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Atom trapping and two-dimensional Bose-Einstein condensates
in field-induced adiabatic potentials
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Theoretische Quantenphysik, Technische Universita¨t Darmstadt, Hochschulstrasse 4a, 64289 Darmstadt, Germany

B. M. Garraway
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom

~Received 6 June 2003; published 6 February 2004!

We discuss a method to create two-dimensional~2D! traps as well as atomic shell, or bubble, states for a
Bose-Einstein condensate initially prepared in a conventional magnetic trap. The scheme relies on the use of
time-dependent, radio-frequency-induced adiabatic potentials. These are shown to form a versatile and robust
tool to generate interesting trapping potentials. Our shell states take the form of thin, highly stable matter-wave
bubbles and can serve as stepping stones to prepare atoms in highly excited trap eigenstates or to study
‘‘collapse and revival phenomena.’’ Their creation requires gravitational effects to be compensated by applying
additional optical dipole potentials. However, in our scheme gravitation can also be exploited to provide a route
to two-dimensional atom trapping. We demonstrate the loading process for such a trap and examine experi-
mental conditions under which a 2D condensate may be prepared.
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I. INTRODUCTION

Due to the rapid advances in experimental and theore
atom optics, it has now become possible to cool atoms do
to extremely low temperatures. An important characteris
of such ultracold atoms is their sensitivity to very weak e
ternal potentials. In the context of atomic Bose-Einstein c
densation, this feature is particularly attractive. The cond
sate can be described, to a very good degree
approximation, in terms of a single macroscopic wave fu
tion which in this way can be subjected to intricate probi
and manipulation. Consequently, in recent years various
genious techniques for handling Bose-Einstein condens
~BECs! have been developed that exploit this sensitivity, e
magnetic quadrupole and time-orbiting potential~TOP!
traps, shallow optical dipole traps, phase-imprinting meth
to create solitons or vortices, and radio-frequency~rf! output
coupling, to name but a few prominent examples~for a re-
view of these and other techniques, see Ref.@1#!. However,
the development of further tools and methods still presen
significant objective of current work, and forms the basis
advancing research in several main areas of BEC physic

One such area concerns the experimental realizatio
low-dimensional Bose-Einstein condensates of trapped d
atomic gases. Under reduced dimensionality, the conden
properties differ drastically from the well-studied thre
dimensional case and have been under intense theore
debate for some time@2,3#. Low-dimensional BECs are cha
acterized by the fact that due to strong confinement by
external trapping potential one or more motional degree
freedom become quantum-mechanically frozen before
condensation point is reached. Major obstacles, that had
confronting the preparation of one- or two-dimensional~2D!
BECs for a long time, concerned the construction of suita
traps—e.g., very high field gradients would be required
magnetic traps—as well as the development of efficient lo
ing procedures. Only recently has it become possible to o
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come these difficulties, and the first realizations of atom
BECs in two dimensions have been reported@4–6#. In these
experiments, the dimensionality is reduced by exposing
atoms to steep optical potentials. In Ref.@4#, single one- or
two-dimensional BECs are prepared, whereas in the exp
ments of Refs.@5,6# the use of optical lattices led to th
creation of arrays of two-dimensional condensates. Howe
in addition to these works, various other interesting ide
regarding the manufacture of two-dimensional traps h
been put forward over the last few years. In these propos
trapping is provided either by optical@7# or by magnetic@8#
means, whereas loading is accomplished through opt
pumping.

The purpose of the present paper is twofold. On the o
hand we wish to promote field-induced adiabatic potent
as a versatile tool to manipulate ultracold atoms and, in p
ticular, Bose-Einstein condensates. On the other hand,
show that they offer a route to the creation of tw
dimensional traps for BECs. An initial outline of our resul
was given in Ref.@9#. Adiabatic potentials arise wheneve
two or more internal atomic states, that experience differ
potentials for the atomic center-of-mass motion, are coup
by a strong resonant external field. The atomic motion is th
no longer dominated by the different ‘‘bare’’ potentials but
usefully described in terms of the adiabatic potentials t
arise from the diagonalization of the bare potentials and
couplings at each spatial point. Adiabatic potentials ha
been in use for some time as the underlying mechanism
evaporative cooling. However, to our knowledge, little atte
tion has been paid to the fact that they offer a lot of furth
possibilities to control quantum-mechanical atomic moti
~one fairly recent application is described in Ref.@10#!. In
this paper we will give some examples of the application
adiabatic potentials as a tool for manipulating matter wav
and we hope to stimulate further research in this directio

After giving a qualitative introduction to adiabatic pote
tials in Sec. II, we continue in Sec. III to show how they c
©2004 The American Physical Society05-1
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be employed to create so-called ‘‘matter-wave bubbles’’ fr
a BEC initially trapped in the ground state of a harmon
potential. In the bubble state the wave function is localiz
around the surface of a sphere so that the matter den
forms a spherical shell or bubble. We give a detailed acco
of the preparation of bubble states and their decay rates
duced by nonadiabatic leakage. In particular, we address
question of how to compensate for gravitational effects in
laboratory which otherwise would impede the creation p
cess. We expect matter-wave bubbles to have interesting
plications, some of which are investigated in Sec. IV. Ther
is shown that they can be used as stepping stones to pre
atoms in highly excited eigenstates of the bare harmo
trapping potential and to create new types of nonlinear eig
states of BECs. Furthermore, we examine collapse and
vival effects which are found when the external coupling
switched off. By also switching off the trapping potential w
can observe the free bubble expansion.

In Sec. V we turn to the investigation of gravitation
influences on the bubble preparation process. At first s
gravity is seen to be detrimental, but it is shown that it can
exploited to obtain a scheme for the creation of tw
dimensional BECs. Gravity will cause the atoms in the sh
potential to pool at the bottom of the trap so that the cond
sate forms a flat disk. In Sec. V the initial transfer of a BE
into such a disk state in the course of switching on the
ternal field is examined numerically. In particular, we sho
that if the field parameters are changed appropriately the
radius is steadily increased whereas its width keeps shrin
due to enhanced confinement. This suggests that the con
ation of this process could ultimately yield a two
dimensional trap for the BEC, although the numerical stu
of the approach to this limit is not currently feasible. In Se
VI we further pursue this idea by giving some general qu
tative, and semiquantitative, estimates and arguments a
the conditions necessary to reach the 2D regime. They i
cate the feasibility of our approach by showing that the
quirements for the applied fields, preservation time of
condensate, etc. are demanding but still within the reach
currently available technology. The paper ends with br
conclusions and outlook given in Sec. VII.

The most important difference to the previous propos
of Refs.@7,8# for creating 2D traps is the fact that our meth
relies on adiabatically deforming a conventional magne
trap and does not require incoherent processes, e.g., op
pumping, for loading. This would allow for working with
extremely cold, dense, and, possibly, coherent atomic
sembles throughout the whole process. In comparison to
experiments@4–6#, our scheme does not make use of opti
potentials, but a combination of magnetic and rf fields.
thus avoids potential difficulties with spontaneous emiss
in very steep optical traps that require high laser intensit
In contrast to Refs.@5,6#, our proposal produces a sing
condensate with a large number of atoms, similar to the
periment of Ref.@4#. However, the trapping frequencies o
tainable in the rf scheme might be significantly higher tra
ping frequencies than the ones reported in the latter wor
02360
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II. ADIABATIC POTENTIALS

The basic principles of adiabatic potentials can be und
stood from examining a quantum-mechanical two-state p
ticle that propagates in the vicinity of a linear potential cro
ing. In the interaction picture, with respect to the coupli
field that gives rise to the crossing, the Schro¨dinger equation
for this system is written as follows:

i ḟ15S 2
1

2

]2

]r 2
1Cr D f11Vf2 ,

i ḟ25S 2
1

2

]2

]r 2
2Cr D f21Vf1 . ~1!

We can transform this equation to a basis that diagonal
the potentials6Cr and the couplingV at each point, i.e., to
the basis of the spatially dependent ‘‘dressed eigenstates
this basis the Schro¨dinger equation has the form@11#

i ḟ15F2
1

2

]2

]r 2
1V1~r !1Vkin~r !Gf11Vc~r ,] r !f2 ,

i ḟ25F2
1

2

]2

]r 2
1V2~r !1Vkin~r !Gf22Vc~r ,] r !f1 .

~2!

