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Simulating quantum interference in a three-level system with perpendicular
transition dipole moments
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We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of
the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments
of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to
a large degree a three-level system with parallel dipole moments—the latter being a system that exhibits
quantum interference and displays a number of interesting features. As examples, we show that the system can
produce extremely large values for the intensity-intensity correlation function, and that its resonance fluores-
cence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral
features are interpreted in terms of transitions among these dressed states. We also show that this system is
capable of exhibiting considerable squeezing.
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I. INTRODUCTION

Consider a three-level V-type system which interacts w
the vacuum so that spontaneous decay may take place
the two excited levels to the ground state. If the system
such that the dipole moments for the two principal transitio
are parallel or nearly so, then, in addition to this direct de
process, the interaction with the vacuum leads to an indi
coupling between the two excited states. Such systems
been of considerable interest since Agarwal@1# showed that
spontaneous emission could be controlled by means of
quantum interference displayed by such systems. The in
ference results from vacuum induced coherences betwee
two atomic transitions: the spontaneous emission from
of the transitions modifies the spontaneous emission of
other transition. Cardimonaet al. @2# and Hegerfeld and
Plenio @3# studied the effect of quantum interference on t
resonance fluorescence of such a system, and found th
can be driven into a dark state in which quantum interfere
prevents any fluorescence from the excited sublevels.

More recently, a number of atomic and molecu
schemes have been studied and it has been demonstrate
quantum interference leads to many interesting effects wh
could have useful applications in spectroscopy and la
physics. These include the quenching of spontaneous e
sion and the presence of ultranarrow spectral lines@4–6#,
electromagnetically induced transparency@7#, and amplifica-
tion without population inversion@8#. Recent studies hav
also shown that quantum interference can lead to ph
dependent population inversions and phase control of sp
taneous emission@9#. Keitel @10# has proposed a scheme
control the intensity of very narrow spectral lines in a V-ty
system driven from a single auxiliary level, which cou
have applications in high precision spectroscopy.

We have recently shown that quantum interference of
above type may lead to very large values of the intens
intensity correlation function in a three-level V-type ato
1050-2947/2004/69~2!/023401~10!/$22.50 69 0234
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consisting of two excited levels coupled to a singlet grou
level by electric dipole interactions@11#. The atom was
driven by a single-mode laser coupled to both atomic tran
tions, as shown in fig.1 Previous work by Hegerfeldt a
Plenio @13# for an incoherently driven atom showed that t
intensity correlation may exhibit quantum beats despite
incoherent pumping. Excitation by two coherent fields w
considered by Mankaet al. @14#, who showed how the reso
nance fluorescence and intensity-intensity correlation spe
on one transition can be influenced by the intensity of
driving field on the other transition@15#.

For the coherently driven V-type atom, we found that,
the presence of quantum interference, there are extendesi-
multaneousperiods of darkness in the fluorescence from
two atomic transitions, even for equal decay rates of
excited levels@11#. This result is in contrast to the dark pe
riods predicted by Cook and Kimble@16# and Pegget al.
@17# for a V-type atom with uncorrelated transitions and s
nificantly different decay ratesg1 and g2. In their case the
atom spends most of its time in the stronger transition~large
decay rate! and there is a small probability of finding th
system in the other~weak! transition. In Ref. @11#, we
showed that for parallel dipole moments and a strong driv
field, the atom emits a stream of photons exhibiting stro
correlations. With near maximal quantum interference,
normalized intensity-intensity correlation function can e
hibit extremely large values, whereas the correspond
value for the case of perpendicular moments is of the or
of unity. Indefinitely large correlation functions fortwo two-
level atoms were reported by Wiegand@18#, but these large
values have a different origin, due to there being positio
where the field vanishes in this three-dimensional proble
Large values for the second-order intensity correlation fu
tion for nonstationary fields have been described by Ja
et al. @19#.

However, it is difficult in practice to find suitable V-typ
systems with parallel dipole moments. In atoms used
©2004 The American Physical Society01-1
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Z. FICEK AND S. SWAIN PHYSICAL REVIEW A69, 023401 ~2004!
atomic spectroscopy the dipole moments are usually per
dicular. For this reason, there have been few experime
investigations of the effects predicted. An experiment w
performed@20#, but it has not so far proved possible to repe
the results@21#. This experiment has also been discussed
Berman@22# and Wanget al. @23#.

