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Frequency and damping of hydrodynamic modes in a trapped Bose-condensed gas
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Recently it was shown that the Landau-Khalatnikov two-fluid hydrodynamics describes the collision-
dominated region of a trapped Bose condensate interacting with a thermal cloud. We use these equations to
discuss the low frequency hydrodynamic collective modes in a trapped Bose gas at finite temperatures. We
derive variational expressions based on these equations for both the frequency and damping of collective
modes. A new feature is our use of frequency-dependent transport coefficients, which produce a natural cutoff
by eliminating the collisionless low-density tail of the thermal cloud. Above the superfluid transition, our
expression for the damping in trapped inhomogeneous gases is analogous to the result first obtained by Landau
and Lifshitz for uniform classical fluids. We also use the moment method to discuss the crossover from the
collisionless to the hydrodynamic region. Recent data for the monopole-quadrupole mode in the hydrodynamic
region of a trapped gas of metastable4He is discussed. We also present calculations for the damping of the
analogousm50 monopole-quadrupole condensate mode in the superfluid phase.

DOI: 10.1103/PhysRevA.69.023604 PACS number~s!: 03.75.Kk, 05.30.Jp
ed
a

m
o

at
th
or

m
a
n

I
he

H
d

f

tiv
m
d
p

rt

o

he
tive
se

la-
LK

for
ve
era-
ns
-
ua-
lds.
ed

nly
ns.

ut
ses,

as-

la-
t co-
ose

ned
I. INTRODUCTION

In recent papers, Zaremba and the authors have deriv
closed set of the two-fluid hydrodynamic equations of
trapped Bose-condensed gas starting from a simplified
croscopic model describing the coupled dynamics of the c
densate and noncondensate atoms@1–5#. These equations
can be written in the Landau-Khalatnikov~LK ! form, well
known in the study of superfluid4He @6,7#. These simplified
hydrodynamic equations include dissipative terms associ
with the shear viscosity, the thermal conductivity, and
four second-viscosity coefficients. Explicit formulas f
these transport coefficients were obtained in Ref.@5# and
used to define three characteristic transport relaxation ti
@8#. These define the crossover between the collisionless
hydrodynamic regions. Detailed calculations of these tra
port relaxation times in a trapped Bose gas@8# show that the
collisions between the condensate and noncondensate
hance the transport relaxation rates significantly in the M
data@9#, so that one is in the hydrodynamic region below t
Bose-Einstein condensation temperatureTBEC. We also note
that the recent Bose condensate observed in metastable*
@10–12# appears to be well within the collision-dominate
hydrodynamic region, even aboveTBEC. This is because o
the relatively large density of He* atoms and their large
s-wave scattering length.

The present paper calculates the damping of collec
modes in trapped Bose gases in the collisional hydrodyna
limit described by local equilibrium. In this limit, as note
above, the generalized GP equation for the condensate
the kinetic equation for the thermal cloud~derived in Ref.
@3#! have been proven@5# to be equivalent to the two-fluid
hydrodynamic equations~including damping due to transpo
processes! of Landau and Khalatnikov@6,7#. This equiva-
lence is important since it shows that the simplified theory
nonequilibrium behavior developed in Ref.@3# properly de-
1050-2947/2004/69~2!/023604~16!/$22.50 69 0236
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scribes the local equilibrium hydrodynamic region and t
approach to equilibrium. There are several other alterna
theories of the nonequilibrium dynamics of trapped Bo
gases@13–15#. However, up to the present, these formu
tions have not been used to derive the analogue of the
two-fluid hydrodynamic equations.

In the present paper, we derive a general expression
the frequency and damping of hydrodynamic collecti
modes in a trapped Bose-condensed gas at finite temp
tures, starting from the two-fluid hydrodynamic equatio
derived in Ref.@5#. These two-fluid equations are briefly re
viewed in Sec. II, and reformulated as a closed set of eq
tions for the condensate and noncondensate velocity fie
In Sec. III, we derive a variational expression for undamp
normal-mode frequencies in the Landau limit (vt!1), ex-
tending an approach first developed in Ref.@3#. In Sec. IV,
we obtain a general expression for the damping, which o
depends on knowing the undamped normal-mode solutio
This kind of expression is very convenient in working o
the damping of hydrodynamic modes in trapped Bose ga
as first pointed out by Kavoulakiset al. @16#. As an illustra-
tion, in Sec. VI we give a detailed discussion of the them
50 monopole-quadrupole collective mode aboveTBEC stud-
ied in the recent experiments@12#. In Sec. VII, we also cal-
culate the damping of them50 hydrodynamic mode in the
superfluid phase. In Sec. VIII, we review some puzzling
pects of the recent data analysis given in Refs.@10–12# in the
light of the present calculations.

Appendix A gives some details of the damping calcu
tions based on the use of frequency-dependent transpor
efficients. The moment method for a degenerate normal B
gas is reviewed in Appendix B.

II. TWO-FLUID HYDRODYNAMICS OF A TRAPPED
BOSE GAS: A REVIEW

In this paper, we consider a Bose-condensed gas confi
in an external anisotropic harmonic trap potential
©2004 The American Physical Society04-1
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Uext~r !5
m

2
~vx

2x21vy
2y21vz

2z2!. ~1!

Our starting point is the two-fluid hydrodynamics deriv
from the finite-temperature kinetic theory by Zaremba, N
kuni, and Griffin~ZNG! @3#. In the ZNG theory, the coupled
dynamics of the condensate and noncondensate@3# is de-
scribed by the generalized Gross-Pitaevskii~GP! equation
for the condensate wave functionF(r ,t)

i\
]F~r ,t !

]t
5F2

\2¹2

2m
1Uext~r !1gnc~r ,t !12gñ~r ,t !

2 iR~r ,t !GF~r ,t !, ~2!

and the semiclassical kinetic equation for the nonconden
distribution functionf (r ,p,t),

] f ~r ,p,t !

]t
1

p

m
•“ r f ~r ,p,t !2“U~r ,t !•“pf ~r ,p,t !

5C12@ f ,F#1C22@ f #. ~3!

Here nc(r ,t)5uF(r ,t)u2 is the condensate density, an
ñ(r ,t) is the noncondensate density,

ñ~r ,t !5E dp

~2p\!3
f ~r ,p,t !, ~4!

and U(r ,t)5Uext(r )12g@nc(r ,t)1ñ(r ,t)# is the time-
dependent effective potential acting on the noncondens
including the Hartree-Fock~HF! mean field. As usual, we
approximate the interaction in thes-wave scattering approxi
mation g54p\2a/m. The dissipative termR(r ,t) in the
generalized GP equation~2! is due to the collisional ex-
change of atoms in the condensate and noncondensate.
is related to theC12 collision integral in Eq.~3!, namely,

R~r ,t !5
\G12~r ,t !

2nc~r ,t !
,

G12~r ,t !5E dp

~2p\!3
C12@ f ~r ,p,t !,F~r ,t !#. ~5!

Explicit expressions for the two collision integrals (C22 and
C12) in the kinetic equation~3! can be found in Ref.@3#.

The GP equation~5! can be written in the hydrodynami
form in terms of the amplitude and phase ofF(r ,t)
5Anc(r ,t)eiu(r ,t), which leads to

]nc

]t
1“•~ncvc!52G12@ f ,F#, ~6a!

mS ]

]t
1vc•“ D vc52“mc , ~6b!
02360
-

te

te,

his

where the superfluid velocity isvc[\“u(r ,t)/m and the
condensate chemical potential is given by

mc~r ,t !52
\2¹2Anc~r ,t !

2mAnc~r ,t !
1Uext~r !1gnc~r ,t !12gñ~r ,t !.

~7!

