. Thasnalysis by direct numerical computations of LLL mean-field
lattice can be realized wittN,=3 and ¢;=¢,=0. The ground states in a disc geometry, with< wy. Since no pe-
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riodic structure is imposed, the lattices form spontaneouslytion for given valuesw=x,y,z of the spin for each particle,
These computations show that the torus correctly reproducgge can write such a state doh,27,4q (as in Ref[15], we
the dominant phases such as the square lattice diclina-  54d a tilde to the wave function to indicate that it has to be

tions and the skyrmion and skyrmion-vortex lattices. In themyltiplied by the usual Gaussian factors for the plane, or the
region —0.02<¢$<0 the two geometries showed different rational factors for the sphere—see Seg. I

lattice structures, possibly due to finite-size effects. We leave

conclusive results in this region for future work. Y2221 2% 2D A )
At special values ofp;,¢,, when they are both of the X y z

form pa/ ,q integey, it is possible to realize the lattice , "

by usliangcfli(laprger ur?it cell anzl identical phases for all three = 11 Il @-z9*11 Il @ -z, 22

spin components. An example of this is the triangular lattice pEXYz I p<p’ 1

atc,=0, wherep,;=— ¢,=27/3. In this case, we can real-

ize the same lattice by using a torus with three flux quant

and ¢;=¢,=0. The other example is the square : :

sr-disclination lattice, which can be described by using tWOallzed IS WhenN)$=. Ny=N,= N/3..N0t|ce thatL=N(2N/3

flux quanta. This can be compared to the spin-1/2 situation 1)' and zthe f|II|_ng factor, W.h'Ch can be dgfmed as

[38], where the lattice agy,=g;=g, [unbroken SU(2) =limy_.N“/(2L), is v=23/4. This state is a straightforward

symmetry can equivalently be described by using a torusgeneralization of both the Laughlin= 1/2 state for spinless
with two flux quanta13,39 particles, and the (2,2,1) Halperin spin-singlet state for spin-

1/2 bosons. The full state foN,=N,=N,=N/3 is an
SU(3)spin Singlet[(p,q)=(0,0)], and arguments similar to
VII. QUANTUM HALL LIQUIDS Laughlin’s plasma mapping show that, moreover, it has
short-range spin correlations. Because the state vanishes
whenever the particles are at the same point, this state is a
gero-energy eigenstate for all valuesagf, c,. However, it
gvill only be the ground statfatL =N(2N/3—1)] whenH;,
is positive, that is, in the regiog,, g,>0, within region II.
& larger values oL, there are many more zero-energy
eigenstates, so the ground states are degenerate in the win-
dow gg, g>>0. On minimizingH , with respect toL, this
implies that the lowest possible filling factor as— wq from
St:)elow isv=3/4 in this regimgwithin the model in Sec. )l
The state in Eq(22) is an exact eigenstate, but in general
~6-10. A similar transition will occur in the spin-1 case, we are not aple to find the exact highly correlated ground
states ofH;,;. Instead, we seek to understand numerical re-

although we have not calculated the appropriate We ex- D . )
; . . sults, and make predictions for the physics at larger sizes by
pect this to be of the same order of magnitude as in the scalar_. X . .
ing (among other techniquesrial wave functions. These

case. In the present section we investigate the quantum HalSI'[s

: o ; : . States, which are not generally exact for any known two-
fluids that appear within region Il of the phase diagram in . . :
this regime. body interaction, serve as paradigms for the phases of matter

In the extreme limitw— g (v—0), we can analyze the in the thermodynamic limit, as they possess interesting

uantum liquids analytically in a part of the phase dia ram(“universal") properties such as the quantum numbers and
q quids analy y P P ) Statistics of their excitations that are robust against small
as we can explicitly find the zero-energy eigenstates of thé . o . )
Hamiltonian. Two of the series we propose, the SY(ad ¢hanges in the Hamiltonian, until some phase boundary is
the SO(5) séries have a member of this for’mfoqtl The passed(this philosophy has _been dlscusse_d, e.g., in Ref.

. , ) R o [15]). One way to produce trial wave functions, which are
third series consists of a generalization of a family of frac-

. : .-~ closely connected to their universal properties, is to use con-

tlonal guantum HaII(QH) states, the hierarchy/composite formal field theory(CFT). We will show how to obtain wave

fermion states, 0 splr)-l partlc_:les. \We present some NUMEt 1 ctions from a CFT in somewhat more detail in the follow-

cal results on small sizes, which unfortunately are probabh{ng section. The CFT describing E@®2) is SU(4), so fol-

not conclusive for the nature of the states, due to the restri%Wing a st}ategy in Read-Rezais], and motivated by the

tion to insufficiently large sizes. analogous results for scalar bosdig], we can consider a

series, SU(4), wherek=1,2, ... .These states have filling

A. SU(4), series factor =3/4, and are explicitly SU(3);, invariant. Hence

we expect them to be relevant negr=0.