A number of different atomic schemes have been s
gested for explicitly getting around this problem in the ho
that they may provide a more tractable path to experim
tally observing the interesting effects. Garraway and Kni
@24# found that a V system coupled to a bad cavity cou
formally emulate the effects of quantum interference. Patn
and Agarwal@25# showed that a four-level atom with tw
closely spaced intermediate states can also show the ef
of quantum interference. Zhou and Swain@26# ~see also Ref.
@27#! demonstrated that maximal quantum interference
be achieved for a three-level atom coupled to a single-m
cavity field with pre-selected polarization in the bad cav
limit. Agarwal @28# has discussed how introducing aniso
ropy into the vacuum can lead to quantum interferen
among the decay channels of close lying states.

In this paper, we propose an alternative scheme wh
permits the observation of the interesting features predic
for three-level systems showing strong quantum interferen
but without the need for parallel dipole moments. In t
scheme proposed here, we consider a three-level V-type a
with perpendicular dipole moments coupling the upp
nearly degenerate levels with the ground level. We assu
that one of the atomic dipole transitions is driven by a stro
laser field and a dc field is applied to the atom to couple
upper levels. Dalton and Gagen@29# and Hakutaet al. @30#
considered a similar scheme in which the dc field couple
driven transition to a metastable level. In our scheme,
relax the condition that the third levelmustbe metastable
allowing a nonzero spontaneous decay to the ground s
This broadens the range of interesting quantum interfere
effects it is possible to observe in three-level atoms.

II. THE THREE-LEVEL SYSTEM

In Ref. @11# we have considered photon correlations in
three-level system in the V configuration as shown in Fig

FIG. 1. Energy-level scheme of a three-level atom in the
configuration driven by a single laser field coupled to both atom
transitions~system 1!.
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The atom consists of two nondegenerate excited levelsu1&
and u2& separated from the ground levelu0& by transition
frequenciesv1 andv2, and connected by the electric dipo
momentsmW 1 and mW 2, respectively. We assume that the e
cited sublevels can decay to the levelu0& by spontaneous
emission, whereas direct spontaneous transitions betwee
excited sublevels are dipole forbidden.

In the frame rotating with the laser frequencyvL the mas-
ter equation is of the form

ṙ52 i @r,H#1Lr, ~1!

where the Hamiltonian is

H5~D2v12!A111DA221@~V1A101V2A20!1H.c.#,
~2!

and the damping term is

Lr5
1

2
g1~2A01rA102A11r2rA11!1

1

2
g2~2A02rA20

2A22r2rA22!1
1

2
g12~2A01rA202A21r2rA21!

1
1

2
g12~2A02rA102A12r2rA12!. ~3!

In these equations,Ai j [u i &^ j u is the transition operator,D
5v22vL is the detuning between the frequencyv2 of the
u0&→u2& transition and the driving laser frequency, 2Vk(k
51,2) is the Rabi frequency of thekth transition (k51,2),
and v125v12v2 is the level splitting between the excite
sublevels. Hereg i is the spontaneous decay constant of
excited sublevelu i & ( i 51,2) to the ground levelu0&, while

g i j 5
2Av i

3v j
3

3\c3
m i
W
•m j
W5bAg ig j ~ iÞ j 51,2! ~4!

arises from the cross damping~quantum interference! be-
tween the transitionsu1&→u0& and u2&→u0&. The cross
damping term~4! is sensitive to the mutual orientation of th
atomic transition dipole moments, which is represented h
by the parameterb, the cosine of the angle between the tw
dipole moment vectors. If the dipole moments are paral
b51, then the cross damping term is maximal withg12

5Ag1g2, while g1250 if, as is usually the case, the dipo
moments are perpendicular (b50), and the quantum inter
ference term vanishes.

It is evident from the form of the LiouvilleanL that the
spontaneous decay in this system isoff diagonal—that is, the
equation of motion for the density matrix elementr i j will
contain damping terms that are proportional tork j and/or
r ik , in addition to the diagonal damping terms proportion
to r i j . We showed in Ref.@11# that if we transform to a new
basis characterized by the following symmetric and antisy
metric superposition states of the excited levels:

c
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SIMULATING QUANTUM INTERFERENCE IN A THREE- . . . PHYSICAL REVIEW A 69, 023401 ~2004!
us&5
1

Ag11g2

~Ag1u1&1Ag2u2&),

ua&5
1

Ag11g2

~Ag2u1&2Ag1u2&), ~5!

the off-diagonal damping terms become proportional tog1
2g2. A more detailed discussion is given in Ref.@12#.

