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Complete population transfer in a degenerate three-state atom
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We have found conditions required to achieve complete population transfer, via coherent population trap-
ping, from an initial state to a designated final state at a designated time in a degenerate three-state atom, where
transitions are caused by an external interaction. Complete population transfer from an initially occupied state
one to a designated state two occurs under two conditions. First, there is a constraint on the ratios of the
transition matrix elements of the external interaction. Second, there is a constraint on the action integral over
the interaction, or “area,” corresponding to the phase shift induced by the external interaction. Both conditions
may be expressed in terms of simple odd integers. Some specific examples are discussed.
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[. INTRODUCTION occupied at a designated tinhg This places conditions on
both the relative strengths of the interaction matrix elements,
Population control in quantum systems, namely, transfew/;;(t), and the action integraIA(to)=fB°V(t’)dt’. We
of electrons from an ensemble of atoms all in the same initiakhow that these conditions for complete transfer may be ex-
state to specified final states, is used in problems rangingressed in terms of two odd integens,andn,. Some analy-
from coherent population trappirf{d 5], including electro-  sjs is presented for population leakage that occurs when the
magnetically induced transparen¢$-10, and quantum states are not quite degenerate. Calculations using dipole al-
computing[11-17, to chemical dynamic$18-21. These |owed transitions are presented.
problems are modeled in terms of arstate (often three-
statg atom interacting with a strong external figlgl2—27.
In this paper we consider population control in a nearly de- Il. THEORY
generate three-state atom. We show that the three-state atom o4 ;5 consider an-state atom interacting with an exter-
is relatively easy to understand in the degenerate limit, where - - . .
all three states have the same energy. We present the con&f—il f'eld'vext([’t)' The total Hamiltonian for this system is
tions required to achieve complete population transfer in &1=Ho+ Vex{(r,t). Then eigenstates¢y, and correspond-
degenerate three-state atom where the matrix elements of tHgd eigenenergieszy, of H, are assumed to be known. The
external interaction have a common time dependence.  total wave function may be expanded in terms of the known
Our degenerate approximatiof28] is mathematically ~€igenstates, — namely, W(t)=ay(t)p+ay(t)do+---

similar to the rotating wave approximatidRWA) [22,25, +ay(t)p,. With atomic units, using i¥=(H,
which has been widely applied to both two- and three-state. v (r t))W, with Hyb,=Eéby and [ ¢} b dr= Sk, one
atomic models. However, in the RWA degenerate atomighen optaing23]
states are not used. Instead one tunes the frequency of the

external field to the frequency difference of two nondegen- n
erate states so that the detuning paran@®@jrtends to zero. .- _
i o . (H=Ea(t)+ -
Thus, in RWA the initial state of an atom plus one photon is 1a;(t)=E;a;(1) g‘l Vik(Da(t), @

degenerate in energy with the final state of the atom. One
advantage of using degenerate atomic states, as done in this . - - )
paper, is that one may use external interactions with a broafhereVi(t)=J ¢ Vex(r,t) ¢dr. These equations are ex-
range of frequencies. Another advantage is that the intera@ct for ann-state atom.
tion frequency can be used as a control parameter, e.g., to W& now require that the system be degenerate, namely
vary the duration of time that the transferred population rethat all the energieg; are the same. Since the zero point of
mains in the designated state, or to reduce the populatiofn€rgy is arbitrary, one may generally &t=0. These con-
leakage that occurs when the three states are not fully degeflitions give the coupled equations for a degeneragtate
erate. system, namely,

In the following section we derive analytic formulas for
the probabilities,P; , t), that the electron is in state one, _ n
two, or three at timé. Then we seek conditions for complete iaj(t)= 2 Vi(Da(t). 2
population transfer to a designated state that is initially un- k=1

We use the initial conditiona,;(0)=1, anda;(0)=0 for j
*Permanent address: Department of Heat Physics, Uzbekista# 1. We additionally require that all of the;(t) have the
Academy of Sciences, 28 Katartal St., Tashkent 700135, Uzbekisame time dependence. Here we also teke=V,; to be
stan. real.
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A. Degenerate three-state atom

1
The degenerate three-state atom can be solved analyti-Pl(t):|al(t)|2:P[(X2Y3_XSY2)2+(X3Y1_X1y3)2
cally. Recalling that thé/;(t) have a common time depen-

dencle, we  chooseV(t) =Vay(t) =a Vi) = B~ VA1) +(X1Y2—XoY1) 2+ 2(XaY3— X3Y2) (XaY1

