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Complete population transfer in a degenerate three-state atom
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We have found conditions required to achieve complete population transfer, via coherent population trap-
ping, from an initial state to a designated final state at a designated time in a degenerate three-state atom, where
transitions are caused by an external interaction. Complete population transfer from an initially occupied state
one to a designated state two occurs under two conditions. First, there is a constraint on the ratios of the
transition matrix elements of the external interaction. Second, there is a constraint on the action integral over
the interaction, or ‘‘area,’’ corresponding to the phase shift induced by the external interaction. Both conditions
may be expressed in terms of simple odd integers. Some specific examples are discussed.
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I. INTRODUCTION

Population control in quantum systems, namely, trans
of electrons from an ensemble of atoms all in the same in
state to specified final states, is used in problems rang
from coherent population trapping@1–5#, including electro-
magnetically induced transparency@6–10#, and quantum
computing @11–17#, to chemical dynamics@18–21#. These
problems are modeled in terms of ann-state ~often three-
state! atom interacting with a strong external field@22–27#.
In this paper we consider population control in a nearly
generate three-state atom. We show that the three-state
is relatively easy to understand in the degenerate limit, wh
all three states have the same energy. We present the c
tions required to achieve complete population transfer i
degenerate three-state atom where the matrix elements o
external interaction have a common time dependence.

Our degenerate approximation@28# is mathematically
similar to the rotating wave approximation~RWA! @22,25#,
which has been widely applied to both two- and three-s
atomic models. However, in the RWA degenerate atom
states are not used. Instead one tunes the frequency o
external field to the frequency difference of two nondeg
erate states so that the detuning parameter@23# tends to zero.
Thus, in RWA the initial state of an atom plus one photon
degenerate in energy with the final state of the atom. O
advantage of using degenerate atomic states, as done in
paper, is that one may use external interactions with a br
range of frequencies. Another advantage is that the inte
tion frequency can be used as a control parameter, e.g
vary the duration of time that the transferred population
mains in the designated state, or to reduce the popula
leakage that occurs when the three states are not fully de
erate.

In the following section we derive analytic formulas fo
the probabilities,P1,2,3(t), that the electron is in state on
two, or three at timet. Then we seek conditions for comple
population transfer to a designated state that is initially

*Permanent address: Department of Heat Physics, Uzbek
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occupied at a designated timet0. This places conditions on
both the relative strengths of the interaction matrix eleme
Vi j (t), and the action integral,A(t0)5*0

t0V(t8)dt8. We
show that these conditions for complete transfer may be
pressed in terms of two odd integers,n1 andn2. Some analy-
sis is presented for population leakage that occurs when
states are not quite degenerate. Calculations using dipol
lowed transitions are presented.

II. THEORY

Let us consider ann-state atom interacting with an exte
nal field,Vext(rW,t). The total Hamiltonian for this system i
H5H01Vext(rW,t). The n eigenstates,fk , and correspond-
ing eigenenergies,Ek , of H0 are assumed to be known. Th
total wave function may be expanded in terms of the kno
eigenstates, namely, C(t)5a1(t)f11a2(t)f21•••

1an(t)fn . With atomic units, using i Ċ5„H0

1Vext(rW,t)…C, with H0fk5Ekfk and*f j* fkdrW5d jk , one
then obtains@23#

i ȧ j~ t !5Ejaj~ t !1 (
k51

n

Vjk~ t !ak~ t !, ~1!

whereVjk(t)5*f j* Vext(rW,t)fkdrW. These equations are ex
act for ann-state atom.

We now require that the system be degenerate, nam
that all the energiesEj are the same. Since the zero point
energy is arbitrary, one may generally setEj50. These con-
ditions give the coupled equations for a degeneraten-state
system, namely,

i ȧ j~ t !5 (
k51

n

Vjk~ t !ak~ t !. ~2!

We use the initial conditionsa1(0)51, andaj (0)50 for j
Þ1. We additionally require that all of theVjk(t) have the
same time dependence. Here we also takeVjk5Vk j to be
real.
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A. Degenerate three-state atom

The degenerate three-state atom can be solved ana
cally. Recalling that theVjk(t) have a common time depen
dence, we chooseV(t)5V23(t)5a21V12(t)5b21V13(t)
5e j

21Vj j (t). A relatively simple solution, presented next,
found by takinge j50. More general solutions fore jÞ0 are
discussed in the Appendix. Withe j50 and n53, Eq. ~2!
becomes

i ȧ1~ t !5aV~ t !a2~ t !1bV~ t !a3~ t !,

i ȧ2~ t !5aV~ t !a1~ t !1V~ t !a3~ t !,

i ȧ3~ t !5bV~ t !a1~ t !1V~ t !a2~ t !. ~3!

