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Frequency and damping of hydrodynamic modes in a trapped Bose-condensed gas
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Recently it was shown that the Landau-Khalatnikov two-fluid hydrodynamics describes the collision-
dominated region of a trapped Bose condensate interacting with a thermal cloud. We use these equations to
discuss the low frequency hydrodynamic collective modes in a trapped Bose gas at finite temperatures. We
derive variational expressions based on these equations for both the frequency and damping of collective
modes. A new feature is our use of frequency-dependent transport coefficients, which produce a natural cutoff
by eliminating the collisionless low-density tail of the thermal cloud. Above the superfluid transition, our
expression for the damping in trapped inhomogeneous gases is analogous to the result first obtained by Landau
and Lifshitz for uniform classical fluids. We also use the moment method to discuss the crossover from the
collisionless to the hydrodynamic region. Recent data for the monopole-quadrupole mode in the hydrodynamic
region of a trapped gas of metastailde is discussed. We also present calculations for the damping of the
analogousnm=0 monopole-quadrupole condensate mode in the superfluid phase.
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[. INTRODUCTION scribes the local equilibrium hydrodynamic region and the
approach to equilibrium. There are several other alternative
In recent papers, Zaremba and the authors have derivedt@eories of the nonequilibrium dynamics of trapped Bose

closed set of the two-fluid hydrodynamic equations of agases[13—15. However, up to the present, these formula-

trapped Bose-condensed gas starting from a simplified miionS have not been used to derive the analogue of the LK

croscopic model describing the coupled dynamics of the cont-\’vo'fIUid hydrodynamic equations. :
In the present paper, we derive a general expression for

densate and noncondensate atdrhs5]. These equations the frequency and dampina of hvdrodvnamic collective
can be written in the Landau-KhalatnikdtK) form, well modes ?n a t?lapped Bosg—cgndensgd ga)é at finite tempera-
Engwn n the_ study O.f superfdeHe_[B_,?]. These S|mpl|f|ed_ tyres, starting from the two-fluid hydrodynamic equations

y rodynamic equations include dissipative terms associategeived in Ref[5]. These two-fluid equations are briefly re-
with the shear viscosity, the thermal conductivity, and theyje\ed in Sec. I, and reformulated as a closed set of equa-
four second-viscosity coefficients. Explicit formulas for (jons for the condensate and noncondensate velocity fields.
these transport coefficients were obtained in R8f.and |y sec. I1I, we derive a variational expression for undamped
used to define three characteristic transport relaxation timegormal-mode frequencies in the Landau limif<1), ex-
[8]. These define the crossover between the collisionless angnding an approach first developed in Ré&f. In Sec. IV,
hydrodynamic regions. Detailed calculations of these transwe obtain a general expression for the damping, which only
port relaxation times in a trapped Bose ¢@kshow that the  depends on knowing the undamped normal-mode solutions.
collisions between the condensate and noncondensate €fhis kind of expression is very convenient in working out
hance the transport relaxation rates significantly in the MITthe damping of hydrodynamic modes in trapped Bose gases,
data[9], so that one is in the hydrodynamic region below theas first pointed out by Kavoulakist al. [16]. As an illustra-
Bose-Einstein condensation temperafliggc. We also note tion, in Sec. VI we give a detailed discussion of the the
that the recent Bose condensate observed in metastafile He=0 monopole-quadrupole collective mode abdyg stud-
[10—17 appears to be well within the collision-dominated ied in the recent experimenf2]. In Sec. VII, we also cal-
hydrodynamic region, even aboWggc. This is because of culate the damping of thev=0 hydrodynamic mode in the
the relatively large density of He atoms and their large Superfluid phase. In Sec. VIII, we review some puzzling as-
swave scattering length. pects of the recent data anquss given in REf6~12 in the

The present paper calculates the damping of collectivddht of the present calculations. .

modes in trapped Bose gases in the collisional hydrodynamic Appendix A gives some details of the damping calcula-
limit described by local equilibrium. In this limit, as noted tions based on the use of frequency-dependent transpoft co-
above, the generalized GP equation for the condensate pll%flc[ents. The moment met.hod for a degenerate normal Bose
the kinetic equation for the thermal clodderived in Ref. gas is reviewed in Appendix B.
[3]) have been provefb] to be equivalent to the two-fluid
hydrodynamic equationgncluding damping due to transport
processesof Landau and Khalatnikoy6,7]. This equiva-
lence is important since it shows that the simplified theory of In this paper, we consider a Bose-condensed gas confined
nonequilibrium behavior developed in R¢8] properly de- in an external anisotropic harmonic trap potential

II. TWO-FLUID HYDRODYNAMICS OF A TRAPPED
BOSE GAS: A REVIEW
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M o o 2y where the superfluid velocity is.=#V 6(r,t)/m and the
Uen(r) = 5 (0X°+ 0yy“+ w32%). (1) condensate chemical potential is given by

Our starting point is the two-fluid hydrodynamics derived , ( 1)_ _ h2V2ne(r,1)
from the finite-temperature kinetic theory by Zaremba, Ni- " "’ 2my/ng(r,t)
kuni, and Griffin(ZNG) [3]. In the ZNG theory, the coupled @)
dynamics of the condensate and noncondenfaites de-

scribed by the generalized Gross-Pitaevsl@P) equation One sees thal';, in Eq. (63 plays the role of a “source

+ U (N +gng(r,t)+2gn(r,t).

for the condensate wave functidn(r,t) function” in the continuity equation for the condensate, aris-
ing from the fact thatC,, collisions do not conserve the
~od(r,t) h2v? - number of condensate atorf®j.
i — =1~ 5 T Vex(N +9nc(r,t) +2gn(r, 1) Hydrodynamic equations for the noncondensate can be

derived by following the standard procedure first developed

in the kinetic theory of classical gases. We take moments of
O(r,1), (20 the kinetic equatiori3) with respect to J andp? to derive

the most general form of “hydrodynamic-type” equations for
and the semiclassical kinetic equation for the noncondensaf@® noncondensate. These moment equations take the form

—iR(r,t)

distribution functionf(r,p,t), (n and v are Cartesian componepts
af(r,p,t) p on -
—— Vi (np ) = VUL Vof(rpit) 7t PV () =T f, @], (8a
=Cyff, @]+ CA f]. ©) ~[d IP,, ~dU
mn E+Vn~v Unp=" ax — W
Here ng(r,t)=|®(r,t)|? is the condensate density, and v H
n(r,t) is the noncondensate density, —M(vy,—ve) A f, @], (8b)
n(r,t)= il e V-(ev))=—V-Q-D,,P
n(rvt)_f (Zﬂ_ﬁ)sf(rvpvt)r (4) E—F '(fvn)_ Q uv' py
~ . . 1 2
and U(r,t) =Ug(r)+2g[nc(r,t)+n(r,t)] is the time- HoMVa=Ve) "+ e~ U DA f, @],
dependent effective potential acting on the noncondensate,
including the Hartree-FockHF) mean field. As usual, we (8¢

approximate the interaction in tteawave scattering approxi- _
mation g=4w#2a/m. The dissipative ternR(r,t) in the  Here and elsewhere, repeated Greek subscripts are summed.
generalized GP equatiof2) is due to the collisional ex- The noncondensate density was defined earlier in (Ex).
change of atoms in the condensate and noncondensate. THi§ile the noncondensate local velocity(r,t) is defined by
is related to theC,, collision integral in Eq.(3), namely,