The trial states we consider have wave functions, in spin

omponentggeneralizing those in Reff41,42 to spin 1),

heren, denotes the number of particles with spin The
owest angular momenturh for which this state can be re-

In the LLL approximation, the filling fractiorv defines
the average number of bosons in an orbital. Upon increasin
the rotation further, and thus reducimg the discreteness of
the occupation numbers becomes important. Mean-fiel
theory becomes less useful due to quantum fluctuations.
some point, the condensate is destroyed, and a sequence
qguantum fluids takes over. In the scalar case, the critical
was estimated to be.~ 10 by the Lindemann criteriofi4]
(that is, the average fluctuation in the position of the vortice
equals the separation between theBExplicit calculation of
small systems have confirmed this transition and foupd

It is straightforward to construct zero-energy states.at
=0. The repulsive contact interaction dictates that the wave
function should have a node whenever two particles are off
the same place. Furthermore, two bosons with the same spin
should have a double zero in order to maintain a symmetric @({z-})=$ H P222111 (23)
wave function. In terms of the components of the wave func- ' 9roUPGroups
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In this construction théN=3pk bosons are first partitioned states, in the cask=1, the statistics are “Abelian”; the
into k groups, each witlp particles of each spin component wave function acquires a phase factor when two particles are
XY, Z exchanged, just as for the Laughlin states. korl, how-

For each group we write a Ha|pen'i42,2,2,1,1,1fact0r, and ever, the statistics becomes “non-Abeliafl5,17. This

these are multiplied together. Finally, the symmetrization op/neans that there is a degeneracy, when the positions of the

erationS over all ways of dividing the particles into groups duasiparticles are fixe@in general, this is true only when the

is applied. The angular momentum lis= N[2N/(3k) — 1] quas_lpart.lcles are well sep.arated,. though for the 1)-body

and the filling factor(as N—< at fixed k) is thereforev Hamiltonian and for quasiholes it is exact for any separa-

— 3k/4. It happens that if we pt=N/3, the state contairls t|oq). In terms .of the trlql function$23) gnd their generali-

groups of three bosons each, and the state is exactly the Z&tion to quasiholes, this degeneracy is caused E’y the"sym-

—N BTC. However, we do not believe this is particularly Metrization procedureS, which destroys the “group

significant, as the BTC state is the unique SU(3)singlet ~ guantum number of théquas) particles[41]. The general

state at. = N. framework to obtain these degeneracies from CFT has been
The stateg23) are zero-energy eigenstates of a Hamil-Worked out and agrees with numerical results for the Moore-

tonian consisting of ak+ 1)-body interaction: Read, RR, and other statgkr,43-4§. We expect the same
framework to apply here. When the quasiparticles are ex-

changed adiabatically, the effect is a matrix operation within

). these spaces of degenerate states, described by the braiding
matrices of the corresponding CHL7]—hence the term

(24) non-Abelian statistics.

Hsu@) =V > 8zi,~7,) -8z, ~z

i
f k+1
1< <igi1

The interaction is positive fov¥>0, so all eigenstates have

E=0. This interaction penalizds+ 1 particles at the same B. SO(5) series

point. Therefore, zero-energy eigenstates are those in which similar to the SU(4) case, the SO(5)states can be writ-

the wave function vanishes if a1 coordinates coincide, ten in the form

regardless of the spins. One can see that the above function

has this property, even before the symmetrization over ‘I’EO(S)({Zi})ISgroupI pgmupsqffg(f , (26)

groups, as for ank+1 particles, at least two must be in the

same group, forcing the function to vanish. For less tkan \yhere now

+1 particles at the same point, it does not necessarily van-

ish. In fact, for eaclk, (23) is the unique zero-energy eigen- P

state ofHsy4), with lowest angular momentu. \},53(15)({2&):7)( g) H (z—7). (27)
For the same Hamiltonian on a torus, there are again zero- 4im i) i<

energy states, at least fdrdivisible by 3. For these cases, _ _ _ _

the degeneracy of these SU(4round states is Here the spin states for all th(f particles are included explic-

itly (the product of spin state§ being the tensor product

PM;; denotes the Pfaffian of an antisymmetric matuy; .

