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Hydrogen atom in a strong magnetic field. II. Relativistic corrections for low-lying excited states

A. Poszwa and A. Rutkowski
Department of Physics and Computer Methods, University of Warmia and Mazury in Olsztyn, ul. Z˙ołnierska 14,

10-561 Olsztyn, Poland
~Received 17 October 2003; published 6 February 2004!

The highly accurate solution of the Schro¨dinger equation in the form of common Landau exponential factor
multiplied by a power series in two variables, the sine of the cone angle and radial variable is completed by the
first-order relativistic correction calculated within the framework of the relativistic direct perturbation theory
~DPT!. It is found that in contrast to behavior of relativistic corrections for the ground state and 2p21(ms5

21/2) excited state, which change sign from negative to positive nearB'1011 G andB'1010 G, respectively
@Z. Chen and S. P. Goldman, Phys. Rev A45, 1722~1992!#, the relativistic corrections for 2s0(ms521/2) and
2p0(ms521/2) excited states are negative for the magnetic field varying in range 0,B,1013 G. If relativ-
istic correction significantly mix nonrelativistic states the near-degenerate version of DPT is used. The avoided
crossings of relativistic levels withm521/2 and p521, evolving from field-free states with principal
quantum numbersn52,3,4 are presented.

DOI: 10.1103/PhysRevA.69.023403 PACS number~s!: 32.60.1i, 03.65.Ge, 02.30.Jr, 31.15.2p
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I. INTRODUCTION

Hydrogen atom in a static and uniform magnetic field h
been studied extensively in both the nonrelativistic and re
tivistic quantum mechanics for many physical reasons.
example, the measurement of the fine structure, the hype
structure, and the Lamb shifts require the use of a cons
external magnetic field for their determination. To interp
these observation a precise understanding of the Zeema
fect for a week magnetic field is essential. Starting from
exactly solvable nonrelativistic problem of field-free ato
and calculating the effects resulting from the Fold
Wouthuysen reduction of single Dirac particle, Fermi-Br
interaction and additional radiative and recoil corrections
the framework of degenerate perturbation theory yields
extremely precise analysis of Zeeman splitting@1#. Such pre-
cise analysis is still unattainable for strong magnetic fiel
which are of considerable interest in astrophysics and so
state physics@2–6#. Owing to the mixture of spherical an
cylindrical symmetries the Dirac or Schro¨dinger equations
are not separable in any coordinate system.

In the framework of relativistic mechanics the behavior
the hydrogen atom in a uniform magnetic field can be c
sidered in principle in two different manners. The more co
mon approach is to solve the Dirac equation variationa
~the most accurate lowest energy levels reported to date
obtained when in addition to the Slater-type basis functi
@7#, also Landau-type basis functions@8,9# have been used!.
Owing to the fact that the Dirac Hamiltonian is unbound
from below, the variational energy is not necessary an up
bound to the exact eigenvalue. The search for the opti
parameters in the basis is based in this case on the statio
properties of the eigenstates rather than the simple min
zation procedure used in the nonrelativistic case.

Alternatively one may solve the Schro¨dinger equation and
then account for relativity in a perturbative manner. T
problem of accurate solving of the Schro¨dinger equation has
been treated by several approaches including variatio
methods@7–9#, eigenvalue analysis@10–12#, and the finite-
1050-2947/2004/69~2!/023403~6!/$22.50 69 0234
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element methods@13#. Recently an exact Schro¨dinger solu-
tion in a sense that the energy and the wave function can
computed with any precision, was obtained in the form
common Landau exponential factor multiplied by a pow
series in the radial variable with the coefficients being po
nomials in the sine of the polar angle@14–16#. Terms in the
series are connected by explicit recurrent relations and a
of mathematical solutions is generated by starting from
propriate chosen starting values. The approximate phys
solution in the form of linear combination of mathematic
solutions is then determined by imposing on every rad
function at a finite radiusr 5R the boundary exponentia
decay@14,17#. Using such type of wave function we hav
calculated@18# the first-order relativistic correction in th
framework of direct perturbation theory~DPT! @19,20#. The
accuracy of the total energy matches or exceeds in s
cases that of previous fully relativistic calculations@7–9,12#.

The cancellation of a large number digits, caused by
cillating terms of power series, leads to the requirement
high computation precision. Both the number and amplitu
of oscillating terms of power series increase rapidly w
growing R. In consequence, the computational effort i
creases for excited states which are more radially exten
than ground state.