~ dp p
= —f .
ﬁrlz(r,t) n(rat)vn(rat) J (27Tﬁ)3 m (rvpat) (9)

2ng(r,t) ’

R(r,t)=

In addition, we have introduced the following quantities:

d
Pﬂv(rat)EmJ p (pﬂ_vn,u)(&_vaf(rlpit)a

(2mh)3lm m
Explicit expressions for the two collision integral€4, and (103
C1») in the kinetic equatiori3) can be found in Ref.3].

dp
(27h)®

I‘lZ(rlt):J' Clif(r!p!t)!q)(r!t)]' (5)

The GP equatiori5) can be written in the hydrodynamic _ dp 1 o P
form in terms of the amplitude and phase df(r,t) Qr.H)= (27h)3 Zm(p mvp) m_n fr.p.b),
=nc(r,t)e' "V which leads to (10b)
%+V~(HCVC):_F12[]C,CI)], (6a) z(r t)EJ’ dp i(p_mv )Zf(r pt) (100)
&t ’ (277%)3 2m n 1M .
J _ Finally, the symmetric rate-of-strain tensor appearing in Eq.
m E+V°'V)V°_ Vite, (6b) (8¢) is defined as
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1{dvn, g, while the linearized hydrodynamic equations for the noncon-
D(rt)= 5( ax, " ax, (11)  densate atoms are given by
The “hydrodynamic” equationg8)—(11) are exact, but not @ o~ _
closed as they stand. gt TV (Nodvn) =T, (199
We next apply the Chapman-Enskog procedure to obtain a
closed set of hydrodynamic equations. This procedure yields - Jdv, dsP  _aU, 98N
[5] mny E=— —dn———2gnyg—
ot IXy Xy Xy
Puy= va’—zﬂ( Dy ETVD%)’ (12) + 229D, 2(TD)s
3 X, mr 3 e
Q=—«VT, (13 (19b)

whereP is the kinetic pressure arldlis the temperature. The ~ 99P
above formulas involve the position-dependent shear viscos- gt
ity » and the thermal conductivitx. These local position-
dependent transport coefficients will be discussed in more
detail below.

In order to study small amplitude oscillations, we linear-
ize the hydrodynamic equations around static equilibriumlhe _above equations involve the fluctuations of the source
as Ne=Ngo+ SN, Vo= 8V, ,ﬁ:ﬁo+6ﬁ,vn= 5\,”,;,:'50 function 61", and the temperaturéT. These can also be

+ 6P, where the subscript 0 denotes static equilibrium TheWritten in terms of the condensate and noncondensate veloc-
! : A ; _ 1 2

equilibrium condensate density profile is determined byy fields[5]. One findséI';,= ST+ or{, where

(within the Thomas-Fermi approximation, which neglects the

guantum pressure or kinetic energy term in the GP equation

5 - 2 -
§V'(P05Vn)+ 56\/n' VPo+(peog—Ug) o1,

+§V~(KV§T). (199

1 ~
nco(r)=a[Mco—Uext(f)]—Zno(f), (14

while the equilibrium noncondensate distribution functign
is given by

1
@Bolp?l2m+Uo(n) —peol — 1 °

fo(r.p)= (19

The local densityny(r) and the local kinetic pressufy(r)
of the noncondensate atoms are given from @§) as

~ 1

No(r)= Egs/z(zo), (16)
- kT

Po(r) = %gw(zo), (17)

wherezy(r) = el#co~YoVkeTo js the local equilibrium fugac-
ity, A=(27h?/mkgTy)Y? is the thermal de Broglie wave-
length, andg,(z)==_,2/1".

The linearized hydrodynamic equations for the conden
sate are given by

aong

at ==V (NcpdVe) =61, (183
AV, -
m7=—gV(5nc+25n), (18b)

02360

1
ST = o) V- [Neol Ve = Vo) |+ 3NV - OV, (20)

J 2040
(2)_ _ (y_ PRl g
Y =—7,— T 30 V. (xkVST), (2D
i 21 V. ov+ 20 ST (22)
- = = * —Q g .
ot 3 0 n 3n 1 12

0

Hereoy ando; only involve the static local thermodynamic
functions of the gas, and are defined in E@®) and(51) of
Ref.[5]. In Eq.(20), 7, is a new relaxation time describing
how fast the condensate and noncondensate atoms reach dif-
fusive local equilibrium with each other. More explicitly, it is

given by

where 74, is a collision time of the condensate atoms with
the noncondensate atoms as defined in RHf.

The above two-fluid hydrodynamic equations have dissi-
pative terms involving the shear viscosityand the thermal
conductivity k. These transport coefficients are given by the

following expression$5,8J:

1

Tu

1

H
T120H

gNco
kgT

(23

5 NokaTo[797420) 5[ gsa(Z0)]?
K= 5T, —= , (24
2 m 293A29) 2| Q93220)
~ 9s5/2(Z0)
=7 NokgTo| ———|, 25
7= Tollofe o 9312 20) 29
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wherez, is the local fugacity defined earlier. These expres-
sions involve the characteristic transport relaxation times
andr,,, which are defined in Ref§5,8]. The three relaxation
times 7,7, and 7, characterize how fast the two-
component system reaches local equilibrium, and thus they
define the crossover frequency between the collision-
dominated hydrodynamic region and the so-called collision-
less region dominated by mean fields. We note that the two-
fluid equationg18) and(19) can also be rewritten in the LK
form [5,6], which involve the four second viscosity coeffi-

~ 5 2 9 ~
MMyw=Up, = 3 X, [V (PoUn)]+ —— (U, VPy)
,u.

- Uy - 4
—V'(noun)—ax —Zgno_ﬁx [V-(ngoue)
n

1 90Ug
+V. (noun)] +5

3 (9X 5F12w[unv c]

2 0’)5F12,w[un !uc]

cients{,,¢,,{3, and{,. As shown in Ref[5], they are all ~39M0 X,
related to the relaxation time, as follows: 1
. J
gnco —Hwﬁ_)(,,(Z?] U#V—g(v-un)b‘ﬁy ]
g §4 OHT s
an . . '
gZZTUH Ty, gazﬁgH T, (26) Here the symmetric tensar,, is defined by

To derive a closed set of equations for the velocity fields

v; andv,, we take time derivatives of Eq&l8b) and(19b).
We obtain

9?3V, -
mT gVIV-(ngedVe) +2V - (Ngdv,) ] =gV el s,
(27)
and
~ #6vn, 5 0 v.(B AP
e _§E[ “(Povn)] 5077#( n-VPo)
J
+V. (noé\/n) +29n0(9 [V-(ncodVe)
2 a6y,
+ V- (ngdvp)]— 3 I 5F12+39“co ox,
J 2 (9 1 T(?D 5
&x 7ot BEARYALE
27 V.- (kVT 28
T3, (kVST). (28)

We then look for normal-mode solutions of Eq&7) and
(28) of the form

vp(r,t)=uy(re ' ve(r,t)=us(re '®t. (29
In this case, the coupled equatiof®y) and (28) reduce to

—gV[V-(neuc)1—2gV[ V- (Nouy)]
+gV T 15[ Uy, Ucl, (30)

mwzuc=

1
Ul“,=§

U,
_n (32)

dUn,
ax, |’

The source functiorsT";, appearing in the above equa-
tions can be expressed in terms of wf and u; as 6I';,
=06l 15, Upn,UcJe™ ", where

or 12,0)[ Un,Uc]= 5F(112)[un Uc]+ PINE 12 w[ Un,Ucl, (33

with

1
(1)[un’ Ucl=on) V-[Neo(Uc— n)]+§ncov'un )

(34)

2040
BV (k8T [Un,Uc]).

TP =iwr,sT B u,,ul— 397

(35
Similarly, the temperature fluctuation is given b§T
=i6T,[u,,u.], where

1 2 2T, )
5Tw[un,uc]=5 —§To(V-Un)+§015F12[Un,Uc] .
0

(36)

Using these results in Eq&0) and(31), we see that we have
obtained aclosedset of equations for both local velocity
componentsl, andug .