One sees thatG12 in Eq. ~6a! plays the role of a ‘‘source
function’’ in the continuity equation for the condensate, ar
ing from the fact thatC12 collisions do not conserve th
number of condensate atoms@3#.

Hydrodynamic equations for the noncondensate can
derived by following the standard procedure first develop
in the kinetic theory of classical gases. We take moments
the kinetic equation~3! with respect to 1,p andp2 to derive
the most general form of ‘‘hydrodynamic-type’’ equations f
the noncondensate. These moment equations take the
(m andn are Cartesian components!

]ñ

]t
1“•~ ñvn!5G12@ f ,F#, ~8a!

mñS ]

]t
1vn•“ D vnm52

]Pmn

]xn
2ñ

]U

]xm

2m~vnm2vcm!G12@ f ,F#, ~8b!

]ẽ

]t
1“•~ ẽvn!52“•Q2DmnPmn

1F1

2
m~vn2vc!

21mc2UGG12@ f ,F#.

~8c!

Here and elsewhere, repeated Greek subscripts are sum
The noncondensate density was defined earlier in Eq.~4!,
while the noncondensate local velocityvn(r ,t) is defined by

ñ~r ,t !vn~r ,t ![E dp

~2p\!3

p

m
f ~r ,p,t !. ~9!

In addition, we have introduced the following quantities:

Pmn~r ,t ![mE dp

~2p\!3 S pm

m
2vnmD S pn

m
2vnnD f ~r ,p,t !,

~10a!

Q~r ,t ![E dp

~2p\!3

1

2m
~p2mvn!2S p

m
2vnD f ~r ,p,t !,

~10b!

ẽ~r ,t ![E dp

~2p\!3

1

2m
~p2mvn!2f ~r ,p,t !. ~10c!

Finally, the symmetric rate-of-strain tensor appearing in E
~8c! is defined as
4-2
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Dmn~r ,t ![
1

2 S ]vnm

]xn
1

]vnn

]xm
D . ~11!

The ‘‘hydrodynamic’’ equations~8!–~11! are exact, but not
closed as they stand.

We next apply the Chapman-Enskog procedure to obta
closed set of hydrodynamic equations. This procedure yie
@5#

Pmn5dmnP̃22hS Dmn2
1

3
Tr DdmnD , ~12!

Q52k“T, ~13!

whereP̃ is the kinetic pressure andT is the temperature. The
above formulas involve the position-dependent shear vis
ity h and the thermal conductivityk. These local position-
dependent transport coefficients will be discussed in m
detail below.

In order to study small amplitude oscillations, we linea
ize the hydrodynamic equations around static equilibri
as nc5nc01dnc ,vc5dvc ,ñ5ñ01dñ,vn5dvn ,P̃5 P̃0
1dP, where the subscript 0 denotes static equilibrium. T
equilibrium condensate density profile is determined
~within the Thomas-Fermi approximation, which neglects
quantum pressure or kinetic energy term in the GP equat!

nc0~r !5
1

g
@mc02Uext~r !#22ñ0~r !, ~14!

while the equilibrium noncondensate distribution functionf 0
is given by

f 0~r ,p!5
1

eb0[ p2/2m1U0(r )2mc0]21
. ~15!

The local densityñ0(r ) and the local kinetic pressureP̃0(r )
of the noncondensate atoms are given from Eq.~15! as

ñ0~r !5
1

L3
g3/2~z0!, ~16!

P̃0~r !5
kBT0

L3
g5/2~z0!, ~17!

wherez0(r )5e[mc02U0(r )]/kBT0 is the local equilibrium fugac-
ity, L5(2p\2/mkBT0)1/2 is the thermal de Broglie wave
length, andgn(z)5( l 51

` zl / l n.
The linearized hydrodynamic equations for the cond

sate are given by

]dnc

]t
52“•~nc0dvc!2dG12, ~18a!

m
]dvc

]t
52g“~dnc12dñ!, ~18b!
02360
a
s

s-
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while the linearized hydrodynamic equations for the nonc
densate atoms are given by

]dñ

]t
1“•~ ñ0dvn!5dG12, ~19a!

mñ0

]dvnm

]t
52

]d P̃

]xm
2dñ

]U0

]xm
22gñ0

]dn

]xm

1
]

]xn
H 2hFDmn2

1

3
~TrD !dmnG J ,

~19b!

]d P̃

]t
52

5

3
“•~ P̃0dvn!1

2

3
dvn•“ P̃01~mc02U0!dG12

1
2

3
“•~k“dT!. ~19c!

The above equations involve the fluctuations of the sou
function dG12 and the temperaturedT. These can also be
written in terms of the condensate and noncondensate ve
ity fields @5#. One findsdG125dG12

(1)1dG12
(2) , where

dG12
(1)5sHH“•@nc0~dvc2dvn!#1

1

3
nc0“•dvnJ , ~20!

dG12
(2)52tm

]

]t
dG12

(1)2
2sHs1

3gñ0

“•~k“dT!, ~21!

]dT

]t
52

2

3
T0“•dvn1

2T0

3ñ0

s1dG12
(1) . ~22!

HeresH ands1 only involve the static local thermodynami
functions of the gas, and are defined in Eqs.~25! and~51! of
Ref. @5#. In Eq. ~20!, tm is a new relaxation time describin
how fast the condensate and noncondensate atoms reac
fusive local equilibrium with each other. More explicitly, it i
given by

1

tm
5S gnc0

kBT D 1

t12sH
, ~23!

wheret12 is a collision time of the condensate atoms w
the noncondensate atoms as defined in Ref.@5#.

The above two-fluid hydrodynamic equations have dis
pative terms involving the shear viscosityh and the thermal
conductivityk. These transport coefficients are given by t
following expressions@5,8#:

k5
5

2
tk

ñ0kB
2T0

m H 7g7/2~z0!

2g3/2~z0!
2

5

2 Fg5/2~z0!

g3/2~z0!G
2J , ~24!

h5thñ0kBT0Fg5/2~z0!

g3/2~z0!G , ~25!
4-3
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wherez0 is the local fugacity defined earlier. These expre
sions involve the characteristic transport relaxation timestk
andth , which are defined in Refs.@5,8#. The three relaxation
times tk ,th and tm characterize how fast the two
component system reaches local equilibrium, and thus t
define the crossover frequency between the collisi
dominated hydrodynamic region and the so-called collisi
less region dominated by mean fields. We note that the t
fluid equations~18! and~19! can also be rewritten in the LK
form @5,6#, which involve the four second viscosity coeffi
cientsz1 ,z2 ,z3, andz4. As shown in Ref.@5#, they are all
related to the relaxation timetm as follows:

z15z45
gnc0

3m
sHtm ,

z25
gnc0

2

9
sHtm , z35

g

m2
sHtm . ~26!

To derive a closed set of equations for the velocity fie
vc andvn , we take time derivatives of Eqs.~18b! and~19b!.
We obtain

m
]2dvc

]t2
5g“@“•~nc0dvc!12“•~ ñ0dvn!#2g“dG12

~27!

and

mñ0

]2dvnm

]t2
5

5

3

]

]xm
@“•~ P̃0vn!#2

2

3

]

]xm
~dvn•“ P̃0!

1“•~ ñ0dvn!
]U0

]xm
12gñ0

]

]xm
@“•~nc0dvc!

1“•~ ñ0dvn!#2
1

3

]U0

]xm
dG121

2

3
gnc0

]dG12

]xm

1
]

]xn
H 2hF ]

]t
Dmn2

1

3 S Tr
]D

]t D dmnG J
2

2

3

]

]xm
“•~k“dT!. ~28!

We then look for normal-mode solutions of Eqs.~27! and
~28! of the form

vn~r ,t !5un~r !e2 ivt, vc~r ,t !5uc~r !e2 ivt. ~29!