For simplicity, we henceforth consider the case wh
g15g25g, when the damping becomes purely diagon
and we also assumeV25V15V. The symmetric and anti
symmetric superposition states of the excited levels then
come simply

us&5
1

A2
~ u1&1u2&),

ua&5
1

A2
~ u1&2u2&), ~6!

and the decay term in Eq.~1! is diagonalized. The maste
equation~1! and the Hamiltonian~2! take the form:

ṙ52 i @r,H#1
1

2
g~11b!~2A0srAs02Assr2rAss!

1
1

2
g~12b!~2A0arAa02Aaar2rAaa!, ~7!

with

H5D1~Ass1Aaa!2
1

2
v12~Asa1Aas!1A2V~As01A0s!,

~8!

and

D15D2
1

2
v12. ~9!

It is apparent that the laser field couples only to the symm
ric state and both states decay independently to the gro
state with different decay rates. In fact, if the dipole mome
are almost parallel, so thatb.1, it is clear that the antisym
metric level is metastable. If the original levelsu1& and u2&
are degenerate, the coupling between the symmetric and
tisymmetric states vanishes.

If we ignore theD1Aaa term in Eq.~8!, we observe that
the system described by Eqs.~7! and~8! is equivalent to that
of a three-level system in which the ground stateu0& is con-
nected to the excited stateus& by a laser field detuned from
resonance with the stateus& by the amountD1,while us& is
also connected with the other excited state,ua&, for example,
by a dc field.

In the remainder of this paper, we consider a general
tion of this system in which we allow the two excited stat
to be nondegenerate, and their decay rates to the ground
to be arbitrary. We also redefine the coupling constants to
equal to twice the corresponding Rabi frequencies, and
denote the ground state henceforth asug&, rather thanu0&,
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and the upper states asue& anduu&. Explicitly the system we
consider is described, in the rotating frame, by the Ham
tonian

H5DeAee1DuAuu2D~Aeu1Aue!1V~Aeg1Age!,
~10!

and Liouvillean

Lr5
1

2
ge~2AgerAeg2Aeer2rAee!

1
1

2
gu~2AgurAug2Auur2rAuu!, ~11!

whereD is the Rabi frequency of the dc field directly cou
pling the upper states.

This system, shown in Fig. 2, is the one studied in de
in this paper. Comparing Eqs.~7! and ~11!, we define

b5cos21u5~ge2gu!/~ge1gu! ~12!

as a measure of quantum interference. We thus expect
the leveluu& has to be metastable (gu!ge) if we are to see
maximal effects of quantum interference.

However, we wish to investigate how far the effects
quantum interference are duplicated by the latter sys
when the detunings are unequal, when there is no uni
equivalence with system 1, and when we relax the condit
gu!ge . In the following sections we shall show that th
system described by Eqs.~10! and ~11!, to be referred to
henceforth as system 2, behaves in a rather similar way to
original system~1! @or equivalently, system~7!#, to be re-
ferred to as system 1. However, system 1 requires dip
moments that are almost parallel, while perpendicular m
ments are assumed for system 2.

III. INTENSITY-INTENSITY CORRELATION FUNCTION

We demonstrated in Ref.@11# that system 1 can exhibi
extraordinarily large values of the normalized intensi
intensity correlation function. Here, we show that system
exhibits a similar type of behavior. The normalized intensi
intensity correlation function is defined by

FIG. 2. Energy-level scheme of the three-level atom~system 2!.
The single laser couples only one of the atomic dipole transitio
while a dc field couples the two excited states.
1-3
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g(2)~ t,t1t!5
G(2)~ t,t!

G(1)~ t !G(1)~ t1t!
. ~13!

The first- and second-order correlation functions, appea
in Eq. ~13!, can be expressed in terms of the positive a
negative frequency parts of the electric-field operator as

G(1)~ t !5k^EW 1~ t !EW 2~ t !&, ~14!

G(2)~ t,t!5k2^EW 1~ t !EW 1~ t1t!EW 2~ t1t!EW 2~ t !&. ~15!

We later choose a convenient value for the arbitrary posi
constantk. G(2)(t,t) is a relative measure of the joint prob
ability that a photon is detected at timet1t if one was
detected at timet.