The potentialsV6(r ) are the adiabatic potentials and a
given by

V6~r ,t !56A~Cr !21V2. ~3!

They arise from the pointwise diagonalization of the 232
matrix formed by6Cr andV. The terms

Vkin~r !5
C2

8V2@11~Cr/V!2#2
~4!

and

Vc~r ,] r !5
C

2V@11~Cr/V!2#
F C2r

V2@11~Cr/V!2#
2

]

]r G
~5!

stem from the nonlocal character of the kinetic-energy te
We see thatV1(r )1Vkin(r ) is a binding potential. If the

coupling termVc(r ,] r) were not present, a wave packet pr
pared in the state ‘‘1 ’’ would remain trapped forever in the
potentialV1(r )1Vkin(r ). However, if V is small the cou-
pling Vc is dominant. In this case any wave packet quick
leaves the crossing region aroundr .0, and the description
given by Eq. ~2! is not useful. Nevertheless, ifV is in-
creased, the kinetic couplingVc ~as well asVkin) rapidly
becomes small@12# and the motion of the wave packet
more and more determined by the adiabatic potentialsV6 .
In fact, it is shown in Sec. III B that the lifetime of a wav
packet prepared in the internal state1, i.e., the time it takes
5-2
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the wave packet to transfer to the state ‘‘2 ’’ and leave the
crossing region, increases exponentially withV.

At first sight, it seems counterintuitive that it is possible
trap a particle, even with strong coupling, between two
tentials in a region where the particle is not stable. We
draw an analogy with a particle moving in a magnetic qu
rupole field. Each of its bare Zeeman substates~with ‘‘bare’’
meaning having fixed spatial orientation! individually would
experience the field as unstable. However, if the part
moves slowly enough, couplings between the states are
duced so that the particle’s orientation with respect to
local direction of the total magnetic field is preserved. In t
way, trapping can ensue for weak-field seeking states. In
case considered here, a slow particle tends to remain in
same dressed eigenstate and its motion is governed by
adiabatic potentials.

III. CREATION OF MATTER-WAVE BUBBLES

A. Basic approach

To work out the basic ideas of our approach we first d
cuss its realization in the absence of gravity. As a result,
obtain a scheme to produce thin, highly stable matter-w
bubbles or shells in which the trapped atoms are locali
around the surface of a sphere.

The starting point for our method is a coherent sample
atoms produced, e.g., by Bose-Einstein condensation
trapped in the ground state of a harmonic magnetic poten
The preparation scheme then proceeds by applying a
quence of radio-frequency fields that couple the initial int
nal atomic state, a weak-field seeking Zeeman sublevel,
second hyperfine ground state~multilevel excitation scheme
can be considered as well, see Sec. V!. As mentioned above
the preparation process may appear to be counterintuitiv
the second state is an untrapped, high-field seeking state@see
inset, Fig. 1~a!#. As this technique also forms the basis
evaporative cooling, one may be led to expect that this p
cedure will inevitably cause a rapid depletion of the trapp
atomic population. Nevertheless, as was anticipated in Se
and is also shown below, if the fields are controlled in
appropriate way one may also obtain a very different effe

To model the creation of our bubble states we study
coherent time evolution of a condensate initially prepared
a hyperfine stateu1& in the ground state of a spherical
symmetric magnetic trap. Whent.0 external fields are ap
plied that induce a coupling of stateu1& to a Zeeman subleve
u2& whose magnetic moment is supposed to be equal in m
nitude but opposite in sign. Such a coupling may be realiz
e.g., as a transition between the hyperfine ground st
uF51,mF521& and uF52,mF521& in 87Rb @13#. The
field-induced coupling strength is denoted asV and is spa-
tially independent to a good degree of approximation. In
following model we assume a radiall 50 form of the wave-
function componentsc i(r )5f i(r )/A4pr . Then working in
an interaction picture with respect to the applied fields,
time development is determined by the radial Gro
Pitaevskii equation
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i ḟ15S 2
1

2

]2

]r 2
1

r 2

2
2

D~ t !

2 D f11V~ t !f2

1N~U11uf1u21U12uf2u2!
f1

r 2
,

i ḟ25S 2
1

2

]2

]r 2
2

r 2

2
1

D~ t !

2 D f21V~ t !f1

1N~U12uf1u21U22uf2u2!
f2

r 2
. ~6!

In this equation time is scaled to the trap inverse oscilla
frequencyv21, length is scaled to the harmonic-oscillat
length scaleaho , andV(t) andD(t) are scaled to\v. The
effective detuning is defined byD(t)5@\v f2DE(0)#/\v,
whereDE(0) is the energy difference between the two h
perfine states at the origin~trap center! andv f the frequency
of the applied field. The nonlinearity parameters are given
Ui j 5ai j /aho with ai j the scattering lengths for intraspecie
and interspecies collisions. The states are normalized acc
ing to *0

`dr(uf1u21uf2u2)51. The total number of atoms i
denotedN.

The strategy that we pursue in our engineering schem
to control the condensate by slowly changing field-induc
adiabatic~or dressed! potentials. These potentials, which a
defined as the spatially dependent eigenvalues of the po
tials and couplings in Eqs.~6!, are given by@cf. Eq. ~3!#

V6~r ,t !56A@r 22D~ t !#2/41V2~ t ! ~7!

and are depicted forD.0 in Fig. 1~a!. The potentialV2

actually gives rise to the evaporative cooling effect in t

FIG. 1. ~a! Schematic of field-induced adiabatic potentialsV6

for D.0. Dashed curves show the bare potentials crossing atr c .
Inset: bare potentials showing resonance atr c . ~b! Bubble, or shell,
state as obtained by the preparation scheme discussed in the
with ~in scaled units! D f inal560.0 andV f inal59.0 ~see inset!. Full
curve: atomic densityuf1u2/r 2 in the adiabatic state1; dotted and
dashed curves showuf1u2/r 2 and uf2u2/r 2, respectively. Nonlinear
effects are not included here.
5-3
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usual arrangement. In that case one applies a field with
effective detuning which is large compared to the mean p
ticle energy. The atoms then move in the potentialV2 , and
the ones that reach its maximum, from the left, with su
ciently slow velocity, go over the top and get expelled fro
the trap. However, we will show that the atoms can also
prepared in the lowest-energy eigenstate~or, more exactly,
resonance! u0&[u0;V,D& of the potentialV1 . This quasi-
bound or ‘‘trapping’’ stateu0& will realize the spherical shel
state or matter-wave bubble@see Fig. 1~b! and Ref.@14##.
The state will be localized around the crossing of the t
bare potentials atr c5AD and have a width ofDr
5(V/D)1/4, provided a harmonic expansion around the p
tential minimum is justified. The state is a genuine super
sition of the internal statesu1& and u2&.

B. Lifetime of bubbles

Before considering the bubble preparation process in
tail one question immediately arises, i.e., the stability of
system once it is prepared in the stateu0&. At first it is not
obvious that atoms may remain trapped for a substantial t
at the point of maximum effective coupling between sta
u1& and u2&. As we have discussed in Sec. II, it becom
more plausible if one transforms Eqs.~6! to the dressed-stat
basis, i.e., the basis that diagonalizes the bare potentials
the coupling at each pointr. In this picture the two wave-
function components appear coupled by kinetic terms wh
significance is rapidly diminished whenV is increased. If
nonlinear interactions can be neglected, the decay rateg of
the trapping stateu0& can be determined with the help o
semiclassical methods developed in connection with mole
lar predissociation@15,16#. As we show in the Appendix
from these techniques it follows thatg522ImE0, where
the complex ground-state energyE0 is determined as a solu
tion of

@e2pd(E)21#cosF~E!e2 i [b(E)2F(E)]1cosb~E!50 ~8!

with b(E)5p(2E1D21)/4 and the parametersd(E) and
F(E) characterizing the scattering matrix of the lineariz
potential crossing problem. For these quantities there
several analytical approximations in the literature@17#; fol-
lowing, e.g., Ref.@15# one can putd(E)51/8ab andF(E)
52b3/3a1argG@ id(E)#1d(E)ln@d(E)#22d(E)ln(b/a)1p/4
with a25D/(8V3) and b25E/V. For large enoughV one
obtains

g5
2 cos2b~E!