In this case, the coupled equations~27! and ~28! reduce to

mv2uc52g“@“•~nc0uc!#22g“@“•~ ñ0un!#

1g“dG12,v@un ,uc#, ~30!
02360
-

ey
-
-

o-

s

mñ0v2unm52
5

3

]

]xm
@“•~ P̃0un!#1

2

3

]

]xm
~un•“ P̃0!

2“•~ ñ0un!
]U0

]xm
22gñ0

]

]xm
@“•~nc0uc!

1“•~ ñ0un!#1
1

3

]U0

]xm
dG12,v@un ,uc#

2
2

3
gnc0

]dG12,v@un ,uc#

]xm

1 iv
]

]xn
H 2hFumn2

1

3
~“•un!dmnG J

1
2

3

]

]xm
“•~k“dTv@un ,uc# !. ~31!

Here the symmetric tensorumn is defined by

umn[
1

2 S ]unn

]xm
1

]unm

]xn
D . ~32!

The source functiondG12 appearing in the above equa
tions can be expressed in terms of ofun and uc as dG12
5dG12,v@un ,uc#e

2 ivt, where

dG12,v@un ,uc#5dG12
(1)@un ,uc#1dG12,v

(2) @un ,uc#, ~33!

with

dG12
(1)@un ,uc#5sHH“•@nc0~uc2un!#1

1

3
nc0“•unJ ,

~34!

dG12,v
(2) 5 ivtmdG12

(1)@un ,uc#2
2sHs1

3gñ0

“•~kdTv@un ,uc# !.

~35!

Similarly, the temperature fluctuation is given bydT
5 idTv@un ,uc#, where

dTv@un ,uc#5
1

v F2
2

3
T0~“•un!1

2T0

3ñ0

s1dG12
(1)@un ,uc#G .

~36!

Using these results in Eqs.~30! and~31!, we see that we have
obtained aclosed set of equations for both local velocit
componentsun anduc .

III. UNDAMPED NORMAL MODE FREQUENCY

We first consider the undamped normal-mode solutions
our hydrodynamic equations, neglecting all hydrodynam
dissipation. Formally this means that we takeh,k,tm→0 in
the two-fluid hydrodynamic equations. As discussed in Re
@3,5#, this limit corresponds to the Landau two-fluid hydr
dynamics without dissipation. In this limit, the coupled equ
tions for un anduc simplify to
4-4
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mv2uc52g“@“•~nc0uc!#22g“@“•~ ñ0un!#

1g“dG12,v
(1) @un ,uc#, ~37!

mv2un52
5

3
“@“•~ P̃0un!#1

2

3
“@un•“ P̃0#

2
2

3
“~gnc0dG12,v

(1) @un ,uc# !2dG12
(1)@un ,uc#“U0

2“•~ ñ0un!“U022gñ0“@“•~ ñ0un!

1“•~nc0uc!#. ~38!

In general, solutions of these coupled hydrodynamic eq
tions are very complicated. However, one can reformu
this problem so that the solutions are given in terms o
variational functional. The present discussion closely follo
the variational analysis developed in Ref.@3# for two-fluid
hydrodynamic equations, introduced in Ref.@1#, which omit-
ted the contribution of the source term fromC12 collisions,
i.e., dG1250. However, as Ref.@3# showed,dG12 plays a
crucial role in obtaining the correct Landau two-fluid hydr
dynamic limit. The same formalism was also used in R
@17# to calculated the hydrodynamic mode frequencies fo
trapped Bose gas aboveTBEC.

Introducing the six-component local velocity vector

u5S un

uc
D , ~39!

we combine the coupled equations forun anduc in Eqs.~38!
and ~37! into a matrix equation

Lu5v2Du. ~40!

The 636 matrix L has the block structure,

L5S L̂11 L̂12

L̂21 L̂22
D , ~41!

with the 333 matrix elements being defined as

~ L̂11un!m52
5

3

]

]xm
@“•~ P̃0un!#1

2

3

]

]xm
~un•“ P̃0!

2“•~ ñ0u!
]U0

]xm
22gñ0

]

]xm
@“•~ ñ0un!#

2
]

]xm
S 2

3
gnc0dG12

(1)@un,0# D1dG12
(1)@un,0#

]U0

]xm
,

~42a!

~ L̂12uc!m522gñ0

]

]xm
“•~nc0uc!

2
]

]xm
S 2

3
gnc0dG12

(1)@0,uc# D1dG12
(1)@0,uc#

]U0

]xm
,

~42b!
02360
a-
e
a
s

f.
a

~ L̂21un!m522gnc0

]

]xm
“•~ ñ0un!1gnc0

]

]xm
dG12

(1)@un,0#,

~42c!

~ L̂22uc!m52gnc0

]

]xm
“•~nc0uc!1gnc0

]

]xm
dG12

(1)@0,uc#.

~42d!

Similarly, the matrixD is block-diagonal (D̂125D̂2150),
with elementsD̂115mñ01̂,D̂225mnc01̂. Here, 1̂ is a 333
unit matrix. We note that the matrixL has the Hermitian
property

E dru 8•~Lu!5E dru•~Lu8!. ~43!

The coupled equations~37! and ~38! can be rewritten in
terms of the variational functional

J@un ,uc#5
U@un ,uc#

K@un ,uc#
, ~44!

where

U@un ,uc#[
1

2E dru•~ L̂u!, K@un ,uc#[
1

2E dru•~D̂u!.

~45!

Using the Hermitian property ofL in Eq. ~43!, one can prove
that the requirement that the functionalJ be stationary leads
to the required equations in Eqs.~37! and ~38! and v2 is
identified with the stationary value of the functionalJ. One
can therefore evaluate the collective mode frequency usin
variational ansatz forun anduc in the variational functional
J@un ,uc#.

IV. GENERAL EXPRESSION FOR DAMPING
OF HYDRODYNAMIC MODES

In this section, we derive a general expression of hyd
dynamic damping of a collective mode due to transport
efficients. The general expression for hydrodynamic dam
ing of collective modes in a trapped Bose gas was fi
derived in Ref.@18# aboveTBEC.

We now include hydrodynamic dissipation involvingk,h
andtm in the two-fluid equations. Similarly to Eq.~40!, one
can write the coupled equations forun and uc , which are
given in Eqs.~30! and ~31!, in a matrix form

Lu1Fu5v2Du. ~46!

HereF represents the dissipative terms in the two-fluid eq
tions and has the block structure

F5S F̂11 F̂12

F̂21 F̂22
D , ~47!

with the matrix elements
4-5
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~ F̂11un!m52
]

]xm
H 2

3
gnc0~ ivtm!dG12

(1)@un,0#

2S 2

3
1

4nc0sHs1

9ñ0
D“•~k“dTv@un,0# !J

1H ivtmdG12
(1)@un,0#

2
2sHs1

3gñ0

“•~k“dTv@un,0# !J ]U0

]xm

1 iv
]

]xn
2hS umn2

1

3
“•undmnD , ~48a!

~ F̂12uc!m52
]

]xm
H 2

3
gnc0~ ivtm!dG12

(1)@0,uc#

2S 2

3
1

4nc0sHs1

9ñ0
D“•~k“dTv@0,uc# !J

1H ivtmdG12
(1)@0,uc#

2
2sHs1

3gñ0

“•~k“dTv@0,uc# !J ]U0

]xm
, ~48b!

~ F̂21un!5gnc0

]

]xm
F ivtmdG12

(1)@un,0#

2
2sHs1

3gñ0

“•~k“dTv@un,0# !G , ~48c!

~ F̂22uc!5gnc0

]

]xm
F ivtmdG12

(1)@0,uc#

2
2sHs1

3gñ0

“•~k“dTv@0,uc# !G . ~48d!