IIl. UNDAMPED NORMAL MODE FREQUENCY

We first consider the undamped normal-mode solutions of
our hydrodynamic equations, neglecting all hydrodynamic
dissipation. Formally this means that we takgc, 7,—0 in
the two-fluid hydrodynamic equations. As discussed in Refs.
[3,5], this limit corresponds to the Landau two-fluid hydro-
dynamics without dissipation. In this limit, the coupled equa-
tions foru,, andu. simplify to

023604-4
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Mw2u.=—gV[ V- (neoue) - 29V V- (Nguy)]
+gV oIy, [un.ucl, (37)

5 - 2 -
Mw2u,=— §V[Vo(Poun)]+ §V[un-VPo]

2 (1) (1)
= 3 V(@neodl (), [uq uc)) = o L un el VU

— V- (Nouy) VU —2gnoV[ V- (Nou,)
+ V- (Ngoug) ] (38

In general, solutions of these coupled hydrodynamic equa-
tions are very complicated. However, one can reformulate
this problem so that the solutions are given in terms of a

PHYSICAL REVIEW A 69, 023604 (2004

A d ~ d
(Laatin) = —29nco - — V- (Moliy) +gneo > — 8T 15 un, 0],
12 13
(420

R J J
(Loug) .= — gncoEV “(NgoUg) + gncox ‘5F(112)[0,Uc]-
(420
Similarly, the matrixD is block-diagonal P;,=D,;=0),
with elementsD;;=mny1,D,=mn,l. Here, 1lis a 3x3

unit matrix. We note that the matrik has the Hermitian
property

f dru’-(Lu)=Jdru-(Lu’). (43

the variational analysis developed in RE3] for two-fluid
hydrodynamic equations, introduced in Réf], which omit-
ted the contribution of the source term frd, collisions,
i.e., 8I'1,=0. However, as Ref[3] showed,sI";, plays a
crucial role in obtaining the correct Landau two-fluid hydro-

terms of the variational functional

3 ~ Ulup,uc]
[Unyuc]—m, (44)

dynamic limit. The same formalism was also used in Ref\ypnere
[17] to calculated the hydrodynamic mode frequencies for a

trapped Bose gas aboVgec.
Introducing the six-component local velocity vector

Up
u=( ) (39

Uc

we combine the coupled equations fgrandu, in Egs.(38)
and(37) into a matrix equation

Lu= w?Du. (40)
The 6X6 matrixL has the block structure,
L, L
L=(A11 Alz), (41)
L21 L22
with the 3X 3 matrix elements being defined as

d

- - 2 9 -
(L1aUp) .= — 3 E[V'(Poun)]"' 3 E(Un'vpo)

L PP
- '(noU)E— 9”0@[ -(NgUp) ]

2 aU,
§g ncoar(ljé)[unvo] + 5ngé)[unao]a7 )

aXM M
(429
L — —2gTy—V
(LigUe) .= — 9”0077# “(NgoUc)
J (2 dUq
- E(ggnwﬁr&?[o,uc] +OTI0uT
(42b)

1 - 1 .
U[un,uc]=§J dru-(Lu), K[un,uc]=§J dru-(Du).
(45

Using the Hermitian property df in Eq. (43), one can prove
that the requirement that the functiorlBbe stationary leads

to the required equations in Eq&7) and (38) and w? is
identified with the stationary value of the functionhlOne

can therefore evaluate the collective mode frequency using a
variational ansatz fou, andu. in the variational functional
Jlu,,uc].

IV. GENERAL EXPRESSION FOR DAMPING
OF HYDRODYNAMIC MODES

In this section, we derive a general expression of hydro-
dynamic damping of a collective mode due to transport co-
efficients. The general expression for hydrodynamic damp-
ing of collective modes in a trapped Bose gas was first
derived in Ref[18] aboveTggc.

We now include hydrodynamic dissipation involviag»n
andr, in the two-fluid equations. Similarly to E¢40), one
can write the coupled equations far, and u., which are
given in Egs.(30) and(31), in a matrix form

Lu+ Fu= »?Du. (46)

HereF represents the dissipative terms in the two-fluid equa-
tions and has the block structure

£, F
F:(An Alz), a7)
Fa1 Fa

with the matrix elements

023604-5
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A 9 (2 We note that in the above relation, we assume that the
(F1aUp) ,=— gnco(lwr )5F12[un,0] normal-mode solutions are normalized. Making use of Eqg.

a (50), we obtain a linear equation for the coefficiedy :
2 4nc0(TH<71 s 2 .
V- (kY 6T, [Uy,0]) ( —wa>ca=f dru,-S C. Bu,=S V. .Co..
a (43 (51)
{""T ST {9[un,0] where the matrix element . is defined by
2 — N
ri V. (kV ST, [u,0]) Vaa,—f dru,-Fu, . (52
3gn (9X
1 We note thatv,, also depend on the frequenay
(qu_ _V. un%) , (483 Expanding the mode frequency to first order in the pertur-
X, 3 bationF asw=w, +Aw,, we find
. J |2 _ W 1
(Flzuc)M:_ W §gnco(|w7’ﬂ) 5F12[0,Uc] Awa_zw Vaoz|a):mal (53)
ys a

2 ANnouo where
—(—+ %)mevcﬁw[o,uc])}
Vaa|w=wa=_|wa dr on (6F12[unaauCa])

+{iwr,oTYou
{ M 12[ C] &unav auna,u,

+—V5T [Ung UcJl?+ 5
| Na Ca| axlu &XV

20'H0'1

,u.

V- («kVT, [Ouc])} Mo (48b) 2 2
o

oX
3gn0 3 ,uv

(54)

We thus find thal w,,= —iI",, where the damping raté,,

J
~ _ (1)
(Fa1tn) =9nco - — {"‘”’ OT'17[Un.0] of the modea is given by

i

20’H0'1

gno

V- (kVST,[u,0])|, (480 r,= f dr[ii:wra?[una,uww

n IUngy  IUngy
IXy X,

K
+ _|V5Tw [una:UCa]|2+
TO a

. J |
(Fauc) =gneo v { o, o (112)[ 0,uc]
i -1

2
oo 3é)‘MV-uM) HZJ’ drm(neou?,+nou,)
OHOo1

gno

V. (kVaT,[0 uc])} (480 (55)

Here we explicitly display the normalization factor in Eq.
(55). This expression for the damping rate can also be writ-
ten in terms of the second viscosity coefficients:

In our subsequent analysis, we tr€aas a small perturbation
to the undamped equation in E@0). To find a solution for
U, ,Uc including damping, we expand the vectoin terms of
undamped normal-mode solutions (« is the mode index

