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Hydrogen atom in a strong magnetic field. Il. Relativistic corrections for low-lying excited states
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The highly accurate solution of the Schieger equation in the form of common Landau exponential factor
multiplied by a power series in two variables, the sine of the cone angle and radial variable is completed by the
first-order relativistic correction calculated within the framework of the relativistic direct perturbation theory
(DPT). It is found that in contrast to behavior of relativistic corrections for the ground state png(@,=
—1/2) excited state, which change sign from negative to positive Biedr0' G andB~ 10" G, respectively
[Z. Chen and S. P. Goldman, Phys. Red% 1722(1992], the relativistic corrections for®(ms=—1/2) and
2po(ms=—1/2) excited states are negative for the magnetic field varying in rargg<010' G. If relativ-
istic correction significantly mix nonrelativistic states the near-degenerate version of DPT is used. The avoided
crossings of relativistic levels witw=—1/2 and 7= —1, evolving from field-free states with principal
guantum numbera=2,3,4 are presented.
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[. INTRODUCTION element methodf13]. Recently an exact Schilmger solu-
tion in a sense that the energy and the wave function can be
Hydrogen atom in a static and uniform magnetic field hascomputed with any precision, was obtained in the form of
been studied extensively in both the nonrelativistic and relacommon Landau exponential factor multiplied by a power
tivistic quantum mechanics for many physical reasons. Foseries in the radial variable with the coefficients being poly-
example, the measurement of the fine structure, the hyperfimgmials in the sine of the polar andlé4—16. Terms in the
structure, and the Lamb shifts require the use of a constarseries are connected by explicit recurrent relations and a set
external magnetic field for their determination. To interpretof mathematical solutions is generated by starting from ap-
these observation a precise understanding of the Zeeman gfropriate chosen starting values. The approximate physical
fect for a week magnetic field is essential. Starting from thesolution in the form of linear combination of mathematical
exactly solvable nonrelativistic problem of field-free atom solutions is then determined by imposing on every radial
and calculating the effects resulting from the Foldy-function at a finite radiug =R the boundary exponential
Wouthuysen reduction of single Dirac particle, Fermi-Breitdecay[14,17. Using such type of wave function we have
interaction and additional radiative and recoil corrections incalculated[18] the first-order relativistic correction in the
the framework of degenerate perturbation theory yields aframework of direct perturbation theopPT) [19,20. The
extremely precise analysis of Zeeman splittididy Such pre- accuracy of the total energy matches or exceeds in some
cise analysis is still unattainable for strong magnetic fieldscases that of previous fully relativistic calculatidirs-9,12.
which are of considerable interest in astrophysics and solid- The cancellation of a large number digits, caused by os-
state physic$2—6]. Owing to the mixture of spherical and cillating terms of power series, leads to the requirement for
cylindrical symmetries the Dirac or Sclioger equations high computation precision. Both the number and amplitude
are not separable in any coordinate system. of oscillating terms of power series increase rapidly with
In the framework of relativistic mechanics the behavior ofgrowing R. In consequence, the computational effort in-
the hydrogen atom in a uniform magnetic field can be concreases for excited states which are more radially extended
sidered in principle in two different manners. The more com-than ground state.
mon approach is to solve the Dirac equation variationally In the previous papdgr21] (hereafter referred to as the
(the most accurate lowest energy levels reported to date assymptotic behavior of the radial functiorimore precise
obtained when in addition to the Slater-type basis functionshan simple exponential decayas obtained. It was derived
[7], also Landau-type basis functiof,9] have been useéd in the form of common exponential factor multiplied by a
Owing to the fact that the Dirac Hamiltonian is unboundedfinite power of radius time a power series in the inverse of
from below, the variational energy is not necessary an uppeadius. A substantial advantage of the method using the in-
bound to the exact eigenvalue. The search for the optimalerse power expansion over the method using simple expo-
parameters in the basis is based in this case on the stationamgntial decay as the boundary condition, resides in its high
properties of the eigenstates rather than the simple minimiaccuracy, which can be obtained at much smaller ragius
zation procedure used in the nonrelativistic case. and which do not require a high-precision arithmetic of hun-
Alternatively one may solve the Scltioger equation and dreds decimal digits.
then account for relativity in a perturbative manner. The The aim of this paper is to provide a detailed analysis of
problem of accurate solving of the Schinger equation has the energy spectrum of a few low-lying excited states. Rela-
been treated by several approaches including variationdivistic effects can significantly mix nonrelativistic near-
methods[7—9], eigenvalue analysigl0—17, and the finite- degenerate states and relativistic enefjy through the first
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TABLE |. Nonrelativistic energie€(® and first-order relativistic correctior®) for the states 8(ms
=—1/2) and D_;(ms=—1/2) of hydrogen atom in a magnetic fieRi(in units of 2.35<10° G).