Now consider the linear combinationc(t)5a1(t)
1xa2(t)1ya3(t), wherex andy are some time-independen
coefficients that we next determine. Then,

i ċ~ t !5 i ȧ1~ t !1xiȧ2~ t !1yiȧ3~ t !5aV~ t !a2~ t !

1bV~ t !a3~ t !1x@aV~ t !a1~ t !1V~ t !a3~ t !#

1y@bV~ t !a1~ t !1V~ t !a2~ t !#. ~4!

Set z5ax1by. Then, i ċ(t)5zV(t)@a1(t)1(a1y)/(ax
1by)a2(t)1(b1x)/(ax1by)a3(t)#. We require that
i ċ(t)5zV(t)c(t). This holds if and only ifx5(a1y)/(ax
1by) and y5(b1x)/(ax1by). After some algebra this
leads to the useful cubic equation,

~b22a2!y31a~22a22b2!y21~2a22b221!y

1a~b221!50. ~5!

This determines three sets of eigenvalues,$xj% and$yj%, and
three eigenfunctions, cj (t)5e2 izjA(t), where A(t)
5*0

t V(t8)dt8. Specifically,cj5( i 51
3 Mj i ai , where

M5S 1 x1 y1

1 x2 y2

1 x3 y3

D . ~6!

This matrix,M, may be inverted, namely,

M 215
1

D S x2y32x3y2 x3y12x1y3 x1y22x2y1

y22y3 y32y1 y12y2

x32x2 x12x3 x22x1

D ,

~7!

where D5det(M)5x1y21x2y31x3y12x1y32x2y1
2x3y2.

Now one may express the unperturbed state amplitu
aj (t), in terms of the dressed-state amplitudes,cj (t). Using
cj (t)5e2 izjA(t), one has ai(t)5( j 51

3 M i j
21cj (t)

5( j 51
3 M i j

21e2 izjA(t). This leads to
02340
ti-

s,

P1~ t !5ua1~ t !u25
1

D2
@~x2y32x3y2!21~x3y12x1y3!2

1~x1y22x2y1!212~x2y32x3y2!~x3y1

2x1y3!cos„~z12z2!A~ t !…12~x2y32x3y2!~x1y2

2x2y1!cos„~z12z3!A~ t !…12~x3y12x1y3!~x1y2

2x2y1!cos„~z22z3!A~ t !…#,

P2~ t !5ua2~ t !u25
1

D2
@~y22y3!21~y32y1!21~y12y2!2

12~y22y3!~y32y1!cos„~z12z2!A~ t !…12~y2

2y3!~y12y2!cos„~z12z3!A~ t !…12~y32y1!~y1

2y2!cos„~z22z3!A~ t !…#,

P3~ t !5ua3~ t !u25
1

D2
@~x32x2!21~x12x3!21~x22x1!2

12~x32x2!~x12x3!cos„~z12z2!A~ t !…12~x3

2x2!~x22x1!cos„~z12z3!A~ t !…12~x12x3!~x2

2x1!cos„~z22z3!A~ t !…#. ~8!

Equation ~8! generally gives the transition probabilitie
to all three final states for arbitraryVjk(t), and corre-
sponds to the more general expression@29#, Pk(t)
5( i

n( j
n M ki

21M k j
21cos@(zi2zj)A(t)#. Since thexj ’s, yj ’s, and

zj ’s vary with theVjk(t), one may then seek conditions o
the matrix elementsVjk such that the electron population
Pk(t0) take any desired values at any specified time,t5t0.

B. Complete population transfer

Next we seek conditions on theVjk(t) such that at timet0
the electron population is completely transferred from its i
tial statei 51 to a different final state,i 52 or 3. As shown
from Eq.~A7! in Appendix A, the condition thate j50 yields
a52/y2y andb561. From the Appendix takingb511
in case~i! and usingr 56A2/(n1n2), one has

$x1 ,x2 ,x3%5$1,1,21%,

$y1 ,y2 ,y3%5$y1 ,y2 ,0%

5
1

2
$2a1Aa218,2a2Aa218,0%

5r $n2 ,2n1 ,0%,

$z1 ,z2 ,z3%5$a1y1 ,a1y2 ,2a%

5
1

2
$a1Aa218,a2Aa218,22a%

5$2y2 ,2y1 ,2a%

5r $n1 ,2n2 ,n22n1%,
5-2
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TABLE I. Some values for the action integralA(t0) and the relative interaction strengtha, allowed for
total population transfer. These values are found using Eq.~10! subject to the conditions listed. The thre
cases for$ne ,no8%, $no8 ,no%, and$no ,ne% are explained in Appendix A and below Eq.~12!.