$exp@2pd~E!#21%~]F/]E!
, ~9!

where all quantities have to be evaluated at ReE0.V
1AD/4V. The comparison in Fig. 2~a! between the predic
tions of Eqs.~8! and~9! and the direct numerical determina
tion of decay rates from Eqs.~6! indicates the validity of
these approximations. To obtain the numerical decay r
we first generated the bubble state at a required (D,V) by
performing the preparation process~which will be described
in detail in Sec. III C!. We then monitored the decay of th
norm of the wave function in the internal state1 as a func-
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tion of time. After an initial transient, this decay was exp
nential to a very good degree of approximation.

Equation~9! yields two important insights: first, the deca
is exponentially suppressed with growingV. In the limit of
g!1, this exponential suppression may be approximated

gex;2 exp~2pV3/2/A2D1/2!. ~10!

Second, for ReE052k13/22D/2, with integerk, the decay
rates become very small. In these cases the stateu0& is in
resonance with an eigenstate of the bare harmonic trap
potential. This stabilization effect may be used to obtain
tremely long-lived states already for moderate coupl
strengths.

C. Preparation

Having established the existence of long-lived spheri
bubble states in adiabatic potentials, we now turn to the
tails of their preparation. The first phase is to let the b
harmonic potential of state 1 evolve smoothly into t
dressed potentialV1 and the second phase is to expand

FIG. 2. ~a! Evaluation of decay ratesg(V) for bubble states
~without atomic interactions! according to Eqs.~8! ~full curve! and
~9! ~dashed! at D561.0, using the approximations of Ref.@15#.
Circles: numerical values determined from Eq.~6!. ~b! Influence of
atomic interactions on decay rates. Numerical calculation ofg(V)
according to Sec. III C forUN50 ~full circles!, 33 ~open squares!,
and 99~full diamonds!. Dotted lines are to guide the eye. Note th
different ranges of abscissa values in~a! and ~b!.
5-4
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ATOM TRAPPING AND TWO-DIMENSIONAL BOSE- . . . PHYSICAL REVIEW A 69, 023605 ~2004!
bubble outwards. Both phases are done so that the w
function is kept at all times in the instantaneous ground s
u0;V(t),D(t)&. In the example of Fig. 1~b! ~in which non-
linear effects have been neglected! we achieve the first phas
by increasingV to the final ~scaled! value of 9 at fixed
negativedetuningD523 @see Fig. 1~b!, inset#. Then the
second phase of bubble expansion is achieved by main
ing the intensity, but gradually ramping up the detuning.
this way less than 4% of the initial population was lost b
fore reaching the final state shown in Fig. 1~b!. The particu-
lar merit of this approach is that there is no need to follow
precisely prescribed path as the method relies on adiab
following @in a similar way to the wave packet guidance
adiabatic passage by light induced potentials~APLIP! @18##.
Any field sequence that guides the system sufficiently slo
through states of long lifetime is suitable.

If we make our atomic bubbles from an initial BEC, w
should also study the effects of the nonlinear interacti
introduced in Eq.~6!. The dressed-state description is read
generalized ifU11.U22.U125U ~such a situation is real
ized, e.g., in the NaF51 hyperfine multiplet@1#!. Under
these circumstances we can still define an adiabatic w
functionf1 that evolves, to a good degree of approximatio
according to the Gross-Pitaevskii equation

i ḟ15F2
1

2

]2

]r 2
1V1~r ,t !1NU

uf1u2

r 2 Gf1 . ~11!

In particular, for a sufficiently strong nonlinearityU, the
atomic density can be described by the Thomas-Fermi an

uf1u25@m2V1~r ,t !#/NU ~12!

with the chemical potentialm determined by the normaliza
tion condition. Numerical studies show that shell, or bubb
states can then be manufactured in the same way as be
Figure 2~b! demonstrates that the atomic interactions aff
the lifetimes of the shell states only slightly. In this diagra
instantaneous decay ratesg for nonlinear interactionsNU
50, 33, and 99 are shown as a function ofV at the same
detuningD561 as in Fig. 2~a!. ~For 87Rb, these values o
NU correspond to 20 000 and 60 000 atoms, respective!
The plot focusses on the regime of largerV, where the av-
erage lifetime clearly displays the exponential depende
on the coupling strength. The decay rates have been d
mined in the same way as for the linear system; it had to
ensured, however, that the numerical ‘‘observation tim
were chosen sufficiently short so that the shell state pop
tion decreases only slightly. Over these short periods,
decay is still exponential. As soon as the population is dim
ished appreciably, it is apparent from Fig. 2~b! that the decay
rates change thus leading on the whole to a nonexpone
decay process. Figure 2~b! indicates that, at least for the ex
amined range of values, the atomic interactions do
modify the behavior of the decay rates profoundly; th
main influence is a change in the position of the ‘‘res
nances’’ where the lifetime becomes extremely large.
mostly attribute this effect to a modification of the resonan
conditions due to the mean-field shiftsDm resulting from the
atomic interactions.
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In the discussion of the bubble preparation we have so
assumed that the atomic self-interaction and cross interac
are approximately equal. If they differ significantly, howeve
numerical simulations indicate that the creation of bub
states becomes more difficult and their lifetime is reduce

D. Bubbles with gravitational field compensation

So far, we have neglected the influence of gravity.
effect on the bubbles is expected to be detrimental as it
cause the atoms to pool at the bottom of the shell poten
In this section, we first give a simple estimate of how stro
the gravitational influence must be to cause significant de
tions from a homogeneous density distribution in the bub
state. We then propose a method to compensate for gra
tion in the laboratory with the help of optical potentials.

When the bubble width is small compared to the radi
the radial dependence of the adiabatic potential is appr
mately harmonic with a minimum at the bubble radiusr 0

5AD and an anguar frequencyv05AD/V @14#. Thus, we
can approximate the Hamiltonian for atoms in the trapp
internal state1 as

H52
¹2

2
1

1

2
v0~r 2r 0!21Gr cosu, ~13!

with the radial and polar coordinatesr ,u, and the scaled
gravitational acceleration G5gAm/\vz

3 ~with g
.9.81 ms22). We now make the ansatz

c tr~r ,u!5
1

AN
exp@2~r 2r 0!2/2s2#

r
f ~cosu! ~14!

for the ground state of this Hamiltonian, wheres51/Av0.
This ansatz implies that, radially, the wave function is alwa
in the ground state, i.e., the influence of gravity is manif
only in the polar envelopef (cosu). For present purposes it i
sufficient to choose a very simple form forf, e.g., f (cosu)
5acosu1b. The normalization factor in Eq.~14! is then
given byN5Ap(2a2/31b2)/s. Furthermore, a variationa
calculation shows thata and b are related bya/b5Q
2AQ213/2 with Q53/4Gr0

3. A significant influence of
gravity is certainly present whenf (cos 0)50, i.e., a/b5
21, as in this case the bubble has ‘‘opened up.’’ This
realized forQ.0.17 or, in unscaled coordinates,

r 0.~3\2/gm2!1/3 ~15!

which is about 5.531027 m for 87Rb. In the presence o
gravity, bubbles can therefore only be observed in spher
traps with trapping frequencies large compared to 400
The estimate~15! can be interpreted as a balance conditi
between kinetic and gravitational energy which are of
order\2/2mr0

2 andmgr0, respectively.
The detrimental influence of gravity can, at least in pr

ciple, be compensated for by exposing the trapped atom
an additional optical dipole potential. In a typical Gaussi
beam configuration this potential, which acts on all hyperfi
sublevels in the same way, is given by@1#
5-5
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Vd~x,% !5
V0

11~x/xR!2
expH 2

2%2

w0
2@11~x/xR!2#

J ~16!

with %5Ay21z2. The Rayleigh lengthxR and the beam
waist radiusw0 are related byxR5pw0

2/lop with lop the
wavelength of the optical field. Finally, in unscaled uni
V053Gc2P/Dw0

2v0
3, wherev0 denotes the resonance fr

quency,G the spontaneous decay rate of the excited stateD
the detuning between laser and the atomic transition, anP
the applied laser power. The idea is now to adjust the t
depthV0 such that at the turning pointzt of the optical po-
tential along the line x5y50, which is defined by
]2Vd(zt)/]z250, the slope]Vd(zt)/]z52mg. In this way,
the combined optical and gravitational potential is alm
constant aroundzt , the lowest-order corrections being cub
in z2zt ~see Fig. 3!. The magnetic trap has then to be plac
inside this area. From Eq.~16! it follows that, aszt5w0/2,
we have to chooseV05exp(1/2)w0mg/2 to fulfil the above
condition. If the condensate is in the Thomas-Fermi regim
thez extension of the volume within which a bubble could
created is somewhat less than (w0

2m/mg)1/3 with m the BEC
chemical potential@for which an estimate is given in th
following section in Eq.~20!#. This follows from stipulating
that the variation of the combined optical and gravitatio
potential over this volume should be less thanm.

