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Atom trapping and two-dimensional Bose-Einstein condensates
in field-induced adiabatic potentials
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We discuss a method to create two-dimensid@al) traps as well as atomic shell, or bubble, states for a
Bose-Einstein condensate initially prepared in a conventional magnetic trap. The scheme relies on the use of
time-dependent, radio-frequency-induced adiabatic potentials. These are shown to form a versatile and robust
tool to generate interesting trapping potentials. Our shell states take the form of thin, highly stable matter-wave
bubbles and can serve as stepping stones to prepare atoms in highly excited trap eigenstates or to study
“collapse and revival phenomena.” Their creation requires gravitational effects to be compensated by applying
additional optical dipole potentials. However, in our scheme gravitation can also be exploited to provide a route
to two-dimensional atom trapping. We demonstrate the loading process for such a trap and examine experi-
mental conditions under which a 2D condensate may be prepared.
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I. INTRODUCTION come these difficulties, and the first realizations of atomic
BECs in two dimensions have been reporfiéd 6]. In these

Due to the rapid advances in experimental and theoreticaxperiments, the dimensionality is reduced by exposing the
atom optics, it has now become possible to cool atoms dowatoms to steep optical potentials. In Ref], single one- or
to extremely low temperatures. An important characteristidwo-dimensional BECs are prepared, whereas in the experi-
of such ultracold atoms is their sensitivity to very weak ex-ments of Refs[5,6] the use of optical lattices led to the
ternal potentials. In the context of atomic Bose-Einstein conereation of arrays of two-dimensional condensates. However,
densation, this feature is particularly attractive. The condenin addition to these works, various other interesting ideas
sate can be described, to a very good degree ofegarding the manufacture of two-dimensional traps have
approximation, in terms of a single macroscopic wave funchbeen put forward over the last few years. In these proposals,
tion which in this way can be subjected to intricate probingtrapping is provided either by opticff] or by magnetid 8]
and manipulation. Consequently, in recent years various inmeans, whereas loading is accomplished through optical
genious techniques for handling Bose-Einstein condensatggimping.
(BECs9 have been developed that exploit this sensitivity, e.g., The purpose of the present paper is twofold. On the one
magnetic quadrupole and time-orbiting potenti@OP) hand we wish to promote field-induced adiabatic potentials
traps, shallow optical dipole traps, phase-imprinting methodsis a versatile tool to manipulate ultracold atoms and, in par-
to create solitons or vortices, and radio-frequefr€youtput  ticular, Bose-Einstein condensates. On the other hand, we
coupling, to name but a few prominent examp{és a re- show that they offer a route to the creation of two-
view of these and other techniques, see REfl.. However, dimensional traps for BECs. An initial outline of our results
the development of further tools and methods still presents was given in Ref[9]. Adiabatic potentials arise whenever
significant objective of current work, and forms the basis fortwo or more internal atomic states, that experience different
advancing research in several main areas of BEC physics. potentials for the atomic center-of-mass motion, are coupled

One such area concerns the experimental realization dfy a strong resonant external field. The atomic motion is then
low-dimensional Bose-Einstein condensates of trapped dilutao longer dominated by the different “bare” potentials but is
atomic gases. Under reduced dimensionality, the condensatisefully described in terms of the adiabatic potentials that
properties differ drastically from the well-studied three- arise from the diagonalization of the bare potentials and the
dimensional case and have been under intense theoreticabuplings at each spatial point. Adiabatic potentials have
debate for some timg2,3]. Low-dimensional BECs are char- been in use for some time as the underlying mechanism for
acterized by the fact that due to strong confinement by thevaporative cooling. However, to our knowledge, little atten-
external trapping potential one or more motional degrees ofion has been paid to the fact that they offer a lot of further
freedom become quantum-mechanically frozen before thpossibilities to control quantum-mechanical atomic motion
condensation point is reached. Major obstacles, that had beéane fairly recent application is described in REE0]). In
confronting the preparation of one- or two-dimensiof2d))  this paper we will give some examples of the application of
BECs for a long time, concerned the construction of suitablediabatic potentials as a tool for manipulating matter waves,
traps—e.g., very high field gradients would be required forand we hope to stimulate further research in this direction.
magnetic traps—as well as the development of efficient load- After giving a qualitative introduction to adiabatic poten-
ing procedures. Only recently has it become possible to ovettials in Sec. I, we continue in Sec. Ill to show how they can
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be employed to create so-called “matter-wave bubbles” from Il. ADIABATIC POTENTIALS

a BEC initially trapped in the ground state of a harmonic The basic principles of adiabatic potentials can be under-

potential. In the bubble state the wave function is localized; -4 "som examining a quantum-mechanical two-state par-

around the surface of a sphere so that the matter densify o that propagates in the vicinity of a linear potential cross-

forms a spherical shell or bubble. We give a detailed accouqhg_ In the interaction picture, with respect to the coupling

of the preparation of bubble states and their decay rates ifg|d that gives rise to the crossing, the Sainger equation
duced by nonadiabatic leakage. In particular, we address thgy this system is written as follows:

guestion of how to compensate for gravitational effects in the

laboratory which otherwise would impede the creation pro- ) 52
cess. We expect matter-wave bubbles to have interesting ap- id1=| =5 5 +Cr|é1+0¢y,
plications, some of which are investigated in Sec. IV. There it ar
is shown that they can be used as stepping stones to prepare 5
atoms in highly excited eigenstates of the bare harmonic c _3‘9__ QO
) : , , = 5~ Cr ¢+ Q. @
trapping potential and to create new types of nonlinear eigen- 2 or

states of BECs. Furthermore, we examine collapse and re-

vival effects which are found when the external coupling isWe can transform this equation to a basis that diagonalizes

switched off. By also switching off the trapping potential we the potentialst Cr and the couplind) at each point, i.e., to

can observe the free bubble expansion. the basis of the spatially dependent “dressed eigenstates.” In
In Sec. V we turn to the investigation of gravitational this basis the Schdinger equation has the forfi1]

influences on the bubble preparation process. At first sight

gravity is seen to be detrimental, but it is shown thatitcanbe .- _| _ } ‘9_2 _

exploited to obtain a scheme for the creation of two- =173 or2 TV (D) FVidn(r) | ¢4 FVe(r. ) b,
dimensional BECs. Gravity will cause the atoms in the shell ) )

potential to pool at the bottom of the trap so that the conden- [ 1 g2

sate forms a flat disk. In Sec. V the initial transfer of a BEC i¢p_=| — > —2+V,(r)+vkm(r) ¢ —V(r,d,) ¢, .
into such a disk state in the course of switching on the ex- L ar .

ternal field is examined numerically. In particular, we show (2)

that if the field parameters are changed appropriately the disk 1o potentiald/_ (r) are the adiabatic potentials and are
radius is steadily increased whereas its width keeps shrinkingiven by -

due to enhanced confinement. This suggests that the continu-

ation of this process could ultimately yield a two- V. (r,t)==+/(CrZ+ 02 3

dimensional trap for the BEC, although the numerical study

of the approach to this limit is not currently feasible. In Sec.They arise from the pointwise diagonalization of th& 2

VI we further pursue this idea by giving some general quali-matrix formed by=Cr and(). The terms

tative, and semiquantitative, estimates and arguments about

the conditions necessary to reach the 2D regime. They indi- c?

cate the feasibility of our approach by showing that the re- Viin(r) = 807[1+(Cr/0)?] 4

qguirements for the applied fields, preservation time of the

condensate, etc. are demanding but still within the reach ofng

currently available technology. The paper ends with brief

conclusions and outlook given in Sec. VII. C C2r 9
The most important difference to the previous proposals Vc(r,d,)= -

of Refs.[7,8] for creating 2D traps is the fact that our method 20[1+(Cr/Q)?] Q4 1+(Cr/Q)%] I 5

relies on adiabatically deforming a conventional magnetic ®)

trap and does not require incoherent processes, €.9., Opticgem from the nonlocal character of the kinetic-energy term.
pumping, for loading. This would allow for working with — We see tha¥/. (r) + Vyn(r) is & binding potential. If the
extremely cold, dense, and, possibly, coherent atomic ertoupling termV(r,d,) were not present, a wave packet pre-
sembles throughout the whole process. In comparison to thgared in the state +” would remain trapped forever in the
experiment$4—6], our scheme does not make use of Opti0a|potentialv+(r)+Vkin(r). However, ifQ is small the cou-
potentials, but a combination of magnetic and rf fields. Itpling V. is dominant. In this case any wave packet quickly
thus avoids potential difficulties with spontaneous emissioneaves the crossing region aroung0, and the description
in very steep optical traps that require high laser intensitiesgiven by Eqg.(2) is not useful. Nevertheless, @ is in-