In the present case thé=2kp particles are partitioned into

k groups, with 2 particles in each. The particles in each

We have verified that this result, which can be inferred fromgroup form an SO(3), singlet. The product over these
the CFT connection, is reproduced by exact diagonalizatio®roups is then symmetrized. The state as a whole is clearly

%(k+1)(k+2)(k+3). (25)

of the Hamiltonian, Eq(24), on the torus. an SO(3)y, singlet, and has angular momentui
Like other incompressible QH states, the phases of matteF N[N/(2k) —1], so the filling factor isv=k.
exemplified by the trial state®3) possess pointlike quasi- ~ Thek=1 case, which closely resembles the Moore-Read

particle excitations which may have fractional particle num-paired stat¢17] but for spin-1 particles, is the exact ground
ber (relative to the background densitgnd/or spin. The par- State of our two-body HamiltoniaH;, whengo=0. That is
ticle number associated with the elementary quasiparticlegecause, in the sta@foﬁ), two particles are found at the
can be found once it is understood that, similar to the R%ame point On|y if they have total Spin 0. Again, the ground
states[15], the SU(4), states are clustered states, in whichstate as above is the unique zero-energy eigenstate at the
particles occur in clusters ofk3[in an SU(3)yrsinglel.  stated angular momentum, but at largethere are many
Then a similar argument to that given in Sec. | shows thafmore zero-energy states. $e1 is the lowest filling factor
they carry chargeg=*1/4. They also have spin 1. The possible ag,=0. This implies that in finite size on the disc
quasiholes, at which there is a deficiency of particle numbera poundary between ground states with thealues of the
can be studied as zero-energy eigenstateHQj(4)k, and  suU(4), and SO(5) states must run inte=w, at go=0
fairly explicit trial wave functions can be found using the (this is for N divisible by 6, but there will be similar state-
relation with CFT. ments for other valugsSuch behavior is seen in Fig. 2. For
The statistics of quasiparticles in 2D can be defined ingp<0 (y>1/2), we do not know the exact lowest that
terms of adiabatically dragging them along paths, keepin@ccurs asw— wg from below. The SO(5) state can be in-
them well separated, to exchange them. For the SU(4)terpreted in terms of BCS spin-singlet complexvave pair-
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ing of composite fermions, in which the Pfaffian represents

the pairing in position spadd7,20.
More generally, for eaclk there is a Hamiltonian for

which the SO(5) states are exact zero-energy eigenstates,

again given by aK+ 1)-body interaction:

HSO(S)K:Vil<.Zik+1 8(Zil—zi2). .. 5(Zik_zik+1)
XPryaliy, ool (28)
This interaction includes a project® 1(iq, . .. ,ixrq1) Of

the spin state of thk&+1 particles concerned onto total spin
k+1.
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FIG. 11. Roots and weights of the algebr&so0The condensate

For generak, these states can be considered to be built upperators¥ are associated with rootélled symbolg and the fun-

out of clusters of R particles in a spin singlet. From this fact
we can obtain the fractional particle number of the elemen
tary quasiparticlesg= *=1/2. Also, the quasiparticle spin is

damental excitationgp correspond to the weights of the spinor
fepresentatioiopen symbols

1/2, which is fractionalized compared with the spin 1 of theoperators is zeras it must be in order that the correlator be
underlying bosons, and so the number of these quasiparticleé®nzerg. The currents can be expressed as

must be even. Fdk=1, there are also excitations with zero

particle number that behave as fermions with spin 1. In this

3,(2)= o (2)€Pe ¥ K(2), (30)

case, the universal properties may be understood by a simple

extension of the methods of R¢R0] to this case.

where ¢, is a parafermion field, of conformal weight 1

Because it is difficult to see through the symmetrization— 1/ for the long roots and + 1/2k for the short roots. The

operationS, we will provide some details on the conformal

vertex operatore'f«"¢/¥(z) contains the two free boson

field theory behind these states. Such a CFT description afje|ds ¢, (chargg and ¢ (spin), with 2 the position in the

lows us to obtain more insight into the topological proper-
) . - 0
ties, such as degeneracies and braiding. For example, to ob—

tain the degeneracy of ground states on the torus, CFT tel

us that we only need to know the number of nontrivial rep-

resentations at levéd In the case at hand, this number turns
out to be(k+1)(k+2). Again, we verified this number
using exact diagonalization of th&+ 1)-body interaction.
The chiral algebra of the CFT which describes these stat
is based on the SO(p pffine Kac-Moody algebra. so(5) is a
rank-2 Lie algebra, which contains mutually commuting

so(3) and u(1) Lie subalgebras, which we can identify with

the symmetries under SO(gj) and number conservation. In
these subalgebras, the generators are respecsiel$, S,
and c, respectively. According to the CFT-QH correspon-

dence[17], we can also obtain the quantum Hall state wave

functions as correlators in the chiral part of a CFT, in which
the particles(boson$ should be represented by fields that
have Abelian braiding properties. In the present ¢ase the
SU(4), case is similaf the bosons correspond simply to a
different triplet of current operators of the SO(5affine
Kac-Moody algebra. Thus the wave function, now in spin
components, can be written as

V({z}) = lim 2%(e Nee!K(z,)3, (20) -0 (20)),

(29

with J, (e=, 0, T) an SO(3}, triplet of currents in the
affine Lie algebra, which carry U(1) chargel. The cur-
rents are shown in the so(5) weight latti¢gg. 11), as¥ ,

Wy, W, . The operator whose position tends#aepresents

ot lattice. ForJ, these areB;=(1,1), Bo=(1,0), B,
=(1,—1).