=¢€; "V;;(t). Arelatively simple solution, presented next, is

found by takinge;=0. More general solutions far; 0 are —X1Y3)C0s(21 = Z) A1)+ 2(XaY 3~ XaY2) (X1Y2
gsgg;séesd in the Appendix. Witej=0 andn=3, Eq. (2) — XoY1)CO(21 — Z3) A1)+ 2(XaY1 — X1Y3) (X1Y

. —Xpy1)C0H(Z,— Z3)A(1))],
ia (t)=aV(t)ay(t)+ BV(t)as(l),

1
_ 2_ EVRY —y.)2 VRV
i2,(1) = V() ag(t) + V(D) ag(t), P,(t)=[ax(t)| —Az[(YZ Y3)“t (Ya3— Y1)t (y1—Y2)

+2(y,—Y3)(Y3—Yy1)cod(Z;— Z,) A1)+ 2(y,
—Y3)(Y1—Y2)c0(Z3— 23) A1)+ 2(y3— Y1) (Y1

iag(t)=BV(t)a,(t)+V(t)ay(t). (3)

Now consider the linear combinatiorc(t)=a,(t) A
+Xay(t) +yas(t), wherex andy are some time-independent ~Yy2)cod(zz~ Zg) AD)],
coefficients that we next determine. Then,

1
. . . . P.(t)= t)2=— )2 (X —Xa) 24 (X — X1 )2
G(0) =ia(1) +xifa(t) +yidg() = aV(Da(t) (010 = G0 ba e e )

+ BV(t)as(t) +x[aV(t)a () +V(t)as(t)] +2(X3—Xz) (X1~ X3)C0(Z3— Z) A(1)) + 2(X3
+y[BV(t)a (1) +V(t)ay()]. (4) —X5)(X—X1)C0H(Z1— Z3) A(1)) + 2(X1 — X3) (X
—X1)c0d(2,—z3) A(1))]. 8

Set z=ax+By. Then, ic(t)=zV(t)[ay(t) + (a+Yy)/(ax
+By)ay(t) +(B+x)/(ax+ By)as(t)]. We require that Equation (8) generally gives the transition probabilities
i(';(t)zzv(t)c(t)_ This holds if and only ifx=(a+Yy)/(ax to all three final states for arbitrary/;(t), and corre-
+By) andy=(B+x)/(ax+ By). After some algebra this sponds to the more general expressi¢R9], P(t)

leads to the useful cubic equation, =300 M ;"M ;' cod(z—z)A(t)]. Since thex;’s, y;’s, and
zj's vary with theVj,(t), one may then seek conditions on
(B2— a?)y3+ a(2— a®— B?)y?+ (2a%— B2—1)y the matrix elements/;, such that the electron populations

P.(ty) take any desired values at any specified titmet,.
+a(B2—1)=0. ) k(to) y y Sp 0

B. Complete population transfer
This determines three sets of eigenvaljes} and{y;}, and » )
three  eigenfunctions, c,(1)—¢ A0, Twhere A R T e complealy ransferred from s n
=[oV(t)dU. Specifically,¢; =27, M;&;, where tial statei =1 to a different final statd,= 2 or 3. As shown
1 % from Eq.(A7) in Appendix A, the condition tha¢;=0 yields
v a=2ly—y and 8= +1. From the Appendix takingg= +1
M=|1 X3 Yaf. (6) in case(i) and usingr = = \/2/(nn,), one has

1 X3 Y3 {X1,%5,X3}={1,1—-1},

This matrix, M, may be inverted, namely, y1.Y2,ys ={y:.y_,0}

XoY3—X3Yo X3Y1—X1Y3 X1Yo—XaY1 ZE{—a-F\/m—a—\/mO}
M*1=K Y2—VYs3 Ys—VY1 yi—Y2 |, 2 ’ ’
X3 X2 X1~ X3 X2— X =r{n,,—ny,0},
(7)
{21,725, 23 ={a+y . ,aty_,—a}
where A=det(M) =X1Ys+Xoy3+ X3y1—X1Y3— XoY1
—X3Y2. :} 2 _ 2 _
2{a+\/a +8,a—\a’+8,—2a}

Now one may express the unperturbed state amplitudes,
aj(t), in terms of the dressed-state amplitudggt). Using . _ )
c(t)=e %40, one  has a(t)==% M 'c;(t) Y=Y ma
=33 M te %AW, This leads to =r{ny,—n,,n,—ny},
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TABLE |. Some values for the action integralty) and the relative interaction strength allowed for
total population transfer. These values are found using(Hg). subject to the conditions listed. The three
cases fo{ng,nj}, {ng,no}, and{n,,ne} are explained in Appendix A and below Ed.2).