We have performed numerical simulations to demonst
that this approach actually offers the possibility to overco
the influence of gravity. To this end, we have studied the
preparation process, not with the approximate Hamilton
~13!, but using a more realistic model that will be discuss
further in Sec. V A. Our simulations involve the time
dependent solution of the two-dimensional Gross-Pitaev
equation with gravity, the optical potential, and the relev
adiabatic surface in the87Rb F52 multiplet @19#. As an
example we have shown that in an anisotropic trap withnz
5vz/2p5220 Hz,nx530 Hz, bubble states for a BEC co
responding to an atom number of 105 in three dimensions
can be produced atD56.6 kHz, V52.6 kHz, V0
52129 kHz, andw0573 mm. For the preparation,V is
switched on withinDt529 ms atD521.1 kHz, and thenD

FIG. 3. Schematic showing the local compensation of grav
with the help of an optical potential. Shown are dipole potentialVd ,
the gravitational potentialVg , and their sum. The arrow indicate
the flat region of the combined potential in which a bubble might
created.
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is increased to its final value withinDt5200 ms. The bubble
has radial and axial diameters of 15mm and 110mm, re-
spectively. The necessary laser power is estimated at aro
1 W. The large axial extension shows that in this directi
the variation of the combined optical and gravitational p
tential is almost negligible. To find an optimized shape
given V and D, it is advisable to experiment by slightl
varying the laser power and the position of the magnetic t
center. Nevertheless, the preparation scheme is robust in
sense that~for the configuration described above! one still
obtains a bubble if the location of the magnetic trap~in z)
relative to the dipole potential is changed by about610%,
and the laser intensity by about62.5%. However,during
preparation these parameters have to be stabilized very
~to within a fraction of the indicated range! to avoid excita-
tion of the bubble.

E. Bubbles and trap anisotropies

In this section, we want to discuss briefly the role of tr
anisotropies in the creation of matter-wave bubbles. As
numerical simulations of the previous section have sho
bubbles can very well be manufactured in anisotropic trap
condensates of interacting atoms are used. Howeve
should be mentioned that in the absence of atomic inte
tions, the unavoidable trap anisotropies severely impede
bubble creation process. Imagine that in the bare magn
trap vx5bvz , but we keepb'1. Then the effective trap-
ping frequency along thex axis is given bybAD/V ~scaling
now with respect tovz). We can model our system Hami
tonian as

H52
¹2

2
1

1

2
v0

2~u!~r 2r 0!2, ~17!

wherev0(u) appropriately interpolates betweenAD/V and
bAD/V. The ground state is approximated as

c̄ tr5
1

AN̄
exp@2~r 2r 0!2/2s~u!2#

r
f̄ ~cosu! ~18!

with s(u)51/Av0(u). We again could determinef̄ (cosu)
by minimizing the energy functional. However, following th
discussion of the previous paragraph we can argue that v
tions in the angular kinetic energy carry a cost of the orde
1/D whereas the difference in ‘‘polar potential energy’’
given by ub221uD/V. Therefore, we expect trap anisotro
pies to have a significant influence as soon as

US vx

vz
D 2

21UDV *
1

D
. ~19!

As typically D@1 andD/V@1, the trap frequencies have t
be adjusted very carefully in order to enable the genera
of bubbles. In the case of Fig. 2, for example, the estim
~19! indicates thatuvx /vz21u should be of the order o
0.1%. Fortunately, the problem can be alleviated to so

y

e
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ATOM TRAPPING AND TWO-DIMENSIONAL BOSE- . . . PHYSICAL REVIEW A 69, 023605 ~2004!
extent by making use of the atomic interactions. In t
Thomas-Fermi limit, the chemical potential of a thin bubb
is estimated to be

m5S 3

4A2

UN

AVD
D 2/3

~20!

with U5ascat/aho as the scaled nonlinearity coefficient an
whereN is the number of atoms in the bubble. The chemi
potentialm is measured with respect to the bottom ofV1(r ).
We expect that only if the nonlinear interaction energy
which is of the order ofm—is in sufficient excess of the
effective potential energy, i.e., if

N@
4A2

3U
ub221u3/2

D2

V
, ~21!

then a bubble of approximately constant density can
formed. Thus, even if gravity is compensated for, bubb
can probably only be produced in the presence of str
nonlinear interactions. The numerical simulations of the p
vious section have shown that under such conditions a pr
ration may indeed be possible.

IV. APPLICATIONS OF BUBBLES

A. Production of excited harmonic-oscillator states

As a first application of matter-wave bubbles we now d
cuss the preparation of excited harmonic-oscillator state
the absence of nonlinear interactions~i.e., for sufficiently
dilute samples!. If, after creating a bubble state, the couplin
strength is slowlyreduced at fixedD the system will again
evolve through a sequence of instantaneous eigenstates
time, however, the eigenstate will not significantly change
energy relative to the minimum of the bare trapping pot
tial. Qualitatively speaking, the wave function gradua
moves out from the crossing region where it is being trap
and begins to experience more strongly the presence o
bare harmonic potential. This process is accompanied b
loss of atoms which end up on the repulsive potential a
leaving the crossing region. AtV50 the remaining bound
wave function will have reached an excited harmon
oscillator eigenstate which, in the spherical harmonic cas
characterized by havingl 50. As mentioned before, the en
ergy of this eigenstate is approximately equal to the ene
of the initial bubble state. To give an example, if we st
from the state shown in Fig. 1~b!, and the coupling strength
is ramped down within a time interval ofDt516, we arrive
at an eigenstate of energy 35.5 with respect to the minim
of the harmonic potential@14#. A sequence of intermediat
states appearing in the course of this process is shown in
4. After completion, the admixture of other eigenstates is l
than 2%, and the population is 36% of the initial populati
in the harmonic trap ground state.

A few remarks should be made about this preparat
scheme.

~i! It has to be performed ‘‘quasiadiabatically,’’ i.e., slo
enough to avoid substantial excitation of other eigensta
but sufficiently fast to reduce losses as much as possible
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~ii ! Although the system effectively ends up with the sam
Hamiltonian as in the very beginning~coupling switched off!
and the time evolution is performed quasiadiabatically,
final state is very different from the initial one. This is b
cause the Hamiltonian depends on two external parame
V andD, andV50 represents a singularity in the sense th
the value ofD becomes irrelevant.

~iii ! The oscillator eigenstates can in turn be used as
termediate states to produce radially excited bubble states
this end, one simply switches the field coupling on ag
with a reduced detuning.

B. Nonlinear eigenstates

The bubble states can be regarded as the ground stat
a specifically tailored potential. Recently, however, the stu
of macroscopically excited states of BECs has recei
much attention@20,21# and the manufacture of harmonic
oscillator eigenstates, as presented above, indicates a w
prepare a new class of such excited states. This class ca
thought of as the nonlinear generalization of the eigenst
of linear systems; for a one-dimensional model some pr
erties of such ‘‘nonlinear modes’’ were examined in Ref.@22#
without discussing ways for their actual preparation. F
highly excited states, nonlinear effects are expected to pla
minor role, in general, because of the reduced density.
thus focus here on the first excited nonlinearl 50 mode
which is characterized by one radial node in the wave fu
tion. In the absence of nonlinear interactions the prepara
scheme of Sec. IV A works equally well for low- and high
lying eigenstates, so we have numerically applied the sa
approach, with suitably chosen values forV and D, to the
full Gross-Pitaevskii equation. Our studies show that
scheme is still applicable, though the atomic interactio
cause detrimental effects: shortly before reaching the fi

FIG. 4. Resonance states of Eqs.~6! at D560 and various val-
ues ofV ~nonlinearities not taken into account!. The wave func-
tions are determined numerically by slowly decreasing the value
V in Eqs. ~6! after initially preparing a bubble state. Full curve
uf1u2; dashed,uf2u2; dotted, sum of both. The displayed wav
functions are normalized to one.
5-7
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O. ZOBAY AND B. M. GARRAWAY PHYSICAL REVIEW A 69, 023605 ~2004!
value of V50 one encounters a very strong loss of atom
and, because of this, the process has to be performed r
quickly resulting in an appreciable excitation of the fin
wave function. Furthermore, the final detuningD has to be
selected more carefully~to within 60.1v) to optimize the
number of atoms that remain trapped. In spite of these d
culties, satisfactory results can be obtained for final non
earity parametersNU11 up to the order of 10. As an exampl
Fig. 5 shows the density distributionuf1(r )u2/r 2 at various
instances after completion of the preparation process~for
which U115U2251.08U12 was assumed, as in23Na). The
breathing seen in the wave function indicates that ther
additional radial excitation. The parameterNU11517.2, and
the projection onto the exact stationary state at this va
varies between 60% and 95%. The efficiency, i.e., the r
of final and initial atom number, is 9.5%. The comparis
with the eigenstate of the linear case~see inset! shows a
broadening of the wave function and a significant reduct
of the central density due to the interatomic repulsion.