In contrast to Refs[5,6], our proposal produces a single creased, the kinetic coupling,. (as well asV,;,) rapidly
condensate with a large number of atoms, similar to the exbecomes smal[12] and the motion of the wave packet is
periment of Ref[4]. However, the trapping frequencies ob- more and more determined by the adiabatic potenifals
tainable in the rf scheme might be significantly higher trap-In fact, it is shown in Sec. Il B that the lifetime of a wave
ping frequencies than the ones reported in the latter work. packet prepared in the internal state i.e., the time it takes
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the wave packet to transfer to the state ™and leave the - 0015 - . . -

crossing region, increases exponentially with @ 9 ®
At first sight, it seems counterintuitive that it is possible to [:i] 6

trap a particle, even with strong coupling, between two po- <,

tentials in a region where the particle is not stable. We cangﬁ 001 b o i

draw an analogy with a particle moving in a magnetic quad-é . o1 , 30

rupole field. Each of its bare Zeeman substatéth “bare” = & | Vas

meaning having fixed spatial orientatjondividually would g = |,

experience the field as unstable. However, if the particle& /,igi\ 000s L ol—2Z |

moves slowly enough, couplings between the states are in 7N 3

duced so that the particle’s orientation with respect to the
local direction of the total magnetic field is preserved. In this
way, trapping can ensue for weak-field seeking states. In the

case considered here, a slow particle tends to remain in th r'c R —T
same dressed eigenstate and its motion is governed by the f !
adiabatic potentials. FIG. 1. (a) Schematic of field-induced adiabatic potentisls

for A>0. Dashed curves show the bare potentials crossing .at
Inset: bare potentials showing resonance.at(b) Bubble, or shell,

Ill. CREATION OF MATTER-WAVE BUBBLES state as obtained by the preparation scheme discussed in the text
) with (in scaled units A, =60.0 andQ;;,,=9.0 (see inset Full
A. Basic approach curve: atomic densityg ., |?/r? in the adiabatic state-; dotted and

27,2 27,2 H H
To work out the basic ideas of our approach we first dis-dashed curves shol,|*/r* and|¢,|%/r*, respectively. Nonlinear

cuss its realization in the absence of gravity. As a result, wgﬁeCtS are not included here.
obtain a scheme to produce thin, highly stable matter-wave
bubbles or shells in which the trapped atoms are localized
around the surface of a sphere.

The starting point for our method is a coherent sample of
atoms produced, e.g., by Bose-Einstein condensation and 5 5 1
trapped in the ground state of a harmonic magnetic potential. +N(U g 1]*+ U1 &5 )r—z.
The preparation scheme then proceeds by applying a se-
guence of radio-frequency fields that couple the initial inter-
nal atomic state, a weak-field seeking Zeeman sublevel, to a iébz—
second hyperfine ground stdtaultilevel excitation schemes
can be considered as well, see Sek.A5 mentioned above,
the preparation process may appear to be counterintuitive as b2
the gecgnd statepis an untra)[;pepdp, high-field seeking [sta¢e +N(U 12 1]+ U2 ¢2|2)r_z' ©®)
inset, Fig. 1a)]. As this technique also forms the basis of

evaporative cooling, one may be led to expect that this prop this equation time is scaled to the trap inverse oscillator
cedure will inevitably cause a rapid depletion of the trappetrequencyw 1, length is scaled to the harmonic-oscillator
atomic population. Nevertheless, as was anticipated in Sec. jingth scalea,,,, andQ(t) andA(t) are scaled tdw. The
and is also shown below, if the fields are controlled in aneffective detuning is defined by (t) =[%w;—AE(0)]/fw,
appropriate way one may also obtain a very different effectyynere AE(0) is the energy difference between the two hy-
To model the creation of our bubble states we study thgerfine states at the origitrap centerand e the frequency
coherent time evolution of a condensate initially prepared iryf the applied field. The nonlinearity parameters are given by
a hyperfine statg1) in the ground state of a spherically j, =a '/a,, with a; the scattering lengths for intraspecies
symmetric magnetic trap. When-0 external fields are ap- and interspecies collisions. The states are normalized accord-
plied that induce a coupling of stdtE) to a Zeeman sublevel ing to fdr(| 1|2+ 4|2 = 1. The total number of atoms is
|2) whose magnetic moment is supposed to be equal in MaGenoted\.
nitude but opposi_t_e in sign. Such a coupling may be realized, Tpe strategy that we pursue in our engineering scheme is
e.g, as a transition between the hypesr;me ground stat§g conirol the condensate by slowly changing field-induced
[F=1mg=-1) and [F=2me=—1) in ®Rb [13]. The  ,giapatic(or dresseflpotentials. These potentials, which are
field-induced coupling strength is denoted{@sand is spa-  gefined as the spatially dependent eigenvalues of the poten-
tially independent to a good degree of approximation. In thgja|s and couplings in Eq46), are given by[cf. Eq. (3)]
following model we assume a radied 0 form of the wave-
function componentsy;(r)= ¢;(r)/\J4=r. Then working in V. (r,t)==[r2=A(t) 24+ Q2(t) (7
an interaction picture with respect to the applied fields, the
time development is determined by the radial Gross-and are depicted foA>0 in Fig. 1(@. The potentialV_
Pitaevskii equation actually gives rise to the evaporative cooling effect in the

19% r? A(t)

i 1= _EFJFE_T) $11 (1) by

10> r?2 A)
22 272 $2t (1) by
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usual arrangement. In that case one applies a field with ar
effective detuning which is large compared to the mean par-
ticle energy. The atoms then move in the poterial, and

the ones that reach its maximum, from the left, with suffi-
ciently slow velocity, go over the top and get expelled from
the trap. However, we will show that the atoms can also be
prepared in the lowest-energy eigenstaig more exactly,
resonance|0)=|0;Q,A) of the potentialV, . This quasi-
bound or “trapping” statg0) will realize the spherical shell
state or matter-wave bubb[see Fig. 1b) and Ref.[14]].
The state will be localized around the crossing of the two
bare potentials atr.=yA and have a width ofAr
=(Q/A)Y* provided a harmonic expansion around the po- -8 . .
tential minimum is justified. The state is a genuine superpo-
sition of the internal stateld) and|2).

logioY

B. Lifetime of bubbles

Before considering the bubble preparation process in de-
tail one question immediately arises, i.e., the stability of the
system once it is prepared in the stf@. At first it is not =
obvious that atoms may remain trapped for a substantial time%E
at the point of maximum effective coupling between states—
|1) and|2). As we have discussed in Sec. I, it becomes
more plausible if one transforms Ed$) to the dressed-state

basis, i.e., the basis that diagonalizes the bare potentials ar .
the coupling at each point In this picture the two wave- . .

function components appear coupled by kinetic terms whose -7 6 8 10 12
significance is rapidly diminished whe@ is increased. If Q

nonlinear interactions can be neglected, the decayyaié )
9 Y FIG. 2. (a) Evaluation of decay rateg({}) for bubble states

the trapping state0) can be determined with the help of , . - . .
semiclssf)sic%ﬂ me’?hgds developed in connection with m%lecu(WIthOUt atomic interactionsaccording to Eqsi®) (full curve) and

lar predissociatior{15,16. As we show in the Appendix, 9) (dashedl at A=61.0, using the approximations of R4lL5],

. : - Circles: numerical values determined from E@). (b) Influence of
from these techniques it follows that=—2ImE,, where atomic interactions on decay rates. Numerical calculatiory(é1)

the complex ground-state enerBy is determined as a solu- according to Sec. 111 C foyN=0 (full circles), 33 (open squards
tion of and 99(full diamonds. Dotted lines are to guide the eye. Note the