Is The parafermions simplify when we specialize to the case
k=1, where they reduce to the identity operator for the long
roots W, and¥ |, in particulay and a Majorana fermion for
the short roots¥,). The correlator can then be readily writ-
ten down, as the correlation functions for Majorana fermions

|

This reproduces the SO(Hjvave function, in the same way
as for the spinless Moore-Read sthid].

We note that the same SO(5algebra was used in an-
other construction47], which was for a system of spin-1/2
particles. The present case differs in that the physical
SO(3)spin Symmetry is embedded differently in $&), be-
cause of the different spin of the underlying particles.

Wave functions for zero-energy states containing quasi-
holes can also be written down as chiral correlators, which
now contain vertex operators for primary fields of the
SO(5), algebra that represent the quasiholes. Forkikel
case, these contaiin the scalar field plus Majorana fermion
language a spin field for the Majorana fermion, and gives
rise to quasihole wave functions analogous to those for the
Moorse-Read statgl7,43.

e
|§ well known

1
z—z

(W(z1)- - lﬂ(Zn)):P( (31)

C. Composite fermions

Alternative QH states to the rather exotic series in the

a background charge, such that the total U(1) charge of thprevious two sections can be constructed by applying con-
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ventional methods to spin-1 bosons. One such approach, as,¢,(2)#,(z), which is invariant undegy— —¢. (Such a

in the case of scalar bosons, is to map the bosons onto comertex lattice would also be possible with vortices containing

posite fermions, by attachingay one vortex to each boson. a half unit of vorticity each, instead of integers as we assume
These fermions see a reduced effective magnetic field, anstherwise, and this might be reached by restoring symmetry
one can construct an incompressible state when an integgf the w-disclination lattice statg.

number of Landau levels in the effective magnetic field is  The other possible sequence of transitions would be that
filled with all three components. This construction givesin which the intermediate phase is a QH liquid with restored

states with filling factors »=3p/(3p*=1), which are {ransiational and phase symmetry, but still has the polar or-

SU(3)spin singlets. der, which breaks SU(2),. The single-boson expectation
One can interpret the Moore-Read state as ftheave (,(2)) would be zero, but if we look at the composite

pairing of composite fermion$l7]. In this case,p-wave + ; -
X o B . ratorys, (2) ¢,/ (2), thi n have an expectation value.
SO(3)-singlet pairing is possiblgn contrast to the spin-1/2 operato l/{”( )¥u(2), this can have a expectation value

. This matrix has a trace equal to the density, which is uniform
case and indeed, we have seen that the SQ(&ate can be : o . X
: : f by assumption. The traceless Hermitian matrix obtained by
interpreted this way. In the SU(3) symmetric caseatl, . . . )

subtracting off the trace contains antisymmetric and symmet-

no two-particle S3)-singlet pairing is possible and there ~. . . ) ;
are two options for the system. One is to form a Fermi liquid,"iC Parts. Thelimaginary antisymmetric part corresponds to
‘a spin-1 irreducible tensor that is simply the spin density,

the other is to spontaneously break the symmetry and forrft

(p,q)=(2,0) pairs. Note that this last possibility includes theWhiCh is azsumed to b; z_erodhe_rk;. Thea) sy_r|1_1hme_trichpart d
SO(3) singlet and thus can be continuously connected to {hgorresponds to a spin-2 irreducible tensor. This Is the order
parameter of a polar or nematic state, which represents a

SO(5), state. - - -
vectorn, but is invariant unden— —n, so it parametrizes

S?/Z,=RP?. Trial wave functions for these nematic quan-
tum Hall states can be written down as those for scalar

The earlier discussion of QH liquid states focused on sinypsons;, times a spin state suchaas0 for all bosons or as a
glets under SO(3);,, with short range spin correlations. It gpin rotation of this.
spin ordering could occur. One possibility would be a ferro-gccurred in the phase diagram at largenow that the cor-
magnetic QH liquid. Such states can be easily written downyespondingpolar Abrikosoy vortex lattices are known to be
by using any wave function for a QH state of spinlesspresent. In finite size, the ground state would always be low
bosons, with all the boson spins in the= state(or a global  gpin[33], S=0 or 1, and there need be no transition sepa-
spin rotation of thiz One might expect these to occur in the rating it from a state at the sante S with short-range cor-
ferromagnetic ¢;<0) part of region II, but in fact we see no rejations, such as the SO(5¥tate atgo=0. Thus the ap-
sign of them: leaving aside the skyrmion textures in the BEGyearance of such nematic order in a QH fluid of spin-1

at low L, at largerL all ground states are spin singlets. We posons in the thermodynamic limit cannot yet be ruled out.
note that for spin-1/2 electrons, spin-polarized states can oc-

cur, e.g., aw=1, even for spin-independent interaction, due
to exchange effects. However, the exchange effects are pre- ) _
sumably different for bosons. To examine how well the proposed states describe the true