C. Collapse, revival, and free expansion

Another interesting effect occurs if, after creating t
bubble, the coupling strengthV is instantaneously reduce
to zero. In this case, the two components of the bub
evolve almost independently of each other in their respec
bare potentials. Component 2 is therefore rapidly expe
from the trapping region, whereas component 1 undergo
collapse or contraction into the center of its binding h
monic potential followed by a reexpansion. If nonlinear i
teractions can be neglected this scenario repeats itself
odically, the wave function regaining its initial shape at tim
np, n51,2, . . . . In thepresence of atomic interaction
however, the shape is gradually distorted. Figure 6 sh
uf1(r )u2 for three different values ofgN at timest51.6 and
3.2, i.e., for ‘‘complete’’ collapse and reexpansion, resp
tively. In the large figure the wave functions show an int
ference pattern which is due to particles from opposite si
of the bubble passing through each other. Note that for gr

FIG. 5. Condensate densityuf1u2/r 2 at timesDt52, 12, and 32
after completion of the preparation scheme. Preparation proc
from the bubble state atV55.6 andD55.4 by reducingV to 0
within Dt570. The bold curve shows the exact ‘‘nonlinear mod
for the final valueNU11517.2. The inset compares this sta
~dashed! to the corresponding eigenstate in the absence of non
earities~full curve!.
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ing nonlinear interaction the central interference fringes
pushed outwards in agreement with earlier studies on sim
systems~see, e.g., Ref.@23#!. It might be possible to infer the
nonlinearity parameter from the fringe pattern. The inset
Fig. 6 illustrates the subsequent broadening of the w
function in the course of the reexpansion due to nonlin
interactions.

A related behavior can be observed if the magnetic fie
are switched off along with the rf coupling. As it is no long
subject to any potential, the localized radial bubble wa
function displays a time evolution similar to a free partic
and gradually broadens due to dispersion~see Fig. 7!. After
some time wave-function pieces from opposite sides of
bubble start to overlap each other and an interference st
ture ensues. Again, the interference fringes are shifted
wards if nonlinear interactions become significant~see the
inset!.

V. DISK-SHAPED CONDENSATES

In this section we examine how our trapping scheme
modified in the presence of gravity and in the absence of
gravitational compensation~such as described in Sec. III D!.
The results will also lay the foundation for our proposal f

ds

’

n-

FIG. 6. Condensate densityuf1u2 at timesDt51.6 and 3.2~in-
set! after suddenly switching off the rf couplingV. The different
curves have nonlinearity parametersUN50 ~full curve!, 5
~dashed!, and 20~dotted!. In each case, the initial state was th
respective matter-wave bubble atD560 andV59.

FIG. 7. Condensate densityuf1u21uf2u2 at timesDt50.0 ~long
dashed!, 2.0 ~full !, 4.0 ~dotted!, and 6.0~short dashed! after sud-
denly switching off both the RF coupling and the magnetic pot
tial. The initial state is the matter-wave bubble atD540, V59,
and UN50. In the inset the condensate density is shown atDt
56.0 for nonlinearity parametersUN50 ~full curve!, 20 ~dashed!,
and 40~dotted!.
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ATOM TRAPPING AND TWO-DIMENSIONAL BOSE- . . . PHYSICAL REVIEW A 69, 023605 ~2004!
the creation of 2D atom traps which is outlined in the fo
lowing Sec. VI.

A. Adiabatic trapping in the presence of gravity

To make the presentation more concrete, we look a
specific example that corresponds to typical experime
conditions. We thus consider a condensate of about 105 87Rb
atoms initially prepared in theF52, MF52 hyperfine sub-
level and in the ground state of an anisotropic magnetic
with frequenciesny5nz5220 Hz andnx511 Hz. Thez axis
again points along the vertical direction. A RF field is th
applied that couples the sublevels within theF52 multiplet.
By appropriately tailoring the time dependence of the fie
the BEC always remains in the ground state of the R
induced adiabatic potential and is thus manipulated in a c
trolled way.

The condensate dynamics is determined by the Gr
Pitaevskii equation for the componentscM , M
522, . . . ,2,

i ċM5F2
“

2

2
1

M

4
~k2x21y21z2!2MD~ t !1GzGcM

1VM ,M21~ t !cM211VM11,M~ t !cM11

1UNr~r ,t !cM . ~22!

Again, all quantities are dimensionless. They are now sca
to units derived from the radial angular frequencyvz
52pnz . The effective detuning is given byD(t)5@\v f
2DE(0)#/\vz with DE(0) the Zeeman energy split be
tween subsequent hyperfine sublevels at the magnetic-
minimum. The parameterk5nx /nz gives the ratio between
axial and radial trapping frequencies. The scaled grav
tional accelerationG becomes 7.06 in the present setup. T
rf coupling constants are given byV2,15V21,22

5A2/3V1,05A2/3V0,215V(t). For simplicity, all nonlinear
interaction coefficients are taken to be equal and denote
U; N is the total number of atoms andr(r ,t)
5(M522

2 ucM(r ,t)u2.
As discussed in Sec. III C, the simplified form of the no

linear interaction allows us to transform to the dress
eigenstate basis in the same way as in the linear case.
field-induced adiabatic potentials are now given by

ṼM~r ,t !5MA@Vtr~r !2D~ t !#21V2~ t !, ~23!

whereVtr(r )5(k2x21y21z2)/4, so that a wave packet ini
tially prepared in the stateM52 can evolve in the potentia
Ṽ2(r ,t)1Gz if the potential is deformed slowly enough. Th
approximate equation of motion forc̃2 thus reads

i ċ̃25F2
“

2

2
1Ṽ2~r ,t !1Gz1UNuc̃2~r ,t !u2G c̃2 . ~24!

The influence of gravity becomes apparent by writing
z dependent part of the potential asMz2/41Gz5M (z
12G/M )2/42G2/M . We see that, effectively, the positio
of the bare trap minimum is shifted toz522G/M ~which
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typically is large compared to the ground-state extensio!,
the minimum itself is shifted by2G2/M . At D50 all bare
potentials touch atz50. The bare potential forM522 in-
tersects theM52 potential at its minimum forD5G2/4. As
the condensate is initially localized at this minimum, we co
clude that only forD*G2/4 does a significant shift and de
formation of the ground state set in. For largeD the ground
state is located at about 2AD. In Fig. 8 we show cuts along
the potentials in thez direction that illustrate the characte
istic behavior explained above.

What does the full spatial dependence of the poten
Ṽ2(r ,t)1Gz look like? The potentialṼ2(r ,t) alone has its
minimum on an ellipsoidal surface defined byVtr(r )
5D(t). However, due to the influence of gravity the com
bined potentialṼ2(r ,t)1Gz is strongly tilted in thez direc-
tion, so that the wave function will assemble around its b
tom ~we will see this in Fig. 10!. The main control paramete
to vary the shape of the adiabatic potential is the detuningD.
At a givenD the coupling strengthV has to be chosen larg
enough so that the lifetime of the condensate becomes s
ciently long.