[e279E) _ 1]cosd(E)e 6O~ 4 cos(E)=0 (8) different ranges of abscissa values(@ and (b).

with B(E)=m(2E+A—1)/4 and the paramete®(E) and tion of time. After an initial transient, this decay was expo-

®(E) characterizing the scattering matrix of the Iinearizednentlal tq avery good de_gree of apprqur.:\tl.on.
potential crossing problem. For these quantities there are Equation(9) yields two important insights: first, the decay

several analytical approximations in the literat{it&]; fol- IS expon_entially sup_pressed With growiflg In the "”.“t of
lowing, e.g., Ref[15] one can putS(E) = 1/8ab and ® (E) v<<1, this exponential suppression may be approximated as
=2b%/3a+argl'[i 5(E) ]+ 6(E)In[ {E)]—2&E)In(b/a)+ m/4 _ A3 112

with a2=A/(8Q%) andb?=E/Q. For large enouglf) one Yex2 €xfl — QO [241). (10
obtains Second, for REq=2k+ 3/2— A/2, with integerk, the decay
rates become very small. In these cases the $fatés in

y= 2 cos B(E) ' (9) resonance with an eigenstate of the bare harmonic trapping
{exd2mS(E)] -1} 9P/ IE) potential. This stabilization effect may be used to obtain ex-
where all quantities have to be evaluated atBRe() gtfgegjilh Slong-llved states already for moderate  coupling

++/A/4Q). The comparison in Fig.(3) between the predic-
tions of Egs.(8) and(9) and the direct numerical determina-
tion of decay rates from Eq$6) indicates the validity of
these approximations. To obtain the numerical decay rates Having established the existence of long-lived spherical
we first generated the bubble state at a requited)) by  bubble states in adiabatic potentials, we now turn to the de-
performing the preparation proce@shich will be described tails of their preparation. The first phase is to let the bare
in detail in Sec. Il . We then monitored the decay of the harmonic potential of state 1 evolve smoothly into the
norm of the wave function in the internal stateas a func- dressed potentiad , and the second phase is to expand the

C. Preparation
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bubble outwards. Both phases are done so that the wave In the discussion of the bubble preparation we have so far
function is kept at all times in the instantaneous ground statassumed that the atomic self-interaction and cross interaction
|0;Q(t),A(t)). In the example of Fig. (b) (in which non-  are approximately equal. If they differ significantly, however,
linear effects have been neglecteee achieve the first phase numerical simulations indicate that the creation of bubble
by increasingQ) to the final (scaled value of 9 at fixed states becomes more difficult and their lifetime is reduced.
negativedetuningA=—3 [see Fig. 1b), insel. Then the

second phase of bubble expansion is achieved by maintain- D. Bubbles with gravitational field compensation

ing the intensity, but gradually ramping up the detuning. In , )

this way less than 4% of the initial population was lost be- SO far, we have neglected the influence of gravity. Its
fore reaching the final state shown in FigblL The particu- effect on the bubbles is expected to be detrimental as it vylll
lar merit of this approach is that there is no need to follow ac@use the atoms to pool at the bottom of the shell potential.
precisely prescribed path as the method relies on adiabatl@ this section, we first give a simple estimate of how strong
following [in a similar way to the wave packet guidance in t_he gravitational influence must b_e to_cayse_agr_uflcant devia-
adiabatic passage by light induced potenti@BLIP) [18]]. tions from a homogeneous density distribution in the bubble

Any field sequence that guides the system sufficiently slowlystate. We then propose a method to compensate for gravita-
through states of long lifetime is suitable. tion in the laboratory with the help of optical potentials.

If we make our atomic bubbles from an initial BEC, we When the bubble width is small compared to the radius,

should also study the effects of the nonlinear interactiondh® radial dependence of the adiabatic potential is approxi-
introduced in Eq(6). The dressed-state description is readilyMately harmonic with a minimum at the bubble radiys
generalized ifU;,;~U,,~U,,=U (such a situation is real- =\A and an anguar frquena_yoz VA/Q [14].. Thus, we
ized, e.g., in the N&E=1 hyperfine multiplef1]). Under ~ €an approximate the Hamiltonian for atoms in the trapping
these circumstances we can still define an adiabatic wavgternal statet+ as

function ¢, that evolves, to a good degree of approximation,

2
according to the Gross-Pitaevskii equation H=-— V? + EwO(r —r¢)2+Gr cosé, (13
. i 4.1 . . .
id, = —§—2+V+(r,t)+NU 5| P+ (1)  with the radial and polar coordinatesé, and the scaled
or r gravitatioqa;l acceleration G=g\m/hw:> (with g
In particular, for a sufficiently strong nonlinearity, the =9.81 ms*). We now make the ansatz

atomic density can be described by the Thomas-Fermi ansatz
1 exd —(r—rg)?20?]

| |?=[m—V,(r,t)]/NU (12 wtr(r,0)=W ; f(cos®) (14

with the chemical potentigl determined by the normaliza-

tion condition. Numerical studies show that shell, or bubblefor the ground state of this Hamiltonian, whese= 1/\/w,.
states can then be manufactured in the same way as beforBhis ansatz implies that, radially, the wave function is always
Figure 2b) demonstrates that the atomic interactions affecin the ground state, i.e., the influence of gravity is manifest
the lifetimes of the shell states only slightly. In this diagram,only in the polar envelop&(cos#). For present purposes it is
instantaneous decay ratesfor nonlinear interactiondNU  sufficient to choose a very simple form fére.g., f(cosé)

=0, 33, and 99 are shown as a function®fat the same =acosé+b. The normalization factor in Eq14) is then
detuningA =61 as in Fig. 23). (For &'Rb, these values of given by N'=\/m(2a%/3+b?)/o. Furthermore, a variational
NU correspond to 20000 and 60000 atoms, respectjvelycalculation shows thae and b are related bya/b=Q
The plot focusses on the regime of larg@r where the av- —/Q?+3/2 with Q=3/4Gr3. A significant influence of
erage lifetime clearly displays the exponential dependencgravity is certainly present whem(cos0)=0, i.e., a/lb=

on the coupling strength. The decay rates have been deter-1, as in this case the bubble has “opened up.” This is
mined in the same way as for the linear system; it had to beealized forQ=0.17 or, in unscaled coordinates,

ensured, however, that the numerical “observation times”

were chosen sufficiently short so that the shell state popula- ro=(3#%/gm?)3 (15)

tion decreases only slightly. Over these short periods, the

decay is still exponential. As soon as the population is diminwhich is about 5.5 10" m for ®Rb. In the presence of
ished appreciably, it is apparent from Figbpthat the decay gravity, bubbles can therefore only be observed in spherical
rates change thus leading on the whole to a nonexponenti&iaps with trapping frequencies large compared to 400 Hz.
decay process. Figurdl® indicates that, at least for the ex- The estimatg15) can be interpreted as a balance condition
amined range of values, the atomic interactions do nobetween kinetic and gravitational energy which are of the
modify the behavior of the decay rates profoundly; theirorder2/2mrj andmgro, respectively.

main influence is a change in the position of the “reso- The detrimental influence of gravity can, at least in prin-
nances” where the lifetime becomes extremely large. Weciple, be compensated for by exposing the trapped atoms to
mostly attribute this effect to a modification of the resonancean additional optical dipole potential. In a typical Gaussian
conditions due to the mean-field shifig. resulting from the beam configuration this potential, which acts on all hyperfine
atomic interactions. sublevels in the same way, is given [
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is increased to its final value withiit=200 ms. The bubble
Vg+v, = has radial and axial diameters of 18n and 110um, re-
spectively. The necessary laser power is estimated at around
1 W. The large axial extension shows that in this direction
the variation of the combined optical and gravitational po-
tential is almost negligible. To find an optimized shape for
given Q) and A, it is advisable to experiment by slightly
\7 varying the laser power and the position of the magnetic trap
center. Nevertheless, the preparation scheme is robust in the
sense thatfor the configuration described abgvene still
obtains a bubble if the location of the magnetic tfap z)
relative to the dipole potential is changed by abaut0%,
FIG. 3. Schematic showing the local compensation of gravityand the laser intensity by about2.5%. Howeverduring
with the help of an optical potential. Shown are dipole poteMijal preparation these parameters have to be stabilized very well
the gravitational potentiaV/y, and their sum. The arrow indicates (to within a fraction of the indicated rang® avoid excita-
the flat region of the combined potential in which a bubble might betion of the bubble.