’ ’

Ne No Ny Ny No Ne

ng-n, n, n, k -k’ k’ k -k k' A(to) a

5 *1 *5 *2 *3 *3 *1 1 *2 *1.656 ¥2.530
5 +5 +1 +2 F1 F1 +3 +3 +2 +1.656  *£2.530
9 +3 +3 +2 +1 +1 +1 +1 +2 +2.221 0.000
11 *1 +11 *+4 +7 *7 *3 *3 *+4 +2.456 ¥4.264
11 +11 *1 4 *3 *3 *7 *7 4 +2.456 *+4.264
17 +1 *17 +6 *+11 +11 *5 *5 +6 +3.053 ¥5.488
17 +17 *1 *6 *5 *5 +11 *+11 *6 +3.053 £5.488
27 +3 *9 *4 *5 *5 1 *1 *4 +3.848 +1.633
27 *9 *3 *4 *1 *1 *5 *5 *4 +3.848 *£1.633
35 *1 *35 *12 +23 *23 11 11 *+12 *+4.381 +8.128

A=2(y_—y.)=—2\a?+8=—2r(n;+n,). (9) Mments. The conditio3=0 only requires tha (n,+n,) be
an even integer, buR;=0 requires thah;n,=0.
Heren, andn, are integers whose values are specified be- Finally a slightly neater solution may now be obtained
low. This leads to certain allowed values of the action inte-from the requirements above thahg2-n,=3n, and 2,

gral A(to) and the relative interaction strength namely, —n;=3ng, wheren, andn, are both odd integergither
positive or negative It is easily shown thah;+n,=3(n,
2 +n)) and nin,=2n2+5n,n,+2n2. Then r=+(n3
3rA(tg)==3 \/mA(to):W' +3noni+n.%) Y2 a=r(n,—n}) and FA(to)=. Now,
a=r(n;—ny). (10
Py(t)= {nZ+n3+n;n,[1+cog(n,

The same allowed values 8{(t,), «, andg are found in all 2(n;+ny)?
cases, shown in the Appendix. ,

One may use the values of tRg, y;, z;, andA from Eq. o) T A/A(to) D]+ (N1 +ny)
(9) in E_q._(8) to obtain explicit expressions for the transition X[n,codnym[A(t)/A(te)])
probabilities, namely,

+nacognym{ A(/A(to) D1},

Pl(t)=m{nf+ n3+n.n,[ 1+ cos(n,
+n)rA(1)]+ (N +ny)[N,co8(2n; — NP FA(L)) PZ(”:m{”%”g”l”i“coﬂm
+nzcog(2n,— Ny rA(H))]1}, +n)) [ A(t)IA(te)])]— (ny+ny)

X[ nicod nym[A(t)/A(tg)])

P,(t)= m{n'ﬁ n3+n.n,[ 1+ cos(n, +nycosnialAMIAt) DI
+n,)rA(t))]— (n;+ny)[nycod(2n;—ny)rA(t))
+1008(2np— AT}, Pa(t) = — 22 G2 (3 (n,+ ) AL AIA(t)]).

2n.n ny{+n e (12

P3(t)=(nl+1n;2° =AM @

Heren, andn/ are arbitrary odd integers,; =2n,+n; and
wheren,, n, are odd integers. The constraints on the valuesi,=n,+2n/. At t=tq, A(t)/A(ty)=1, so thatP,(ty)=1
of n; andn, are as follows. The conditioR,=0 requires with P4(tg) =P3(ty)=0. This yields complete population
that3(2n,—n,) and3(2n,—n,) are both odd integeré.e.,  transfer from state one to state twotatt,. We regardn,
ny andn)), and also requires tha(n,+n,) is an even andn, as the more fundamental numbers since they obey the
integer. The conditionP,=1 imposes the same require- simplest rules.
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FIG. 1. Occupation probabilities as a function of time over one
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FIG. 2. Occupation probabilities as a function of time. The thick

period, T, of the external fieldV(t) =V,cos(t). The thick dashed dashed line denotd®,(t), the solid line denoteB,(t), and the thin

line is the probabilityP,(t) that the electron is transferred to the

dash-dotted line denote®;(t). In this figure we use the allowed

target state, namely, state two. The solid line is the probabilityvalues, a=V,,/V,3=0 and A(to)zfgov(t’)dt’zz_zzl, corre-
P1(t) that the electron is in state one, the state in which it begarsponding ton;=3 andn,=3 (n,=n,=1) in Eq.(10). Complete

initially. The thin dash-dotted line is the probabiliBs(t) that the
electron is in state three. In this figue=V,,/V,3=2 and the
action area at=t is A(tg) =fB°V(t’)dt’ =1.5. Sincea andA(ty)

do not correspond to values given by E#j0), complete transfer to
state two does not occur.