In the previous paper@21# ~hereafter referred to as I! the
asymptotic behavior of the radial functions~more precise
than simple exponential decay! was obtained. It was derived
in the form of common exponential factor multiplied by
finite power of radius time a power series in the inverse
radius. A substantial advantage of the method using the
verse power expansion over the method using simple ex
nential decay as the boundary condition, resides in its h
accuracy, which can be obtained at much smaller radiuR
and which do not require a high-precision arithmetic of hu
dreds decimal digits.

The aim of this paper is to provide a detailed analysis
the energy spectrum of a few low-lying excited states. Re
tivistic effects can significantly mix nonrelativistic nea
degenerate states and relativistic energyE (1) through the first
©2004 The American Physical Society03-1
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TABLE I. Nonrelativistic energiesE(0) and first-order relativistic correctionsE(1) for the states 2s0(ms

521/2) and 2p21(ms521/2) of hydrogen atom in a magnetic fieldB ~in units of 2.353109 G).

2s0(ms521/2) 2p21(ms521/2)
B 2E(0) a E(1)c2 2E(0) E(1)c2

1024 0.125049965000 20.03905836 0.125099970000 20.00780251
1023 0.125496500159 20.03902343 0.125997000116 20.00771379
1022 0.129651571359 20.03889913 0.134701144177 20.00693386
0.1 0.148089155790 20.04850225 0.200845672373 20.00421749
1 0.160468982634 20.03922004 0.456597058424 20.00334876
2 0.173944705973 20.04384308 0.599612773602 20.00285068
4 0.188846463700 20.05451269 0.787825272030 20.00118225
10 0.208951829045 20.07667672 1.125422341839 0.00569476
20 0.223842126804 20.09945889 1.465508545545 0.01885872
40 0.238199272863 20.12751738 1.896082532426 0.04624607
100 0.256181570331 20.17283760 2.634760665299 0.12612566
200 0.268968189189 20.21338061 3.347145235707 0.24869176
400 0.281029709905 20.25942407 4.215128283478 0.46680714
1000 0.295857474144 20.32824668 5.638421079484 1.00898013
2000 0.306241266053 20.38693856 6.951980031508 1.73564602
4000 0.315928273383 20.45077194 8.493324580274 2.89266484

aFor B>10 quoted from I.
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order inc22, cannot be simply calculated as

E (1)5E(0)1E(1). ~1!

For this reason the effective equation of the recently de
oped effective Schro¨dinger-like Hamiltonian equation~EHA!
@22#

he f fw5Ese f fw ~2!

in a model space of near-degenerate nonrelativistic t
component spinors is taken into account. The eigenvecto
the effective equation are spin-mixed functions in a basis
nonrelativistic states, and the eigenvalues are the exact
tivistic energies of the corresponding true states. Through
first order inc22, the effective operators are given by

he f f
(1)5phsp1paVap/c2, ~3!

se f f
(1)5p1pa2p/c2, ~4!

where p stands for the projection onto model space,hs is
nonrelativistic Hamiltonian with electrostatic potentialV,
and

a5s•~p1A!/2. ~5!

The vector potentialA can take the formA5B3r /2.

II. DETAILS OF CALCULATIONS

The nonrelativistic hydrogen atom in constant magne
field B5(0,0,g) has three good quantum numbers: the m
netic quantum numbersm, ms , and thez parity n. Substitut-
ing the nonrelativistic function in the general form
02340
l-

-
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C~r ,q,w!5eimw~r sinq! umu~r cosq!nY1/2,ms

3expS 2
1

4
gr 2sin2q D (

k50

l

~r sinq!2kg2k~r !,

~6!

where

g2k~r !5 (
i 52k

I

Ai ,2kr
i 22k, ~7!

to the Schro¨dinger equation for a nonrelativistic particle wit
spin

F1

2
~p1A!22

Z

r
1

1

2
s•BGC5EC, ~8!

we obtain a linear formula for generating the coefficien
Ai ,2k @14#:

Ai ,2k5L~Ai ,2k12 ,Ai 22,2k22 ,Ai 22,2k ,Ai 21,2k!. ~9!

Following Ref.@14# we generate a set of particular solutio
C (p) (p50,1,2, . . . ,l ) by starting from Ref.@18#:

A0,2k
(p) 5dp,k , ~10!