potential energy

0 Zy Wy
vertical distance z

created.
E. Bubbles and trap anisotropies
Vo 20? , . : .
Vy(x,0)=————exp ——————— (16) In this section, we want to discuss briefly the role of trap
+(X/Xr) wWol 1+ (X/Xr)“] anisotropies in the creation of matter-wave bubbles. As the

numerical simulations of the previous section have shown,
with o= y“+2z° The Rayleigh lengttxz and the beam pubbles can very well be manufactured in anisotropic traps if
waist radiusw, are related byxg= ng/hop with Ao, the  condensates of interacting atoms are used. However, it
wavelength of the optical field. Finally, in unscaled units, should be mentioned that in the absence of atomic interac-
Vo=3T'c?P/Awjw3, where w, denotes the resonance fre- tions, the unavoidable trap anisotropies severely impede the
quency,I” the spontaneous decay rate of the excited state, bubble creation process. Imagine that in the bare magnetic
the detuning between laser and the atomic transition,Rand trap w,= Bw,, but we keepB~1. Then the effective trap-
the applied laser power. The idea is now to adjust the traping frequency along the axis is given bygyA/Q (scaling
depthV, such that at the turning poiz of the optical po-  now with respect tav,). We can model our system Hamil-
tential along the linex=y=0, which is defined by tonian as
9V 4(z,)19z?=0, the slopeiV4(z,)/dz=—mg. In this way, ,
the combined optical and gravitational potential is almost H__V_Jr} 206)(r 1) 17)
constant around; , the lowest-order corrections being cubic T2 2% ol
in z—z; (see Fig. 3. The magnetic trap has then to be placed

we have to choos¥,=exp(1/2wgmg/2 to fulfil the above BJVAIQ. The ground state is approximated as
condition. If the condensate is in the Thomas-Fermi regime,

thez extension of the volume within which a bubble could be 5 2
created is somewhat less tham3/mg)*® with . the BEC — _ 1 exd—(r=ro)20(6) ]f_(cose) (18)
chemical potentia[for which an estimate is given in the v \/f/ r

following section in Eq{(20)]. This follows from stipulating
that the variation of the combined optical and gravitational
potential over this volume should be less than

with (0) 1/\/w0(0 We again could determing(cose)

reparation process, not with the a roximate HamlltonlanllA whereas the difference in “polar potential energy” is
brep P PP iven by |B2—1|A/Q. Therefore, we expect trap anlsotro-

(13), but using a more realistic model that will be discusse ies 10 have a significant influence as Soon as
further in Sec. VA. Our simulations involve the time- P 9
dependent solution of the two-dimensional Gross-Pitaevskii
equation with gravity, the optical potential, and the relevant
adiabatic surface in thé’Rb F=2 multiplet [19]. As an
example we have shown that in an anisotropic trap with

= w,/2m=220 Hz, v,=30 Hz, bubble states for a BEC cor- As typically A>1 andA/Q>1, the trap frequencies have to
responding to an atom number of 1l three dimensions be adjusted very carefully in order to enable the generation
can be produced atA=6.6 kHz, (=2.6 kHz, V, of bubbles. In the case of Fig. 2, for example, the estimate
=—129 kHz, andwy=73 um. For the preparation() is  (19) indicates thatjw,/w,—1| should be of the order of
switched on withilPAt=29 ms atA = — 1.1 kHz, and ther 0.1%. Fortunately, the problem can be alleviated to some

(wx)z A 1
=) —ql==1 (19
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extent by making use of the atomic interactions. In the 04 —————— 0.4 ——
Thomas-Fermi limit, the chemical potential of a thin bubble

@ 4 L () Q=135 J
is estimated to be 03r @ 03} ©
(o]
502} {1 02
3 UN\*® 0
= 0.1f 1 01
7\ a2 Joa .\‘
0 oo — 0
with U =ag.,/an, as the scaled nonlinearity coefficient and 0 2 4 6 8 10

whereN is the number of atoms in the bubble. The chemical 4
potentialw is measured with respect to the bottom\af(r).
We expect that only if the nonlinear interaction energy— 0.3

: T T T 0.4

0.3

which is of the order ofu—is in sufficient excess of the < |
. . . . = 02 0.2
effective potential energy, i.e., if =
0.1 0.1
N> 4\/§|32—1|3’2A—2 (21 0 0
3uU QO

then a bubble of approximately constant density can be

formed. Thus, even if gravity is compensated for, bubbles FIG. 4. Resonance states of Eq.s) atA=60 and various val-
ues of Q) (nonlinearities not taken into accolinThe wave func-

can probably only be produced in the presence of strongons are determined numerically by slowly decreasing the value of

n_onllnear !nteractlons. The numerical S|mulat|0r_1§ of the Pre% in Egs. (6) after initially preparing a bubble state. Full curves,
vious section have shown that under such conditions a prep%ﬂz. dashed,|¢,|% dotted, sum of both. The displayed wave

ration may indeed be possible. functions are normalized to one.

IV. APPLICATIONS OF BUBBLES (i) Although the system effectively ends up with the same

A. Production of excited harmonic-oscillator states Hamiltonian as in the very beginnirigoupling switched off

As a first licati ¢ matt bubbl di and the time evolution is performed quasiadiabatically, the
> a first application of matier-wave bubbles We NOW diS-g 5| state js very different from the initial one. This is be-

cuss the preparation of excited harmonic-oscillator states iN,use the Hamiitonian depends on two external parameters

the absence of nonlinear interactioti., for sufficiently ¢ anyx andn=0 represents a singularity in the sense that
dilute samplek If, after creating a bubble state, the coupling the valué ofA becomes irrelevant

strength is slowlyreduced at fixed the system will again (iii) The oscillator eigenstates can in turn be used as in-

eyolve through a sequence of Instantaneous eigenstates. T li’é?mediate states to produce radially excited bubble states. To
time, howevgr, the eigenstate will not significantly change "S$his end, one simply switches the field coupling on again
energy relative to the minimum of the bare trapping poten—Wi,[h a réduced detuning

tial. Qualitatively speaking, the wave function gradually
moves out from the crossing region where it is being trapped
and begins to experience more strongly the presence of the
bare harmonic potential. This process is accompanied by a The bubble states can be regarded as the ground states of
loss of atoms which end up on the repulsive potential aftea specifically tailored potential. Recently, however, the study
leaving the crossing region. A2 =0 the remaining bound of macroscopically excited states of BECs has received
wave function will have reached an excited harmonic-much attention20,21 and the manufacture of harmonic-
oscillator eigenstate which, in the spherical harmonic case, iescillator eigenstates, as presented above, indicates a way to
characterized by having=0. As mentioned before, the en- prepare a new class of such excited states. This class can be
ergy of this eigenstate is approximately equal to the energyhought of as the nonlinear generalization of the eigenstates
of the initial bubble state. To give an example, if we startof linear systems; for a one-dimensional model some prop-
from the state shown in Fig.(}), and the coupling strength erties of such “nonlinear modes” were examined in R&g]

is ramped down within a time interval dft=16, we arrive  without discussing ways for their actual preparation. For
at an eigenstate of energy 35.5 with respect to the minimurhighly excited states, nonlinear effects are expected to play a
of the harmonic potentidl14]. A sequence of intermediate minor role, in general, because of the reduced density. We
states appearing in the course of this process is shown in Fighus focus here on the first excited nonlindarO mode

4. After completion, the admixture of other eigenstates is lesgvhich is characterized by one radial node in the wave func-
than 2%, and the population is 36% of the initial populationtion. In the absence of nonlinear interactions the preparation

B. Nonlinear eigenstates

in the harmonic trap ground state. scheme of Sec. IV A works equally well for low- and high-
A few remarks should be made about this preparatiorying eigenstates, so we have numerically applied the same
scheme. approach, with suitably chosen values ferand A, to the