In our subsequent analysis, we treatF as a small perturbation
to the undamped equation in Eq.~40!. To find a solution for
un ,uc including damping, we expand the vectoru in terms of
undamped normal-mode solutionsua (a is the mode index!:

u5(
a

Caua , Lua5va
2Dua . ~49!

From the Hermitian property of the operatorL̂, one can
show that these normal-mode solutions satisfy the ortho
mality relation@3#

E dr ua•~Dub!5dab . ~50!
02360
r-

We note that in the above relation, we assume that
normal-mode solutions are normalized. Making use of E
~50!, we obtain a linear equation for the coefficientCa :

~v22va
2 !Ca5E drua•(

a8
Ca8F̂ua8[(

a8
Vaa8Ca8 ,

~51!

where the matrix elementVaa8 is defined by

Vaa8[E drua•F̂ua8 . ~52!

We note thatVaa8 also depend on the frequencyv.
Expanding the mode frequency to first order in the pert

bationF asv5va1Dva , we find

Dva5
1

2va
Vaauv5va

, ~53!

where

Vaauv5va
52 ivaE dr H gtm

sH
~dG12

(1)@una ,uca#!2

1
k

T0
u“dTva

@una ,uca#u21
h

2 S ]unan

]xm
1

]unam

]xn

2
2

3
dmn“•unaD 2J . ~54!

We thus find thatDva52 iGa , where the damping rateGa
of the modea is given by

Ga5E dr H gtm

sH
~dG12

(1)@una ,uca#!2

1
k

T0
u“dTva

@una ,uca#u21
h

2 S ]unan

]xm
1

]unam

]xn

2
2

3
dmn“•unaD 2J F2E drm~nc0uca

2 1ñ0una
2 !G21

.

~55!

Here we explicitly display the normalization factor in E
~55!. This expression for the damping rate can also be w
ten in terms of the second viscosity coefficients:

Ga5E dr H z2~“•una!212z1~“•una!“•@mnc0~uca

2una!#1z3$“•@mnc0~uca2una!#%2

1
k

T0
u“dTva

@una ,uca#u21
h

2 S ]unan

]xm
1

]unam

]xn

2
2

3
dmn“•unaD 2J F2E drm~nc0uca

2 1ñ0una
2 !G21

.

~56!
4-6
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The formula in Eq.~56! for the damping rate can be un
derstood in terms of the entropy production@19#. The local
entropy production rateRs(r ,t) in the two-fluid equations@6#
is given in Eq.~87! of Ref. @5#. Assuming a normal-mode
oscillation of the form

vn~r ,t !5una~r !cosvat, vc~r ,t !5uca~r !cosvat,
~57!

we find that the time average of the total entropy product
rate is given by

^Rs&[
va

2pE0

2p/va
dtE drRs~r ,t !

5
1

2E dr H z2~“•una!2

12z1~“•una!“•@mnc0~uca2una!#

1z3$“•@mnc0~uca2una!#%2

1
k

T0
u“dTva

@una ,uca#u2

1
h

2 S ]unan

]xm
1

]unam

]xn
2

2

3
dmn“•unaD 2J . ~58!

On the other hand, the total mechanical energy is

^Emech&5
1

2E dr ~mñ0una
2 1mnc0uca

2 !. ~59!

One can then write the damping rateGa as

Ga5
^Rs&

2^Emech&
. ~60!

This general expression for damping was first given in
classic work in Landau and Lifshitz~LL ! @19# for classical
fluids. It was later used by Kavoulakiset al. @16# to study
damping in trapped Bose gases aboveTBEC. This kind of LL
damping formula is discussed in the case of superfluid4He
by Wilks @7#.

So far we have not dealt with the problem arising fro
the fact that in a trapped Bose gas, the decreasing dens
the tail of the thermal cloud always leads to the breakdo
of the hydrodynamic description. As pointed out by Kavo
lakis et al. @16#, this causes trouble in using Eq.~55! or ~56!
to evaluate the damping of modes in a trapped Bose ga
Refs.@18,16#, this problem was handled in a physically m
tivated butad hocmanner, by introducing a spatial cutoff i
the integral. In this paper, we propose a new, more mic
scopic, procedure to deal with this problem. As we discus
in Ref. @5#, the fact that the condensate and nonconden
atoms are not in complete local equilibrium can be taken i
account by introducing the frequency-dependent second
cosity coefficients

z i~v!5
z i

12 ivtm
. ~61!
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Similarly, one can also introduce the frequency depende
in the shear viscosity and the thermal conductivity as

k~v!5
k

12 ivtk
, h~v!5

h

12 ivth
. ~62!

In Appendix A, we give a more detailed discussion and de
vation of these frequency-dependent transport coefficie
starting from the kinetic equation. Replacing the transp
coefficients in Eq.~56! with k(va),h(va) andz i(va), and
taking real part, we find the damping rate of a collecti
mode in a trapped Bose gas

Ga5E dr H 1

11~vatm!2

gtm

sH
~dG12

(1)@una ,uca#!2

1
1

11~vatk!2

k

T0
u“dTva

@una ,uca#u2

1
1

11~vath!2

h

2 S ]unan

]xm
1

]unam

]xn
2

2

3
“•unadmnD 2J

3F2E drm~nc0uca
2 1ñ0una

2 !G21

. ~63!

We recall thatdTva
@una ,uca# and dG12

(1)@una ,uca# are de-

fined in Eqs.~34! and~36! in terms of the velocitiesuna and
uca . This result in Eq.~63! allows us to calculate the hydro
dynamic damping due to various transport processes
trapped Bose gas~both above and belowTBEC) and it is the
major new result of this paper. The frequency-depend
transport coefficients in Eq.~63! automatically yield the fac-
tors 1/@11(vat i)#2 ( i 5m,k,h), which effectively intro-
duce a spatial cutoff forvat i.1, i.e., when hydrodynamics
breaks down and we enter the collisionless regime.

V. A UNIFORM BOSE GAS

As an illustration of the physics implied by our results
the previous sections, we study first and second sound
uniform Bose-condensed gas using our variational exp
sions for the frequency and damping. In a dilute gas, fi
sound mainly involves the noncondensate oscillationun
@uc), while second sound mainly involves the condens
oscillation (uc@un) ~see, for example, Ref.@20#!. To a first
approximation, we can simply useuc50 for first sound and
un50 for second sound. Using the plane-wave solut
un ,uc} k̂ cosk•r in the variational formulas, we find

v i5uik2 iG i ~ i 51,2!, ~64!

where the two sound velocities are given by

u1
25

5P̃0

3mñ0

1
2gñ0

m
2

4gnc0
2 sH

9mñ0

, ~65!

u2
25

gnc0

m
~12sH!, ~66!
4-7
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and the damping rates are given by

G15
k2

2mñ0
F4

3
h1z22mnc0~z11z4!1~mnc0!2z3

1
4kT0

9u1
2 S 11

2s1sHnc0

3ñ0
D 2G , ~67!

G25
k2

2 Fmnc0z31
4kT0nc0

9u2
2mñ0

2 ~s1sH!2G . ~68!

These results agree with Eqs.~C11!–~C14! of Appendix C in
Ref. @5#, which were directly derived from the Landau
Khalatnikov two-fluid equations for a dilute Bose gas. W
note that the two sound velocitiesu1 and u2 are slightly
different from those given in Ref.@20#, because Ref.@20#
worked in the limitvtm@1, and neglected the source ter
dG12. As shown in Ref.@3#, however, these differences a
quantitatively very small in the case of a weakly interacti
Bose gas.