Ai ,2k
(p) [0, k. l . ~11!

For bound state the wave functionC tends to zero asr
goes to infinity. The radial functions behave in the same w
The asymptotic behavior ofg2k was considered in paper
and is given by inverse power expansion of the form
3-2
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TABLE II. Comparison of the nonrelativisticE(0) and relativistic perturbativeE(1) energies for the
2p3/2(m523/2) excited state of hydrogen atom in an intense magnetic fieldB ~in units of 2.353109 G). The
numbers in column 3, 4, and 6 give the previous most accurate nonrelativisticENR and relativisticEr results.

B 2E(0) 2ENR
a 2ENR

b 2E(1) 2Er
b

0.1 0.200845672373 0.200845672373 0.20084567237333 0.20084589696 0.20084
1 0.456597058424 0.456597058424 0.4565970584 0.45659723675 0.45659
10 1.125422341839 1.125422341839 1.1254223418 1.12542203859 1.12542
100 2.634760665299 2.634760665299 2.634760665 2.63475394894 2.63475
200 3.347145235707 3.34714523 3.34713199253
400 4.215128283478 4.21512828 4.21510342536
1000 5.638421079484 5.63842108 5.63842105 5.63836734992 5.63836
2000 6.951980031508 6.95188760599
4000 8.493324580274 8.49317054193

aReference@14#.
bReference@9#.
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g2k~r !5r h2n2kp2k~x!exp~2kr !, ~12!

p2k~x!5(
i 50

`

B2k
( i )xi , ~13!

where

k5A2Eb, h51/k, x51/r , ~14!

and

Eb5~11m1umu12ms!B/22E. ~15!

Following paper I we generate the set of coefficientsB2k
( j )

until j 5n by starting from arbitraryB0
(0) and using linear

recurrent relations of the form

B0
( j )5L0~B0

( j 21) ,B2
( j 21) ,B2

( j 22) ,B4
( j 21)!, ~16!

and

B2k
( j )5L2k~B2k22

( j ) ,B2k22
( j 21) ,B2k

( j 21) ,B2k12
( j 21) ,B2k

( j 22)! ~17!

for k.0. Owing to the asymptotic convergence of expans
~13! the values ofB2k

( j ) disclose a more rapid increase than t
geometric progression and the summation overj should be
terminated at some value ofj 5n.

An approximate physical solution

C5 (
p50

l

cpC (p) ~18!

is determined by imposing the condition

g2k8 ~r !

g2k~r !
5 f 2k~r !52k1x~h2n2k!2x2

p2k8 ~x!

p2k~x!
~19!

at finite radiusr 5R. Consequently, the boundary conditio

g2k8 ~R!2 f 2k~R!g2k~R!50 ~20!
02340
n

can be reduced to a system ofl 11 homogeneous linea
equations for coefficientscp . HereEb can be found in thel,
R, I, and n approximation from the condition of the linea
dependence of this system.

Solving this system of linear equations and choosing
initial values of coefficients

A0,2k5ck , ~21!

we generate the physical solutionC. In the basis set of two
component spinors~6! the matrix elements of effective
Hamiltonian and effective metric@Eqs. ~3! and ~4!# can be
expressed in terms of the integrals

Kkk8
mn

5E
0

`

I ~a,b,g!r cg2k
(m)g2k8

(n) dr,

wherea,b, andc are integer numbers, superscriptsm andn
distinguish the states in the model space andI (a,b,g) stands
for angular integral

I ~a,b,g!5E
0

p

~sinq!a11~cosq!bexpS 2
1

4
gr 2sin2q Ddq

5

GS a12

2 DGS b11

2 D
GS a1b11

2 D
3FS a12

2
,
a1b11

2
,2

1

2
gr 2D , ~22!

whereG is the gamma function andF is the confluent hyper-
geometric function which can be calculated by Kumme
formula or by an asymptotic expansion@23#. The radial inte-
gral from 0 toR is mapped to the integral from 0 to 1 an
evaluated numerically by Gaussian quadrature. The inte
tion from R to ` gives negligible impacts to the relativisti
effects and for this reason the radial integrals fromR to ` are
neglected.
3-3
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TABLE III. Nonrelativistic E(0) and relativistic perturbativeE(1) energies calculated in the standard nondegenerate and the effe
Hamiltonian near-degenerate perturbation approach for the model space of two nonrelativistic states 2p0(ms521/2) and 2p21(ms51/2) of
hydrogen atom in a magnetic fieldB ~in units of 2.353109 G).