ne no8 no8 no no ne

n1•n2 n1 n2 k 2k8 k8 k 2k k8 A(t0) a

5 61 65 62 63 63 71 71 62 61.656 72.530
5 65 61 62 71 71 63 63 62 61.656 62.530
9 63 63 62 61 61 61 61 62 62.221 0.000
11 61 611 64 67 67 73 73 64 62.456 74.264
11 611 61 64 73 73 67 67 64 62.456 64.264
17 61 617 66 611 611 75 75 66 63.053 75.488
17 617 61 66 75 75 611 611 66 63.053 65.488
27 63 69 64 65 65 71 71 64 63.848 71.633
27 69 63 64 71 71 65 65 64 63.848 61.633
35 61 635 612 623 623 711 711 612 64.381 78.128
be
te

n

e

-

ed

the
D52~y22y1!522Aa218522r ~n11n2!. ~9!

Here n1 and n2 are integers whose values are specified
low. This leads to certain allowed values of the action in
gral A(t0) and the relative interaction strengtha, namely,

3rA~ t0!563A 2

n1n2
A~ t0!5p,

a5r ~n12n2!. ~10!

The same allowed values ofA(t0), a, andb are found in all
cases, shown in the Appendix.

One may use the values of thexj , yj , zj , andD from Eq.
~9! in Eq. ~8! to obtain explicit expressions for the transitio
probabilities, namely,

P1~ t !5
1

2~n11n2!2
$n1

21n2
21n1n2@11cos„~n1

1n2!rA~ t !…#1~n11n2!@n1cos„~2n12n2!rA~ t !…

1n2cos„~2n22n1!rA~ t !…#%,

P2~ t !5
1

2~n11n2!2
$n1

21n2
21n1n2@11cos„~n1

1n2!rA~ t !…#2~n11n2!@n1cos„~2n12n2!rA~ t !…

1n2cos„~2n22n1!rA~ t !…#%,

P3~ t !5
2n1n2

~n11n2!2
sin2F S n11n2

2 D rA~ t !G , ~11!

wheren1 , n2 are odd integers. The constraints on the valu
of n1 and n2 are as follows. The conditionP150 requires
that 1

3 (2n12n2) and 1
3 (2n22n1) are both odd integers~i.e.,

n0 and no8), and also requires that13 (n11n2) is an even
integer. The conditionP251 imposes the same require
02340
-
-

s

ments. The conditionP350 only requires that13 (n11n2) be
an even integer, butP3>0 requires thatn1n2>0.

Finally a slightly neater solution may now be obtain
from the requirements above that 2n12n253no and 2n2

2n153no8 , whereno and no8 are both odd integers~either
positive or negative!. It is easily shown thatn11n253(no

1no8) and n1n252no
215nono812no

2 . Then r 56(no
2

1 5
2 nono81no8

2)21/2, a5r (no2no8) and 3rA(t0)5p. Now,

P1~ t !5
1

2~n11n2!2
$n1

21n2
21n1n2@11cos„~no

1no8!p@A~ t !/A~ t0!#…#1~n11n2!

3@n1cos~nop@A~ t !/A~ t0!# !

1n2cos~no8p@A~ t !/A~ t0!# !#%,

P2~ t !5
1

2~n11n2!2
$n1

21n2
21n1n2@11cos„~no

1no8!p@A~ t !/A~ t0!#…#2~n11n2!

3@n1cos~nop@A~ t !/A~ t0!# !

1n2cos~no8p@A~ t !/A~ t0!# !#%,

P3~ t !5
2n1n2

~n11n2!2
sin2

„

1
2 ~no1no8!p@A~ t !/A~ t0!#….

~12!

Hereno andno8 are arbitrary odd integers,n152no1no8 and
n25no12no8 . At t5t0 , A(t)/A(t0)51, so thatP2(t0)51
with P1(t0)5P3(t0)50. This yields complete population
transfer from state one to state two att5t0. We regardno

andno8 as the more fundamental numbers since they obey
simplest rules.
5-3
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C. Quantum numbers

Some allowed values of the action integral,A(t0), and the
relative interaction strength,a, are given in Table I. This
table includes values of$n1 ,n2%, $no ,no8% and all three
$k,k8% cases defined in the Appendix. From more compl
numerical output we confirm thatn1 andn2 each acquire all
possible odd integer values, although values of the prod
n1•n2 are restricted. This is consistent with the conditi
that n152no1no8 and n25no12no8 , whereno and no8 are
arbitrary odd integers. It is also evident that the even inte
ne5no1no8 , takes on all even values. One may also sh
algebraically that for each value of the even integerk in case
~i! there are two odd values of an odd integerk in case~ii !
and vice versa. The sets of integers$n1 ,n2%, $no ,no8%, and
$k,k8% are redundant. The three sets of$k,k8% correspond to
a single set$n1 ,n2%, while the $no ,no8% are in one to one
correspondence with the$n1 ,n2%.