VI. MONOPOLE-QUADRUPOLE MODE IN A
DEGENERATE NORMAL BOSE GAS

Let us now consider collective modes in a trapped n
condensed Bose gas aboveTBEC. Here we consider them
50 monopole-quadrupole collective mode in an axisymm
ric trap (vx5vy5v'Þvz). This type of collective mode
aboveTBEC was first observed in the pioneering MIT expe
ment@9#, but the density was not considered large enough
probe the hydrodynamic regime~see, however, Ref.@8#!.
More recently, however, ENS experiments with metasta
He* atoms studied them50 mode in a high-density therma
cloud @12#.

Above TBEC, the Hartree-Fock mean field is negligib
and thus the equilibrium density is simply given by Eq.~16!
with z0(r )5eb[m02Uext(r )] . The chemical potentialm0 is de-
termined as a function of the temperature throughN

5(kBT/\v̄)3g3(z0), wherev̄[(vxvyvz)
1/3. The hydrody-

namic modes in a trapped Bose gas with them50 symmetry
were first discussed by Griffin, Wu, and Stringari@21#. The
two normal-mode frequencies are temperature-independ
and are given by@21#

V6
2 5

1

3
@5v'

2 14vz
26A25v'

4 116vz
4232vz

2v'
2 #. ~69!

The corresponding velocity field is given by

un5~ax,ay,bz!, ~70!

where the coefficientsa andb satisfy the following relations:

a6

b6
5S 3V6

2

4vz
2

22D , or
b6

a6
5S 3V6

2

2v'
2

25D . ~71!

Kavoulakiset al. @16# discussed the hydrodynamic dam
ing of this m50 mode using the LL formula, with a spatia
02360
-

t-

to

le
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cutoff to deal with the crossover from the hydrodynamic
collisionless regime in the tail of the thermal cloud. In co
trast, we calculate the damping rate using Eq.~63!, which
eliminates the collisionless regime in the tail of the therm
cloud through the use of the frequency-dependent trans
coefficients. AboveTBEC, there is no contribution from the
second viscosity transport coefficients. Moreover, in them
50 mode aboveTBEC, one can show“T50 @16,21# and
thus the thermal conductivity makes no contribution to t
damping of them50 mode. Thus, only the shear viscosity
Eq. ~63! contributes to the damping of this low-frequenc
collective mode. Using Eq.~70!, we find~see also Ref.@16#!

G25

2

3
~a22b2!2E dr

h~r !

11@V2th~r !#2

E dr @a2
2 ~x21y2!1b2

2 z2#mñ0~r !

. ~72!

Making use of the fact that the equilibrium density profi
given by Eq.~16! is a function ofUext(r ), one can rewrite
Eq. ~72! as

G25

2

3
~a22b2!2E h~r !

11@V2th~r !#2

S 2a2
2

v'
2

1
b2

2

vz
2D m

3 E @v'
2 ~x21y2!1vz

2z2#ñ0~r !

.

~73!

In Eq. ~73!, the factor involving the coefficientsa2 andb2

can be written in a simple form in terms of the undamp
frequenciesV2 andV1 as

2

3
~a2

2 2b2
2 !

S 2a2
2

v'
2

1
b2

2

vz
2D 5

2

3 S a2

b2
21D S 12

b2

a2
D

S 2a2

v'
2 b2

1
b2

vz
2a2

D
5

~V2
2 24vz

2!~V2
2 24v'

2 !

4~5v'
2 14vz

223V2
2 !

5
~V2

2 24vz
2!~V2

2 24v'
2 !

2~V1
2 2V2

2 !
. ~74!

Here we have used Eq.~71! and Eq.~69!. We thus obtain the
following simple expression for the damping rate:

G5
t̃

2~V1
2 2V2

2 !
~V2

2 24vz
2!~V2

2 24v'
2 !, ~75!

where we have introduced a new relaxation time@see Eq.
~25!#:
4-8
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t̃[

E dr
P̃0~r !th~r !

11~V2th!2

m

3 E dr @v'
2 ~x21y2!1vz

2z2#ñ0~r !

. ~76!

Here we have used the relation@see Eqs.~16!, ~17! and~25!#

h(r )5 P̃0(r )th(r ). Using the equilibrium relation“ P̃0

1ñ0“Uext50, which is valid when neglecting the HF mea
field, one can reduce Eq.~76! to

t̃5

E dr
P̃0~r !th

11~V2th!2

E dr P̃0~r !

. ~77!

Before presenting results given by an explicit evaluat
of the relaxation timet̃ in Eq. ~76! using the parameters fo
the ENS trap@12#, it is useful to comment on the relatio
between the present calculation of hydrodynamic damp
and the moment method developed by Gue´ry-Odelin et al.
@22#. These authors applied the moment method to
classical-gas Boltzmann equation. It is straightforward
generalize their method to the kinetic equation for a Bo
degenerate gas~see, for example, Ref.@23#!. This moment
method is briefly reviewed in Appendix B, and here we si
ply give the final results. In the moment method for t
monopole-quadrupole mode, collisions are characterized
a single parameter, the quadrupole relaxation timet defined
in Eq. ~B7!. In the hydrodynamic limitvzt!1, the moment
method reproduces the hydrodynamic frequency in Eq.~69!,
but the damping is now given by Eq.~B12!. The moment
result for the damping has the same form as Eq.~75!, except
that t replacest̃. Both t̃ and t are related to the sam
position-dependent viscous relaxation timeth(r ), but in-
volve different spatial averages@see Eq.~76! and Eq.~B7!#.

Our evaluation of the dampingG in Eq. ~75! is based on
the ENS trap parameters@11,12#: trap frequenciesv'/2p
5988,vz/2p5115, total number of atomsN58.23106,
ands-wave scattering lengtha516 nm. The ideal Bose ga
transition temperature is given byTc5(\v̄/kB)(N/1.202)1/3

54.39mK. In the temperature regionTc,T,3Tc , our cal-
culations show thatvzth(r50)!1. Thus the dominant con
tribution in the integral of Eq.~76! arises from the low den
sity tail of the cloud wherevzth(r );1. In Fig. 1, we plot
the temperature dependence of the damping rate. For c
parison, we also plot the damping calculated using the m
ment method. We find that the two methods give results
the same order of magnitude, but there are significant dif
ences.

VII. MONOPOLE-QUADRUPOLE MODE
IN A BOSE-CONDENSED GAS

In this section, we consider them50 collective mode in
the superfluid phase belowTBEC. For this purpose, we firs
need to calculate various equilibrium quantities, solving E
02360
n

g

e
o
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m-
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f
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.

~14! and Eq.~16! self-consistently. Figure 2 shows the tem
perature dependence of the condensate fraction. The e
tive Bose condensation temperature is lower than the free
resultTc , due to the mean field. Figure 3 shows the asso
ated density profile of the condensate and nonconden
components atT53 mK.0.68Tc .

Below TBEC, the gas in general exhibits coupled oscill
tions of the condensate and noncondensate component
finite temperatures slightly belowTBEC, one has a ‘‘conden-
sate mode,’’ in which the condensate component mainly
cillates, and a ‘‘noncondensate mode,’’ in which the nonco
densate component mainly oscillates@3#. As one might
expect, the frequencies of the modes are close to those
pure condensate mode atT50 and a pure noncondensa
mode aboveTBEC, respectively. These frequencies a
slightly shifted due to coupling between the two componen
In the calculations in this section, we focus entirely on t
damping of the modes, and neglect these relatively sm
frequency shifts. Thus, we neglect the condensate oscilla
in the noncondensate mode and noncondensate oscillatio
the condensate mode. We calculate the hydrodynamic da
ing of these two modes. In contrast to the moment meth
results discussed in Appendix B, our present results are o
valid in the hydrodynamic regime.