The electric field may be expressed as a vacuum term
a term radiated by the atom. Since the field is initially in t
vacuum state, the vacuum part does not contribute to
expectation values of the normally ordered field operat
and then for the purpose of evaluating the correlation fu
tions, we may take

EW 2~ t !}mW ugAug~ t !1mW egAeg~ t !, ~16!

whereAig5u i &^gu,i 5e,u is the transition operator betwee
the excited and ground levels andmW ig is the corresponding
dipole moment. Since in system 2 we assume that the di
moments of the atomic spontaneous transitions are per
dicular, we obtain the following expressions for the corre
tion functions:

G(1)~ t !5 (
i 5e,u

g i^Aii ~ t !&, ~17!

and

G(2)~ t,t!5 (
i , j 5e,u

g ig j^Aig~ t !Aj j ~ t1t!Agi~ t !&, ~18!

where g i is the spontaneous decay constant of the exc
sublevelu i & ( i 5e,u) to the ground levelug&. @We have cho-
sen the value of the constantk in order that the spontaneou
decay ratesg i are the coefficients that appear in Eqs.~17!
and ~18!.#

Noting that^Aig(t)Aj j (t1t)Agi(t)& may be written

^Aig~ t !Aj j ~ t1t!Agi~ t !&5^ i ur~ t !u i &u^ j uU~t!ug&u2

5Pi~ t !P~g,0→ j ,t!, ~19!

whereP(g,0→ j ,t) is the probability that if the system is i
the ground stateug& at timet50 it will be in the excited state
u j & at timet5t, U(t) is the time-development operator, an
Pi(t) is the probability that the system will be in stateu i & at
time t, we may express the normalized intensity-intens
correlation functiong(2)(t,t1t) as

g(2)~ t,t!5
guP~g,0→u,t!1geP~g,0→e,t!

guPu~ t1t!1gePe~ t1t!
. ~20!

Henceforth, we assume that we are dealing with stati
ary fields in the steady-state situation,t→`, when Pi(t)
becomes independent of time. We may then write
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gtot
(2)~t!5

guP~g,0→u,t!1geP~g,0→e,t!

guPu1gePe
, ~21!

wherePi5 limt→`Pi(t), and we have added the subscripttot
to emphasize that in writing down Eq.~21! we have assumed
that our photodetector responds to the total field incid
upon it, as evinced by our use of the expression~16!.

It is, however, possible in principle to arrange the pho
detector so that it responds only to photons emitted on
ue&→ug& transition, or only to photons emitted on theuu&
→ug& transition, when the corresponding correlation fun
tions measured are

gj j
(2)~t!5

P~g,0→ j ,t!

Pj
, j 5e,u. ~22!

The value ofP(g,0→ j ,t) is calculated by solving the maste
equation for r j j subject to the initial conditionsr(0)
5ug&^gu. We illustrate the features of these correlation fun
tions in the following figures. In all cases, we measure qu
tities as ratios ofge ~i.e., we takege51), and throughout
this section we takeD55, V50.5.

In Fig. 3 we takegu50.01,De5Du50. In this case, sys-
tem 1 is unitarily equivalent to system 2, with the dipo
moments almost parallel@cf. Eq. ~12!#. The first two frames
show thatgtot

(2) and gee
(2) exhibit very strong photon correla

tions, as expected, whileguu
(2) as shown in the third frame

exhibits much weaker correlations. Although the steady-s
diagonal density-matrix elementsree and ruu are propor-
tional to gee

(2) and guu
(2) , respectively, they are shown sep

rately in the final frame.ree is represented by the solid line
For clarity, we have normalizedruu to the same maximum
value as ree. That is, the dotted line represen
ruu(t)/max(ruu)3max(ree). To enable the absolute values
ruu(t) andree to be compared, the maximum value ofruu(t)
is shown in the frame.

For this small value ofgu , we note that

FIG. 3. Second-order intensity-intensity correlation functio
and the density matrix elements forD55, V50.5, De5Du50,
and gu50.01. The fourth frame showsree as a solid line. The
dotted line represents@ruu(t)/max(ruu)]max(ree). To enable abso-
lute values ofruu to be estimated, its maximum value is indicate
in the fourth frame. In this and all subsequent figures,ge51.
1-4
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SIMULATING QUANTUM INTERFERENCE IN A THREE- . . . PHYSICAL REVIEW A 69, 023401 ~2004!
~i! gtot
(2) is qualitatively similar togee

(2) ,
~ii ! the oscillations ingee

(2) are twice as rapid as those
guu

(2) ,
~iii ! both ree and ruu exhibit simply harmonic oscilla-

tions.

Property~i! holds because the first term in Eq.~21! domi-
nates the second for these parameter values@gu /ge
50.01, max(ree)/max(ruu).0.25#. The very large values o
gee

(2) are due to the normalization employed in Eq.~22!. For
short times, the maximum values ofree(t) are of order 0.01,
whereas the steady-state value isree(`).1026.

The properties of this system may be partially understo
by considering the special caseDu5gu50. That is, we as-
sume the laser is resonant with leveluu&, which is com-
pletely stable. It is then very easy to show that the stea
state solution is

ree5reu5reg50,

ruu5
V2

D21V2
, rug5

VD

D21V2
. ~23!