Numerical calculations for the time dependence of
populations in a degenerate three-state atom perturbe
external interactions withV(t)5V0cos(vt) are presented in
Figs. 1–4. These results were obtained by using a stan
fourth-order Runge-Kutta numerical integration of Eq.~3!
with b51 for various values ofa andA(t0). For most val-
ues ofa the population transfer into either state two or st
three is always incomplete. A typical case is shown in Fig
wherea52 andA(t0)51.5. We note thatP1(t) does return
to zero twice in each period,T, of the external field, but tha
complete population transfer to an initially unoccupied st
never occurs.

Calculations using a few values ofa that permit complete
transfer to state two are shown in Figs. 2–4. Our numer

FIG. 1. Occupation probabilities as a function of time over o
period,T, of the external field,V(t)5V0cos(vt). The thick dashed
line is the probabilityP2(t) that the electron is transferred to th
target state, namely, state two. The solid line is the probab
P1(t) that the electron is in state one, the state in which it be
initially. The thin dash-dotted line is the probabilityP3(t) that the
electron is in state three. In this figurea5V12/V2352 and the
action area att5t0 is A(t0)5*0

t0V(t8)dt851.5. Sincea andA(t0)
do not correspond to values given by Eq.~10!, complete transfer to
state two does not occur.
02340
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codes give the same results as the analytic expressions o
~11!. This provides a check that our algebra is correct.
note that 2n1n2 /(n11n2)2< 1

2 and that the maximum value
of P3(t) occurs for n15n2, where P3max5

1
2 , consistent

with Fig. 2. This corresponds toa50 so that direct transi-
tions from state one to state two are forbidden. Transfe
state two occurs via the intermediate state three. Tran
from state one to state two and back is complete, and oc
periodically. In generala50 occurs whenn15n253nodd ,
wherenodd is any odd integer. This appears to give the si
plest condition that allows complete population transfer.
this case the action area isA(t0)5noddp/A2.

Calculations for two other values ofa that allow com-
plete transfer to state two are shown in Figs. 3 and 4. We

y
n

FIG. 2. Occupation probabilities as a function of time. The thi
dashed line denotesP2(t), the solid line denotesP1(t), and the thin
dash-dotted line denotesP3(t). In this figure we use the allowed
values, a5V12/V2350 and A(t0)5*0

t0V(t8)dt852.221, corre-
sponding ton153 andn253 (no5no851) in Eq. ~10!. Complete
transfer to state two from state one occurs att5t05T/4 and again
at odd multiples oft0.

FIG. 3. Occupation probabilities as a function of time. The thi
dashed line denotesP2(t), the solid line denotesP1(t), and the thin
dash-dotted line denotesP3(t). In this figure a522.530 and
A(t0)51.656, corresponding ton151 and n255 (no521, no8
53) in Eq. ~10!.
5-4



os
s’’

r
ig

de
at
v
ifo
m
m

e

fr

a
an
.
r
in

s
av
en
a

,

vel
a

-
ing
ec-

nsi-

ner-
s

hat

f
-

he

u-

tive

lity

be
rnal

-

two

ick

om

ic
-

COMPLETE POPULATION TRANSFER IN A . . . PHYSICAL REVIEW A69, 023405 ~2004!
that complete transfer occurs twice in one period of the
cillating field but that the frequency of the ‘‘side band
increases as aA increases. We note thata5
6A2/(n1n2) (n12n2) becomes either large (n1@n2, or vice
versa!, or small (n1;n2) as n1n2 increases, whileA(t0)
increases asAn1n2/2. When complete population transfe
occurs, the population lingers in state two, as seen in F
2–4.