259(Mmg=—1/2)

2p_y(ms=—1/2)

B —g@a E(1)c2 —E© E(1)c2

104 0.125049965000 —0.03905836 0.125099970000 —0.00780251
103 0.125496500159 —0.03902343 0.125997000116 —0.00771379
1072 0.129651571359 —0.03889913 0.134701144177 —0.00693386
0.1 0.148089155790 —0.04850225 0.200845672373 —0.00421749
1 0.160468982634 —0.03922004 0.456597058424 —0.00334876
2 0.173944705973 —0.04384308 0.599612773602 —0.00285068
4 0.188846463700 —0.05451269 0.787825272030 —0.00118225
10 0.208951829045 —0.07667672 1.125422341839 0.00569476
20 0.223842126804 —0.09945889 1.465508545545 0.01885872
40 0.238199272863 —0.12751738 1.896082532426 0.04624607
100 0.256181570331 —0.17283760 2.634760665299 0.12612566
200 0.268968189189 —0.21338061 3.347145235707 0.24869176
400 0.281029709905 —0.25942407 4.215128283478 0.46680714
1000 0.295857474144 —0.32824668 5.638421079484 1.00898013
2000 0.306241266053 —0.38693856 6.951980031508 1.73564602
4000 0.315928273383 —0.45077194 8.493324580274 2.89266484
8 or B=10 quoted from I.

order inc™2, cannot be simply calculated as W (r,9,¢)=€em¢(r sin a)lml(r COSﬁ)VYl/z,mS

EM=gO) Q) (1) 1 I
X ex;{ - —yrzsinzﬁ) > (rsin®)ZXgy(r),
For this reason the effective equation of the recently devel- 4 k=0
oped effective Schidinger-like Hamiltonian equatio(EHA) (6)

[22]
where

Nette= ESetre 2 |
in a model space of near-degenerate nonrelativistic two- Oo(N)= 2 Al =% (7)
component spinors is taken into account. The eigenvectors of =2k
the effective equation are spin-mixed functions in a basis o
nonrelativistic states, and the eigenvalues are the exact rel
tivistic energies of the corresponding true states. Through thaP'n

first order inc™ 2, the effective operators are given by

Io the Schrdinger equation for a nonrelativistic particle with

1 zZ 1
=(p+A)2— —+ -0 B|V=EV, )
h{ii=phsp+pavapc?, 3) 2 ro2
sglf)f:erpaZp/cz, 4) we obtain a linear formula for generating the coefficients

A » [14]:

where p stands for the projection onto model spabeg,is
nonrelativistic Hamiltonian with electrostatic potentis]
and

Ai = LA 242, A 2.2, A - 22 A - 1,2) - 9

Following Ref.[14] we generate a set of particular solutions
V(P (p=0,1,2 ... ) by starting from Ref[18]:

a=o-(p+A)/2. (5)
The vector potentiah can take the fornA=BXr/2. ALk= 8ok (10
(P) =
IIl. DETAILS OF CALCULATIONS AB=0, k>I. (11

The nonrelativistic hydrogen atom in constant magnetic For bound state the wave functioh tends to zero as
field B=(0,0,y) has three good quantum numbers: the mag-goes to infinity. The radial functions behave in the same way.
netic quantum numbers, mg, and thez parity v. Substitut- The asymptotic behavior af,, was considered in paper |
ing the nonrelativistic function in the general form and is given by inverse power expansion of the form
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TABLE Il. Comparison of the nonrelativisti&€® and relativistic perturbativee®™ energies for the

2p3p( = —3/2) excited state of hydrogen atom in an intense magneticBi¢il units of 2.35<10° G). The

numbers in column 3, 4, and 6 give the previous most accurate nonrelatiigtiand relativisticE, results.