Thus the system eventually evolves into the pure state

uC&5
Dug&1Vuu&

AD21V2
, ~24!

independently of the values ofDe and ge and of the initial
state of the system. Although the laser is driving the tran
tion ug&→ue&, there is no population in the stateue& in the
steady state in spite of the ground stateug& being populated,
and the system is ‘‘dark’’— i.e., no radiation at all is emitte
We have a coherent population trapping situation.

However, if we consider the evolution of the system fro
the initial density matrix

r~t50!5ug&^gu ~25!

@so thatr j j (t)5P(g,0→ j ,t), as appears in Eq.~20!# there
will for short times be population in the stateue&, and fluo-
rescence will occur. Forgu50, one cannot define the stead
state intensity-intensity correlation function, as all the r
evant quantities are zero. It would, however, be meaning
to define transient intensity-intensity correlation functions
but we do not consider these here@19#.

If we now supposegu to be small but nonzero, then the
will be fluorescence even in the steady state, but the m
number of photons emitted in unit time will be very small.
we concentrate on the photons emitted on theue&→ug& tran-
sition for definiteness, then the steady-state value ofree will
be very small, whileP(g,0→e,t) will be much larger for
shorter times. Thus the short-time values ofg(2)(t) will be
very large. According to the expressions~23!, we expect
these values to become larger if the ratioV/v increases, and
this we find to be so in our numerical investigations.

If we increase the value ofgu to gu50.1, we find that
properties~i! and ~iii ! still hold, but thatgtot

(2) is no longer
qualitatively similar to gee

(2) . It clearly shows a doubly
peaked structure. This is because the relative weights of
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two terms in the numerator of Eq.~21! become comparable
@gu /ge50.1, max(ree)/max(ruu).0.26#. The form of gtot

(2)

shows that it is composed of the sum of two oscillations
different frequencies.

Next, we investigate the effect of finite detunings. F
example, we keep the same parameter values as in Fi
except for assuming thatgu50.1, and introduce the finite
detuningsDu55, De50. The system is then no longer un
tarily equivalent to system 1. We find numerically that the
is no appearance of single-harmonic behavior in any of
three correlation functions. The maximum amplitudes ofgtot

(2)

and gee
(2) are much reduced, to an unremarkable value

about 4. The systems$ue&, ug&% and $uu&, u0&% cannot be
considered to behave as two independent, effective two-le
systems.

If, however, we takeDu50 andDe55, we find that the
very large maximum amplitude ofgee

(2) is restored, although
not quite to such large values as when both detunings w
zero.

Finally, we investigate increasing the value ofgu . If we
keep the detuningsDu50 andDe55, but increase the value
of gu to gu51, we still obtain large values forgee

(2) , although
the oscillations are no longer singly harmonic. This is rath
surprising at first, asuu& can no longer be considered a met
stable level. However, the steady-state population ofue& is
still much smaller than the steady-state population ofuu&, but
this is now due to the detuning of theue&→ug& transition
from resonance. Thus we can dispense with the requirem
that uu& be metastable, andue& and uu& be degenerate, an
still obtain large values forgee

(2) . These features are illus
trated in Fig. 4.

IV. RESONANCE FLUORESCENCE SPECTRA
AND SQUEEZING

A. Numerical calculations

Another interesting feature of system 1 is that it has be
shown to exhibit very sharp peaks in the incoherent fluor
cence spectrum under certain conditions. We show that
feature is also shared by system 2. We consider the c

FIG. 4. Second-order intensity-intensity correlation functions
in Fig. 3, except thatgu51, D55, V50.5, gu51, De55, and
Du50.
1-5
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Z. FICEK AND S. SWAIN PHYSICAL REVIEW A69, 023401 ~2004!
Du5De50, taking gu50.001, in Fig. 5 which shows the
existence of an ultranarrow line at the center of the resona
fluorescence spectrum. The sharpness of the line is decre
by increasing the value ofgu . ~The spectrum is actually five
peaked, but the inner side peaks are so small as to be b
noticeable in the figure.! We emphasize that the sharp lin
shown in Fig. 5 is due to incoherent scattering, as the co
ent contribution has been excluded from our figures.

The ratio of the relative weight of the inner side peaks
the outer side peaks increases with the value ofD/V, as we
show in Fig. 6. In this case, the five-peaked nature of
spectrum is obvious, and the fluorescence spectrum doe
exhibit the sharp line at the central frequency.