B. Preparation

To demonstrate that atoms can be actually be trappe
the rf-induced adiabatic potential we have performed
merical simulations of Eq.~22! in two dimensions, i.e., the
direction of gravity z and the weak trapping directionx.
These calculations should be able to capture the main asp
of the wave-packet behavior. Our results indicate that
same two-step approach as outlined in Sec. III can be use
transfer the BEC into the adiabatic trap. As an illustratio
we show in Fig. 9 the result of one of our simulations. F
the 2D calculation, the nonlinearity parameterNU was cho-
sen so that the extension of the ground state in the b
magnetic trap@which is the initial statec2(t50)] coincides
with the extension inx andz of the 3D ground state for the
given atom number of 105. In the first step of the preparatio
scheme, the rf intensity is linearly ramped up to the desi
final value ofV at negativeD. In Fig. 9, in order to reach a
final V512 ('2.64 kHz) the field is switched on atD5
25('21.1 kHz) within Dt520.14.4 ms. In the second
step the rf detuning is simply increased to the final va
thereby keeping the intensity fixed. In Fig. 9, the detuningD

FIG. 8. Schematic of the potentials along thez direction show-
ing the characteristic influences of gravity and the applied RF fie
5-9



w
g,

e
t

io
e
c

w
p
ula
n
th

h

c
te
in
d

ta
it
te

-
ti

pe
ns
he
fa
ne
in
is
th

ify
ter-

ed
-

d

r-

ns-
r

the
are
t in

sed
ev-
uld
in

o-
in

s a
ow

n a
of

en-
sys-
we
s it
C,
ec.

on

t
old
te

n-
l

ity

te

xi-

O. ZOBAY AND B. M. GARRAWAY PHYSICAL REVIEW A 69, 023605 ~2004!
was increased to 60('13.2 kHz) withinDt5160.116 ms.
The simulations already show the deformation effect that
build upon in the following section to obtain 2D trappin
namely, a squeezing in thez direction indicating tighter trap-
ping, and an expansion inx showing the decrease in th
corresponding trap frequency. Furthermore, we see that
Thomas-Fermi approximation gives a very good descript
of the wave function. Nevertheless, it should be mention
that during preparation a slight excitation of the wave fun
tion along thex axis appears~not visible in Fig. 9! indicating
some nonadiabatic effects.

The effort required for the numerical calculations sho
that it is very difficult to go significantly beyond the tra
deformations shown in the above example—and in partic
to simulate reaching the 2D limit. In the following sectio
we give some semiquantitative arguments to determine
values ofV andDt that should be used to reach a givenD.
Here we restrict ourselves to a qualitative discussion. T
chosenD places a lower limit on the value ofV—only for a
high enoughV is the lifetime of the BEC in the adiabati
potential sufficiently long. For this complicated five-sta
system it is difficult to estimate the lifetimes analytically
an accurate way. However, the numerical calculations in
cate that with, for example,D560, a value ofV512 should
be adequate. Furthermore, the study of the linear two-s
system shows that the lifetime increases exponentially w
V. We thus expect that the lifetime can always be adjus
by a moderate increase inV.

Concerning the rise timesDt, they are bounded from be
low by the requirement that we want to avoid nonadiaba
excitations and keep the BEC in the ground state. We ex
that it is more likely we would generate such excitatio
along thex direction than along the radial directions as in t
former the eigenstates are spaced much more closely. In
this is observed in the numerical simulations as mentio
above. The amount of excitation is reduced by perform
the process more slowly. An upper limit on the rise time
placed by the lifetime of the adiabatic ground state and
overall decay time of the BEC.

FIG. 9. Loading an adiabatic trap in the presence of grav
Shown is thex-integrated densityP(z)5*dx(M522

2 ucM(x,z)u2 at
the indicated times for the preparation process described in the
The inset shows thez-integrated densityP(x) at t50 and 180. The
dashed curves showP as obtained from the Thomas-Fermi appro
mation.
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C. Signatures of adiabatically trapped BECs

There are various signatures which allow one to ver
experimentally that the condensate behavior is indeed de
mined by the adiabatic potential~apart from the fact that the
BEC is still there at all!:

~1! The vertical position of the condensate is chang
~lowered!. With z50 indicating the minimum of the mag
netic trap field the condensate is located aroundz52G
('25.1 mm for our example! in the absence of the applie
rf fields. With these fields turned on at sufficiently largeD
the potential minimum is shifted to the vicinity of the inte
section between the different bare potentials atx5y50, z
522AD. For D560, e.g., the condensate center is tra
ferred to211.3mm, i.e., it is shifted over a distance large
than the BEC extension in thez direction.

~2! The shape of the condensate is changed. AtD540,
V512 the full widthsz in z is about half the width of the
rf-field-free case@24#, whereas the width inx has increased
by about 50%. This change of shape should influence
ballistic expansion of the BEC once the trapping fields
switched off. Furthermore, the condensate is slightly ben
the z direction.

~3! The ground state in the adiabatic potential is a dres
state, i.e., it is a superposition of different hyperfine subl
els. Observing the different hyperfine components wo
very convincingly demonstrate the trapping of the BEC
the adiabatic potential.

~4! If the rf fields are suddenly switched off the comp
nentsMF51 and 2 should perform harmonic oscillations
their respective magnetic trapping potentials.

VI. TWO-DIMENSIONAL ATOM TRAPPING REGIME

A. Basic considerations for 2D atom traps and 2D BEC

Having introduced field-induced adiabatic potentials a
means to create new types of trapping potentials, we n
turn to the question of how they can be used to obtai
two-dimensional atom trap by the appropriate choice
strong fields and large detunings. Unfortunately, as m
tioned above, in these parameter regimes the resulting
tems are hard to model numerically. So in this section
will use general arguments to show under what condition
might be possible to obtain 2D trapping, and even a 2D BE
using the kind of adiabatic loading scheme mentioned in S
V. These arguments will allow us to relax the restriction
the geometry of the system somewhat~the magnetic trap can
now have three different frequencies!. However, in our dis-
cussion we explicitly consider a two-state system~rather
than general multilevel systems!. Nevertheless we expec
that much of the discussion of a two-state system would h
qualitatively for multilevel systems with an appropria
choice of parameters.

In general, a 3D harmonic potential with angular freque
cies v1 , v2 , v trans provides an effective two-dimensiona
trap for atoms of temperatureT, if

\v1,2,kBT,\v trans ~25!

~from now on we return to unscaled quantities!. Thus a good

.

xt.
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ATOM TRAPPING AND TWO-DIMENSIONAL BOSE- . . . PHYSICAL REVIEW A 69, 023605 ~2004!
2D trap has a largev trans to allow one motional degree o
freedom to be frozen out at high temperatures. For an id
gas, Bose condensation in a 2D harmonic trap occurs at

kBTc5\v̄A6N/p ~26!

with v̄5(v1v2)1/2 and N the number of atoms@25#. Thus,
combining Eqs.~25! and~26!, the number of atoms that ca
undergo a genuine 2D condensation satisfies the cond
N&(v trans /v̄)2. For a higher number of atoms condens
tion would have occurred already in the 3D regime. The
fore we see that, to aim for a 2D BEC, a high ratiov trans /v̄
is a further desirable criterion for a 2D trap, especially co
sidering that small numbers of atoms would be hard to im
experimentally.

B. Two-dimensional atom trapping and adiabatic potentials

We will generalize the discussion in Sec. V so that
now allow the original magnetic trap to have different osc
lator frequenciesvx , vy , andvz along the three axes with
corresponding oscillator lengthsax , ay , az . ~Note thatai

5A\/mv i , i 5x,y,z.! Thus the corresponding magnetic tra
has the potential

Vtr~r !5 1
2 m~vx

2x21vy
2y21vz

2z2!, ~27!

where, again, we are now working with unscaled quantit
As in Sec. III, we consider a two-level system and assu
that the second state experiences the magnetic pote
2Vtr .

The upper field-induced adiabatic potential, which is t
potential of greatest interest, is then given by

Ṽ~r ,t !5mgz1Ṽ1~r ,t ! ~28!

with

Ṽ1~r ,t !5A@Vtr~r !2\D̄~ t !/2#21@\V~ t !#2. ~29!

Here D̄ denotes the unscaled detuning, i.e.,D̄5v f
2DE(0)/\ with v f the rf-field frequency andDE(0) the
minimum energy difference between the hyperfine states~see
Sec. II A!. The bare potentials intersect, where there is re

nance, i.e., at the locations\D̄(t)52Vtr(r ). This intersec-
tion we call the ‘‘seam’’ of the bare potentials. In the absen
of gravity, the seam ofṼ1 would also be the location of th
minimum inṼ and would have the shape of an ellipsoid w

radii r i5(D̄/v i)
1/2ai , i 5x,y,z. Thus, without gravity, or

gravity being compensated for, the atom distribution for
an ellipsoid bubble, or shell in the potential~29!.