B -EO@ —Eng? —Eng® —&w -E,°
0.1 0.200845672373  0.200845672373  0.20084567237333  0.20084589696  0.200845897
1 0.456597058424  0.456597058424 0.4565970584 0.45659723675 0.45659724
10 1.125422341839 1.125422341839 1.1254223418 1.12542203859 1.12542204
100 2.634760665299  2.634760665299 2.634760665 2.63475394894 2.63475395
200 3.347145235707 3.34714523 3.34713199253
400 4.215128283478 4.21512828 4.21510342536
1000 5.638421079484 5.63842108 5.63842105 5.63836734992 5.6383673
2000 6.951980031508 6.95188760599
4000 8.493324580274 8.49317054193
aReferencd 14].
bReferencd9].
For(1)=17"""Kp(x)exp — &), (12)  can be reduced to a system bf1 homogeneous linear
equations for coefficients,. HereE, can be found in thé,
< R, I, andn approximation from the condition of the linear
Po(X)= >, BOX, (13)  dependence of this system.
=0 Solving this system of linear equations and choosing the
initial values of coefficients
where
k=\2E,, p=1lk, x=1I, (14) Aoa=Ck @D
we generate the physical solutidn. In the basis set of two
and . . .
component spinorg6) the matrix elements of effective
E,=(1+m+|m|+2m,)B/2—E. (15) Hamiltonian and effective metrifEgs. (3) and (4)] can be

expressed in terms of the integrals

Following paper | we generate the set of coefficiergg
until j=n by starting from arbitrar;BgO) and using linear

: K’k‘:,=f I(a,b,y)rg%gl,dr,
recurrent relations of the form 0

B =y(BU~V BIY BYI~2 BU~1) (16)  Wherea,b, andc are integer numbers, superscripisand v
0 0\ Po 122 22 124 ’ .. . .
distinguish the states in the model space Hiadb, y) stands
and for angular integral
BY = Lon(BY 2.BY % .BY ¥ .BY.Z.BY ) (17)

- 1

I(a,b,y)= f (sinﬁ)a”(cosa)bexp( - ZyrzsinZa) do
0

for k>0. Owing to the asymptotic convergence of expansion

(13) the values oBY) disclose a more rapid increase than the a+2\ (b+1
geometric progression and the summation gvehould be 2 2
terminated at some value p&n.

a+b+1

An approximate physical solution >

(18) XF

|
= (p)
V4 DZ:O Cpq’ (22)

at2 atb+1 1
2 '~ 2 2"
is determined by imposing the condition wherel is the gamma function anfélis the confluent hyper-
geometric function which can be calculated by Kummer’s
formula or by an asymptotic expansif23]. The radial inte-
gral from 0 toR is mapped to the integral from 0 to 1 and
evaluated numerically by Gaussian quadrature. The integra-
at finite radius =R. Consequently, the boundary conditions tion from R to « gives negligible impacts to the relativistic
effects and for this reason the radial integrals frigno « are
Iak(R)— fa(R)g2k(R) =0 neglected.

gak(r)
Qok(r)

, P2a(X)
P2k(X)

=f(r)=—k+x(np—v—Kk)—x (19

(20
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TABLE Ill. Nonrelativistic E©) and relativistic perturbativé®™ energies calculated in the standard nondegenerate and the effective
Hamiltonian near-degenerate perturbation approach for the model space of two nonrelativistiggiatgs-2- 1/2) and 2 _,(ms=1/2) of
hydrogen atom in a magnetic fieRl (in units of 2.35< 10° G).