C. Quantum numbers

Some allowed values of the action integra(t,), and the
relative interaction strengthy, are given in Table |. This
table includes values ofny,n,}, {ny,,n;} and all three

transfer to state two from state one occur$=aty=T/4 and again
at odd multiples ot,,.

codes give the same results as the analytic expressions of Eq.
(11). This provides a check that our algebra is correct. We
note that &;n,/(n;+n,)2<% and that the maximum value

of P4(t) occurs forn;=n,, where P3,.,=3, consistent
with Fig. 2. This corresponds ta=0 so that direct transi-
tions from state one to state two are forbidden. Transfer to
state two occurs via the intermediate state three. Transfer
from state one to state two and back is complete, and occurs

{k,k'} cases defined in the Appendix. From more completePeriodically. In generakk=0 occurs whem;=n,=3ny4q,

numerical output we confirm that; andn, each acquire all

wheren,qyq is any odd integer. This appears to give the sim-

possible odd integer values, although values of the produdilest condition that allows complete population transfer. In
n,-n, are restricted. This is consistent with the conditionthis case the action areaAgto) =nogqm/ /2.

that n,=2n,+n/ andn,=n,+2n;, wheren, andn; are

Calculations for two other values af that allow com-

arbitrary odd integers. It is also evident that the even integeiplete transfer to state two are shown in Figs. 3 and 4. We see

Ne=ny+n;, takes on all even values. One may also show
algebraically that for each value of the even intelgar case

(i) there are two odd values of an odd integein case(ii)
and vice versa. The sets of integérs ,n,}, {n,,n;}, and
{k,k'} are redundant. The three sets{kfk’} correspond to

a single sefny,n,}, while the{n,,n/} are in one to one
correspondence with thien,,n,}.

Numerical calculations for the time dependence of the
populations in a degenerate three-state atom perturbed b
external interactions with/(t) =Vycos(t) are presented in
Figs. 1-4. These results were obtained by using a standar
fourth-order Runge-Kutta numerical integration of E)
with B=1 for various values ofr andA(ty). For most val-
ues ofa the population transfer into either state two or state
three is always incomplete. A typical case is shown in Fig. 1
wherea=2 andA(tg) =1.5. We note thaP(t) does return
to zero twice in each period,, of the external field, but that
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FIG. 3. Occupation probabilities as a function of time. The thick

complete population transfer to an initially unoccupied statejashed line denote,(t), the solid line denoteB,(t), and the thin

dash-dotted line denoteB;(t). In this figure a=—2.530 and
Calculations using a few values afthat permit complete  A(t,)=1.656, corresponding tm,=1 and n,=5 (n,=—1,n/

never occurs.

transfer to state two are shown in Figs. 2—4. Our numericak

3) in Eq. (10).
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FIG. 5. Occupation probabilities as a function of time in atomic
lithium. Solid line, initial state 4,; thin dash-dotted line, interme-
diate state d,; thick dashed line, target statd 4

FIG. 4. Occupation probabilities as a function of time. The thick
dashed line showPB,(t), the solid line show$,(t), and the thin
dash-dotted line showB;(t). Here «=8.128 andA(ty) =4.381,
corresponding ton;=35 andn,=1 (n,=23,n,=-11) in Eq.
(10). Since these values are allowed, the electron population is contated by less than 0.006 eV, while the closest adjacent level
pletely transferred to state two from state one. (2s?2p? D has an energy 1.26 eV. This corresponds to a