III. RESULTS AND DISCUSSION

In this paper we have considered transitions amplitu
and probabilities in a three-state atom with degenerate st
In realistic atomic systems, energy states are seldom, if e
exactly degenerate. Also states outside three-state man
usually exist. However, our method can be used for ato
with a certain structure of energy states, namely, for ato
that have three nearly degenerate states separated from
other states by a relatively big energy gap. One exampl
such system is a hydrogen atom~transitions between 3s,
3p0, and 3d0 states, see Ref.@29#!. Another example is
atomic lithium (4p0 , 4d0, and 4f 0 states!. In both cases the
energy structure of the states imposes restrictions on the
quency of the external field,vmin,v,vmax. Here\vmin is
the energy splitting of the nearly degenerate states,
\vmax is the energy difference between the three-state m
fold and the closest state in energy outside the manifold
both cases conventionalE1 dipole selection rules apply fo
linearly polarized light. Calculations are shown for lithium
Fig. 5, based on oscillator strengths@30# that givea51.39
~with b50 due to the dipole selection rule!. Three closely
spaced energy levels also occur in the ground state
atomic carbon, oxygen, and silicon. These atoms all h
three states with different values of a total angular mom
tum. Magnetic dipole or electric quadrupole transitions c
be used for transitions that coupleJ50,1,2. For example
the 2s22p2 3P term of 6

12C has three levels (J50,1,2) sepa-

FIG. 4. Occupation probabilities as a function of time. The th
dashed line showsP2(t), the solid line showsP1(t), and the thin
dash-dotted line showsP3(t). Here a58.128 andA(t0)54.381,
corresponding ton1535 and n251 (no523, no85211) in Eq.
~10!. Since these values are allowed, the electron population is c
pletely transferred to state two from state one.
02340
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rated by less than 0.006 eV, while the closest adjacent le
(2s22p2 1D has an energy 1.26 eV. This corresponds to
ratio vmax/vmin'234, indicating that the criteria for appli
cation of our method is well satisfied. The correspond
ratios for atomic oxygen and silicon are 70 and 28, resp
tively. More generally three degenerate levels ofJ51 atomic
states may also be controlled using magnetic dipole tra
tions.

In lithium energy difference between 4p0 , 4d0, and 4f 0
states is less than 0.02 eV, while the closest adjacent 4s state
is 0.18 eV apart. Therefore, one can use photons with e
gies in the range 0.02 eV,\v,0.18 eV. When the state
are nondegeneratev i j 5(Ei2Ej )/\Þ0, and the population
transfer is incomplete. Numerical calculations indicate t
this nondissipative population leakage varies as (v i j /v)2.
For \v50.1 eV this factor is 0.04 for lithium. The choice o
the field frequencyv involves a trade-off between the dura
tion of time the population remains in state two and t
population leakage. The higher the frequencyv the smaller
the population leakage, but the shorter the duration timeTs
that the population remains in state two. This effect of pop
lation leakage is similar as that for a two-state atom@28#.
Another factor that prevents complete transfer is the rela
strength of the matrix elements,a andb. For the transitions
under consideration their values (a50,b51.39) differ from
the one that allows the complete transfer (a50,b51) cor-
responding to Fig. 2. As a result, the occupation probabi
for the target state never exceeds 90%~cf. Fig. 5!.

The duration of time spent in the transferred state can
controlled by adjusting the time dependence of the exte
field. If the external interaction varies harmonically,V(t)
5V0cos(vt), then the first line of Eq.~10! imposes a con-
straint betweenV0 and v, namely,V0 /v56An1n2/2p/3.
For a harmonic interaction the duration of the timeTs that
the population remains in state two varies inversely withv;
the higher the frequencyv the smaller the time the popula
tion remains in state two. The conditiona50 corresponds to
a dipole selection rule. Transfer from state one to state
~which is the dipole forbidden transition! is complete at time

-

FIG. 5. Occupation probabilities as a function of time in atom
lithium. Solid line, initial state 4p0; thin dash-dotted line, interme
diate state 4d0; thick dashed line, target state 4f 0.
5-5



ife
an

e
e
A
k

s
om
n

in

he

e
is
a

e
s

s
to

an
b

a

ar
-
e
a
ha

e
te

ra
a

-
t
he

n
b

or
the
e-

by

its

RAKHIMOV, SHAKOV, AND McGUIRE PHYSICAL REVIEW A 69, 023405 ~2004!
t0 if the two allowed transition matrix elements,V23 and
V13, are equal in absolute magnitude andA(t0)5noddp/2.
In some atomic systems state two could decay, with a l
time Td to another state outside the degenerate manifold
be lost. Such loss can be controlled by adjustingv.