Fff df|éz(V'Una)2+2§1(V~Una)V'[mnco(UCa

u=>, C,u,, Lu,=w2Du,. (49)
o T e = Une) 1+ £5{ V- [MNeo(Uge— Una) 1}
i B K 5 [ Unay  IUngy
From the Hermitian property of the operathr one can + =V 6T, [Ung Ueal|?+ 5| —— + —&
show that these normal-mode solutions satisfy the orthonor- T “ Xy X,

mality relation[3] —1

2 2 =2
3 8,,V- una 2 | drm(ngug,+nous,)
fdrua-(Duﬁ)=5aﬁ. (50) (56)

023604-6



FREQUENCY AND DAMPING OF HYDRODYNAMIC MODES . .. PHYSICAL REVIEW A 69, 023604 (2004

The formula in Eq.(56) for the damping rate can be un- Similarly, one can also introduce the frequency dependence
derstood in terms of the entropy productii®]. The local in the shear viscosity and the thermal conductivity as
entropy production ratBy(r,t) in the two-fluid equationgs]

is given in Eq.(87) of Ref. [5]. Assuming a normal-mode _ _ U
oscillation of the form x(w) T iwr,’ 7(w) T-iwr, (62
V(1 1) = Upo(1)COSm,t, V(1) =Uca(r)Cosw,t, In Appendix A, we give a more detailed discussion and deri-

(57)  vation of these frequency-dependent transport coefficients
. . . starting from the kinetic equation. Replacing the transport
we find that the time average of the total entropy production .. =~ Eq(56) with k(w,),7(w,) and{(w,), and
rate is given by . . . .
taking real part, we find the damping rate of a collective

w. (27lo, mode in a trapped Bose gas
<RS>E—“f dtf drRy(r,t)
2 0

1 gr
FC':J dr{ ————— = £ (sT¥[u wilca])?
{H(Wﬂ)z (T U b))

1
-/ dr[g(vuna)z

1 K
2
+2£4(V - Upo) V- [Meo(Ugg— Un) (s g2 oV Tl Une el
+§3{V’[mnc0(uw_una)]}2 1 7 du Ju 2 2
+ _( nav nalu_—V'Ua5 V) J
+-|£|V5Tw [unavuca]|2 1+(wa777)22 (9XM %y 3 o
O (23
-1
IMngy  pwy 2 2 X 2] drm(ngouZ,+nou?,) (63)
2<_n+#__5ﬂyv.una) ] (58) coYe oYn

2\ 9, ax, 3

We recall thatsT,, [UneUc,] and 8T {5 Uy, ,Uc,] are de-

On the other hand, the total mechanical energy is fined in Egs.(34) and(36) in terms of the velocities,,, and

1 5 Uc, - This result in Eq(63) allows us to calculate the hydro-
(Emech = EJ' dr(mngu?,+mneuZ,). (599  dynamic damping due to various transport processes in a
trapped Bose gathoth above and beloWgeo) and it is the
One can then write the damping rdte as major new result of this paper. The frequency-dependent
transport coefficients in E¢63) automatically yield the fac-
(Rg) tors 1[1+(w,7)]? (i=pu,k,n), which effectively intro-
Ffm- (60 duce a spatial cutoff fow,7,>1, i.e., when hydrodynamics

breaks down and we enter the collisionless regime.

This general expression for damping was first given in the
classic work in Landau and Lifshitd_L) [19] for classical V. A UNIFORM BOSE GAS
fluids. It was later used by Kavoulaket al. [16] to study

damping in trapped Bose gases abdyec. This kind of LL As an iIIustratic_)n of the physicst implied by our results !n
damping formula is discussed in the case of superffie thg previous sections, we study f!rst and segor_ld sound in a
by Wilks [7]. unlform Bose-condensed gas using our varlatlonal expres-
So far we have not dealt with the problem arising from S'ONS for t_he fr_equency and damping. In a d'IUt? 9as, first
the fact that in a trapped Bose gas, the decreasing density ﬁpund mgmly involves the no'ncor'1densate oscillationy (
the tail of the thermal cloud always leads to the breakdowr?” Yc), While second sound mainly involves the condensate
of the hydrodynamic description. As pointed out by Kavou-°Scillation Uc>uy) (see, for example, Ref20)). To a first
lakis et al.[16], this causes trouble in using EG5) or (56 ~ &PProximation, we can simply usg=0 for first sound and
to evaluate the damping of modes in a trapped Bose gas. Ifn=0 for second sound. Using the plane-wave solution
Refs.[18,16], this problem was handled in a physically mo- Uy ,Uc*k cosk-r in the variational formulas, we find
tivated butad hocmanner, by introducing a spatial cutoff in ) ,
the integral. In this paper, we propose a new, more micro- w=uk=il; (=12, (64)
scopic, procedure to deal with this problem. As we discusseg\/here the two sound velocities are given by
in Ref. [5], the fact that the condensate and noncondensate
atoms are not in complete local equilibrium can be taken into

D ~ 2
account by introducing the frequency-dependent second vis- Ui: 5P~° + 29 — 49 nCEGH , (65)
cosity coefficients 3mng m Imn,
— gi 61 2 gNeo
gl(w)_l_le’u ( ) UZZW(]'_O-H)Y (66)
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and the damping rates are given by cutoff to deal with the crossover from the hydrodynamic to
collisionless regime in the tail of the thermal cloud. In con-

k? 5 trast, we calculate the damping rate using Ef), which
rl:2m“h0 3 7+ {aMNeo({1+ La) +(MNeo) “L3 eliminates the collisionless regime in the tail of the thermal
cloud through the use of the frequency-dependent transport
4kT, 20101Ngo 2 coefficients. AboveTgec, there is no contribution from the
+— = , (67) second viscosity transport coefficients. Moreover, in tine
9ug 3ng =0 mode aboveTgec, one can showwT=0 [16,21] and
thus the thermal conductivity makes no contribution to the
k? 4kTgngg ) damping of them=0 mode. Thus, only the shear viscosity in
=% m%oiﬁm(m%) : (68)  Eq. (63) contributes to the damping of this low-frequency

collective mode. Using Eq70), we find(see also Ref.16])

These results agree with Eq€11)—(C14) of Appendix C in

Ref. [5], which were directly derived from the Landau- 2

Khalatnikov two-fluid equations for a dilute Bose gas. We —(a,—b,)ZJ dr
note that the two sound velocitias; and u, are slightly r :3
different from those given in Ref20], because Ref[20] - 2,9 .2 2 g~
worked in the limitwr,>1, and neglected the source term J dr[aZ(x“+y?)+bZz"Jmny(r)

7(r)
1+[Q,7'77(r)]2

(72

M
éI'1,. As shown in Ref[3], however, these differences are

guantitatively very small in the case of a weakly interacting Making use of the fact that the equilibrium density profile

Bose gas. given by Eq.(16) is a function ofU¢(r), one can rewrite
Eq. (72 as
VI. MONOPOLE-QUADRUPOLE MODE IN A
DEGENERATE NORMAL BOSE GAS

Let us now consider collective modes in a trapped non- z(a,—b,)zf L
condensed Bose gas aboVggc. Here we consider then B 3 1+[Q_7,(n)]?
=0 monopole-quadrupole collective mode in an axisymmet- (222 p2\m _
ric trap (wy=wy=w, # w,). This type of collective mode (—2 + —2) Ef [w2 (X2+Y?) + w2Z?]ny(r)
aboveTggc was first observed in the pioneering MIT experi- ®, Wz

ment[9], but the density was not considered large enough to (73)
probe the hydrodynamic regimeee, however, Ref8]).