ratio wmay/ ®min=~234, indicating that the criteria for appli-

thl?ttpomflféegr?nﬁe{ ?hccufrs twice in c]Jcnteh pe"ric.)(? o{)thz c,),s'cation of our method is well satisfied. The corresponding
iCr:carlelggesle asu A aincr?aagzguen\%eo notee Sltheat a_n S" ratios for atomic oxygen and silicon are 70 and 28, respec-
+ 2(nang) (n i(n ) becomes éither largan(>n or\(fi(:e tively. More generally three degenerate leveld ef1 atomic
;ersa cl)rzsmalll f 2~n ) as nyn increzgses wzh,iIeA(t ) states may also be controlled using magnetic dipole transi-
increases as/WZ/lZ. \/2Vhen clorT21pIete popL;Iation tragsfer tiorllr?IIithium energy difference betweerpd, 4d,, and &
T . Lo , 4d,, o
g(ic4urs, the population lingers in state two, as seen in I:'gss'tates is less than 0.02 eV, while the closest adjacestate
' is 0.18 eV apart. Therefore, one can use photons with ener-
gies in the range 0.02 e¥%h w<0.18 eV. When the states
lll. RESULTS AND DISCUSSION are nondegenerai®;; = (E;—E;)/2+0, and the population

In this paper we have considered transitions amplitude$ransfer is incomplete. Numerical calculations indicate that

and probabilities in a three-state atom with degenerate state#lis nondissipative population leakage varies ag; (o).
In realistic atomic systems, energy states are seldom, if eveForiw=0.1 eV this factor is 0.04 for lithium. The choice of
exactly degenerate. Also states outside three-state manifotbie field frequencyw involves a trade-off between the dura-
usually exist. However, our method can be used for atomgon of time the population remains in state two and the
with a certain structure of energy states, namely, for atomgopulation leakage. The higher the frequercyhe smaller
that have three nearly degenerate states separated from tiie population leakage, but the shorter the duration fipe
other states by a relatively big energy gap. One example dhat the population remains in state two. This effect of popu-
such system is a hydrogen atoftransitions betweens3  lation leakage is similar as that for a two-state atid@8].

3py, and 3, states, see Ref29]). Another example is Another factor that prevents complete transfer is the relative
atomic lithium (4p,, 4d,, and 4, states. In both cases the strength of the matrix elements,and 8. For the transitions
energy structure of the states imposes restrictions on the fremder consideration their valuea € 0,8=1.39) differ from
quency of the external fieldy i< 0 < wnax. Herehoyi,is  the one that allows the complete transfer<0,6=1) cor-

the energy splitting of the nearly degenerate states, antesponding to Fig. 2. As a result, the occupation probability
fwmay iS the energy difference between the three-state manfor the target state never exceeds 908 Fig. 5.

fold and the closest state in energy outside the manifold. In The duration of time spent in the transferred state can be
both cases convention&1 dipole selection rules apply for controlled by adjusting the time dependence of the external
linearly polarized light. Calculations are shown for lithium in field. If the external interaction varies harmonically(t)

Fig. 5, based on oscillator strengtf&0] that givea=1.39  =V,cost), then the first line of Eq(10) imposes a con-
(with 8=0 due to the dipole selection rileThree closely straint betweenV, and w, namely,Vqo/w= = \n{n,/27/3.
spaced energy levels also occur in the ground states dfor a harmonic interaction the duration of the tirhgthat
atomic carbon, oxygen, and silicon. These atoms all havéhe population remains in state two varies inversely with
three states with different values of a total angular momenthe higher the frequency the smaller the time the popula-
tum. Magnetic dipole or electric quadrupole transitions cartion remains in state two. The conditiern=0 corresponds to
be used for transitions that couple=0,1,2. For example, a dipole selection rule. Transfer from state one to state two
the 2522p? 3P term of 3°C has three levels}=0,1,2) sepa- (which is the dipole forbidden transitipis complete at time
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to if the two allowed transition matrix element¥,; and ACKNOWLEDGMENTS

Vi3, are equal in absolute magnitude afflo) =noaqm/2. \\o yhank 1. Eberly, B.W. Shore, and A.L. Godunov for

In some atomic systems state two could decay, with a life- ful di . hi K di by th

time T4 to another state outside the degenerate manifold an setul discussion. This \Wwork was supported in part by the
d ivision of Chemical Sciences, Office of Sciences, U.S. De-

be lost. Such loss can be controlled by adjusting ) ;
Additional control[28] may be achieved by changing the Klasr;t:mNeR_tr(;)f Energy. Kh.R. was financially supported by

shape ofV(t). This can be used to control how long the

population remains near unity in state two, for example. An

interesting example is the case of an ideal, sudden “kick” APPENDIX A: METHOD TO FIND CONDITIONS FOR
produced by (t)=Ay8(t—to). If Ag—Nogqm/ 2, for ex- COMPLETE POPULATION TRANSFER