(i) It has to be performed “quasiadiabatically,” i.e., slow full Gross-Pitaevskii equation. Our studies show that the
enough to avoid substantial excitation of other eigenstatescheme is still applicable, though the atomic interactions
but sufficiently fast to reduce losses as much as possible. cause detrimental effects: shortly before reaching the final
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0 2 4 6 FIG. 6. Condensate density,|? at timesAt=1.6 and 3.2in-
r se) after suddenly switching off the rf couplin@. The different
curves have nonlinearity parametetdN=0 (full curve), 5

H 2/,2 : —

st oo . o e oL 06 20(oted, I cach case, e il e was e
: spective matter-wave bubble &t=60 and()=9.

from the bubble state &2 =5.6 andA=5.4 by reducing() to 0 pectiv wave bu

within At=70. The bold curve shows the exact “nonlinear mode” . . . . . .
for the final valueNUy,;=17.2. The inset compares this state INd nonlinear interaction the central interference fringes are

(dashedl to the corresponding eigenstate in the absence of nonlinPushed outwards in agreement with earlier studies on similar

earities(full curve). systemgsee, e.g., Ref23]). It might be possible to infer the
nonlinearity parameter from the fringe pattern. The inset in

value of 2 =0 one encounters a very strong loss of atomsfig. 6 illustrates the subsequent broadening of the wave

and, because of this, the process has to be performed rath@ction in the course of the reexpansion due to nonlinear

quickly resulting in an appreciable excitation of the final jnteractions.

wave function. Furthermore, the final detuniaghas to be A related behavior can be observed if the magnetic fields

selected more carefullto within +0.1w) to optimize the  are switched off along with the rf coupling. As it is no longer

number of atoms that remain trapped. In spite of these diffisubject to any potential, the localized radial bubble wave

culties, satisfactory results can be obtained for final nonlinfunction displays a time evolution similar to a free particle

earity parameteriU,, up to the order of 10. As an example, and gradually broadens due to dispersieee Fig. 7. After

Fig. 5 shows the density distributidi,(r)|?/r? at various  some time wave-function pieces from opposite sides of the

instances after completion of the preparation prodéss bubble start to overlap each other and an interference struc-

which Uy;=U»,=1.08J,, was assumed, as if®Na). The ture ensues. Again, the interference fringes are shifted out-

breathing seen in the wave function indicates that there igvards if nonlinear interactions become significésg¢e the

additional radial excitation. The parameté,;=17.2, and insej.

the projection onto the exact stationary state at this value

varies between 60% and 95%. The efficiency, i.e., the ratio V. DISK-SHAPED CONDENSATES

of final and initial atom number, is 9.5%. The comparison

with the eigenstate of the linear caésee inset shows a In this section we examine how our trapping scheme is

broadening of the wave function and a significant reductiormodified in the presence of gravity and in the absence of any

of the central density due to the interatomic repulsion. ~ gravitational compensatiofsuch as described in Sec. ll)D
The results will also lay the foundation for our proposal for

C. Collapse, revival, and free expansion
0.4

Another interesting effect occurs if, after creating the
bubble, the coupling strengtfl is instantaneously reduced
to zero. In this case, the two components of the bubble
evolve almost independently of each other in their respective
bare potentials. Component 2 is therefore rapidly expelled
from the trapping region, whereas component 1 undergoes a
collapse or contraction into the center of its binding har-
monic potential followed by a reexpansion. If nonlinear in-
teractions can be neglected this scenario repeats itself peri-
odically, the wave function regaining its initial shape at times

nm, n=12,.... In '_[he presence (_)f atomic _mteractlons, FIG. 7. Condensate densif,|%+ | ,|? at timesAt=0.0 (long
however, the shape is gradually distorted. Figure 6 showgasheg 2.0 (full), 4.0 (dotted, and 6.0(short dashedafter sud-
|1(r)|? for three different values ajN at timest=1.6 and  denly switching off both the RF coupling and the magnetic poten-
3.2, i.e., for “complete” collapse and reexpansion, respectial. The initial state is the matter-wave bubblefst40, 0 =9,
tively. In the large figure the wave functions show an inter-and UN=0. In the inset the condensate density is showrat
ference pattern which is due to particles from opposite sides 6.0 for nonlinearity parametetsN=0 (full curve), 20 (dashe

of the bubble passing through each other. Note that for growand 40(dotted.
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the creation of 2D atom traps which is outlined in the fol- Bare trap potentials Bare trap potentials RF—field applied
lowin g Sec. VI without gravity and gravitymgz
v v

A. Adiabatic trapping in the presence of gravity

To make the presentation more concrete, we look at a
specific example that corresponds to typical experimental z z
conditions. We thus consider a condensate of abouttiRb
atoms initially prepared in thE =2, Mg=2 hyperfine sub-
level and in the ground state of an anisotropic magnetic trag
with frequencies’y = v,=220 Hz andv,= 11 Hz. Thez axis
again points along the vertical direction. A RF field is then
applied that couples the sublevels within fhe 2 multiplet. _ ) S
By appropriately tailoring the time dependence of the field, FIG. 8. SChema.t'c. of the potentials .along md'rea'o.n Show’.
the BEC always remains in the ground state of the REINY the characteristic influences of gravity and the applied RF field.
induced adiabatic potential and is thus manipulated in a co
trolled way.

The condensate dynamics is determined by the Gros
Pitaevskii equation for the componentsyy, M

n['ypically is large compared to the ground-state extension
the minimum itself is shifted by- G2/M. At A=0 all bare
Spiotentials touch at=0. The bare potential foM =—2 in-
tersects théVl = 2 potential at its minimum foA = G%/4. As

=722 the condensate is initially localized at this minimum, we con-
_ V2 M clude that only forA=G?4 does a significant shift and de-
iyy=|— 74— Z(K2x2+y2+ 22)—MA(t)+Gz|yy formation of the ground state set in. For larfyethe ground
state is located at aboutyA. In Fig. 8 we show cuts along
O -1 -1+ Qs am(D oy 1 the potentials in the direction that illustrate the character-
istic behavior explained above.
+UNp(r,t) iy . (22) What does the full spatial dependence of the potential

Again, all quantities are dimensionless. They are now scalef2(":) * G2 look like? The potentiaV(r,t) alone has its

to units derived from the radial angular frequenay, ~ Minimum on an ellipsoidal surface defined BYy(r)
—2mv,. The effective detuning is given b (t)=[% o =A(t). However, due to the influence of gravity the com-
—AE(0)]/w, with AE(0) the Zeeman energy split be- bined potentialV,(r,t) + Gz is strongly tilted in thez direc-
tween subsequent hyperfine sublevels at the magnetic-fiel#Pn, so that the wave function will assemble around its bot-
minimum. The parametet= v, /v, gives the ratio between tOM (we will see this in Fig. 10 The main control parameter
axial and radial trapping frequencies. The scaled gravitato vary the shape of the adiabatic potential is the detufing
tional acceleratiol becomes 7.06 in the present setup. TheAt a givenA the coupling strengtf) has to be chosen large
rf coupling constants are given byQ,,=Q , , €nough so thatthe lifeime of the condensate becomes suffi-
=230 o= /230 _ = Q(t). For simplicity, all nonlinear ~ ciently long.

interaction coefficients are taken to be equal and denoted by

U; N is the total number of atoms and(r,t) B. Preparation

_52 .
=3yl u(r.)]% To demonstrate that atoms can be actually be trapped in

~ As discussed in Sec. Ill C, the simplified form of the non- the rf-induced adiabatic potential we have performed nu-
linear interaction allows us to transform to the dressedmerical simulations of Eq(22) in two dimensions, i.e., the