We point out that the system can show strong squee
under appropriate conditions, as we demonstrate in Fig
where we plot the squeezing spectrum for the in-phase
out-of-phase quadratures. It can also be shown that the u
narrow lines persist in the presence of detunings. The
trasharp peak amplitude can be enhanced by allowingDe to
become negative. In this example, the resonance fluo
cence spectrum reverts to a three-peaked one. It is w
noting that the squeezing is approximately independen

FIG. 5. The resonance fluorescence spectrumS(v) for V
55, D50.25,De5Du50, andgu50.001.

FIG. 6. The in-phaseS1(v) and out-of-phaseS2(v) squeezing
spectra, and the resonance fluorescence spectrumS(v) for D
55, V55, De5Du50, andgu51.
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the value ofgu . Thus if we increase the value ofgu to gu
51, leaving all the other parameters as in Fig. 7, then
degree of squeezing is unchanged~but the ultra sharp peak
disappears!.

B. Dressed-atom explanation of the spectral features

In Sec. IV A we presented the incoherent fluorescen
spectrum for system 2 withgu!ge . Here, we give an expla
nation of the spectral features in terms of the dressed st
of the system, and the transitions among them. We perf
the calculations using the dressed-atom technique develo
by Cohen-Tannoudji and Reynaud@34#, and extended by
Dalton and Gagen@29# to a three-level system with perma
nent dipole moments created in the upper states by dc
pling. In this approach, the laser field is treated quant
mechanically and the eigenstates of the Hamiltonian of
combined atom and driving-field system are found and u
as the basis for further calculations. The method is ess
tially based on the original master equation~7! but with the
unperturbed Hamiltonian~10! modified to include the free-
field Hamiltonian for the laser field and the atom-field inte
action replaced by a fully quantum coupling. Since the
field does not affect the optical photon modes, we treat
atom-dc field interaction semi-classically~quantum atomic
operators andc-number dc field!. While it is possible to treat
the problem with full generality using the dressed-atom p
ture, in the interests of having simple, transparent exp
sions to deal with, we restrict ourselves@31–33# to the situ-
ation in which the laser field and the dc field are in exa
resonance with their respective transitions.~The resonance
fluorescence spectra obtained in the exact resonance cas
exhibit no more than five peaks, whereas in the general c
there may be up to seven peaks.!

In the case of exact resonance, the Hamiltonian of
atom interacting with the quantized laser field and the
field may be written as

H5Hal1Hdc , ~26!

where

FIG. 7. The in-phase and out-of-phase squeezing spectra,
the resonance fluorescence spectrum forD51, V55, De5
210, Du510, andgu50.01.
1-6
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Hal5\vL~ ue&^eu1uu&^uu1âL
†âL!1\v~AegâL1âL

†Age!
~27!

is the Hamiltonian of the atom and the laser field compone
and

Hdc52\D~Aeu1Aue! ~28!

is the interaction between the laser driven atom and the
field.

The Hamiltonian ~27! has eigenstates uu,N
21&,u1,N&,u2,N& satisfying the eigenvalue equations

Haluu,N&5\NvLuu,N&,

Halu1,N&5\~NvL2V!u1,N&,

Halu2,N&5\~NvL1V!u2,N&, ~29!

where

uu,N&5uu&uN21&,

u1,N&5
1

A2
~ ug&uN&1ue&uN21&),

u2,N&5
1

A2
~ ug&uN&2ue&uN21&) ~30!

are the atom-laser field dressed states,N is the number of
photons in the laser mode, and 2V52vAN is the Rabi fre-
quency of the laser field. The states~30! form a ladder of
triplets with adjacent triplets separated byvL , and intratrip-
let splitting 2V.

When we include the interactionHdc between the atom
laser field dressed states and the dc field, the triplets rec
bine into new triplets with eigenstates

u0,N&5aug,N&1buu,N21&,

u1,N&5
1

A2
~bug,N&1ue,N21&2auu,N21&),

u2,N&5
1

A2
~bug,N&2ue,N21&2auu,N21&), ~31!

corresponding to energies

EN,05\vL ,

EN,15\~vL1V8!,

EN,25\~vL2V8!, ~32!

where

a5
D

V8
, b5

V

V8
, ~33!

and

2V852AV21D2 ~34!

is the effective Rabi frequency of the driving fields.
02340
t,
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The dressed states of the system form a ladder of tripl
as shown in Fig. 8, with adjacent triplets separated byvL ,
while the intratriplet separation isV8.