FIG. 1. Temperature dependence of the hydrodynamic dam
rate of them50 mode in a degenerate Bose gas aboveTBEC, cal-
culated from Eq.~75!. We also show the result obtained from th
moment method by the broken line@see Fig. 8~a!#. For comparison,
we also plot the moment result for the Maxwell-Boltzmann~MB!
gas.

FIG. 2. Condensate fraction versus temperature.
4-9
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A. Noncondensate mode

We first consider damping of the noncondensate mod
monopole-quadrupole symmetry. In Eq.~55!, we approxi-
mate un using Eq.~70! and Eq.~71!, and setuc50. For
simplicity, we assume that“T50 also holds belowTBEC.
We then find that the damping consists of two contributio
G5G11G2, where G1 is the contribution from the shea
viscosity, again given by Eq.~75!, while G2 is due to the
second viscosity, which is given by

G25

E dr
1

11~V2tm!2

gtm

sH
~dG12

(1)@un,0# !2

2mE dr ñ0un
2

. ~78!

As noted above, the frequencyV2 of this mode is well ap-
proximated byV2 as given in Eq.~69! for T.Tc . In Fig. 4,
we plot the temperature dependence of the damping of
noncondensate mode belowTBEC. The contribution from the

FIG. 3. Density profile of the condensate and nonconden
along thez axis at T53 mK ( .0.68Tc). The length unit is the

average harmonic oscillator lengthaHO[\/mv̄, and the density

unit is aHO
23 . The discontinuous change innc0 andñ0 at the conden-

sate boundary is a well-known artifact arising from using t
Thomas-Fermi approximation.

FIG. 4. Damping rate of the noncondensate mode below
BEC transition temperature. The broken lines gives the sepa
contributions from the shear viscosity (G1) and the second viscosit
(G2). Compare with results aboveTc shown in Fig. 1.
02360
of

,

he

shear viscosity is dominant forT*0.3Tc , with the contribu-
tion from the second viscosity coefficient only taking over
very low temperatures.

B. Condensate mode

We next consider the condensate mode below the su
fluid transition temperature. The pure condensate mode
quencies atT50 were first given by Stringari@24#:

V6
2 52v'

2 1
3

2
vz

26
1

2
A16v'

4 19vz
4216v'

2 vz
2. ~79!

The associated condensate velocity field is given by

uc5~ax,ay,bz!, ~80!

where one finds

a6

b6
5S V6

2

2vz
2

2
3

2D , or
b6

a6
5S V6

2

v'
2

24D a6 . ~81!

Using this pure condensate mode solution foruc , and setting
the noncondensate velocityun50 and ignoring any tempera
ture fluctuationdT, we obtain a simple formula from Eqs
~63! and~34! for the damping of the low-frequency conde
sate mode,

G25

E dr
gtmsH

11~V2tm!2
@“•~nc0uc!#

2

2mE drnc0uc
2

. ~82!

HereV2 is the frequency given by Eq.~79! and is approxi-

matelyV2'A5
2 vz , while uc is given by Eq.~80!, both of

these describing the undamped hydrodynamic mode.
The expression for the damping rate in Eq.~82! which has

been found here in the hydrodynamic regime is similar to E
~79! of Ref. @23#, which gives the collisional damping o
condensate collective modes in the collisionless regime
fact, one can show that in the limitV2tm@1, Eq. ~82! for-
mally reduces precisely to the expression in Eq.~79! of Ref.
@23#. As shown in Ref.@23#, this latter expression for the
condensate mode damping is equivalent to the result der
by the method of Williams and Griffin@25# in the collision-
less regime, under the assumption that the thermal cloud
ways remained in static thermal equilibrium. This mak
sense since our assumptions ofun50 and “T50 are
equivalent to assuming a static thermal cloud.

In Fig. 5, we plot the temperature dependence of
damping of this condensate mode. The damping of this c
densate mode is extremely small, simply because we are
ways in the extreme hydrodynamic limitvztm!1.
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VIII. DISCUSSION AND CONCLUDING REMARKS

Recently, the Landau-Khalatnikov two-fluid equatio
were derived@4,5# for a trapped Bose gas in the collision
dominated local equilibrium domain. These involve t
transport coefficients@8# ~thermal conductivity, shear viscos
ity, and four second viscosity coefficients! describing the
processes leading to local equilibrium in a superfluid, fro
which various relaxation timest i can be extracted. In the
present paper, we used these equations to derive a ge
expression for the damping of hydrodynamic modes in
trapped Bose gas. This formula makes use of the variatio
solution of the two-fluid hydrodynamic equations in the La
dau limit (vt i!1, wherev is the frequency of a hydrody
namic mode!. We hope that our work will stimulate furthe
experimental studies of the collision-dominated hydrod
namic regime in trapped Bose gases.

As illustration, we used our formalism to evaluate t
hydrodynamic damping of them50 monopole-quadrupole
mode of a cigar-shaped trap, using parameters appropria
the recent ENS experiments on metastable4He* @10–12#.
We presented results for bothT.TBEC and T,TBEC. We
also used the moment method developed by Gue´ry-Odelin
et al. @22# for a trapped classical gas and give results~see
Appendix B! for a degenerate trapped Bose gas aboveTBEC.
The advantage of the moment approach@22# is that the re-
sulting equations of motion for various moments can
solved over the entire frequency domain, including both
collisionless (vt.1) and hydrodynamic regions (vt,1).

For temperatures characteristic of the ENS experime
(T;3Tc), the effect of Bose statistics is almost negligib
Thus, as expected, our calculated values of the dampin
the coupledm50 monopole-quadrupole mode~due entirely
to the shear viscosity! are in good agreement with the mo
ment calculations of Ref.@22# for a classical gas. Indeed, ou
calculation shows that the difference remains small down
the superfluid transitionTc . However, as discussed in Ref
@11,12#, the analysis of the ENS experimental data exhibit
puzzling discrepancy. The damping and frequency of them
50 mode is consistent with a maximum value of the co
sion rate @defined in Eq.~B9!# being given byGcoll.2
3103 s21, which is achieved atT53Tc . Lowering the tem-
perature led to an apparentdecreasein the values ofGcoll ,
the latter being determined by the measured changes in
frequency and damping of them50 mode. This result seem

FIG. 5. Damping rate of them50 condensate mode.
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inconsistent with the calculated value ofGcoll5A2n̄s v̄ at
Tc , using the measured values atTc of the average density
and velocity of atoms, and the collision cross sections
58pa2. Our calculated value isGcoll(Tc).104 s21 ~see Fig.
7!, considerably larger than the valueGcoll.103 s21 as
estimated from the frequency and damping of them50
mode@11,12#.

Thus the ENS experiment on them50 collective mode
does not seem to be able to enter deeply into the hydro
namic regime. Reference@11# tentatively interprets this to
being due to increasing inelastic collision processes, wh
effectively lead to a decreasing collision rateGcoll for T be-
low 3Tc . However this does not explain why the estimat
value ofGcoll calculated atTc is an order of magnitude large
which would correspond to them50 mode being deeply in
the collision-dominated hydrodynamic domain.

In order to clarify this puzzling behavior aboveTc , it
would be useful to measure the damping and frequency
the monopole-quadrupole collective mode in the Bo
condensed region. As discussed in Ref.@8#, the effective
value of the relaxation timeth associated with the shea
viscosity is calculated to become much smaller as one g
below Tc . This is simply because 1/th of the thermal cloud
atoms is dominated by collisions with condensate atoms.
a result, even if one has a low thermal cloud densityñ0
~spatially averaged! such that one is in the collisionless re
gion aboveTc , one is automatically well inside the hydro
dynamic region forT,Tc because of the rapid buildup of th
condensate density in the center of the trap. This sugge
variant of the ENS experiments effectively uses the form
tion of the high-density Bose condensate to increase the
lision rate which determines the frequency and damping
the monopole-quadrupole mode.