ample, then the mere presence of state three allows transfer ] -

from state one to state two without any direct transfer from Here we show how to find the conditions on g such
state one to state two. With this ideal kick, state two is unthat the electron population is completely transferred from its
occupied beforé=t,, and fully occupied after=t,. This is mmgl statei=1 to a d_|fferent final state,=2 or 3. A con-
a switch. One may apply a series of switches by taking/€nient way to begin is to takeP,(t)/dt=0 att=to. This
V) =Ag[ 8(t—ty)+ 8t —t))+ - -+ 8(t—t)].  Alterna-  9ives both maxima and minima fd?,. Using Eq.(8) this
tively one may switch to different states by adjusting theYields

matrix elements so that after each stgp(t) is interchanged

with V4/5(t), where state 1is now the state occupied before sin((z,—z;)A(tg))=0,

the next kick is applied. Two practical limitations on this

ideal model are the impossibility of producing a signal that

varies asé(t—ty), and the existence of an infinitely wide (zi=zj)A(tg)=my7 (m;#0) (i,j=1,2,3. (A1)
spectrum of high-frequency components with frequenaies

>wmax N t_h(_e Fqurier spectrum ob(t—tg). FortL_mathy Using co$(z,— ) A(to)) = cosn;m)=(—1)™, one has
these two difficulties can both be addressed by using kicks of

finite width in time. In some cases it may be possible to

design a kick so that its duration is short compared to any , 1 ) )

other changes in the system, so that a finite kick may be P1=|a] =P[(X2y3—xgy2) +(Xgy1—X1Y3) +(X1Y2
sensibly represented by(t—tg).

We note that the method described here is generally ap- —Xo¥1)%+ 2(—1)™2( Xy 3— X3Y5) (X3 1 — X1Y3)
plicable to a degeneratestate systenj31] in a case where "
many of the matrix elements of the external interaction are +2(—1)™3(Xoy3~ X3Y2) (X1Y2~ X2Y1)

the same, since such a degenerastate system can be re-
duced to a mathematically equivalent three-state system.
However, the conditions placed on the matrix elements are 1
not often met in most atomic systems. Finally we remark that === 1)K1(X,y3— X3Yo) + (— 1)*2(X3y1 — X1Y3)
use of degeneracAE—0, imposesAt—o. This removes A
time sequencing in intermediate steps of the reaction process.
That is, any physical effect due to time sequencing of inter-
mediate interactions is lost in the limit of degeneracy.

+2(—1)M23(Xzy1 — X1Y3) (X1Y2— X2Y1) ]

+(—1)"3(x1y,— X2y1) 1%, (A2)

Wherek1+ k2:m12, k1+ k3:m13 andk2+ k3:m23. NOW,
IV. SUMMARY

We have shown that in a three-state atom with degenerate
energies, electron population is completely transferred via an™—
external interaction at a designated titgefrom an initially

ky= > (M1 Myz—Myg)

occupied statdstate ongto a designated initially unoccu- 1 [A(tp) Alto) A(to)

pied state (state two under two conditions. The first 2\ x (21=2) + = (21=23) = = (22~ 23)
condition for complete transfer is that the ratio of the

matrix elements of the external interactiory;;(t), =A(t0)(zl—zz)

satisfy  Vy(t)/Vyq(t)=a=*+2/(n1n,) (n;—ny), and
Vi5(t)/Vos(t)=B==1. The second condition is that &t
=t, the action area oW/(t) satisfy A(to)=/2V(t')dt’ = 1
+n1No/27/3, where we have sé¥,4(t)=V(t). Heren; Ky==(Myo+ Myz—Mmy3)

: - , - 2
and n, are integers such that;=2n,+nj and n,=n,
+2n;, wheren, andn/ are any odd integers. The duration 1(A(ty) A(to) A(to)
of time the transferred population remains in state two canbe = 5|~ (Z1=2)+ (25=23) = ——— (21723
controlled either by varying the frequenay of the external
potential or by varying the shape Wf(t). =0,
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1
k'=ks=5 (Myzt+ Maz—myp)

1At A(t A(t

=5 %(21_23)"‘ (17_0)(22_23)_ ( 0)(21_22)
A(to)

= (22— z3). (A3)

This yields extrema foP, att=ty, namely,

1
Plzp[( — 1)¥(Xay3— X3Y2) + (X3y1—X1Y3)

+ (= DX (xpy2—X2y1) 1%,

1 K K’ 2
Pzzp[(_l) (Y2—Y3)+(ys—y) + (=1 (yi—y2) ]

[(—1)(Xg—X2) + (X1 = X3) + (— )X (x—x1) 12,

(A4)

1
Ps= 3

wherek andk’ are nonzero integers that amet both even

1. Conditions for complete transfer

We now seek conditions such thattatt,, P;=0, P,
=1, andP3;=0. There are three setsk,k’}, that satisfy
these conditions, namelyi) k is even andk’ is odd, (ii) k
andk’ are both odd, andii) k is odd andk’ is even.