A more feasible-looking possibility is QH states with po- ground states, we have performed exact diagonalization of
lar spin order, perhaps in the antiferromagnetic regign Small systems. In the regime<N, we have used both the
>0. In the regime at larger where mean-field theory pre- disc and sphere geometries. As we have seen, these results
dicts the Abrikosov vortex lattice, the spin order is polar. Indiffer somewhat. But when looking at fast rotation, however,
the p0|ar state, the vector condensate can be written a'&here the fllllng factor is of order 1, the SyStem |.S Spl’ead OUt

—e'“n . with o the phase and a real vector. In the into a pancake. It makes sense to focus attention on the in-

<¢“.> " ¢ P ) ~ terior of the disc and avoid edge effects. This can be done by
Abrikosov lattice, the magnitude of the vectarand the

! X . . using an edgeless geometry such as the sphere or torus. Here
phasep vary to give a triangular lattice of vortices. We can e il be interested in the ground states in whichlike
now imagine that quantum fluctuations destroy either part ofne \york earlier in this papgwe find the ground states with-
the order(restor|ng either the phase or the spm-rotatlon_sym-out constrainind.. QH liquid ground states will usually then
metry) without the other. When the U(1) and translational ~ .
how up ad =0 states. At finite sizes on the sphere, such

symmetry that are broken in the vortex lattice are restore round states that form a sequence of sizes tending to a par-
the ground state is a QH fluid. For large quantum fluctuation% und st . qu 1z€s tending P
icular filling factor v in the thermodynamic limit lie on a

one might expect that the QH liquid has restored SY(g) B a .
symmetry. However, the two transitions at which these Sym_sequence of the forl, =N/v—s [22]. Heres is known as

metries are restored are independent, and the transitioa® shift, and its appearance is connected with the coupling

could in principle occur in either sequence as we go t° the particles to the curvature of the sphere. The valug of

smallerv. The intermediate phase in which spin symmetry isdgpegd? on t?ﬁ liquid Istate, not o?ly on N,,trc]:andpe 012_
restored but not the phase would be a vortex lattice in ained from the anguiar. momen u_m on the disc S
boson paired state, a BEC of boson pairs. This would be= NN,/2 (all states havé.=0). That is, when the states in

characterized by having a nonzero expectation value othe ¥ notation are written for the sphere, one can thkeas

D. Vortex lattices without polar order, and nematic QH liquids

E. Numerical results
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small as possible, so thlt, equals the highest power of any 1 ——
z; appearing in the wave functiofsee Sec. )| For QH 0sl N, =4
ground states, this will usually mean that=0. For the a/b = 0.866
SU(4), ground states, we hawe,=4N/(3k) —2, while for
the SO(5) ground stated®l, = N/k—2. We will compare the 04
results of numerical solution for the ground states with these < g5l
series of trial states.

The SU(4) states withk=N/3 are the exact ground
states forc,=0 atN,=2 on the sphere. It is not surprising 02}
that they are eigenstates, because they are the only SU(3) 04l
singlet states, as in the caselof N for the disc.

As a further test for the SU(4 )states, we have looked at 0T 05 1 15 2 25 3 35 4 45 5
sizes (N,N,) at which such a ground state could lie flor

>1. SinceN must be divisible by B, such sizes increase  FIG- 12. Particle-hole excitation gap(N) vs », for N,=4, in

rapidly even folk=2. The next case after the trivial BTC for & rectangular geometrg/b= \/3/2. The peaks can be interpreted as

k=2 is N=12, N,=6. Here it turns out that the overlap an indication of incompressibility of the corresponding states. For
1 v .

. - N=3, 6, and 9 we verified that the ground states, which are de-
iSSqEJ 4ag]e| ?;Lh (Z;ETS?MQJ Euong 155ta2t§6®':0 with the trial state generate, are exactly the SUg4quantum Hall trial states witk
2 . - . .

=1, 2, and 3, respectively.
The SO(5) state was shown to be an exact ground state P y

for co>0, go=0. The higher members of this series, how-

ever, had a vanishing overlap with the ground states througtpther feature in theN,=6 plot is the state av=1 (N

out the phase diagram. =6). This could be a precursor to a paired composite fer-
As a further test of our proposed wave functions, we havemion state; however, the overlap with the SO(Sjate was

performed calculations for torus geometries. On the torussmall.