In Sec. VII, we presented the first explicit calculations
the hydrodynamic damping of the monopole-quadrup
mode in the superfluid phase. As can be seen in Fig. 4,
damping of this mode involving the noncondensate therm
cloud is still dominated by the shear viscosity down toT
;0.3Tc . Comparing the results above~Fig. 1! and belowTc
~Fig. 4!, one sees the mode dampingG is fairly smooth going
through the transition, with only a slight decrease in mag
tude belowTc . This slight decrease in the value ofG hides
the fact that~as discussed above! the effective value of the
shear collision relaxation timet is rapidly decreasing as w
go belowTc , putting one deep into the hydrodynamic d
main.

In Sec. VII, we also evaluated the hydrodynamic damp
of the monopole-quadrupole mode in the condensate.
seen in Fig. 5, this damping is extremely small since one
effectively in the ‘‘Landau limit,’’vtm!1.

Duine and Stoof@26#, building on the general theory de
veloped by Stoof@13#, have also calculated the damping
collective modes at finite temperatures. However, these
thors effectively only calculate the collisional damping in t
‘‘collisionless’’ region. They do not treat the hydrodynam
damping associated with various transport processes
worked out in detail in the present paper. Moreover, in R
@26#, it is assumed that the thermal cloud always remains
4-11
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static thermal equilibrium~see also Ref.@25#!. In contrast,
our calculations include the coupled dynamics of both
thermal cloud and the condensate in the hydrodynamic
gion. On the other hand, Duine and Stoof do include
effect of the fluctuations of the condensate order param
around its mean-field value. This leads to the generalized
equation~such as we use in this paper and derived in R
@3#! being replaced by a Fokker-Planck equation for a tim
dependent condensate probability distribution. Our anal
and the LK two-fluid equations do not include this kind
order parameter fluctuations. Their importance, if any, in
collisional hydrodynamic region discussed in the present
per remains to be investigated.
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APPENDIX A: FREQUENCY-DEPENDENT TRANSPORT
COEFFICIENTS

In this appendix, we give some details on the frequen
dependent coefficients of the shear viscosity and ther
conductivity, starting from the kinetic equation for the no
condensate atoms. As in the usual Chapman-Enskog pr
dure described in Ref.@5#, we insert the local equilibrium
distribution functionf leq in the left hand side of the kinetic
equation, wheref leq is given by

f leq~r ,p,t !5
1

z21~r ,t !eb(r ,t)[p2mvn(r ,t)] 2/2m21
, ~A1!

where z(r ,t)5eb(r ,t)[ m̃(r ,t)2U(r ,t)] is the local fugacity. As
shown in Appendix A of Ref.@5#, the kinetic equation is then
given by

] f

]t
1F1

z

p

m
•“z1

~p2mvn!2

2mkBT2

p

m
•“T1

p2mvn

kBT
•S p

m
•“ D vn

1
“U

mkBT
•~p2mvn!G f leq~11 f leq!5C121C22. ~A2!

In contrast to Ref.@5#, we keep the time derivative off ex-
plicitly. Since we are interested in small-amplitude collecti
oscillations, in the following we always expand the theory
first order in the fluctuations around static equilibrium.

We first consider the shear viscosity, which is associa
with the anisotropic pressure tensor. In a linearized the
this is given by

Pmn8 [Pmn2dmnP̃

5E dp

~2p\!3

1

m S pmpn2
1

3
dmnp2D f ~r ,p,t !. ~A3!
02360
e
e-
e
er
P

f.
-
is

e
a-

s
h

s-
h

-
al

ce-

d
y,

The equation of motion forPmn8 can be obtained by taking
the moment of Eq.~A2! and linearizing it around static ther
mal equilibrium. One finds that the term that contributes
this moment is

E dp

~2p\!3

1

m S pmpn2
1

3
dmnp2D

3
p

kBT0
•S p

m
•“ D vnf 0~11 f 0!

5 P̃0S ]vnn

]xm
1

]vnm

]xn
2

2

3
dmn“•vnD . ~A4!

One thus obtains

]Pmn8

]t
1 P̃0S ]vnn

]xm
1

]vnm

]xn
2

2

3
dmn“•vnD

5 K 1

m S pmpn2
1

3
p2dmnD L

coll

, ~A5!

where

K 1

m S pmpn2
1

3
dmnp2D L

coll

[E dp

~2p\!3

1

m S pmpn2
1

3
dmnp2D ~C121C22!.

~A6!

The collisional contribution on the right hand side of E
~A5! arises from deviation of the distributionf from the local
equilibrium solution in Eq.~A1!. Following the Chapman-
Enskog procedure, we use the ansatzf 5 f leq1d f , where

d f 5(
mn

BmnS pmpn2
1

3
dmnp2D f 0~11 f 0!, ~A7!

with Bmn being some momentum-independent symme
tensor. The relation betweenBmn and Pmn8 can be found by
using Eq.~A7! in Eq. ~A3! and carrying out the momentum
integral:

Pmn8 5 (
m8n8

Bm8n8E dp

~2p\!3

1

m S pmpn2
1

3
dmnp2D

3S pm8pn82
1

3
dm8n8p

2D f 0~11 f 0!

5
1

5 S Bmn2
1

3
dmn Tr BD (

m8n8
E dp

~2p\!3

1

m

3S pm8pn82
1

3
dm8n8p

2D 2
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52mkBT0P̃0S Bmn2
1

3
dmn Tr BD . ~A8!

Using Eq.~A7! in Eq. ~A6!, we find

K 1

m S pmpn2
1

3
dmnp2D L

coll

5 (
m8n8

Bm8n8E dp

~2p\!3

1

m S pmpn2
1

3
dmnp2D

3L̂Fpm8pn82
1

3
dm8n8p

2G
5

1

5 S Bmn2
1

3
dmn Tr BD (

m8n8
E dp

~2p\!3

1

m

3S pm8pn82
1

3
dm8n8p

2D
3L̂Fpm8pn82

1

3
dm8n8p

2G , ~A9!

where L̂ is the linearized collision operator defined in Eq
~46! and~48! of Ref. @5#. Combining Eq.~A8! and Eq.~A9!
and using the definition ofth given in Eq.~B5! of Ref. @5#,
we find that the collision term reduces to

K 1

m S pmpn2
1

3
dmnp2D L

coll

52
Pmn8

th
, ~A10!

where the viscous relaxation timeth is defined in Refs.@5,8#.
Assuming the harmonic time dependencePmn8 }e2 ivt, we
finally obtain

Pmn8 52
2thP̃0

12 ivth
S Dmn2

1

3
dmn Tr D D

522h~v!S Dmn2
1

3
dmn Tr D D , ~A11!

where the frequency-dependent viscosity coefficienth(v) is
defined by

h~v![
thP̃0

12 ivth
5

h

12 ivth
. ~A12!

The frequency-dependent thermal conductivity can a
be obtained in the same manner, by considering the lin
ized heat current
02360
.

o
r-

Q~r ,t !5E dp

~2p\!3

p2

2m

p

m
f ~r ,p,t !2

5

2
vnP̃0~r !

5E dp

~2p\!3 F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G
3

p

m
f ~r ,p,t !. ~A13!

Taking the moment of the kinetic equation in Eq.~A2!, one
finds that the relevant contribution is given by

E dp

~2p\!3 F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

m

p2

2mkBT0
2

3S p

m
•“dTD f 0~11 f 0!

5
5

2

ñ0kB
2T0

m
“dTH 7g7/2~z0!

2g3/2~z0!
2

5

2 Fg5/2~z0!

g3/2~z0!G
2J .

~A14!

One thus obtains

]Q

]t
1

5

2

ñ0kB
2T0

m
“dTH 7g7/2~z0!