More recently, however, ENS experiments with metastablén Eq. (73), the factor involving the coefficiens_ andb_
He* atoms studied then=0 mode in a high-density thermal can be written in a simple form in terms of the undamped

cloud[12]. frequencied) _ and(), as
Above Tgec, the Hartree-Fock mean field is negligible

and thus the equilibrium density is simply given by Et6) 2 a b
with zy(r) =eflro~Yex(Nl The chemical potentigl, is de- ~(a2-b?) _(__1 (1_ _)
termined as a function of the temperature throulyh 3 _ 3\b a—
= (ks T/h)3g3(20), Wherew=(wyw,w,)"%. The hydrody- 2a>  b? 2a_ b_
namic modes in a trapped Bose gas withitire 0 symmetry 7 ; W + wla

1L z 1M= z%—

were first discussed by Griffin, Wu, and Stringg2i]. The
two normal-mode frequencies are temperature-independent, (Q% —4wd) (02 —40?)
and are given by21] =

4(50° +402—-302)

1
02 :5[5(,& +4w2+ 250w} + 1607 —32wrw? . (69) (02 -40) (02 —40])
- 2(02-02) -

The corresponding velocity field is given by

u,=(ax,ay,bz), (70) Here we hf_:lve used EQZl) and Eq.(69). We_ thus obtain the
following simple expression for the damping rate:
where the coefficienta andb satisfy the following relations:

bi_ 3Q2t I's ———5—-
—2|, o ——= 202 -5[. (7D 2(05-07%)

a.

. [30%
b,

2
4wy

(Q%2—40) (02 -40%), (75

Kavoulakiset al.[16] discussed the hydrodynamic damp- where we have introduced a new relaxation tifsee Eq.
ing of thism=0 mode using the LL formula, with a spatial (25)]:
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[

- m ~
3 f dr[w? (x*+y?) + wZz*no(r)

Po(r)7,(1)
1+(Q_7,)?

T

(76)

Here we have used the relatifsee Eqs(16), (17) and(25)]
n(r)=Po(r)7,(r). Using the equilibrium relationVP,
+1NoVUeq=0, which is valid when neglecting the HF mean
field, one can reduce E(76) to

T:‘)O(r)T*r]

fdr—
1+(Q_7,)?

f drPq(r)

T=

(77)

of the relaxation timer in Eq. (76) using the parameters for
the ENS trap[12], it is useful to comment on the relation

PHYSICAL REVIEW A 69, 023604 (2004

0.3 T T '
-====- Moment (Bose gas)
— M t (MB gas) -
—Ll?rfr(l)erlrinula g rfn"”f
0.2+ P 7
g 2
-
S A
0.1{7- 1
0 : ' '
1 1.5 2 2.5 3
T/T,

FIG. 1. Temperature dependence of the hydrodynamic damping
rate of them=0 mode in a degenerate Bose gas abbyg:, cal-
culated from Eq(75). We also show the result obtained from the
moment method by the broken lifigee Fig. &)]. For comparison,

Before presenting results given by an explicit evaluationVe &S0 plot the moment result for the Maxwell-Boltzmaihs)

(14) and Eq.(16) self-consistently. Figure 2 shows the tem-

between the present calculation of hydrodynamic dampingerature dependence of the condensate fraction. The effec-

and the moment method developed by Gw@delin et al.

tive Bose condensation temperature is lower than the free gas

[22]. These authors applied the moment method to th‘T’esuItTc, due to the mean field. Figure 3 shows the associ-

classical-gas Boltzmann equation. It is straightforward 0416 density profile of the condensate and noncondensate
generalize their method to the kinetic equation for a Bosetomponents aT=3 uK=0.68T..

degenerate gasee, for example, Ref23]). This moment

method is briefly reviewed in Appendix B, and here we sim-
ply give the final results. In the moment method for thegpiie temperatures slightly below
monopole-quadrupole mode, collisions are characterized by,:a mode ” BEC,

a single parameter, the quadrupole relaxation tintefined
in Eq. (B7). In the hydrodynamic limiw,7<<1, the moment
method reproduces the hydrodynamic frequency in(g§),
but the damping is now given by E¢B12). The moment
result for the damping has the same form as (#6), except
that 7 replacesr. Both 7 and 7 are related to the same
position-dependent viscous relaxation ting(r), but in-
volve different spatial averagésee Eq(76) and Eq.(B7)].
Our evaluation of the damping in Eq. (75) is based on
the ENS trap parametefd1,17: trap frequenciesw, /27
=988, w,/2m=115, total number of atom#l=8.2x 10°,
ands-wave scattering length=16 nm. The ideal Bose gas

transition temperature is given By, = (% w/kg) (N/1.202)3
=4.39 uK. In the temperature regioh.<T<3T,, our cal-
culations show thab,r,(r=0)<1. Thus the dominant con-
tribution in the integral of Eq(76) arises from the low den-
sity tail of the cloud wherev,7,(r)~1. In Fig. 1, we plot

Below Tgec, the gas in general exhibits coupled oscilla-
tions of the condensate and noncondensate components. At
one has a “conden-
in which the condensate component mainly os-
cillates, and a “noncondensate mode,” in which the noncon-
densate component mainly oscillatg3]. As one might
expect, the frequencies of the modes are close to those of a
pure condensate mode &=0 and a pure noncondensate
mode aboveTggc, respectively. These frequencies are
slightly shifted due to coupling between the two components.
In the calculations in this section, we focus entirely on the
damping of the modes, and neglect these relatively small
frequency shifts. Thus, we neglect the condensate oscillation
in the noncondensate mode and noncondensate oscillation in
the condensate mode. We calculate the hydrodynamic damp-
ing of these two modes. In contrast to the moment method
results discussed in Appendix B, our present results are only
valid in the hydrodynamic regime.

1.2 . . T T

the temperature dependence of the damping rate. For com-
parison, we also plot the damping calculated using the mo-

ment method. We find that the two methods give results of

the same order of magnitude, but there are significant differ-

ences.

VII. MONOPOLE-QUADRUPOLE MODE
IN A BOSE-CONDENSED GAS

0 I I

Z f
T.=439 K

2
T[uK]

3
In this section, we consider the=0 collective mode in

the superfluid phase beloWsg. For this purpose, we first

need to calculate various equilibrium quantities, solving Eq. FIG. 2. Condensate fraction versus temperature.
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1200 . . shear viscosity is dominant far=0.3T, with the contribu-
tion from the second viscosity coefficient only taking over at

~ 1000 4
72 very low temperatures.
g 800 :
*"é 600 4 B. Condensate mode
=
> 400 i We next consider the condensate mode below the super-
g fluid transition temperature. The pure condensate mode fre-
< 200 i . guencies alf =0 were first given by Stringafi24]:

0 e 3 1

100 150 02 =207 + 0l 5\160] + 9] - 160702, (79

z (units of @)

FIG. 3. Density profile of the condensate and noncondensat
along thez axis atT=3 pwK (=0.68T;). The length unit is the
average harmonic oscillator lengty=7%/mw, and the density
unit isa,,3 . The discontinuous change i, andn, at the conden- u.=(ax,ay,bz), (80)
sate boundary is a well-known artifact arising from using the
Thomas-Fermi approximation.