Case (i). kis even andc’ is odd. Then,

1
Plzp[(XZyS_X3y2)+(XSyl_xlyS)_(leZ_XZyl)]zy

1 , 4 2
PZZF[(Yz_ys)““(ys_h)_(Y1_Y2)] :P(YZ_yl) ,

1 ,_ 4 2
P3:P[(X3_X2)+(X1_X3)—(Xz_xl)] :P(Xl_XZ) .

(A5)

From the condition thatP,=1 one has[2(y,—Y;)/A]?
=1, wherey,#Y,, so thatA==*=2(y,—Yy;). The condition
that P;=0 gives[2(x;—X,)/A]?>=0, which yieldsx; =X,
=X. Using this result one then obtair®; =[(x+x3)(y1
—y,)/A]2. RequiringP;=0, one hasz=—x. Now, using
X1=X,=—X3=X, we have from below Eq(7), A=2x(y,
—vy,). Finally since A==*=2(y,—y;), one hasx;=X,=
—Xz3=X==*1.
Case (ii). kandk’ are both odd. Then,

Py [ = (XaY3—XaY2) + (Xay1—X1Y3) = (X1Y2—X2Y1) 1%,

Az

PHYSICAL REVIEW 49, 023405 (2004
1 2
PZZP[_(yz_ys)‘F(YS_YD_(Y1_y2)]
4
= P(y3_)’1)2,

1
P3:p[_(X3_X2)+(Xl_X3)_(Xz_xl)]z

4

=3 (A6)

(Xl_x3)2-

From the condition thatP,=1 one has[2(y3—Y;)/A]?
=1, wherey, #Yy3, so thatA==*=2(y;—Yy,). The condition
that P;=0 gives[2(x;—X3)/A]?=0, which yieldsx;=x,
=x. Then one obtain®;=[(x+X,)(y;—Y3)/A]?>. When
P;=0 one hasx,=—x. Now, usingx;=—X,=X3=X, we
get from below Eq.(7), A=2x(y,—Y3). SinceA=*2(y;
—Vy1), one has;= —X,=Xz=Xx=+1.

Case (iii). kis odd andk’ is even. This is similar to case
(i). One obtains,A=2x(y3z—Yys) and —X;=X,=Xz=X
==+1.

Complete population transfer, i.eP,=1, requires that
x==*1, so that the relative interaction strengthsand 8
must satisfy

€2 &
5 F(e3—€),

2 +
a=——Yy=*
y y

€2 €

B=+1+ (A7)

Next we use these results to find the conditions\gnre-
quired for complete population transfer to occur.

2. Quantum numbers for A(ty) and «

We now note that relatively simple conditions occur when
€= €,=e3=¢€, namely,a=(2ly)—y and B==x1. In this
case Eq.(A7) reduces from a cubic to an easier quadratic
equation iny. This quadratic equation corresponds to three
roots of the more general cubic equation, namely,

—a++Ja?+8 —a—+a?+8 0
2 ’ 2 e

(A8)

{yjt={y+.y-.0}=

Now for case(i) whenk is even andk’ is odd, one has
from abovex={*=1,+1,+1} andy={y, ,y_,0}. From Eq.
(A8), z={Fy_,Fy,,*a}. Then, withE=A(ty)/m, the

useful integers k and k' are: k=A(tg)/7m(z1—2,)
=+EJa?+8, and k'=A(ty)/m(z,—23)=+E/2(3a

—\Ja?+8). Eliminating @, one obtains (R+k’)(k—k’)
=18E2=n;n,. For case(ii) whenk andk’ are both oddx
={*x1,1,x1} and y={y,,0y_}. and z={*y_,+a,
Ty} Then, k=A(ty)/ (21— 2,) = * E/2(3a+ Ja?+8),
and k' =A(to)/ m(z,— 25) = F E/2(3a— a?+8). One may
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now verify that (&X+ k’)(k+2k’)=18E2=n1n2. For ié(t)ziél(t)+xiéz(t)+yiég(t)

case(iii) whenk is odd andk’ is even,x={+1,=1,+1}

and y={0y,.y-}, and z={+a,*y_,¥y.}. Then, k =& V(bag(t)+aV(t)ay(t)+BV(t)as(t)