Eigenstate basis in the same way as in the linear case. Tm’ection of gra\/ityz and the weak trapping directiorn

field-induced adiabatic potentials are now given by These calculations should be able to capture the main aspects
- — of the wave-packet behavior. Our results indicate that the
Vi(r,t)=My[ Vi (1) — A1) ]+ QX(1), (23)  same two-step approach as outlined in Sec. Il can be used to

a2, 2. 2 _ . transfer the BEC into the adiabatic trap. As an illustration,
whereVy(r) = («“x"+y“+2%)/4, so that a wave packet ini- \ye show in Fig. 9 the result of one of our simulations. For

t~iaIIy prepared in the stat®l =2 can evolve in the potential o op calculation, the nonlinearity parameléd was cho-
V,(r,t)+ Gzif the potential is deformed slowly enough. The sen so that the extension of the ground state in the bare
approximate equation of motion fa, thus reads magnetic tragwhich is the initial statej,(t=0)] coincides
with the extension inx andz of the 3D ground state for the
given atom number of 0 In the first step of the preparation
scheme, the rf intensity is linearly ramped up to the desired
final value of() atnegativeA. In Fig. 9, in order to reach a
The influence of gravity becomes apparent by writing thefinal Q=12 (~2.64 kHz) the field is switched on &=
z dependent part of the potential adz?/4+Gz=M(z —5(~—1.1 kHz) within At=20=14.4 ms. In the second
+2G/M)?/4—G?/M. We see that, effectively, the position step the rf detuning is simply increased to the final value
of the bare trap minimum is shifted o= —2G/M (which  thereby keeping the intensity fixed. In Fig. 9, the detuning

. 2
=] = — +Va(r )+ Gz+ UN[Y(r,1)[? Y. (24)
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05 - . C. Signatures of adiabatically trapped BECs
=180 5 ’ ' ' ' . . . .
04 | b 120 E ool 1] There are various signatures which allow one to verify
' experimentally that the condensate behavior is indeed deter-
03 | 1] mined by the adiabatic potentigdpart from the fact that the
S 0 100 200 BEC is still there at ajt
A 02 F X | (1) The vertical position of the condensate is changed
(lowered. With z=0 indicating the minimum of the mag-
01 - netic trap field the condensate is located arowmsd— G
(=~—5.1 um for our examplgin the absence of the applied
0 ' rf fields. With these fields turned on at sufficiently large

-20 -l 0 the potential minimum is shifted to the vicinity of the inter-
section between the different bare potentialsxaty=0, z
FIG. 9. Loading an adiabatic trap in the presence of gravity.— _2\/K_ For A=60, e.g., the condensate center is trans-
Shown is thex-integrated density(z) = [dxS§_ _,lym(x.2)[* at  ferred to—11.3 um, i.e., it is shifted over a distance larger
the indicated times for the preparation process described in the texhan the BEC extension in thedirection.

The inset shows theintegrat(_ad densitP(x) att=0 and 18_0. The _ (2) The shape of the condensate is changedAAt40,
das_hed curves sholas obtained from the Thomas-Fermi approxi- () _ 12 the full width o, in z is about half the width of the
mation. rf-field-free casd24], whereas the width ix has increased

by about 50%. This change of shape should influence the
was increased to 66{13.2 kHz) withinAt=160=116 ms. ballistic expansion of the BEC once the trapping fields are
The simulations already show the deformation effect that wéWwitched off. Furthermore, the condensate is slightly bent in
build upon in the following section to obtain 2D trapping, the z direction. _ o .
namely, a squeezing in thedirection indicating tighter trap- (3) The ground state in the adiabatic potential is a dressed
ping, and an expansion iR showing the decrease in the state, i.e., it is a superposition of dlfferent hyperfine sublev-
corresponding trap frequency. Furthermore, we see that th%'s' Obse_rvmg the different hyperfine gomponents quld
Thomas-Fermi approximation gives a very good descriptiog/ﬁry cpnvm_cmgly dgrronstrate the trapping of the BEC in
of the wave function. Nevertheless, it should be mentione e adiabatic potential. .

. : . L (4) If the rf fields are suddenly switched off the compo-
that during preparation a slight excitation of the wave func- = . L )
tion along thex axis appearénot visible in Fig. 9 indicating nentsMg=1 and 2 should perform harmonic oscillations in

. ; ' their respective magnetic trapping potentials.
some nonadiabatic effects.

The effort required for the numerical calculations shows
that it is very difficult to go significantly beyond the trap
deformations shown in the above example—and in particular A. Basic considerations for 2D atom traps and 2D BEC
to simulate reaching the 2D limit. In the following section
we give some semiquantitative arguments to determine thﬁ]
values of() andAt that should be used to reach a givén

VI. TWO-DIMENSIONAL ATOM TRAPPING REGIME

Having introduced field-induced adiabatic potentials as a
eans to create new types of trapping potentials, we now
) o ) . turn to the question of how they can be used to obtain a
Here we restrict ourselves to a qualitative discussion. The i oncional atom trap by the appropriate choice of
chosenA places alowgr I|m|t on the value c_ﬁi—only fora_ strong fields and large detunings. Unfortunately, as men-
high enoughf) is the lifetime of the BEC in the adiabalic {j,haq ahove, in these parameter regimes the resulting sys-
potential sufficiently long. For this complicated flve-statetems are hard to model numerically. So in this section we
system it is difficult to estimate the lifetimes analytically in | o\ use general arguments to show under what conditions it
an accurate way. However, the numerical calculations indi'might be possible to obtain 2D trapping, and even a 2D BEC,
cate that with, for example} =60, a value of) =12 should g the kind of adiabatic loading scheme mentioned in Sec.
be adequate. Furthermore, the study of the linear two-stalg thege arguments will allow us to relax the restriction on
system shows that the lifetime increases exponentially withy, o geometry of the system somewkt&ie magnetic trap can
Q). We thus expect that the lifetime can always be adjusteqilow have three different frequenciesiowever, in our dis-
by & moderate increase . cussion we explicitly consider a two-state systérather
Concerning the rise timest, they are bounded from be- han general multilevel systemsNevertheless we expect
low by the requirement that we want to avoid nonadiabatiGnat much of the discussion of a two-state system would hold
excitations and keep the BEC in the ground state. We expegf ajitatively for multilevel systems with an appropriate
that it is more likely we would generate such excitationsgpgice of parameters.
along thex direction than along the radial directions asinthe |, general, a 3D harmonic potential with angular frequen-

form_er the eigen;tates are spa_ced n_"nuch more closely. I.n fagtes @1, Wy, Wyans Provides an effective two-dimensional
this is observed in the numerical simulations as ment|oneg,ap for atoms of temperatuf® if

above. The amount of excitation is reduced by performing

the process more slowly. An upper limit on the rise time is hwq ,<KgT<hwyans (25
placed by the lifetime of the adiabatic ground state and the
overall decay time of the BEC. (from now on we return to unscaled quantijiebhus a good
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2D trap has a larg@y,,s to allow one motional degree of
freedom to be frozen out at high temperatures. For an idea
gas, Bose condensation in a 2D harmonic trap occurs at
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with w=(w,w,)*? andN the number of atom§25]. Thus,
combining Eqs(25) and(26), the number of atoms that can
undergo a genuine 2D condensation satisfies the conditiol

Ns(w”ans/a)% For a higher number of atoms condensa- _;5
tion would have occurred already in the 3D regime. There-

fore we see that, to aim for a 2D BEC, a high ratig,,s/ @

is a further desirable criterion for a 2D trap, especially con-
sidering that small numbers of atoms would be hard to image
experimentally.

V(x,z)

3

-300

FIG. 10. Adiabatic potentiaV/(r)=V. (r)+mgz (in arbitrary
units) aty=0 for w,/27=11 Hz, 0 /27= w,127w=220 Hz, )27
) ) ) o =2.6 kHz, andA/27=66 kHz. Inserted is the ground state of a
We will gener.alllze the dlsqu33|on in Sec. V so that We87Rp condensate with about 3atoms.
now allow the original magnetic trap to have different oscil- o _
lator frequencieso,, wy, andw, along the three axes with values—the potentiaV in the planey=0 along with an
corresponding oscillator lengttes,, a,, a,. (Note thata, ~ atomic BEC in the ground state for this potential.
= Jhlmw;, i=X,y,z.) Thus the corresponding magnetic trap  Typically, an atom moving in the potenti® is confined

B. Two-dimensional atom trapping and adiabatic potentials

has the potential to the close proximity of the seam due to the strong confine-
. 20 29, 25 ment in the direction transverse to it. If its enefgyatisfies
Vir (1) = 2M( 03X+ o)y + w;z°), (270 E<magr,, itis also restricted to the vicinity of the bottom of

h . ki ith led i V because of gravity. To a good degree of approximation the
Where, again, we aré now working with unscaled quantii€S, , .- mation can therefore be modeled as harmonic. To