2p0 2p21 EHA
B 2E(0) 2E(1) 2E(0) 2E(1) 2E1

(1) 2E2
(1)

0 0.125000000000 0.125000970725 0.125000000000 0.125001525425 0.125002081244 0.1250004
1026 0.125000499999 0.125001470720 0.124999999997 0.125001525420 0.125002282959 0.1250007
1025 0.125004999850 0.125005970541 0.124999999700 0.125001525111 0.125006104738 0.1250013
1024 0.125049985000 0.125050955392 0.124999970000 0.125001495292 0.125050967663 0.1250014
1023 0.125498500042 0.125499467481 0.124997000116 0.124998524311 0.125499468548 0.1249985
1022 0.129850415833 0.129851357419 0.124701144177 0.124702666403 0.129851357483 0.1247026
0.1 0.162410078399 0.162410980720 0.100845672373 0.100847819138 0.162410980722 0.100847
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III. NUMERICAL RESULTS AND DISCUSSION

In relativistic case Hamiltonian commutes with thez com-
ponent of the total angular momentum and with the pa
operator, so that the corresponding quantum numbersm and
p are conserved. There is unique correspondence betw
the two nonrelativistic excited states 2s0(ms521/2) and
2p21(ms521/2) and two relativistic states 2s1/2(m5
21/2,p511) and 2p3/2(m523/2,p521). Table I lists
the nonrelativistic energies and first-order relativistic corr
tions obtained in the spirit of nondegenerate perturbation
proach for well energetically isolated nonrelativistic sta
evolving from atomic states 2s0 and 2p21 of same principal
numbern52, projection of spinms521/2, andz parity n
50 but differentm values. The maximal absolute error
each value displayed in Table I does not exceed61 in the
last digit.

It should be observed that for the 2p3/2(m523/2) excited
state the relativistic correction changes sign nearB55 and
then increases considerably with growing intensity of m
netic field. The absolute value of relativistic correction f
B54000 is two orders of magnitude greater than for fie
free atom. This is in full agreement with previous results

TABLE IV. Nonrelativistic energiesE(0), first-order relativistic
correctionsE(1) and relativistic perturbative energiesE(1) for the
state 2p0(ms521/2) of hydrogen atom in a magnetic fieldB ~in
units of 2.353109 G).

B 2E(0) E(1)c2 2E(1)

1 0.260006615944 20.05108661 0.260009336375
2 0.297710972385 20.08256629 0.297715369153
4 0.335695728671 20.13473441 0.335702903462
10 0.382649848306 20.25043170 0.382663184136
20 0.413377734222 20.38443574 0.413398205949
40 0.438733801355 20.56492728 0.438763884502
100 0.463617764477 20.87516918 0.463664368427
200 0.476532014388 21.15701265 0.476593626760
400 0.485363074873 21.46926971 0.485441315486
1000 0.492495007408 21.91188465 0.492596817870
2000 0.495594803690 22.25912955 0.495715105416
4000 0.497463531134 22.61114956 0.497602578405
02340
y

en

-
p-
s
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-
f

generalized relativistic variational calculations@9# and very
similar to the dependence of the relativistic correction for
ground state@7,18#. Quite different behavior disclose th
relativistic corrections for the 2s1/2(m521/2) excited state.
It is negative for all values of magnetic field displayed
Table I. To our knowledge for this excited state there is
fully relativistic results for comparison in the literature.
comparison with previous results for the state evolving fro
2p3/2 is made in Table II. The calculations have been p
formed withc5137.035 989 5@24#. A 12-figure accuracy of
the present nonrelativistic results exceeds forB>200 that of
previous calculations. The accuracy of perturbation res
through the first order inc22 matches that of previous fully
relativistic calculations.