Having available the dressed states of the system, we
find the frequencies and amplitudes of the spontaneous t
sitions between the dressed states. Considering the en
diagram, Fig. 8, and Eq.~32!, it is apparent that the possibil
ity of fluorescence exists at the five distinct frequencies

v i j 5\21~EN,i2EN21,j !, ~35!

given explicitly as

v005v115v225vL ,

v025v105vL1V8,

v015v205vL2V8,

v125vL12V8,

v215vL22V8. ~36!

These frequencies correspond exactly to the frequencie
the spectral lines presented in Figs. 5 and 6. For example
Fig. 6, the inner~outer! sidebands appear at frequenci
65.8ge(611.6ge). With the parameters of Fig. 6, th
dressed atom transition frequencies~36! and Eq.~34! predict
exactly the same values for the frequencies of the inner
outer sidebands.

In order to calculate the intensities of the spectral featu
we have to calculate populations of the dressed states
transition rates between the dressed states of two neigh
ing manifolds. The transition rates are proportional to t
absolute square of the dipole transition moment connec
them @34#,

g i j 5geu^ i ,NuAegu j ,N21&u21guu^ i ,NuAugu j ,N21&u2.
~37!

Using Eqs.~31! and ~37!, we find that the transition rate
betweenu i ,N& and u j ,N21& are

g005a2b2gu ,

g015g025
1

2
b4gu , ~38!

FIG. 8. Dressed states of two neighboring manifoldsuN& and
uN21&.
1-7
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g115g225
1

2
b2G,

g125g215
1

2
b2G,

g105g205a2G,

whereG5(ge1a2gu)/2.
It is seen that in the limit ofgu50, the transition rates

from the stateu0,N& are all zero. Since the transition rate
into the stateu0,N& from the dressed states of the manifo
above are nonzero, the population will be trapped in t
state. This is the population trapping effect considered
Dalton and Gagen@29#. In the numerical calculations pre
sented in Sec. IV A, we have computed quantum interfere
effects that do not depend upon the assumptiongu50.

To analyze the intensities of the spectral lines we need
steady-state populations of the dressed states. We us
master equation~7! to find the time evolution of the popula
tions of the dressed states. We project the master equa
onto u i ,N& on the right and̂ i ,Nu on the left, make the secu
lar approximation in which we ignore couplings betwe
populations and coherences, and introduce the ‘‘redu
populations’’@34#

Pi5(
N

^ i ,Nuru i ,N&. ~39!

The population equations then reduce to three coupled e
tions

Ṗ052b4guP01a2G~P11P2!,

Ṗ152S 12
b2

2 DGP11
b2G

2
P21

b4gu

2
P0 ,

Ṗ252S 12
b2

2 DGP21
b2G

2
P11

b4gu

2
P0 . ~40!

Equations~40! have steady-state solutions,

P05
a2G

a2G1b4gu

,

P15P25
1

2

b4gu

a2G1b4gu

. ~41!

It is evident from Eq.~41! that for generalgu andD all the
dressed states are populated. In the absence of the dc
(D50), the populationP050, and then the dynamics of th
system reduces to that of a two-level system driven b
strong laser field. On the other hand, when eithergu50 or
D@V, the population is entirely trapped in the stateu0,N&.

With reference to Fig. 8, we see that, in the limit of we
separated lines, the total weight of the transition at freque
vL2V8 is given by W(v2vL)5P0g011P2g205W(v
1vL), the last step following by symmetry. Similarly, w
find that W(vL62V8)5P2g21 and W(vL)5P0g00
1P2g221P1g11 .
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To analyze the linewidths of the spectral lines, we stu
the time evolution of the off-diagonal density matrix el
ments

r i j 5(
N

r i ,N; j ,N21 . ~42!

First, we consider the outer sidebands atv5vL62V8. Pro-
jecting the master equation~7! onto u2,N21& on the right
and ^1,Nu on the left, we obtain

ṙ1252F i ~vL12V8!1S 11
1

2
b2DG Gr12 , ~43!

and similarly

ṙ2152F i ~vL22V8!1S 11
1

2
b2DG Gr21 . ~44!

These coherences correspond to the spectral lines atv2vL
562V8. The widths of the lines are

l62V85S 11
1

2
b2DG. ~45!

One can see that in the limit ofgu!ge the widths of the
outer sidebands are independent ofgu , which is in agree-
ment with the numerical calculations of Sec. IV A.

For the inner sideband atvL1V8, we project the maste
equation ontou0,N21& on the right and̂ 1,Nu on the left.
This results in two coupled equations,

ṙ1052H i ~vL1V8!1
1

2
@G1b2~11a2!gu#J r10

2
1

2
a2b2gur02 ,

ṙ0252H i ~vL1V8!1
1

2
@G1b2~11a2!gu#J r02

2
1

2
a2b2gur10 . ~46!