Additional control@28# may be achieved by changing th
shape ofV(t). This can be used to control how long th
population remains near unity in state two, for example.
interesting example is the case of an ideal, sudden ‘‘kic
produced byV(t)5A0d(t2t0). If A0→noddp/A2, for ex-
ample, then the mere presence of state three allows tran
from state one to state two without any direct transfer fr
state one to state two. With this ideal kick, state two is u
occupied beforet5t0, and fully occupied aftert5t0. This is
a switch. One may apply a series of switches by tak
V(t)5A0@d(t2t1)1d(t2t2)1•••1d(t2tk)#. Alterna-
tively one may switch to different states by adjusting t
matrix elements so that after each stepV12(t) is interchanged
with V182(t), where state 18 is now the state occupied befor
the next kick is applied. Two practical limitations on th
ideal model are the impossibility of producing a signal th
varies asd(t2t0), and the existence of an infinitely wid
spectrum of high-frequency components with frequenciev
.vmax in the Fourier spectrum ofd(t2t0). Fortunately
these two difficulties can both be addressed by using kick
finite width in time. In some cases it may be possible
design a kick so that its duration is short compared to
other changes in the system, so that a finite kick may
sensibly represented byd(t2t0).

We note that the method described here is generally
plicable to a degeneraten-state system@31# in a case where
many of the matrix elements of the external interaction
the same, since such a degeneraten-state system can be re
duced to a mathematically equivalent three-state syst
However, the conditions placed on the matrix elements
not often met in most atomic systems. Finally we remark t
use of degeneracy,DE→0, imposesDt→`. This removes
time sequencing in intermediate steps of the reaction proc
That is, any physical effect due to time sequencing of in
mediate interactions is lost in the limit of degeneracy.

IV. SUMMARY

We have shown that in a three-state atom with degene
energies, electron population is completely transferred via
external interaction at a designated timet0 from an initially
occupied state~state one! to a designated initially unoccu
pied state ~state two! under two conditions. The firs
condition for complete transfer is that the ratio of t
matrix elements of the external interaction,Vi j (t),
satisfy V12(t)/V23(t)5a56A2/(n1n2) (n12n2), and
V13(t)/V23(t)5b561. The second condition is that att
5t0 the action area ofV(t) satisfy A(t0)5*0

t0V(t8)dt85

6An1n2/2p/3, where we have setV23(t)5V(t). Here n1

and n2 are integers such thatn152no1no8 and n25no

12no8 , whereno andno8 are any odd integers. The duratio
of time the transferred population remains in state two can
controlled either by varying the frequencyv of the external
potential or by varying the shape ofV(t).
02340
-
d

n
’’

fer

-

g

t

of

y
e

p-

e

m.
re
t

ss.
r-

te
n

e

ACKNOWLEDGMENTS

We thank J.H. Eberly, B.W. Shore, and A.L. Godunov f
useful discussion. This work was supported in part by
Division of Chemical Sciences, Office of Sciences, U.S. D
partment of Energy. Kh.R. was financially supported
NSF-NATO.

APPENDIX A: METHOD TO FIND CONDITIONS FOR
COMPLETE POPULATION TRANSFER

Here we show how to find the conditions on theVjk such
that the electron population is completely transferred from
initial statei 51 to a different final state,i 52 or 3. A con-
venient way to begin is to takedPk(t)/dt50 at t5t0. This
gives both maxima and minima forPk . Using Eq.~8! this
yields

sin„~zi2zj !A~ t0!…50,

~zi2zj !A~ t0!5mi j p ~mi j Þ0! ~ i , j 51,2,3!. ~A1!

Using cos„(zi2zj )A(t0)…5cos(mijp)5(21)mij, one has

P15ua1u25
1

D2
@~x2y32x3y2!21~x3y12x1y3!21~x1y2

2x2y1!212~21!m12~x2y32x3y2!~x3y12x1y3!

12~21!m13~x2y32x3y2!~x1y22x2y1!

12~21!m23~x3y12x1y3!~x1y22x2y1!#

5
1

D2
@~21!k1~x2y32x3y2!1~21!k2~x3y12x1y3!

1~21!k3~x1y22x2y1!#2, ~A2!

wherek11k25m12, k11k35m13 andk21k35m23. Now,

k[k15
1

2
~m121m132m23!

5
1

2 S A~ t0!

p
~z12z2!1

A~ t0!

p
~z12z3!2

A~ t0!

p
~z22z3! D

5
A~ t0!

p
~z12z2!,

k25
1

2
~m121m232m13!

5
1

2 S A~ t0!

p
~z12z2!1

A~ t0!

p
~z22z3!2

A~ t0!

p
~z12z3! D

50,
5-6
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k8[k35
1

2
~m131m232m12!