As in Sec. lll, we consider a _two-level system an_d assUM@atermine the harmonic frequencies we can expandZB).
that the second state experiences the magnetic pmem'ﬁgoutz:—r to find
z

-V, .
The upper field-induced adiabatic potential, which is the w1 = (g/r ) Y0, ylo, (30)
potential of greatest interest, is then given by ’ ’
along the surface of the seam, and
V(r,ty=mgz+ V. (r,t) (28) _
Oyrans= (A/Q)) l/2“’2 (31
with
in the normal direction. Here the unscaled coupling fre-
V.(r,t)= \/[Vtr(r)—ﬁA(t)/Z]Z-q-[ﬁQ(t)]z_ (29) quency is denoted b§). The oscillator lengths correspond-
ing to w; » and wy 4ns Will be denoted byay 405, @3, anda,.
Here A denotes the unscaled detuning, i.eKz o The effect of gravity on the potential will also shift it down-

_AE(O)/fL with w the rf-field frequency and&E(O) the wards so that the equilibrium pOint is now at
minimum energy difference between the hyperfine states —

Sec. Il A). The bare potentials intersect, where there is reso- Zg~ — RA g (32)
nance, i.e., at the locatiorfsA(t) =2V, (r). This intersec- mwi wtzrans

tion we call the “seam” of the bare potentials. In the absence

of gravity, the seam oY would also be the location of the However, the displacement g/.w“ans 'S 'rather small and ,
also turns out not to be sufficient to violate the harmonic

minimum iﬂv and would have the shape of an ellipsoid with expansion of Eq(28) which results in Eqs(30) and (31).

radii r;=(A/w;)Y%a;, i=x,y,z. Thus, without gravity, or (See Sec. VI C 3 belo.

gravity being compensated for, the atom distribution forms

an ellipsoid bubble, or shell in the potenti@9). C. Conditions for 2D trapping in adiabatic potentials
Under the influence of gravity the atoms sag to the bottom The obvious strategy for realizing a 2D trap is to increase

of the shell potentia(28), and this would not allow the for- — gy 9 P

mation of a matter-wave bubble. In fact, as shown in Secthe detuningA as much as possible in order to obtain strong

1D, a closed bubble could exist only up to radii radial confinement. A sufficiently large couplig will be

=<(h2Igm?)¥3 (=5x 10" m for 8Rb). Under typical ex- necessary to ensure that the potentials remain adiabatic. To

perimental conditions we can expect a situation as depictedrrive at a 2D trap, a number of considerations have to be

in Fig. 10 which shows—for the indicated parametertaken into accountsome given previously in Ref9]), and
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these factors determine how IarQ@andKneed to be, and 3. Harmonic 2D trapping

the relationship between them. In this section we will look at the conditions for harmo-
nicity of the trap. Harmonicity is probably desirable, but is

1. Lifetime not actually essentialfor trapping. The conditions derived
below will show that the trap is operated in a 2D harmonic

For a givenA, the rf coupling strengtk) has to be chosen regime.
accordingly to ensure a sufficiently large lifetime for atoms 74 pe able to speak of harmonic 2D trap at a finite
held in the adiabatic trap. Equati¢hO) gives an estimate of temperature, one has to require that
the decay rate and if we require that the decay rate is less
than a certain maximum, i.e., hwy ;<kgTc<mgr,. (39

Yex= Ymax: (33 The first criterion ensures that, at the condensation point, the

. atoms can reach sufficiently many quantum states to actually

it follows from Eq. (10), when unscaled, that one needs  experience the trapping potential as being harmonic. It is
automatically fulfilled if we substitute fof . from Eq. (26)

0*=\wlA (34 to find
with the parametek = 2[ In(yma/20,) 1%/ 2. Thus the worst 7 (w1,
allowed decay rate can be specified in terms of the vertical N> — P (40

trap frequency. In the numerical example bel@®ec. VI D)
we chooseyax/ w,=0.01 so that =5.7. where from EQ.(30) w;,/w,,=wyy/wy is the ratio of

As indicated in Sec. VB, analytical expressions for thetrapping frequencies in the-y plane. Equatior(40) should
lifetime in general multistate systems are not available. Howpe easily satisfied if there are to be any significant number of
ever, we expect that our estimates are still valid, at least as &oms in the trap.
first approximation, under such conditions. This view is sup- The second part of Eq39) leads to
ported by our numerical study of the five-state system.

gKl’Z
2. Strong binding and spatial thinness kKgT.<——; (47

5/2

The lifetime sets a lower limit of) at a givenA. Choos- e

ing () too large, however, impairs the strong radial confine-when we substitute for,. This second criterion makes sure
ment. An upper limit is imposed by the obvious conditions that anharmonic effects in the trapping potential can be ne-
glected. The same condition arises as the condition for har-

Otrans™ ¥1,2 (39 monic motion of a single particle confined to the seds.
picture which assumes tight transverse trappihg.the ex-
and ample belowmgr,/kg=18 uK which is much larger than
T.=0.3 uK. Note, however, that the appearance of anhar-
rz>atrans- (36)

monic effects in the 2D trapping potential does not automati-

The first of these was discussed in Sec. VI A and ensures th§g!ly affect the two-dimensionality of the trap.

one spatial direction is effectively frozen out at low tempera- Ve can also ask if we have harmonicity in the third, trans-
tures. The second condition guarantees that the atoms aY&rse, direction. If we focus on the bottom of the potential,
tightly confined to the vicinity of the seam. Both these re-1-8- takex=y=0, the adiabatic potentidP8) simplifies to
quirements are typically not in conflict with conditidB4). _ —
Formally, this can be seen from the fact that the first condi-  V(z,t)=mgz+ \/[mw322/2—ﬁA(t)/2]2+[ﬁﬂ(t)]z-

tion translates into (42
30532 Then in an adiabatic regime, one limit which produces quite
02< -z (37) simply a harmonic potential is found from the condition
gzwi,y
1 _
s|= 2,2
where forw, , one should choose the maximum @f and AQ(1)> mezz hAD/2, (43

wy to make the condition most restrictive. The second con-
dition leads to which, together with
Q<4nY 2. (39) |2=2//|20| <1, (44)

) . — =i allows a quadratic expansion of E42). An estimate forz,,
Inequality (34) will allow us to choose)«A™~, so that the  ihe |ocation of the minimum, has been given in E3p). At

a_bove conditions are increasingly easy to meet for growinQ:ZO we may substitute Eq32) into Eq. (43) to eventually
A, in accordance with our expectation. obtain
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2 If we take the case of equality in E(34) and substitute for
(49 A we find

Here we also assumed that the shiftzgfaway from—r, kBT<ﬁQ/\/X' (50

=_ \/ﬁK/mwg [see Eq.(32)] was very small so that the We would expect this conditio_n to be more restrictive than
smallest term could be dropped fraz§. The condition for  Eq. (41) which leads tokgT<%0%%g/2\Na,w’?. Thus, by
this approximation is that substituting Eq(26) into Eg.(50), the number of atoms that
_ can undergo a 2D condensation is limited by
A
> g

2 2
z  @trans

(46) 7202
N< —— .
6N w?