Under the influence of gravity the atoms sag to the bott
of the shell potential~28!, and this would not allow the for-
mation of a matter-wave bubble. In fact, as shown in S
III D, a closed bubble could exist only up to radiir
&(\2/gm2)1/3 (.531027 m for 87Rb). Under typical ex-
perimental conditions we can expect a situation as depi
in Fig. 10 which shows—for the indicated parame
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values—the potentialṼ in the planey50 along with an
atomic BEC in the ground state for this potential.

Typically, an atom moving in the potentialṼ is confined
to the close proximity of the seam due to the strong confi
ment in the direction transverse to it. If its energyE satisfies
E!mgrz , it is also restricted to the vicinity of the bottom o
Ṽ because of gravity. To a good degree of approximation
atomic motion can therefore be modeled as harmonic.
determine the harmonic frequencies we can expand Eq.~28!
aboutz52r z to find

v1,25~g/r z!
1/2vx,y /vz ~30!

along the surface of the seam, and

v trans5~D̄/V̄!1/2vz ~31!

in the normal direction. Here the unscaled coupling f

quency is denoted byV̄. The oscillator lengths correspond
ing to v1,2 andv trans will be denoted byatrans , a1, anda2.
The effect of gravity on the potential will also shift it down
wards so that the equilibrium point is now at

z0;2A \D̄

mvz
2
2

g

v trans
2

. ~32!

However, the displacement ofg/v trans
2 is rather small and

also turns out not to be sufficient to violate the harmo
expansion of Eq.~28! which results in Eqs.~30! and ~31!.
~See Sec. VI C 3 below.!

C. Conditions for 2D trapping in adiabatic potentials

The obvious strategy for realizing a 2D trap is to increa

the detuningD̄ as much as possible in order to obtain stro

radial confinement. A sufficiently large couplingV̄ will be
necessary to ensure that the potentials remain adiabatic
arrive at a 2D trap, a number of considerations have to
taken into account~some given previously in Ref.@9#!, and

FIG. 10. Adiabatic potentialṼ(r )5Ṽ1(r )1mgz ~in arbitrary

units! at y50 for vx/2p511 Hz, vy/2p5vz/2p5220 Hz, V̄/2p

52.6 kHz, andD̄/2p566 kHz. Inserted is the ground state of
87Rb condensate with about 105 atoms.
5-11
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these factors determine how largeV̄ and D̄ need to be, and
the relationship between them.

1. Lifetime

For a givenD̄, the rf coupling strengthV̄ has to be chosen
accordingly to ensure a sufficiently large lifetime for atom
held in the adiabatic trap. Equation~10! gives an estimate o
the decay rate and if we require that the decay rate is
than a certain maximum, i.e.,

gex<gmax, ~33!

it follows from Eq. ~10!, when unscaled, that one needs

V̄3>lvz
2D̄ ~34!

with the parameterl52@ ln(gmax/2vz)#2/p2. Thus the worst
allowed decay rate can be specified in terms of the vert
trap frequency. In the numerical example below~Sec. VI D!
we choosegmax/vz50.01 so thatl55.7.

As indicated in Sec. V B, analytical expressions for t
lifetime in general multistate systems are not available. Ho
ever, we expect that our estimates are still valid, at least
first approximation, under such conditions. This view is su
ported by our numerical study of the five-state system.

2. Strong binding and spatial thinness

The lifetime sets a lower limit onV at a givenD. Choos-
ing V too large, however, impairs the strong radial confin
ment. An upper limit is imposed by the obvious condition

v trans@v1,2 ~35!

and

r z@atrans . ~36!

The first of these was discussed in Sec. VI A and ensures
one spatial direction is effectively frozen out at low tempe
tures. The second condition guarantees that the atoms
tightly confined to the vicinity of the seam. Both these r
quirements are typically not in conflict with condition~34!.
Formally, this can be seen from the fact that the first con
tion translates into

V̄2!
D̄3vz

5az
2

g2vx,y
4

, ~37!

where forvx,y one should choose the maximum ofvx and
vy to make the condition most restrictive. The second c
dition leads to

V̄!4D̄3/vz
2 . ~38!

Inequality ~34! will allow us to chooseV̄}D̄1/3, so that the
above conditions are increasingly easy to meet for grow

D̄, in accordance with our expectation.
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3. Harmonic 2D trapping

In this section we will look at the conditions for harmo
nicity of the trap. Harmonicity is probably desirable, but
not actuallyessentialfor trapping. The conditions derived
below will show that the trap is operated in a 2D harmon
regime.

To be able to speak of aharmonic 2D trap at a finite
temperature, one has to require that

\v1,2!kBTc!mgrz . ~39!

The first criterion ensures that, at the condensation point,
atoms can reach sufficiently many quantum states to actu
experience the trapping potential as being harmonic. I
automatically fulfilled if we substitute forTc from Eq. ~26!
to find

N@
p2

6 S v1,2

v2,1
D , ~40!

where from Eq.~30! v1,2/v2,15vx,y /vy,x is the ratio of
trapping frequencies in thex-y plane. Equation~40! should
be easily satisfied if there are to be any significant numbe
atoms in the trap.

The second part of Eq.~39! leads to

kBTc!
gD̄1/2

azvz
5/2

~41!

when we substitute forr z . This second criterion makes sur
that anharmonic effects in the trapping potential can be
glected. The same condition arises as the condition for
monic motion of a single particle confined to the seam.~A
picture which assumes tight transverse trapping.! In the ex-
ample belowmgrz /kB.18 mK which is much larger than
Tc.0.3 mK. Note, however, that the appearance of anh
monic effects in the 2D trapping potential does not autom
cally affect the two-dimensionality of the trap.

We can also ask if we have harmonicity in the third, tran
verse, direction. If we focus on the bottom of the potenti
i.e., takex5y50, the adiabatic potential~28! simplifies to

Ṽ~z,t !5mgz1A@mvz
2z2/22\D̄~ t !/2#21@\V~ t !#2.

~42!

Then in an adiabatic regime, one limit which produces qu
simply a harmonic potential is found from the condition

\V~ t !@U12 mvz
2z22\D̄~ t !/2U, ~43!

which, together with

uz2z0u/uz0u!1, ~44!

allows a quadratic expansion of Eq.~42!. An estimate forz0,
the location of the minimum, has been given in Eq.~32!. At
z5z0 we may substitute Eq.~32! into Eq. ~43! to eventually
obtain
5-12
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D̄@
g2

az
2vz

3
. ~45!

Here we also assumed that the shift ofz0 away from2r z

52A\D̄/mvz
2 @see Eq.~32!# was very small so that the

smallest term could be dropped fromz0
2. The condition for

this approximation is that

A \D̄

mvz
2
@

g

v trans
2

~46!

which would lead to the subsidiary condition

D̄3@
g2V̄2

az
2vz

3
, ~47!

when we substitute forv trans .
In considering values ofz away fromz0 in Eqs.~44! and

~43!, we need an estimate of the thickness of the matter-w
disk. A distance characterizing this could beatrans , i.e., we
would use a single-particle wave-function width as a m
sure of the size ofuz2z0u in Eq. ~44!. This equation is then
already satisfied by Eq.~36! and the remaining condition Eq
~43! is also, approximately, satisfied if we accept the scal
of Eq. ~34! ~with a typical value ofl).

It turns out that it is possible to satisfy all the constrain
in this section. It is even the case that violation of Eqs.~40!
and~41! need not prevent a 2D BEC since there is no rea
why a BEC cannot be 2D in an anharmonic regime; Eq.~26!
would simply not apply. Likewise, anharmonicity in th
transverse direction, resulting in violation of conditions~45!
and ~47! need not prevent 2D trapping or a 2D BEC.

4. Loading

A straightforward way to load the 2D trap consists
starting from a condensate in the original magnetic poten
and then adiabatically transferring it to the 2D trap by app
priately switching on the rf field. The minimum duration o
this process can be estimated by stipulating the adiabat
condition v̇1,2!v1,2

2 . Using relation~34! this leads to

t@
1

v1,2
5

~V̄/vx,y!3/4

l1/4Ag/ax,y

. ~48!