The associated condensate velocity field is given by

where one finds

A. Noncondensate mode

monopole-quadrupole symmetry. In EG5), we approxi- b.
mate u,, using Eq.(70) and Eq.(71), and setu.=0. For -
simplicity, we assume tha&? T=0 also holds belowl ggc.

We then find that the damping consists of two contributionsUsing this pure condensate mode solutionufpr and setting
I'=Iy+I',, wherel'; is the contribution from the shear the noncondensate velocity,=0 and ignoring any tempera-
viscosity, again given by Eq.75), while T', is due to the ture fluctuationST, we obtain a simple formula from Egs.
second viscosity, which is given by (63) and (34) for the damping of the low-frequency conden-

sate mode,

202 2

z

| T
I+ |+

We first consider damping of the noncondensate mode of a. 02 3 02
= , or =|—F—4|a-. (81

)

974 (1) 2
dr ——— ——(61"5%'[u,,,0
. J 1+(Q_7,)? U'H( 121 Un.0) 28 97,0
= . H
2 sz driou? " fdr 1+((: )Z[V'(mcouc)]2
_T
on = = . (82

ZmJ drngou?

As noted above, the frequen€y_ of this mode is well ap-
proximated by() _ as given in Eq(69) for T>T,. In Fig. 4,
we plot the temperature dependence of the damping of thﬁereQ

noncondensate mode beldwg-. The contribution from the 's the frequency given by Ed79) and is approxi-

materQ,~\/§wZ, while u is given by Eq.(80), both of
0.3 these describing the undamped hydrodynamic mode.

The expression for the damping rate in E8R) which has
been found here in the hydrodynamic regime is similar to Eq.
(79 of Ref.[23], which gives the collisional damping of
A condensate collective modes in the collisionless regime. In
fact, one can show that in the limit _7,>1, Eq.(82) for-
mally reduces precisely to the expression in &§) of Ref.

i [23]. As shown in Ref[23], this latter expression for the
condensate mode damping is equivalent to the result derived
by the method of Williams and Griffifi25] in the collision-
. ~No 02 . less regime, under the assumption that the thermal cloud al-
0 02 04 06 0.8 1 ways remained in static thermal equilibrium. This makes
T/T sense since our assumptions of=0 and VT=0 are
¢ equivalent to assuming a static thermal cloud.

FIG. 4. Damping rate of the noncondensate mode below the In Fig. 5, we plot the temperature dependence of the
BEC transition temperature. The broken lines gives the separatdamping of this condensate mode. The damping of this con-
contributions from the shear viscositl {) and the second viscosity densate mode is extremely small, simply because we are al-
(T',). Compare with results above, shown in Fig. 1. ways in the extreme hydrodynamic limit,7,<1.

0.2

T/,

0.1
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0.0012 ' ' ' ' inconsistent with the calculated value bt = J2nov at
0.001 - T., using the measured valuesTat of the average density
and velocity of atoms, and the collision cross section
_ 0.0008 1 =8ma?. Our calculated value B (T.)=10" s (see Fig.
8 0.0006 - _ 7), considerably larger than the valué.,=10°s ! as
= estimated from the frequency and damping of the=0
0.0004 - | mode[11,12.
0.0002 + . Thus the ENS experiment on tre=0 collective mode
does not seem to be able to enter deeply into the hydrody-
00 0:2 0:4 016 018 1 namic regime. Referencill] tentatively interprets this to

being due to increasing inelastic collision processes, which
effectively lead to a decreasing collision rdig,, for T be-
FIG. 5. Damping rate of then=0 condensate mode. low 3T.. However this does not explain why the estimated
value ofl" ., calculated af .. is an order of magnitude larger,
VIII. DISCUSSION AND CONCLUDING REMARKS which would correspond to thea=0 mode being deeply in

Recently, the Landau-Khalatnikov two-fluid equationsthe collision-dominated hydrodynamic domain.
were derived4,5] for a trapped Bose gas in the collision- ~ In order to clarify this puzzling behavior abovk;, it
dominated local equilibrium domain. These involve thewould be useful to measure the damping and frequency of
transport coefficientgs] (thermal conductivity, shear viscos- the monopole-quadrupole collective mode in the Bose-
ity, and four second viscosity coefficientsescribing the condensed region. As discussed in R, the effective
processes leading to local equilibrium in a superfluid, fromvalue of the relaxation timer, associated with the shear
which various relaxation times; can be extracted. In the Viscosity is calculated to become much smaller as one goes
present paper, we used these equations to derive a genefglowT.. This is simply because ) of the thermal cloud
expression for the damping of hydrodynamic modes in atoms is dominated by collisions with condensate atoms. As
trapped Bose gas. This formula makes use of the variationa result, even if one has a low thermal cloud densigy
solution of the two-fluid hydrodynamic equations in the Lan-(spatially averagedsuch that one is in the collisionless re-
dau limit (o7;<<1, wherew is the frequency of a hydrody- gion aboveT,, one is automatically well inside the hydro-
namic modg We hope that our work will stimulate further dynamic region folTf <T_ because of the rapid buildup of the
experimental studies of the collision-dominated hydrody-condensate density in the center of the trap. This suggested
namic regime in trapped Bose gases. variant of the ENS experiments effectively uses the forma-

As illustration, we used our formalism to evaluate thetion of the high-density Bose condensate to increase the col-
hydrodynamic damping of then=0 monopole-quadrupole lision rate which determines the frequency and damping of
mode of a cigar-shaped trap, using parameters appropriate tle monopole-quadrupole mode.
the recent ENS experiments on metastatte* [10-12. In Sec. VII, we presented the first explicit calculations of
We presented results for bofh>Tgee and T<Tgegc. We  the hydrodynamic damping of the monopole-quadrupole
also used the moment method developed by r@aelin  mode in the superfluid phase. As can be seen in Fig. 4, the
et al. [22] for a trapped classical gas and give res@#tse  damping of this mode involving the noncondensate thermal
Appendix B for a degenerate trapped Bose gas abby&-. cloud is still dominated by the shear viscosity downTto
The advantage of the moment appro2f] is that the re- ~0.3T.. Comparing the results abovEig. 1) and belowT
sulting equations of motion for various moments can beFig. 4), one sees the mode dampilids fairly smooth going
solved over the entire frequency domain, including both thethrough the transition, with only a slight decrease in magni-
collisionless w7>1) and hydrodynamic regions»G<<1). tude belowT,. This slight decrease in the value Bfhides

For temperatures characteristic of the ENS experimentthe fact that(as discussed aboyéhe effective value of the
(T~3T,), the effect of Bose statistics is almost negligible. shear collision relaxation time is rapidly decreasing as we
Thus, as expected, our calculated values of the damping @fo belowT,, putting one deep into the hydrodynamic do-
the coupledn=0 monopole-quadrupole moddue entirely  main.
to the shear viscosilyare in good agreement with the mo-  In Sec. VII, we also evaluated the hydrodynamic damping
ment calculations of Ref22] for a classical gas. Indeed, our of the monopole-quadrupole mode in the condensate. As
calculation shows that the difference remains small down t@een in Fig. 5, this damping is extremely small since one is
the superfluid transitiof .. However, as discussed in Refs. effectively in the “Landau limit,” w7, <1.
[11,12], the analysis of the ENS experimental data exhibits a Duine and Stoof26], building on the general theory de-
puzzling discrepancy. The damping and frequency ofrthe veloped by Stoof13], have also calculated the damping of
=0 mode is consistent with a maximum value of the colli- collective modes at finite temperatures. However, these au-
sion rate[defined in Eq.(B9)] being given byI'.,;=2  thors effectively only calculate the collisional damping in the
x10* s~1, which is achieved af=3T,. Lowering the tem-  *“collisionless” region. They do not treat the hydrodynamic
perature led to an apparedécreasen the values ofl", damping associated with various transport processes, as
the latter being determined by the measured changes in thveorked out in detail in the present paper. Moreover, in Ref.
frequency and damping of the=0 mode. This result seems [26], it is assumed that the thermal cloud always remains in

T/T.