5
1

2 S A~ t0!

p
~z12z3!1

A~ t0!

p
~z22z3!2

A~ t0!

p
~z12z2! D

5
A~ t0!

p
~z22z3!. ~A3!

This yields extrema forPk at t5t0, namely,

P15
1

D2
@~21!k~x2y32x3y2!1~x3y12x1y3!

1~21!k8~x1y22x2y1!#2,

P25
1

D2
@~21!k~y22y3!1~y32y1!1~21!k8~y12y2!#2,

P35
1

D2
@~21!k~x32x2!1~x12x3!1~21!k8~x22x1!#2,

~A4!

wherek andk8 are nonzero integers that arenot both even.

1. Conditions for complete transfer

We now seek conditions such that att5t0 , P150, P2
51, and P350. There are three sets,$k,k8%, that satisfy
these conditions, namely,~i! k is even andk8 is odd, ~ii ! k
andk8 are both odd, and~iii ! k is odd andk8 is even.

Case (i). kis even andk8 is odd. Then,

P15
1

D2
@~x2y32x3y2!1~x3y12x1y3!2~x1y22x2y1!#2,

P25
1

D2
@~y22y3!1~y32y1!2~y12y2!#25

4

D2
~y22y1!2,

P35
1

D2
@~x32x2!1~x12x3!2~x22x1!#25

4

D2
~x12x2!2.

~A5!

From the condition thatP251 one has@2(y22y1)/D#2

51, wherey1Þy2, so thatD562(y22y1). The condition
that P350 gives @2(x12x2)/D#250, which yieldsx15x2
5x. Using this result one then obtainsP15@(x1x3)(y1
2y2)/D#2. RequiringP150, one hasx352x. Now, using
x15x252x35x, we have from below Eq.~7!, D52x(y2
2y1). Finally since D562(y22y1), one hasx15x25
2x35x561.

Case (ii). kandk8 are both odd. Then,

P15
1

D2
@2~x2y32x3y2!1~x3y12x1y3!2~x1y22x2y1!#2,
02340
P25
1

D2
@2~y22y3!1~y32y1!2~y12y2!#2

5
4

D2
~y32y1!2,

P35
1

D2
@2~x32x2!1~x12x3!2~x22x1!#2

5
4

D2
~x12x3!2. ~A6!

From the condition thatP251 one has@2(y32y1)/D#2

51, wherey1Þy3, so thatD562(y32y1). The condition
that P350 gives @2(x12x3)/D#250, which yieldsx15x3
5x. Then one obtainsP15@(x1x2)(y12y3)/D#2. When
P150 one hasx252x. Now, usingx152x25x35x, we
get from below Eq.~7!, D52x(y12y3). SinceD562(y3
2y1), one hasx152x25x35x571.

Case (iii). k is odd andk8 is even. This is similar to case
~i!. One obtains, D52x(y32y2) and 2x15x25x35x
561.

Complete population transfer, i.e.,P251, requires that
x561, so that the relative interaction strengthsa and b
must satisfy

a5
2

y
2y6

e22e1

y2
6~e32e2!,

b5611
e22e1

y
. ~A7!

Next we use these results to find the conditions onVi j re-
quired for complete population transfer to occur.

2. Quantum numbers for A„t0… and a

We now note that relatively simple conditions occur wh
e15e25e35e, namely,a5(2/y)2y and b561. In this
case Eq.~A7! reduces from a cubic to an easier quadra
equation iny. This quadratic equation corresponds to thr
roots of the more general cubic equation, namely,

$yj%5$y1 ,y2 ,0%5H 2a1Aa218

2
,
2a2Aa218

2
,0J .

~A8!

Now for case~i! when k is even andk8 is odd, one has
from above,x5$61,61,71% andy5$y1 ,y2,0%. From Eq.
~A8!, z5$7y2 ,7y1 ,7a%. Then, with E5A(t0)/p, the
useful integers k and k8 are: k5A(t0)/p(z12z2)
56EAa218, and k85A(t0)/p(z22z3)56E/2(3a
2Aa218). Eliminating a, one obtains (2k1k8)(k2k8)
518E25n1n2. For case~ii ! whenk andk8 are both odd,x
5$61,71,61% and y5$y1,0,y2%. and z5$7y2 ,7a,
7y1%. Then, k5A(t0)/p(z12z2)56E/2(3a1Aa218),
and k85A(t0)/p(z22z3)57E/2(3a2Aa218). One may
5-7
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now verify that (2k1k8)(k12k8)518E25n1n2. For
case~iii ! when k is odd andk8 is even,x5$71,61,61%
and y5$0,y1 ,y2%, and z5$7a,7y2 ,7y1%. Then, k
5A(t0)/p(z12z2)57E/2(3a1Aa218), and k85A(t0)/
p(z22z3)56EAa218). One may again verify that (k8
2k)(2k81k)518E25n1n2.