one simply hasy=N/N, for the finite-size sequence of

ground states that tend to a fluid of filling facterin the

thermodynamic limit. We saw in the mean-field analysis of F. The boundaries of region I

the skyrmion lattice that the lattice can only be observed

when the number of flux quanta is a multiple of 3. However, The behavior at the phase boundaries I-A/ll and I-B/II

at low filling factors, we expect to see quantum Hall states atsee Fig. 1 deserves special attention. At the boundary I-B/

v=3k/4. To be able to observe thed$¢, has to be a multiple 1l, where y=c,/co=—1, the Hamiltonian simplifies ag,

of 4. Unfortunately, this implies torus sizes which are too=0 and only the contact interaction which projects onto the

large to observe both the quantum liquids and the skyrmiogpin-singlet channel remains. As a result of this, large degen-

lattice. eracies occur. For example, all fully polarized stat& (
To see if the proposed wave functions are good candi=N) have zero-energy. We have not obtained analytic ex-

dates, we are therefore forced to look at tori which frustratgressions for these degeneracies. That they are not due to the

the mean-field skyrmion lattice. The cases we considered arspecific geometry was observed on the torus. The zero en-

N,=3,4,6. ForN,=4, we find that the ground states are ergy states are not sensitive to changes in the geometry. As

exactly given by the SU(4)series. However, as for the BTC examples of these degeneracies, we have in Fig. 14 tabulated

states on the sphere, this is due to the fact that the trighe T S quantum numbers of the zero-energy statesNor

ground states, which are SU(g) singlet states, span the —g N =2 and forN=5, N,=3 on the sphere, and fo\

sion equal to EQ.(25), the degeneracy of SU(4)torus
ground states. Clearly this must be independent of the geom-
etry of the torus(described byr), and we verified this in
some cases.

In Fig. 12 we have plotted the particle-hole excitation gap

0.6

A(N

N, =6
15} a/b=0.577

AN)=N E(N-1) E(N+1) E(N) @
N—1 N+1 N |’ =

where E(N) is the ground-state energy fo¥ particles, for

N,=4. In the thermodynamic limit, this quantity will exhibit

upward peaks at filling factors that correspond to incom-

pressible states. 4
For N,=6 (Fig. 13, we focused on the state at=3/2,

N=9, which corresponds tk=2. We have calculated the FIG. 13. Particle-hole excitation gap(N) vs v, for N,=6, in

overlap squared with the SU(4 tate to be 0.939 804. An- a rectangular geometrg/b= \/3/3.

0 1/3 2/3 1 4/3 5/3
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- - ments to rotate spin-1 bosons with unbroken spin-rotation
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61 1 1 1
APPENDIX: CLASSIFICATION OF TOPOLOGICAL
S\L|0123456 ... DEFECTS
0 1... Here we continue the discussion of the topological classi-
1 11... fication of defects or excitations.
In Sec. | we explained the appearance of two types of
2 113... ordered BECs for spin-1 bosons. In these the order is con-
stant in space. More generally, a condensate will prefer to
3 1135... have the same type of order locally at almost all points in
4 11348 ... order to lower the energy, but there are types of excitations in
which the order as described by a point in the order param-
5 112356... eter manifold can vary in space. Excitations of this type that
are stable under continuous deformations of the order
61 11224... (known as topological defegtsan be classified by methods

from topology. One type is those in which the order breaks
Bown (possible, the density goes to zpat a point in space
(we consider two space dimensions hefehese are classi-
fied by the fundamental or first homotopy growp of the
manifold. Such objects exist, for example, in the case of a
one-component (scalaj condensate, where the order-
VIIl. CONCLUSION parameter manifold is the circl8'. For vector condensates,

; ; 1y Q217
In this paper we have studied the phase diagram of spin-T_nZ etxhamprle IS tfhiit pol?r thate, fs?ar t\rgv:slzk?rs\?or:/est/hzé) hase
bosons in a rotating trap, within the LLL approximation, us- " € group ot integers. becau P

ing a variety of techniquegnumerical diagonalization Of_ th_e condensatérglated to th_eSl part Qf the manlfqlai .
. . " winding as one encircles the singular point, these objects in
mean-field theqry, aqd analytical con_structerg Concen- hoth examples are vortices that are relevant when vorticity is
trated on certain regimes. These wéielow rotation, such ¢, .00 jntg the system. In the polar state, the vortices of the
that the angular momentui is less than or equal to the gnajiest vorticity carry a half unit of vorticityin the usual
particle numbeN, where the system is beginning to contain it hecause of th&, divided out, and are also referred to
some vorticity; (ii) higher rotation, where the bulk of the 5 7 disclinations. For the case of the ferromagnetic state,
fluid accommodates vorticity and is occupied by a lattice Ofﬂ'l(SO(3))=ZZ, so that two nontrivial vortices can annihi-
(possibly corelegsvortices, which we considered as infinite |gte gne anotheli5].
periodic structuresiii) the quantum Hall regime, in which  The other main type of topological defect is sometimes
the vortex lattices are replaced by translationally invarianialled a coreless vortex or skyrmion. In these the order exists
quantum fluids, which we considered in edgeless geometriegnd varies within the order-parameter manifold everywhere
(unfortunately, for spin-1 bosons the finite-size restrictionsin space. The topological classification requires identifying
are here very severeThe transition regions between these points at infinity, as if space were a sphere. For trivial bound-
regimes, namely, that in which the system contains a smabry conditions(those that allow the constant ordered ground
number(larger than two of vortices, and that at the critical statg, the topological defects are classified by the second
filling factor at which the vortex lattices are replaced by thehomotopy groupm, of the manifold. This isZ in the polar
quantum liquids, were not considered. The results show aase, and trivial in the ferromagnetic case. However, if we
rich variety of phases as the interaction parameters, espevish to classify the vortices that carry the nonzero vorticity
cially the ratio of the coefficients of spin-dependent and spinin a rotating condensate, then the boundary conditions must
independent interaction terms, are varied. The results olibe modified to allow a nonzero vorticity on the sphéttes
tained here, especially those at lower rotations which shouldhodification has the form of the Dirac string familiar for a
be more easily accessible, should motivate further experimagnetic monopo)e In the polar case, the presence of net