023604-11



T. NIKUNI AND A. GRIFFIN PHYSICAL REVIEW A 69, 023604 (2004

static thermal equilibriun{see also Ref[25]). In contrast, The equation of motion foP’ «v Can be obtained by taking
our calculations include the coupled dynamics of both thehe moment of Eq(A2) and linearizing it around static ther-
thermal cloud and the condensate in the hydrodynamic remal equilibrium. One finds that the term that contributes to
gion. On the other hand, Duine and Stoof do include thehis moment is

effect of the fluctuations of the condensate order parameter

around its mean-field value. This leads to the generalized GP f dp 1 ( 1 )

equation(such as we use in this paper and derived in Ref. p.P,— P
X . . 2xh)d miTH 3 O
[3]) being replaced by a Fokker-Planck equation for a time- ( )
dependent condensate probability distribution. Our analysis D D
and the LK two-fluid equations do not include this kind of —.(_.V>ano(1+fo)
order parameter fluctuations. Their importance, if any, in the kgTo \m
collisional hydrodynamic region discussed in the present pa- dvny  JUn 2
er remains to be investigated. =F T “Vp .
p i investig P (axﬂ ox, 35WV Vi (A4)
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APPENDIX A: FREQUENCY-DEPENDENT TRANSPORT ©
COEFFICIENTS where

In this appendix, we give some details on the frequency-
dependent coefficients of the shear viscosity and thermal <1 (p p,— 1 p )>
conductivity, starting from the kinetic equation for the non- WPy 3 0 coll
condensate atoms. As in the usual Chapman-Enskog proce-
dure described in Ref5], we insert the local equilibrium f dp 1

1
(pﬂpu 3 0P )(C12+sz)

distribution functionf g, in the left hand side of the kinetic (2m#h)3 M
equation, wheréd , is given by
(A6)
fleg(r,P,1) ! (A1) Th llisional tributi the right hand side of E
leg( P, )= — — 2 , e collisional contribution on the right hand side of Eg.
z~}(r, e tprmin(nolTem— (A5) arises from deviation of the distributidrirom the local

equilibrium solution in Eq.(Al). Following the Chapman-

where z(r,t) =010~V s the local fugacity. As Enskog procedure, we use the ansatzf o+ 5f, where
shown in Appendix A of Refl5], the kinetic equation is then a

given by 1
5 5f:2 B,lLI/( p,upv_g(syvpz)fO(l—’_fO)v (A7)
of —mv -mv, mr
LIS, LI
gt |zm 2mkgT= M B m with B, being some momentum-independent symmetric
tensor. The relation betweeB),, and P;L,, can be found by
mv,) | frog( 1+ f Cit C A2 using Eq.(A7) in Eq. (A3) and carrying out the momentum
kaT “(P—mvy) | fieq leg =C12+Cop.  (A2) integral:
In contrast to Ref[5], we keep the time derivative dfex- dp 1 1
plicitly. Since we are interested in small-amplitude collective PL,= > B f 3 m(pﬂp,, 3 Suub )
oscillations, in the following we always expand the theory to u! (2mh)

first order in the fluctuations around static equilibrium.

We first consider the shear viscosity, which is associated
with the anisotropic pressure tensor. In a linearized theory,
this is given by

X pp.’pv 3 /.L V’p) (1+f0)

B 1 s, TrE > f
P,:LVE P,MV_ 5,LLVP "5 ’uv 3 %ur ' o' (277%)3 m
_ dp 1 1 1 2
_f (2 ﬁ)3 m p,u,pv ,qu (rlpvt)' (A3) X p/’«/p’// 3 M 1P )
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B ~ 1 dp p? 5
~2mkgToPo| B35 5, TrB . (A8) Q(”):f (27-rh)32__ f(r.p.)~ 5viPo(r)
2
Using Eq.(A7) in Eq. (A6), we find :f dp {p__ S R OM
(27h)3[2m 2 93/2(2Z0)
<1( 15 2>> ><pf( t) (A13)
—| PuP,— 3 »P —1(r,p,t).
m g 3 coll m
dp 1 1 Taking the moment of the kinetic equation in E42), one
=> PP~ 5 8,,P finds that the relevant contribution is given by
R 1 5 f dp p_2_§ 95/2(Zp) P p
<L p#rp,,,—géw,,,p (27h)312m 2 B0 031(20) m2kaT§
1 1 p
Ig( Buv— 35MVTrB) 2 (27Tﬁ)3 = X 5'V5T)fo(1+fo)
1 ) _ §ﬁok§To [797/2(20) 3 §[95/2(Zo) 2]
% p#/p,,r—gb“#/,,rp 2. m 203A20) 2| 93A20)] )’
1 (A14)
XL p,Py—568, P2 A9
PurPor ™3 OurvP } (A9) One thus obtains
. 9Q 5ngk3T 7974z5) 5 Z0) |2
wherelL is the linearized collision operator defined in Egs. ?+2 980 [297/2( o - 5[95/2( o ]
(46) and (48) of Ref.[5]. Combining Eq(A8) and Eq.(A9) J m 932(20)  2[9ar20)
and using the deflnl_tl(_)n of, given in Eq.(B5) of Ref.[5], p2 5 Us(Z0)] P
we find that the collision term reduces to =\|ls=—s5kgTo—=—=|= , (A15)
2m 2 JaZ0) | M/
< 1 ( 1 ) p/’” where
=P pv——éyp)> =——, (A10)
mi s 3 coll T <[ p? k - Os5/2(20) | P >
2m 278 %gy(z0) coll

where the viscous relaxation tims, is defined in Refg.5,8].