=A(to)/ m(z,—2,) = FER2(Ba+ Ja?+8), andk’ =A(to)/

m(2,—23)= +*EJa?+8). One may again verify thatk( TxaVa(t) + eV(Ba(t) +V(Das)]

—k)(2k’ +k)=18E?=n;n,. +y[BV(t)ay(t)+V(t)a,(t)+ e3V(t)as(t)].
One readily finds in casé), wherek is even andk’ is (B2)

odd, thatk=3(n;+n,) andk’=3(n;—2n,). In case(ii),

wherek andk’ are both odd, one hds=3(2n;—n,) and  Set  z=e,+ ax+ By. Then, ic(t)=zV(t)[a(t)
k’=3(2n,—n;). In case (i) k=3(n,—2n;) and k' +(a+ ex+Yy)/(e+ ax+ By)ay(t)+(B+X+ezy)/(e;+ ax
=3(n;+ny). In all three cases one readily obtains the samey. By)as(t)]. We require thatc(t)=zV(t)c(t). This holds

equation for the allowed values #éf(ty) and «, namely, if and only if z=e€;+ax+ By, X=(a+ ex+Yy)/(e;+ ax
+By) andy=(B+Xx+ e3y)/(e;+ ax+ By). After some al-

Alto)= = nyn, = gebra this leads to the useful cubic equation

O == T A A
23 [(B*~a®)+ aB(er—e) ly* +[a(2—a?~ B2)+ B(2e1~
2 —€3)+ o€~ €3)( €2~ €3) [y*+[(2a®~ g7~ 1)
=x\/——(n1—ny). A9
“=F N, " B sapea-a-e) e a)a-e)ly

It is remarkable that all three cases give the same formula for +la(B®=1) - Ble1—€2)]=0. (B3)
complete population transfer. The top equation correspondghis determines three sets of eigenvalups}, {y;}, and
to a constraint on the value of the actidrﬁ,V(t’)dt’, ie., {z;}, and three eigenfunctions,-(t)=e*iZiA Y, whereA(t)
the “area” of the external interactior(t), or the phase =[{V(t')dt’.
shift caused by the external interaction. The bottom equation \When €;#0 complete population transfer can also occur.
above gives the relative values of thg . Using €;= e+ 0 adds nothing new, since it produces only an
overall phase'. A slightly more general, but less elegant,
solution for the degenerate three-state equations is found
when e;=¢€,# €3. Again in this casea=(2/y)—y=*(e;3
—¢€;) and B==1. The quadratic equation for now be-

In the main text a solution for the degenerate three-stateomes  y?+[(a(1— a?)+ a(e;— €3)>+ (e, €3))/ (1— a?
atom was found in the case when=0. We now choose +a(e;—¢3))]y—2=0. Taking a=(a(l—a?)+a(e
6 V)=V =Vost)=a V() =B Vi(t).  Then  —e3)’ (61— €))/(1— o’ ale;— €3)= a* (e~ €3)) the

APPENDIX B: GENERAL SOLUTIONS FOR THE
DEGENERATE THREE-STATE ATOM

Eq. (2) becomes algebra is the same as that one above, exceptdhatr.
_ This includes an additional parametere;{ €3), gives
iai(t)=e€eV(t)a(t) + aV(t)ay(t) + BV(t)as(t), simple allowed values ofr, and imposes a constraint be-

tweena« and (e;— €3). More complex conditions for com-
plete population transfer might exist whep# e,, in which
case Eq(B3) is cubic iny. Finally it might be possible that
B solutions exist when the matrix elemeig(t) have differ-
iag(t)=pV(t)as(t)+V(t)ay(t) +e3V(t)as(t). (B1)  ent time dependences, i.e., wherand 8 depend ort.
Conditions for complete transfer into state thred =at,
Consider a linear superpositio(t)=a;(t)+Xxay(t) may be generally found similarly by interchange of the indi-

+yag(t), wherex andy are some time-independent coeffi- ces 2 and 3, with corresponding interchangevafith 8 and
cients that we next determine. Then, X with y.

ia,(t) = aV(t)ay (1) + e;V(t)ay(t) + V(t)as(t),
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