Two others of lowest excited (n52) nonrelativistic states
2p0(ms521/2) and 2p21(ms51/2) have in magnetic field
the same relativistic symmetry (m521/2 and p521).
Since for small intensities of magnetic field the relativis
perturbation and the magnetic interaction are compara
the effective relativistic eigenfunctions in two-dimension
nonrelativistic model space are strongly mixed. The trans
mation matrix from nonrelativistic states 2p0 and 2p21 to
relativistic eigenfunctions 2p1/2 and 2p3/2 is given in the
field-free limit by

FIG. 1. Behavior of slightly excited nonrelativistic levels wit
m5m1ms521/2 and p521, evolving from field-free states
with principal quantum numbersn52, 3, and 4.
3-4
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FIG. 2. Crossings~ordered according to increasing intensity of magnetic field! of nonrelativistic levels:~a! 3p21(ms511/2) and 4f 0

(ms521/2), ~b! 3p21(ms511/2) and 4p0(ms521/2), ~c! 2p21(ms511/2) and 3p0(ms521/2), ~d! 2p21(ms511/2) and 4f 0(ms

521/2), ~e! 2p21(ms511/2) and 4p0(ms521/2) ~dashed lines!, and avoided crossings between relativistic levels withm521/2 and
p521 ~solid lines!.
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There is no unique correspondence between the two no
ativistic and the two relativistic states. Nondegenerate D
break down in such cases. The EHA-DPT recovers the r
tivistic splitting already at the first order, while nondegen
ate DPT yields vanishing spin orbit coupling. As a numeri
illustration of this case of near-degeneracy we display
02340
el-
T
a-
-
l
n

Table III the zeroth-order nonrelativistic energies, the non
generate perturbative energies through the first order and
EHA energies in a model space spanned by two nonrela
istic orthogonal two-component reference states evolv
from 2p0(ms521/2) and 2p21(ms51/2). One can see tha
with growing intensity of magnetic field the considere
states become well energetically separated and forB>0.1
the difference between nondegenerate DPT and EHA-D
results are negligible. Table IV lists the nonrelativistic e
ergy, first-order relativistic correction and total relativist
3-5
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energy up to first order of the state evolving from nonre
tivistic state 2p0(ms521/2) for 1<B<4000. Relativistic
correction is negative for all values of magnetic field and
magnitude increases considerably with growing intensity
magnetic field~much faster than for the 2s0 excited state
displayed in Table I!.

Energy of state 2p21(ms51/2) goes quickly up and nea
B50.3 reaches zero@compare Table I; according to Eq.~18!
E(ms51/2)5E(ms521/2)1B]. Therefore there are man
crossings of this state with other states in nonrelativistic c
and many avoided crossings in the relativistic case. In si
lar way behave the next excited states withms51/2
(3p21 ,4p21 ,4f 21 , . . . ). Figure 1 shows the general pic
ture of levels withm5m1ms521/2 andp521 evolving
from field-free states with principal quantum numbers 2,
and 4. Figure 2 demonstrates that relativity causes lowe
of the energy and avoided crossing due to breaking the s
metry.

We have shown in this paper that accurate first-order r
tivistic energy corrections for excited states of hydrog
atom in a magnetic field can be obtained in the framework
direct perturbation theory using a highly accurate series
lution of the Schro¨dinger equation. The accuracy of the tot
energy matches or exceeds in some cases that of prev
fully relativistic calculations. The main advantage of the p
turbation approach is that like the nonrelativistic case@25#,
the relativistic energy corrections withZÞ1 can be calcu-
lated by a simple scaling relation@26#:

E( i )~Z,B!5Z2(i 11)E( i )~1,B/Z2! ~23!
e

g

y

02340
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and there is no necessity to perform separate calculation
different values ofZ.

The problem of the hydrogen atom, placed in a unifo
magnetic field has important applications in such differe
areas of physics as atomic spectroscopy, solid-state phy
and astrophysics. Our calculations indicate the necessit
include relativistic corrections given the current numeric
accuracy of the nonrelativistic calculations. It is especia
pronounced for excited states because for high intensitie
magnetic field the first-order relativistic energy correcti
can be a few orders of magnitude greater than for field-f
atom. Depending on the state considered and intensity of
field the relativistic energy corrections have different sig
what gives considerable impact to the spectral lines. In
tronomy, the knowledge of the spectrum of the atomic h
drogen in magnetic field will help in accurate measureme
of stellar magnetic fields~about 106–109 G on white dwarfs
@3# and 1011–1013 G on neutron stars@4#!.

The technique presented in the present work is effec
and ensures a high accuracy of calculations. One may h
that this approach will find also its application in testin
various approximate methods.
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