One readily finds in case~i!, wherek is even andk8 is
odd, thatk5 1

3 (n11n2) and k85 1
3 (n122n2). In case~ii !,

wherek and k8 are both odd, one hask5 1
3 (2n12n2) and

k85 1
3 (2n22n1). In case ~iii ! k5 1

3 (n222n1) and k8
5 1

3 (n11n2). In all three cases one readily obtains the sa
equation for the allowed values ofA(t0) anda, namely,

A~ t0!56An1n2

2

p

3
,

a56A 2

n1n2
~n12n2!. ~A9!

It is remarkable that all three cases give the same formula
complete population transfer. The top equation correspo
to a constraint on the value of the action,*0

t V(t8)dt8, i.e.,
the ‘‘area’’ of the external interaction,V(t), or the phase
shift caused by the external interaction. The bottom equa
above gives the relative values of theVi j .

APPENDIX B: GENERAL SOLUTIONS FOR THE
DEGENERATE THREE-STATE ATOM

In the main text a solution for the degenerate three-s
atom was found in the case whene j50. We now choose
e j

21Vj j (t)5V(t)5V23(t)5a21V12(t)5b21V13(t). Then
Eq. ~2! becomes

i ȧ1~ t !5e1V~ t !a1~ t !1aV~ t !a2~ t !1bV~ t !a3~ t !,

i ȧ2~ t !5aV~ t !a1~ t !1e2V~ t !a2~ t !1V~ t !a3~ t !,

i ȧ3~ t !5bV~ t !a1~ t !1V~ t !a2~ t !1e3V~ t !a3~ t !. ~B1!

Consider a linear superpositionc(t)5a1(t)1xa2(t)
1ya3(t), wherex and y are some time-independent coef
cients that we next determine. Then,
-

C
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te

i ċ~ t !5 i ȧ1~ t !1xiȧ2~ t !1yiȧ3~ t !

5e1V~ t !a1~ t !1aV~ t !a2~ t !1bV~ t !a3~ t !

1x@aV~ t !a1~ t !1e2V~ t !a2~ t !1V~ t !a3~ t !#

1y@bV~ t !a1~ t !1V~ t !a2~ t !1e3V~ t !a3~ t !#.

~B2!

Set z5e11ax1by. Then, i ċ(t)5zV(t)@a1(t)
1(a1e2x1y)/(e11ax1by)a2(t)1(b1x1e3y)/(e11ax
1by)a3(t)#. We require thati ċ(t)5zV(t)c(t). This holds
if and only if z5e11ax1by, x5(a1e2x1y)/(e11ax
1by) and y5(b1x1e3y)/(e11ax1by). After some al-
gebra this leads to the useful cubic equation

@~b22a2!1ab~e22e3!#y31@a~22a22b2!1b~2e12e2

2e3!1a~e12e3!~e22e3!#y21@~2a22b221!

1ab~2e32e12e2!1~e12e2!~e12e3!#y

1@a~b221!2b~e12e2!#50. ~B3!

This determines three sets of eigenvalues,$xj%, $yj%, and
$zj%, and three eigenfunctions,cj (t)5e2 izjA(t), whereA(t)
5*0

t V(t8)dt8.
Whene jÞ0 complete population transfer can also occ

Using e j5eÞ0 adds nothing new, since it produces only
overall phaseei et. A slightly more general, but less elegan
solution for the degenerate three-state equations is fo
when e15e2Þe3. Again in this casea5(2/y)2y6(e3
2e1) and b561. The quadratic equation fory now be-
comes y21@„a(12a2)1a(e12e3)26(e12e3)…/„12a2

6a(e12e3)…#y2250. Taking ã5„a(12a2)1a(e1
2e3)26(e12e3)…/„12a26a(e12e3)5a6(e12e3)… the
algebra is the same as that one above, except thata→ã.
This includes an additional parameter, (e12e3), gives
simple allowed values ofã, and imposes a constraint be
tweena and (e12e3). More complex conditions for com
plete population transfer might exist whene1Þe2, in which
case Eq.~B3! is cubic iny. Finally it might be possible tha
solutions exist when the matrix elementsVi j (t) have differ-
ent time dependences, i.e., whena andb depend ont.

Conditions for complete transfer into state three att5t0
may be generally found similarly by interchange of the in
ces 2 and 3, with corresponding interchange ofa with b and
x with y.
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