2g3/2~z0!
2

5

2 Fg5/2~z0!

g3/2~z0!G
2J

5 K F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

mL
coll

, ~A15!

where

K F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

mL
coll

[E dp

~2p\!3 F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

m
~C121C22!.

~A16!

To evaluate the collisional term Eq.~A16!, which arises from
deviation from local equilibrium, we use the Chapma
Enskog ansatzf 5 f leq1d f , where@5#

d f 5A•

p

m F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G f 0~11 f 0!. ~A17!

HereA is a momentum-independent vector which is direc
related to the heat currentQ through

Q5AE dp

~2p\!3

p2

3m F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G
2

f 0~11 f 0!.

~A18!

Evaluation of the collisional term with using the ansatz E
~A17! closely follows the derivation of the thermal condu
tivity in Ref. @5#. We find
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K F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

mL
coll

5
A

3E F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G
3

p

m
•L̂F H p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!J p

mG . ~A19!

Combining Eq.~A18! and Eq.~A19! and using the definition
of the thermal relaxation timetk given in Eq.~B1! of Ref.
@5#, we find

K F p2

2m
2

5

2
kBT0

g5/2~z0!

g3/2~z0!G p

mL
coll

52
Q

tk
. ~A20!

Assuming the harmonic time dependenceQ}e2 ivt, we ob-
tain

Q52
k

12 ivtk
“dT[2k~v!“dT, ~A21!

where we have used the expression fork given in Eq.~24!,
and the frequency-dependent thermal conductivity is defi
by

k~v![
k

12 ivtk
. ~A22!

APPENDIX B: MOMENT METHOD FOR A DEGENERATE
NORMAL BOSE GAS

In the moment method@22#, one derives an equation o
motion for some dynamical quantity denoted byx(r ,t) by
taking a moment of the kinetic equation in both position a
momentum:

^x&[
1

NE dr
dp

~2p\!3
x~r ,t ! f ~r ,p,t !. ~B1!

The advantage of this method is that it gives results valid
both the collisionless and hydrodynamic region. It should
noted that in the collisionless region, this approach does
include Landau damping, but this is small aboveTBEC. For
the m50 monopole-quadrupole mode, we need mom
equations for the following physical quantities:

x15r 2, x252z22r 2,

x35r•p/m, x452zpz /m2r'•p' /m,

x55p2/m2, x652pz
2/m22p'

2 /m2. ~B2!

Calculation of these moments gives the following coup
equations:

d^x1&
dt

22^x3&50,
d^x2&

dt
22^x4&50,
02360
d

d

n
e
ot

t

d

d^x3&
dt

2^x5&1
2v'

2 1vz
2

3
^x1&1

vz
22v'

2

3
^x2&50,

d^x4&
dt

2^x6&1
2vz

222v'
2

3
^x1&1

v'
2 12vz

2

3
^x2&50,

d^x5&
dt

1
2vz

214v'
2

3
^x3&1

2vz
22v'

2

3
^x4&50,

d^x6&
dt

1
4vz

224v'
2

3
^x3&1

4vz
212v'

2

3
^x4&5^x6&coll .

~B3!

The collisional contribution in the last equation in E
~B3! is defined as

^x6&coll[
1

NE drE dp

~2p\!3
x6C22@ f #. ~B4!

This term can be approximately evaluated by using the
satz f 5 f 01d f , where

d f 5b0f 0~11 f 0!FdT

T0
S p2

2m
1U02mc0D1p•vn1dm̃

1a~2pz
22p2!G , ~B5!

where the time-dependent parametera(t) characterizes the
anisotropy in the momentum distribution described by^x6&.
The above ansatz is a generalization of the Gaussian an
for the Maxwell-Boltzmann gas used in Ref.@22# to a degen-
erate Bose gas.

Using the ansatz in Eq.~B5! in Eq. ~B4! and linearizing in
a, one obtains

^x6&coll52
^x6&

t
, ~B6!

where t is a quadrupole relaxation time defined by t
weighted spatial average of the inverse of the viscous re
ation time~see also Ref.@23#!

1

t
[
E dr P̃0 /th

E dr P̃0

. ~B7!

Using the moment equations~B3! together with the approxi-
mation Eq.~B6!, we see that the only effect of using Bos
statistics is in the value for the spatially-averaged relaxat
time t defined in Eq.~B7!.

In a nondegenerate~Maxwell-Boltzmann! gas, one finds
that th(r )5 5

4 tcl(r ) @5,8,27#, where tcl is the usual elastic
collision time for a classical gas

tcl
21~r !5A2sñ0~r !v̄5A2~8pa2!ñ0~r !~8kBT/pm!1/2.

~B8!
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Using this result andP̃0(r )5kBTñ0(r ) in Eq. ~B7!, the
quadrupole relaxation time reduces to

1

t
5

4

5
Gcoll . ~B9!

HereGcoll[A2sn̄v̄, where the spatially averaged density
defined by

n̄[
E dr ñ0

2~r !

E dr ñ0~r !

5
ñ0~r50!

2A2
. ~B10!

This result for 1/t in terms ofGcoll agrees with that of Gue´ry-
Odelin et al. @22#. The authors of Ref.@12# analyzed data in
terms of the classical gas result of Ref.@22#, using the above
definition of the averaged collision rateGcoll valid for a
Maxwell-Boltzmann gas.

Assuming the time dependencee2 ivt, the coupled equa
tions in Eq.~B3! with Eq. ~B6! can be solved to give

FIG. 6. Moment calculation of the~a! frequency and~b! damp-
ing of them50 mode, both as a function of the quadrupole rela
ation timet. These results are found by solving Eq.~B11!. We use
the ENS trap frequenciesv'/2p5988 Hz andvz/2p5115 Hz
@10–12#..
02360
~v224vz
2!~v224v'

2 !1
i

vt Fv42
2

3
v2~5v'

2 14vz
2!

18v'
2 vz

2G50. ~B11!

Solving Eq. ~B11!, we obtain the solutionv5V2 iG, de-
scribing damped modes. One can see that in the collision

-

FIG. 7. Temperature dependence of the spatially averaged q
rupole relaxation timet. The broken line shows the result using th
Maxwell-Boltzmann distribution for a classical trapped gas.

FIG. 8. Temperature dependence of~a! frequencyV, and ~b!
dampingG of the m50 mode, obtained by the moment method.
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limit vt@1, the frequency is given by either 2vz or 2v' .
In the opposite hydrodynamic limitvt!1, the two solutions
are given byv5V6 , with V6 given by Eq.~69!. The fre-
quencyV and dampingG obtained by solving Eq.~B11! can
be expressed in terms of the spatially averaged quadru
relaxation timet, for given trap frequencies. In Fig. 6, w
plot V and G of the low-frequency mode as a function
vzt. The hydrodynamic domain is the regionvzt&1.

In Fig. 7, we plot the temperature dependence of
quadrupole relaxation timet calculated for the ENS experi
mental data. For comparison, we also plot the result@12,22#
using the Maxwell-Boltzmann distribution. The effect
Bose statistics is clearly very small, down to aboutT
.1.5Tc . We use the result in Fig. 7 to calculate the fr
s.

-

s

t,
C

t,
C

S

02360
le

e

quency and damping as functions of the temperature
shown in Fig. 8.

In the hydrodynamic limit, one can obtain an analytic
expression for the damping rate from the moment equatio
Assumingvt!1, one can expand the solution to Eq.~B11!
to first order int. In this limit, the dampingG2 of the low-
frequency modeV2 is given by

G25
t

2~V1
2 2V2

2 !
~V2

2 24vz
2!~V2

2 24v'
2 !. ~B12!

Apart from a different averaged shear-viscous relaxat
time t, it is satisfying that this moment result is identical
the LL expression in Eq.~75!.
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