Note that during loading,V̄ can be increased above th
intended final value to reduce intermediate adiabatic loss

5. Temperature

For the trap to be 2D at a temperatureT the second part o
Eq. ~25! applies (kBT,\v trans) which with the substitution
of Eq. ~31! leads to

kBT!AD̄

V̄
\vz . ~49!
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If we take the case of equality in Eq.~34! and substitute for

D̄ we find

kBT!\V̄/Al. ~50!

We would expect this condition to be more restrictive th

Eq. ~41! which leads tokBT!\V̄3/2g/2Alazvz
7/2. Thus, by

substituting Eq.~26! into Eq. ~50!, the number of atoms tha
can undergo a 2D condensation is limited by

N!
p2V̄2

6lv̄2
. ~51!

If we now utilize v̄5(v1v2)1/2 and Eq.~30! we finally ob-
tain

N!
p2azV̄

7/2vz
1/2

6gl3/2vxvy

. ~52!

Since Eq.~52! puts an upper bound on the number of ato

it is desirable to have as large a couplingV̄ as possible.

In fact none of the conditions above constrainV̄ if the

connection~34! is accepted. The higher the value ofV̄ the
better @as in Eq.~52!#. However, from a practical point o

view, it would be desirable to find the lowest viableV̄. This

is determined by the most restrictive inequality onV̄. That
is, if we place each of our various inequalities in the for

V̄.k, where k contains the remaining constants, we w
look for the inequality with the largest constantk. For real-
istic values ofl andvx,y this appears to be Eq.~45!, which
on substitution of Eq.~34! leads to

V̄7@l3g2vz
3/az

2 . ~53!

Any value ofV̄ greater than this would be suitable, but no

that increasingV̄ also increases the loading time, Eq.~48!,
and this is ultimately undesirable. To see what is realistica
possible we must now determine some values for a prac
case.

D. Numerical estimate

We reported a numerical estimate in Ref.@9#, where we
considered a typical Ioffe-Pritchard trap withvx/2p
511 Hz, vy/2p5vz/2p5220 Hz containing87Rb atoms
initially in the F52, M52 ground state. In order to matc
approximately the two-state theory given above to this fi

state system we need to replaceD̄ by 4D̄ to obtain the correct
condition for resonance. The trap potential~27! becomes that

for the MF52 state, and the couplingV̄ is replaced by 2V̄.

Then an rf field with a final couplingV̄/2p515 kHz and

@from Eq. ~34!# D̄/2p512.2 MHz is one that can be pro
vided with currently available technology@26#. The condi-

tion ~53! is easily satisfied since it results inV̄/2p
@405 Hz. The resulting trap frequencies arev trans/2p
58.9 kHz,v1/2p51.3 Hz,v2/2p527 Hz. The new trap is
5-13
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vertically shifted by 0.34 mm from the center of the origin
magnetic potential. The critical temperature is given
0.43mK, so that up to 3.63106 atoms could be condense
The transverse width of the condensate is estimated
0.08mm if atomic interactions can be neglected. The tim
required for the preparation process should be large c
pared to 1/v1, Eq. ~48!, i.e., of the order of several second
In view of these estimates, the experimental realization
this new kind of 2D trap seems to be within reach of curr
experiments.

VII. SUMMARY AND CONCLUSIONS

In this paper we have shown that field-induced adiab
potentials can provide a robust and versatile tool to cre
trapping configurations for ultracold atoms. As specific e
amples, we have considered the generation of matter-w
shell, or bubble, states and the preparation of tw
dimensional atom traps. In a bubble state, the matter-w
density is localized around the surface of a three-dimensio
sphere. We have discussed the preparation process w
proceeds by coupling a harmonic magnetic trap to a re
sive harmonic potential by a suitably chosen time-depend
rf field. Although this configuration appears to be unstable
first sight, the bubbles are stabilized in the resulting dres
potential and their lifetime increases exponentially with t
rf coupling strength. The bubbles can be used as step
stones for the creation of highly excited oscillator eigensta
and ‘‘nonlinear eigenmodes.’’ We also investigated possi
experiments showing collapse and revival effects. Althou
the creation of the bubbles is impeded by the influence
gravity and trap anisotropies, we have pointed out ways
overcome these difficulties with the help of present-day te
nology.

The same principle, which has been used for mak
bubble states, can also be applied to the creation of t
dimensional atom traps@27#. Under the combined influenc
of the dressing rf field and gravity, a condensate pools at
bottom of the resulting potential. By increasing the RF d
tuning the radial confinement becomes steeper, and the
densate gets increasingly squeezed until it eventually rea
a ‘‘quasi-two-dimensional’’ state. We have given estima
for the parameters necessary to reach this regime.

We hope that the results presented in this article stimu
further research into the possibilities that field-induced ad
batic potentials offer for the creation of new kinds of tra
ping potentials and lower-dimensional geometries. We h
focussed in this paper on shell-like and disk-shaped tra
but by working with atomic waveguides we also expect t
new tubular potentials could be formed. These new kinds
potentials can all be used to create new quantum-mecha
states of matter, and might also be used in the study
weakly bound clusters or nanoparticles.
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APPENDIX

In this Appendix, we outline the derivation of Eq.~8! for
the lifetime of the bubble states. The method is describe
detail in Ref. @15# ~see also Ref.@16#! so we can restrict
ourselves to indicating the main steps.

Consider the time-independent linear version of Eq.~6!,

«f15S 2
1

2

]2

]r 2
1

r 2

2
2

D

2 D f11Vf2 ,

«f25S 2
1

2

]2

]r 2
2

r 2

2
1

D

2 D f21Vf1 ~A1!

with « the eigenenergy. We are interested in the structure
the solutions at energies«.V for which resonance states a
expected to appear. Far away from the potential crossin
r c5AD the eigenfunctionsf1,2 can be approximated as@cf.
Eq. ~9! of Ref. @15##

f1~r !AD!;k1
21/2FA1~`!expS i E

r 1

r

k1dr1 ip/4D
1A1~2`!expS 2 i E

r 1

r

k1dr2 ip/4D G ,
f2~r @AD!;k2

21/2FA2~`!expS i E
r 2

r

k2dr2 ip/4D
1A2~2`!expS 2 i E

r 1

r

k1dr2 ip/4D G
~A2!

with the classical momentak15(2«2r 21D)1/2, k25(2«
1r 22D)1/2 and the turning points r 15AD12«, r 2

5AD22« ~or r 250 if «.D/2). If we set, e.g.,A2(2`)
equal to unity then the other coefficientsAi(6`) can be
regarded as scattering amplitudes for the interaction pro
inside the curve-crossing region. Resonance states are re
to poles of the scattering amplitudes in the complex ene
plane. The determination of the amplitudes proceeds in
steps.

~i! By Taylor expanding the harmonic potentials to fir
order around the crossing atr 5r c , the interaction between
the states 1 and 2 is described as a linear curve-cros
problem. Using the corresponding scattering matrix the a
plitudesA1(`) andA2(`) can be expressed as linear fun
tions of A1(2`) and A2(2`). The explicit formulas@Eq.
~19! of Ref. @15## involve the quantitiesd andF introduced
in Sec. III B. Note that the analytic form of the scatterin
matrix is only known approximately~see, e.g., Sec. IV of
Ref. @17# for a comparison of different results!, so that quan-
titative calculations based on the analytic approach dep
somewhat on the expressions used.
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~ii ! The wave functionf1 has to be subjected to appro
priate boundary conditions, i.e.,f1(r 50)50. This immedi-
ately yields the relation

A1~`!/A1~2`!52exp@2ib~«!#, ~A3!

whereb(«)5*0
r 1k1(r )dr2p/45p(2«1D21)/4.

Combining the results of~i! and ~ii ! and settingA2
,

-

.
I

di,

t.
.

tt

,

m

o
d

ie

02360
(2`)51 we finally obtain@cf. Eq. ~29! of Ref. @15#, note
the sign error#

A2~`!5
cosb~E!1@e2pd(E)21#cosF~E!ei [b(E)2F(E)]

cosb~E!1@e2pd(E)21#cosF~E!e2 i [b(E)2F(E)]
.

~A4!
The poles ofA2(`) are determined by condition~8!.
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