M (51)

which would lead to the subsidiary condition — " ,
If we now utilize o= (wiw,) "< and Eq.(30) we finally ob-
Py tain
L 47) —
agwf ! N 7726297/2(1);'/2
€« —.
697\3/2a)xwy

(52)

when we substitute fo®ans-
In considering values af away fromz, in Egs.(44) and  Since Eq.(52) puts an upper bound on the number of atoms

(4_13), we r_1eed an estimate _of_ the tr_uckness of the r_natter—wav& is desirable to have as large a couplifigas possible.

disk. A distance characterizing this could &g,,s, i.e., we . —

would use a single-particle wave-function width as a mea- N fact none of the conditions above constréiif the

sure of the size ofz—z| in Eq. (44). This equation is then connection(34) is accepted. The higher the value @fthe

already satisfied by E¢36) and the remaining condition Eq. better[as in Eq.(52)]. However, from a practical point of

(ﬁ is (azlgli)o.( a.pﬁroximatelly, slatisfifi? if we accept the scalingjiew, it would be desirable to find the lowest vialile This
of Eq. with a typical value of\). . . S L
It turns out that it is possible to satisfy all the constraints.> qfeterm|r|1ed by tr;]e ranSt restrictive meqlf_a_hty_ﬁn ;I;ha}t
in this section. It is even the case that violation of E¢€) Is, It we place each of our various inequalities in the form
and(41) need not prevent a 2D BEC since there is no reasof!>k, wherek contains the remaining constants, we will
why a BEC cannot be 2D in an anharmonic regime; @6) look for the inequality with the largest constadatFor real-
would simply not apply. Likewise, anharmonicity in the istic values of\ andw, , this appears to be E¢45), which
transverse direction, resulting in violation of conditiq@§) ~ On substitution of Eq(34) leads to
and (47) need not prevent 2D trapping or a 2D BEC. —
“0 P PPIng O'>\3g%wda2. (53
4. Loading — . )
Any value of(} greater than this would be suitable, but note

A straightforward way to load the 2D trap consists in hat i . SO | he loadi :
starting from a condensate in the original magnetic potentiaﬁ at increasing( also increases the loading time, H¢8),

and then adiabatically transferring it to the 2D trap by appro_and t_his is ultimately undesirak_JIe. To see what is realistica_lly
priately switching on the rf field. The minimum duration of POSSIble we must now determine some values for a practical

this process can be estimated by stipulating the adiabaticit§®S€:

condition w; ;<w? ,. Using relation(34) this leads to D. Numerical estimate

1 (@w )3/4 We reported a numerical estimate in RgJ], where we
SR et L (48  considered a typical loffe-Pritchard trap witlw,/2m

w12 Ngla,, =11 Hz, wy/27=w,/27=220 Hz containing®’Rb atoms

o initially in the F=2, M =2 ground state. In order to match
Note that during loadingf) can be increased above the approximately the two-state theory given above to this five-

intended final value to reduce intermediate adiabatic lossesstate system we need to replacéy 4A to obtain the correct
condition for resonance. The trap potental) becomes that
for the M= 2 state, and the coupling is replaced by 2.

For the trap to be 2D at a temperatdréhe second part of - Then an rf field with a final coupling)/27=15 kHz and
Eq. (25) applies kgT<fiwans) Which with the substitution [from Eq. (3] A2m—122 MHz is one that can be oro-

f Eq. (31) |
of Eq. (31) leads to vided with currently available technolod®26]. The condi-
A tion (53) is easily satisfied since it results if)/27
kBT< :h(l)z.
Q

t>

5. Temperature

(49 >405 Hz. The resulting trap frequencies a2
=8.9 kHz, w1/27m=1.3 Hz, w,/2m=27 Hz. The new trap is
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vertically shifted by 0.34 mm from the center of the original APPENDIX

magnetic potential. The critical temperature is given by In this Appendix, we outline the derivation of E€) for

0.43 1K, so that up to 3.6:10° atoms could b_e con(_iensed. the lifetime of the bubble states. The method is described in
The transverse width of the condensate is estimated af . ., . .
etail in Ref.[15] (see also Ref[16]) so we can restrict

0.08 um if atomic interactions can be neglected. The time L .

required for the preparation process should be large Comqurselves {0 indicating the main steps.

pared to 1b4, Eq.(48), i.e., of the order of several seconds. Consider the time-independent linear version of &,
In view of these estimates, the experimental realization of

this new kind of 2D trap seems to be within reach of current 1 9% r?
experiments. e¢1= “2.2v272 1t Q¢s,
VIl. SUMMARY AND CONCLUSIONS
2 2
In this paper we have shown that field-induced adiabatic _| _ E ‘7__ r_+ = 10 Al
: . . 2= - b+ Qb (AD)
potentials can provide a robust and versatile tool to create 292 2 2

trapping configurations for ultracold atoms. As specific ex-
amples, we have considered the generation of matter-wave. . . .
shell, or bubble, states and the preparation of two-W'th ¢ the eigenenergy. We are interested in the structure of

dimensional atom traps. In a bubble state, the matter-wavg‘e solutions at energies> () for which resonance states are

density is localized around the surface of a three-dimension&XP€cted to appear. Far away from the potential crossing at
sphere. We have discussed the preparation process whi€h— VA the eigenfunctionsp, , can be approximated 4sf.

proceeds by coupling a harmonic magnetic trap to a repulEd- (9) of Ref. [15]]

sive harmonic potential by a suitably chosen time-dependent

rf field. Although this configuration appears to be unstable at _y o .

first sight, the bubbles are stabilized in the resulting dressed ~ 1(r <VA)~k; Z[Al(o")exl{ 'f kldr+|77/4)
potential and their lifetime increases exponentially with the 1

rf coupling strength. The bubbles can be used as stepping r

stones for the creation of highly excited oscillator eigenstates + Al —oo)ex;{ =i f kpdr—i 77/4)
and “nonlinear eigenmodes.” We also investigated possible 1
experiments showing collapse and revival effects. Although

the creation of the bubbles is impeded by the influence of 1 (T .
gravity and trap anisotropies, we have pointed out ways to ~ ®2(r> VA)~k; Az(oo)exp( lf kzdr—lﬂ/4)
overcome these difficulties with the help of present-day tech- 2

nology. [ .
The same principle, which has been used for making +A2(—00)exp<—|j kldr_|77/4)
bubble states, can also be applied to the creation of two- "
dimensional atom trapl7]. Under the combined influence (A2)
of the dressing rf field and gravity, a condensate pools at the

bottom of the resulting potential. By increasing the RF de+ith the classical momentl, = (2& —r2+A)Y2, k,=(2¢
tuning the radial confinement becomes steeper, and the COq_-rZ_A)UZ and the turning pointsr,=+A+2¢, T,

densate gets increasingly squeezed until it eventually reache_sm (O 1,=0 if 6>A/2). If we set, e.g.Ay(—)
— 2— . ) Y.M2

a “guasi-two-dimensional” state. We hav_e given estlmatesequal to unity then the other coefficients(+ =) can be
for the parameters necessary to reach this regime.

Y . . regarded as scattering amplitudes for the interaction process
We hope that Fhe results prgggnted n th.'s ar.tlcle St'mUI‘."‘t%side the curve-crossing region. Resonance states are related
further research into the possibilities that field-induced adla;[0 poles of the scattering amplitudes in the complex energy
b_atlc poten'FlaIs offer for the creation of new k'T‘dS of trap- lane. The determination of the amplitudes proceeds in two
ping potentials and lower-dimensional geometries. We hav teps.
focussed in this paper on shell-like and disk-shaped traps, (@) 'By Taylor expanding the harmonic potentials to first
but by working with atomic waveguides we also expect that rder around the crossing at&r., the interaction between
new tubular potentials could be formed. These new kinds o c

. .the states 1 and 2 is described as a linear curve-crossing
potentials can all be used to create new quantum-mechanicg . ; . )
. . roblem. Using the corresponding scattering matrix the am-
states of matter, and might also be used in the study

weakly bound clusters or nanoparticles plitudesA;() andA,() can be expressed as linear func-
y P ' tions of A;(—=) and A,(—=). The explicit formulag Eq.

(19 of Ref.[15]] involve the quantitiesy and® introduced

in Sec. IlIB. Note that the analytic form of the scattering
This work was supported by the United Kingdom Engi- matrix is only known approximatelysee, e.g., Sec. IV of

neering and Physical Sciences Research Council. We wouldef.[17] for a comparison of different resulisso that quan-

like to thank M. Boshier, C. Eberlein, and E. Hinds for dis- titative calculations based on the analytic approach depend

cussions and comments. somewhat on the expressions used.
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(i) The wave functiong, has to be subjected to appro-
priate boundary conditions, i.eh;(r=0)=0. This immedi-
ately yields the relation

Ar(®)[A(—) (A3)

—exg 2iB(e)],

where8(e) = [ ky(r)dr — m/d= m(2e + A—1)/4.
Combining the results ofi) and (ii) and settingA,

PHYSICAL REVIEW A 69, 023605 (2004

(—)=1 we finally obtain[cf. Eq. (29) of Ref.[15], note
the sign errofr

_ cosB(E)+[e?™®) — 1]cosd(E)elAE) P (E)]

- cosB(E) +[e?™E) —1]cosd(E)e [AE) (BN
(Ad)

The poles ofA,(«) are determined by conditiof8).
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