Assuming the harmonic time dependeriég xe et we Ef dp {pz O52(2Z0) | P ( +Cyy).
finally obtain (2mh)3l2m 278 Oggu(ze) | m T2
(Al6)
P’ =— ZT_VPO (D — 15 VTrD) To evaluate the collisional term EGA16), which arises from
e l-ler, | H 30F deviation from local equilibrium, we use the Chapman-
1 Enskog ansatt = f,+ of, where[5]
=—277(w)(D ) VTrD) (A11)
3 si=n P[5 9By
m{2m  27% %gyy(zo)] ° o

\évgf(ierzgdth;yfrequency-dependent viscosity coefficigfw) is HereA is a momentum-independent vector which is directly

related to the heat curre@ through

P dp |02[|02 5 _ 0s220)]?
_ P07 :Af | = TKeTo 22| fy(1+1,).
n(w)_l—iwr _1—iw7',7' (A12) Q (27h)%3m[2m 2 % %93120) ol o
(A18)

7

The frequency-dependent thermal conductivity can alsdevaluation of the collisional term with using the ansatz Eq.
be obtained in the same manner, by considering the lineafA17) closely follows the derivation of the thermal conduc-
ized heat current tivity in Ref. [5]. We find
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p? 5 9s2(Z0) | P d{x3) 207+’ wi—o?
<[%—§ 8100z ] . g et ()t (x2)=0,
_ 95/2(20) d<X4> w?—2w? W +20w?
__f |:2m 2 93/2(20) <X6> 23 <Xl>+ - 3 Z<X2>=01
2
p p Os/al 0)] } 2 2 2 2
X—-L . Al19 d{x 205t40 205—
m {Zm 2 93/2(20) ( ) <dt5> + z 3 l<X3>+ 23 L<X4>:O:

Combining Eq.(A18) and Eq.(A19) and using the definition

of the thermal relaxation time, given in Eq.(B1) of Ref. d{xe) N 4o — 407 N 4oi+20f
[5], we find dt 3 (Xx3) 3 (Xa)={X6)coll -
, (B3)
P 5 _OsZo)| P\ Q o o
5m  sRBlo o) T (A20) The collisional contribution in the last equation in Eq.
2m 2 932(Zp) | M Tk . .
coll (B3) is defined as
Assuming the harmonic time depender@ee'“!, we ob- 1 dp
tain E—fdrf— CoA 1. B4
(X6)col N (271'71)3)(6 24 f] (B4)
K
Q=- 1_inKV5TE — k(@) VT, (A21)  This term can be approximately evaluated by using the an-
satzf="f,+ 6f, where
where we have used the expression £ogiven in Eq.(24), 02
Egd the frequency-dependent thermal conductivity is defined  g¢ Bofo(1+f0)| — (Zm +Ug— ey | +P- Vot 57
K(w)=7——. (A22) +a(2p;-p?)|, (B5)
l-iwT,
where the time-dependent parametdt) characterizes the
APPENDIX B: MOMENT METHOD FOR A DEGENERATE anisotropy in the momentum distribution described(lpy).
NORMAL BOSE GAS The above ansatz is a generalization of the Gaussian ansatz

for the Maxwell-Boltzmann gas used in RE22] to a degen-
erate Bose gas.

Using the ansatz in E¢B5) in Eq. (B4) and linearizing in
a, one obtains

In the moment metho22], one derives an equation of
motion for some dynamical quantity denoted jgr,t) by
taking a moment of the kinetic equation in both position and
momentum:

<X6>

B 1 dp (X6)coll= — ,
<M=me(%%ﬁnmnuﬁo. (B1) ’

(B6)

where 7 is a quadrupole relaxation time defined by the

The advantage of this method is that it gives results valid inveighted spatial average of the inverse of the viscous relax-
both the collisionless and hydrodynamic region. It should beation time(see also Ref23])
noted that in the collisionless region, this approach does not
include Landau damping, but this is small abdvg-. For f dre./+
the m=0 monopole-quadrupole mode, we need moment 1 0 57
equations for the following physical quantities: T f 4P : (B7)

o

Using the moment equatioriB3) together with the approxi-

Xl:rzl X2:222_r2!

X3=r-p/m, xs=2zp,/m—r,-p, /m, mation Eq.(B6), we see that the only effect of using Bose
statistics is in the value for the spatially-averaged relaxation
X5=p2/m?, =2p3/m?—p?/m?. (B2)  time 7 defined in Eq(B7).

In a nondegenerate\/laxwell Boltzmann gas, one finds
Calculation of these moments gives the following coupledthat 7, (r) = 7¢(r) [5,8,27, where 7 is the usual elastic
equations: collision time for a classical gas

d<§l>_2<X3> 0 <X2>—2<x4> 0 le(r)=\/Ecrﬁo(r)v_=\/E(BWaz)Flo(r)(8kBT/7Tm)1’338)
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2 12 T T T
1.9 10+ ——Bose gas J
: 1 ——--Maxwell-Boltzmann gas
8l
< 1.8 . T
S ®
~ SN 6 -
G 17 | s
41
1.6 1 2L .
1.5 L L L L L 1 1 1
0 1 2 3 4 5 6 01 1.5 2 25 3
0,7 T/T,
(a) .
FIG. 7. Temperature dependence of the spatially averaged quad-
0.3 rupole relaxation time~. The broken line shows the result using the
' ' ' Maxwell-Boltzmann distribution for a classical trapped gas.
0.2 2 2y, 2 2 i a2 5p o 2
2r 7 (0 —4w)) (0w —4w))+ —|w —3o (5w +4w3)
. wT
2
—~
0.1 i + 8wf w§ =0.
Solving Eq.(B11), we obtain the solutiorv=Q—iI", de-
00 1 2 3 zll 5 scribing damped modes. One can see that in the collisionless
sz 1.8 T T T
(b)
FIG. 6. Moment calculation of thea) frequency andb) damp- 1.7
ing of them=0 mode, both as a function of the quadrupole relax- o ]
ation time7. These results are found by solving EB11). We use §
the ENS trap frequencies, /27=988 Hz andw,/27=115 Hz G
[10-12.. 1.6 .
Using this result andPy(r)=kgTny(r) in Eq. (B7), the
qguadrupole relaxation time reduces to 1.5 ! . .
1 1.5 2 2.5 3
1 4 T/T.
P grcoll . (B9) (a)
- . . . 0-3 T T T
HereT ;o= \2onv, where the spatially averaged density is
defined by
0.2 _
~2 _ o
I R g
n= = \f (B10) ~
f drng(ry  2V2 0.1 :
This result for 1# in terms ofl" ., agrees with that of Gurg- 0 , , ,
Odelinet al.[22]. The authors of Ref.12] analyzed data in 1.5 2 2.5 3
terms of the classical gas result of Rg#2], using the above T/T,
definition of the averaged collision raté., valid for a (b)

Maxwell-Boltzmann gas.

Assuming the time dependenee'!, the coupled equa-
tions in Eq.(B3) with Eqg. (B6) can be solved to give

FIG. 8. Temperature dependence (af frequency(), and (b)
dampingl’ of the m=0 mode, obtained by the moment method.
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limit w7>1, the frequency is given by eithew2 or 2w, . quency and damping as functions of the temperature, as
In the opposite hydrodynamic limié <1, the two solutions  shown in Fig. 8.
are given byw=Q ., with Q. given by Eq.(69). The fre- In the hydrodynamic limit, one can obtain an analytical

quency() and dampingd” obtained by solving EqB11) can  expression for the damping rate from the moment equations.
be expressed in terms of the spatially averaged quadrupolssumingw7<1, one can expand the solution to EB11)
relaxation timer, for given trap frequencies. In Fig. 6, we to first order in7. In this limit, the dampind’_ of the low-
plot Q andI' of the low-frequency mode as a function of frequency modd)_ is given by
w,7. The hydrodynamic domain is the regianr<1.

In Fig. 7, we plot the temperature dependence of the .
guadrupole relaxation time calculated for the ENS experi- 7_2(91—927)
mental data. For comparison, we also plot the refsift22]
using the Maxwell-Boltzmann distribution. The effect of Apart from a different averaged shear-viscous relaxation
Bose statistics is clearly very small, down to abdlt time 7, it is satisfying that this moment result is identical to
=1.5T.. We use the result in Fig. 7 to calculate the fre-the LL expression in Eq(75).

(02 —402)(02—40?). (B12)
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