The coherences corresponding to the left sideband atvL
2V8 can be treated analogously, and it is easily to show t
the coherences satisfy the same equations as Eq.~46!, but
with vL1V8 replaced byvL2V8.

In order to discuss the linewidths of the spectral comp
nents it is sufficient to find the real parts of the eigenvalu
of the coupled equations~46!, which are

l6V8,15
1

2
~G1b2gu!,

l6V8,25
1

2
@G1b2~112a2!gu#. ~47!

It is seen that the inner sidebands are composed of two l
of slightly different widths.~When nonzero detunings ar
allowed, it can be shown that the central frequencies of th
two peaks may differ, resulting in the inner sidebands sp
ting into two peaks.!
1-8
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Finally, we consider the central component of the sp
trum. It is easily verified that there are three coherences
cillating at the same frequencyvL which satisfy the follow-
ing set of coupled equations:

ṙ0052~ ivL1b4gu!r001a2G~r111r22!,

ṙ1152F ivL1S 12
1

2
b2DGGr111

1

2
b2Gr22

1
1

2
b4gur00,

ṙ2252F ivL1S 12
1

2
b2DGGr221

1

2
b2Gr11

1
1

2
b4gur00. ~48!

The eigenvalues of Eq.~48! are

lc,152 ivL ,

lc,252 ivL2~a2G1b4gu!,

lc,352 ivL2G. ~49!

The lowest eigenvalue corresponds to the elastic compo
of the spectrum, while the other eigenvalues correspon
the inelastic central component. Clearly, the central com
nent is composed of two lines of different widths. ForD
!1, the real part oflc,2 reduces togu indicating that in the
limit of gu!ge the spectrum will exhibit a very narrow lin
at the central frequency, which is in agreement with the
merical calculations presented in Fig. 5. In the limit ofD
@1 andgu!ge , the real parts oflc,2 andlc,3 both reduce to
ge/2 indicating that in the limit of a strong coupling betwee
the upper states, there are no sharp lines in the spect
This is in agreement with the numerical results presente
Fig. 7.

V. SUMMARY

We have proposed a practical scheme which permits
observation of the interesting features predicted for thr
level systems showing strong quantum interference,
without the need for parallel dipole moments. In our syst
the transitions with perpendicular dipole moments
coupled by applying a dc field driving the transition betwe
us

ys
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the upper atomic states. We have shown that the system
exhibit the features previously predicted for a system w
parallel dipole moments: in particular, extraordinarily lar
values of the normalized intensity-intensity correlation fun
tion and ultranarrow lines in the resonance fluoresce
spectrum. We have explained the spectral features in term
the dressed-atom model of the system. Moreover, we h
shown that the system can exhibit strong squeezing.

We conclude with some examples of possible experim
tal observations of the features predicted in this paper
system with a metastable intermediate state, which is de
able for enhancing some of the features reported here~par-
ticularly ultrasharp lines! is atomic hydrogen, with the
ground state being the 1s level, ug&[u1s&, and the excited
states beinguu&[u2s&,ue&[u2p&, the 2s level being meta
stable @30#. The 2p spontaneous decay rate isge56.3
3108 s21. We findD.0.66Edc whereEdc is the externally
applied dc field measured in kV cm21, so that a field of 7.7
kV cm21 results in a valueD55ge , as assumed in some o
our figures.

The scheme used by Echanizet al. @35# to observe a dou-
bly driven V-type system might be suitable for demonstrat
the quantum interference effects on transitions with perp
dicular dipole moments. The scheme involves87Rb atoms
cooled in a magneto-optics traps, with the statesue&,uu&, and
ug& being the states 5P3/2(F50),5P1/2(F52), and 5S1/2(F
51), respectively. A polarized laser field drives th
5P3/2(F50)25S1/2(F51) transition with a dc field driving
the 5P3/2(F50)25P1/2(F52) transition. The specific val-
ues of the dc field intensity are not crucial as the predic
effects are present for a weak as well as a strong dc field.
Rabi frequencies we have assumed here are quite mo
and we anticipate no difficulty in them being realized.

Another possibility is to use a V-type three-level syste
in solids, e.g., in Pr31:YAlO 3 @36#. In this system, the hy-
perfine transitionu61/2&2u63/2& in 1D2(0) may be chosen
as the transition to be driven by a dc field. The dipole
lowed transitions could be two of the3H4(0)21D2(0) tran-
sitions.
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