2pg

_E©

—_gw

2p_,
_E©

e

EHA
_5(11)

— 5(21)

0.125000000000
0.125000499999
0.125004999850
0.125049985000
0.125498500042
0.129850415833
0.162410078399

0.125000970725
0.125001470720
0.125005970541
0.125050955392
0.125499467481
0.129851357419
0.162410980720

0.125000000000
0.124999999997
0.124999999700
0.124999970000
0.124997000116
0.124701144177
0.100845672373

0.125001525425
0.125001525420
0.125001525111
0.125001495292
0.124998524311
0.124702666403
0.100847819138

0.125002081244
0.125002282959
0.125006104738
0.125050967663
0.125499468548
0.129851357483
0.162410980722

0.125000416025
0.125000713181
0.125001390914
0.125001483022
0.124998523244
0.124702666338
0.100847819137

lII. NUMERICAL RESULTS AND DISCUSSION generalized relativistic variational calculatiof® and very
similar to the dependence of the relativistic correction for the

In relativistic case Hamiltonian commutes with theom-  ground state[7,18]. Quite different behavior disclose the
ponent of the total angular momentum and with the parityrelativistic corrections for the 4 ,,(x= —1/2) excited state.
operator, so that the corresponding quantum numpeasd It is negative for all values of magnetic field displayed in
7 are conserved. There is unique correspondence betwedable I. To our knowledge for this excited state there is no
the two nonrelativistic excited statessg@m,=—1/2) and fully relativistic results for comparison in the literature. A
2p_1(mg=—1/2) and two relativistic states sZ,(u= comparison with previous results for the state evolving from
—1/2m=+1) and Dy (u=—3/2r=—1). Table I lists 2p3, is made in Table Il. The calculations have been per-
the nonrelativistic energies and first-order relativistic correcformed withc=137.035 989 §24]. A 12-figure accuracy of
tions obtained in the spirit of nondegenerate perturbation apghe present nonrelativistic results exceedsBer200 that of
proach for well energetically isolated nonrelativistic statesprevious calculations. The accuracy of perturbation results
evolving from atomic statessg and 20_, of same principal through the first order i~ matches that of previous fully
numbern=2, projection of spirmg=—1/2, andz parity »  relativistic calculations.
=0 but differentm values. The maximal absolute error of  Two others of lowest excitech=2) nonrelativistic states
each value displayed in Table | does not exceell in the  2po(ms=—1/2) and d_;(ms=1/2) have in magnetic field
last digit. the same relativistic symmetryu=—1/2 and 7=—1).

It should be observed that for th@2,(u= —3/2) excited Since for small intensities of magnetic field the relativistic
state the relativistic correction changes sign neéar5 and  perturbation and the magnetic interaction are comparable,
then increases considerably with growing intensity of magthe effective relativistic eigenfunctions in two-dimensional
netic field. The absolute value of relativistic correction for nonrelativistic model space are strongly mixed. The transfor-
B=4000 is two orders of magnitude greater than for field-mation matrix from nonrelativistic stategpg and 2_; to
free atom. This is in full agreement with previous results ofrelativistic eigenfunctions 2;, and 2ps;, is given in the

field-free limit by

TABLE IV. Nonrelativistic energie€(®, first-order relativistic
correctionsE® and relativistic perturbative energi¢&? for the

state Py(ms=—1/2) of hydrogen atom in a magnetic fieRl (in ®, 3p,
units of 2.35<10° G). 0 '
B —E© E@c2 — g > =
1 0.260006615944 —0.05108661  0.260009336375 § -0.05 4
2 0.297710972385 —0.08256629  0.297715369153 § 3p
4 0.335695728671 —0.13473441  0.335702903462 M
10 0.382649848306 —0.25043170 0.382663184136 -0.10 2p,
20 0.413377734222 —0.38443574  0.413398205949
40 0.438733801355 —0.56492728  0.438763884502
100 0.463617764477 —0.87516918  0.463664368427 P
200  0.476532014388 —1.15701265 0.476593626760 —0.13 0.10  0.20 _ 0.30
400 0.485363074873 —1.46926971  0.485441315486 v
1000 0.492495007408 —1.91188465  0.492596817870
2000 0.495594803690 —2.25912955  0.495715105416 FIG. 1. Behavior of slightly excited nonrelativistic levels with

p=m+mg=—1/2 and w=—1, evolving from field-free states
with principal quantum numberns=2, 3, and 4.