FIG. 14. Degeneracies of zero-energy ground states on th
sphere aty=—1 for N=6, N,=2 (top leff), N=5, N,=3 (top
right), andN=6, N,=c0. All multiplicities refer to highest weight
states of the orbital S@) symmetry.
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vorticity may force vortices into the ground state. Whetherisometry. Solutions to this condition exist only when 0
the ground state containsdisclinations or vortices of larger <N,<n—1. ForN,>n—1, skyrmions will still occur, but
vorticity each, depends on the detailed energetics, but onghe density will not be completely uniform.

should note that as the total vorticity is an inted&r, the We now specialize ta= 3 again, and consider the special
number of 7 diSCIinationS(more generally, the number of Caseg\lvzl andezz for which uniform density conden-
vortices that carry half-integer vorticitymust be even. On  gates exist. FoN,=1, m=0, 1 only, SoB is a 2x 3 matrix.

the other hand, the defects above that are classifieadby A solution of Eq.(A1) for BT is a complex number times an
carry no vorticity. For the ferromagnetic case, there are corex

. ; . . COlsometry of C? into C3. Thus this means picking a two-
less vortices or skyrmions which are topologically nontrivial yi o sional subspace of the spin spac® Notice that

textures in the Qrdgr and carry nonzero vorticity guantized in U(2)y acts by multiplication ofB on the left, while
integers. We will discuss these configurations in more detai L
U(3)spin acts by multiplication(by the transposeon the

below. - ) .
We now come to the borderline case in which the inter—r'ght’ and the phase symmetry unde(@bacts on either side
of B. Then the full space of solutions to E@gAl), for

action is spin-independef8U(3)s, invariant, c,=0. This : , , :
is a useful starting point for smajt also. The discussion is Xéd ~mean particle number, is parametrized by
easily generalized to the case of mwomponent order pa- SUY(2)orX SU(3)spinX U(1)/[SU(2)xU(1)], where the de-
rameter with an SUY) invariant interaction. In such a case, Nominator represents the subgroup of SUg3)which has
the target space is described by a compleomponent vec- the same action as SU(g9< U(1) on a particular solution
tor of unit length, proportional to the expectation value of theB. This manifold is equivalent to S3)/Z;. If we consider a
boson operator, which lies itJ(n)/U(n—1)=S?""1. For quantum state in which bosons condense in one condensate
n>1, m=m,=0, so this space has neither point-singularin this family, then we can analyze it in terms Nf L, L,,
vortices nor skyrmions without vorticity. For=1, there are gnd SU(3)pin quantum numbersp(q). It is easy to see that
the well-known pOint-SingUlar vortices with one unit of vor- there can be no Su(g‘)n Sing|ets forNU: 1 as construction
ticity each, and fon>1 the presence of nonzero vorticity on of such a singlet requires the use of three distinct orbitals.
the sphere induces skyrmions with integer vorticity in theThys the broken-symmetry states cannot be averaged over
condensate, as we will now see. , SU(3) spin rotations to produce an $8) singlet[the closest

In more detail, the Bose condensate on a sphere with vors o ~an get would be the BDC of Sec. IV, and we believe

t?city present is described by the expectation value of th‘:‘[hat state should be interpreted in this Widyonetheless, we
field operator#,,(2)) aszranges over the sphere. Thus the have shown the existence of configurations with single units

possible condensates form the space of sections of a compl%>]g - :
o . vorticity. We have now analyzed the space of solutions
vector bundle. Such bundles are classified topologidédly with unifgrm density using thg full SU(SQ- symmetry
in

each number of components>0) by their first Chern class, group. For generat,+ 0, this symmetry is broken. In this

which is simply the(intege) number of vortices\,, that we .
have been using, or the number of flux quanta in the monoSase, the form of the lowest-energy solution depends on the

pole at the center of the sphei22]. Restricting the bosons energetics, and t_he manifold of Iowest—energy_.condensates
to the LLL means considering only the “holomorphic” sec- (0rbit of the solution under the broken symmetyiesa sub-
tions of the same bundles. The LLL mean field theory perfnanlfold of that above with a lower dimension that depends
formed in Sec. V Slmp'y finds SUCh ho'omorphic Sections ofon Wh|Ch SO|uti0n iS Chosen. Resu|tS Of thIS ana|ySiS haVe
lowest mean-field energy. Condensates in which ther&lare been given in Sec. V.
vortices at which the densitymagnitude squared of the con-  Similarly, for N, =2, there are three orbitals, and the ma-
densatg vanishes always exist; simply take the condensatérix B is now 3x3. We see directly from EqA1) that a
entirely in one spin component. The question we will pursuesolution for B is proportional to a unitary matrix, and the
here is the existence of coreless vortices or skyrmions witlmanifold of solutions is therefore(3). In terms of the sym-
nonzero vorticity, in which the condensate is nonzero at almetries present foc,=0 [i.e., using SU(3y,, symmetry,
points on the sphere. These correspond to nonsingular cothis manifold arises as SU(3)»< SO(3),,X U(1)/SO(3)
figurations of the order as described above. X 7. In this case the S@) in the denominator, which is the
The nicest configurations of all, which serve to illustrate unbroken subgroup of the spin and orbital symmetries, has to
the most elementary skyrmions, are those in which the derbe embedded into S8) as the group of &3 orthogonal
sity is uniform over the spherNote that for repulsive spin- matrices. The (1) transformations cannot be removed using
independent interactions with Shl,i, symmetry, the the orbital or spin symmetry groups.

ground state makes the density as uniform as poskiblis. The uniform-density skyrmions fdd,=2 andc,#0 can
convenient to study these in the LLL in terms of their com-be found by using a careful choice of basis. For the ferro-
ponentsb,,, u=1,...,n, andm=0,... N,. These com- magnetic case,<0, one expects that at each point on the
ponents form a matriB, with m labeling rows andgu label-  sphere there should be a nonzéno fact, largest possibje
ing columns. The density is uniform if and only if spin density, though its orientation varies over the sphere. If
we use the basis of single-partick eigenstates in the se-
BBTxl, (Al) quencea=|,0,T, then one such solution is given b

«diag(1~-1,1). In the particular solution given, the spin
wherel is the identity matrixthat is,B" is proportional to an  density is| at the north poleZ=0 in stereographic coordi-
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nates, T at the south polez—«), and the orientation else- pects a different mean-field ground state. #s-0", the
where on the sphere can be found by the relation of spin anground state should approach a point in a submanifold of the
orbital rotations as described in the previous paragraph. IJ(3) manifold of uniform density states. Presumably this
fact, the spin densityS) itself wraps around the sphere, submanifold is a different one from that fer<0, where the
being (0,0,-1) at the north pole, (0,0,1) at the south pole, solutions always lie in the set we just described. In fact, we
and in thexy plane at the equator. This solution is thel  expect that the ground states selectedyatO+ are those
solution discussed in Sec. V. Other solutions are obtained bwith the lowest spin density at each point on the sphere. At
multiplication of B by an element of SO(3jU(1). large vy, the spin order at each point should take the polar
The space of these solutions forms the manifoldform, with vanishing spin density. This presumably cannot
SO(3)spinX SO(3 iy U(1)/SO(3)=SO(3)xU(1), asub-  happen with a uniform density. One expects the preceding
manifold of the full U3) we had before. The solutioB  yniform density solutions to persist at small positiveand
=diag(0;-1,0) we began with here was chosen to:be INvarithen (possibly, above a nonzero critical value of for the

ant under the diagonal $8) subgroup generated Hy+ S. density to become nonuniform. At large enoughwe ex-
The other solutions, obtained by acting with either SQ;3) pect theN,=2 solution to contain two polar vortices, each
or SO(3)in, are invariant under a similar subgroup with with vorticity one. These correspond to solutions found in

generatorsi plus a(fixed) SO(3) rotation ofS. These solu- Se€c. V.
tions are very similar to the basic skyrmions for the spin-1/2 For each of the manifolds that describe lowest-energy
case, which appear in the=1 QH effect for electron§37], mean-field solutions, we can consider the configuration
even though here for spin 1 they haMe=2. In fact those space of a point moving on this manifold, and then quantize
solutions for a condensate of spin-1/2 bosons correspond this motion (this is known as semiclassical quantization of
the n=2 component case with a contact interaction andhe collective coordinatgsThis should reproduce the full
SU(2) symmetry, as discussed briefly above. space of states for thd—oc [imit for these casedl,=1,2,

In the antiferromagnetic regimg>0 for N,=2, one ex-  but we will not go into these details here.
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