0.497463531134 —2.61114956  0.497602578405
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FIG. 2. Crossinggordered according to increasing intensity of magnetic fieldnonrelativistic levels{a) 3p_,(ms=+1/2) and 4,
(mg=—1/2), (b) 3p_1(mg=+1/2) and $py(ms=—1/2), (c) 2p_1(mg=+1/2) and Fy(Mms=—1/2), (d) 2p_1(ms=+1/2) and 4,(m;
=-1/2), (e) 2p_1(mg=+1/2) and $p,(ms= —1/2) (dashed lines and avoided crossings between relativistic levels with —1/2 and

7=—1 (solid lines.

1 1 2 Table Il the zeroth-order nonrelativistic energies, the nonde-
( ) generate perturbative energies through the first order and the
V3l - V2 1 EHA energies in a model space spanned by two nonrelativ-

istic orthogonal two-component reference states evolving
There is no unique correspondence between the two nonrefrom 2po(ms=—1/2) and D_;(m¢=1/2). One can see that
ativistic and the two relativistic states. Nondegenerate DPTyith growing intensity of magnetic field the considered
break down in such cases. The EHA-DPT recovers the relastates become well energetically separated andBfsi0.1
tivistic splitting already at the first order, while nondegener-the difference between nondegenerate DPT and EHA-DPT
ate DPT yields vanishing spin orbit coupling. As a numericalresults are negligible. Table IV lists the nonrelativistic en-
illustration of this case of near-degeneracy we display irergy, first-order relativistic correction and total relativistic
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energy up to first order of the state evolving from nonrela-and there is no necessity to perform separate calculations for
tivistic state 2p(ms=—1/2) for 1<B=<4000. Relativistic different values ofZ.
correction is negative for all values of magnetic field and its The problem of the hydrogen atom, placed in a uniform
magnitude increases considerably with growing intensity oinagnetic field has important applications in such different
magnetic field(much faster than for thesg excited state areas of physics as atomic spectroscopy, solid-state physics,
displayed in Table)l and astrophysics. Our calculations indicate the necessity to
Energy of state @_;(ms=1/2) goes quickly up and near include relativistic corrections given the current numerical
B=0.3 reaches zeriwompare Table I; according to E@8)  accuracy of the nonrelativistic calculations. It is especially
E(ms=1/2)=E(ms= — 1/2)+ B]. Therefore there are many pronounced for excited states because for high intensities of
crossings of this state with other states in nonrelativistic CaStagnetic field the first-order relativistic energy correction
and many avoided crossings in the relativistic case. In siMic 1 pe a few orders of magnitude greater than for field-free
lar way behave the next excited states with,=1/2 5,0 pepending on the state considered and intensity of the
(3p,1,4p,1,4f_,1, ---). Figure 1 shows the genera_l PIC- field the relativistic energy corrections have different signs
ture of levels withu=m+ms=—1/2 andw=—1 evolving ., gives considerable impact to the spectral lines. In as-

from field-free states with principal quantum numbers 2, 3’tronomy, the knowledge of the spectrum of the atomic hy-

and 4. Figure 2 demonstrates that relativity causes Iowenng_rogen in magnetic field will help in accurate measurements

cr::ettrf/ energy and avoided crossing due to breaking the Symof stellar magnetic fieldéabout 16—10F G on white dwarfs

We have shown in this paper that accurate first-order rela3] and 16*-10° G on neutron starf4)). , ,
tivistic energy corrections for excited states of hydrogen 'N€ technique presented in the present work is effective
atom in a magnetic field can be obtained in the framework oftnd ensures a high accuracy of calculations. One may hope
direct perturbation theory using a highly accurate series sghat this approach will find also its application in testing
lution of the Schrdinger equation. The accuracy of the total various approximate methods.
energy matches or exceeds in some cases that of previous
fully relativistic calculations. The main advantage of the per-
turbation approach is that like the nonrelativistic cg28, ACKNOWLEDGMENTS
the relativistic energy corrections with# 1 can be calcu-

lated by a simple scaling relatid26]: Research support from the Academic Development Fund
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