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Friction forces arising from fluctuating thermal fields
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We calculate the damping of a classical oscillator induced by the electromagnetic field generated by ther-
mally fluctuating currents in the environment. The fluctuation-dissipation theorem is applied to derive the
linear-velocity damping coefficientg. It turns out thatg is the result of fourth-order correlation functions. The
theory is applied to a particle oscillating parallel to a flat substrate and numerical values forg are evaluated for
particle and substrate materials made of silver and glass. We find that losses are much higher for dielectric
materials than for metals because of the higher resistivity. We predict that measurements performed on metal
films are strongly affected by the underlying dielectric substrate and we show that our theory reproduces
existing theoretical results in the nonretarded limit. The theory provides an explanation for the observed
distance-dependent damping in shear-force microscopy and it gives guidance for future experiments. Also, the
theory should be of importance for the design of nanoscale mechanical systems and for understanding the
trade-offs of miniaturization.
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I. INTRODUCTION

The dynamics of an arbitrary system is affected by
system’s interaction with the environment. The strength
the interaction limits the time window in which the syste
can be fully controlled. The interaction with the environme
cannot be avoided since even in vacuum a system inter
with zero-point fluctuations. In order to understand the c
sequences of miniaturization it is important to understa
how these external fluctuations affect a nanoscale sys
For example, it has been explored to what extent Cas
forces influence the performance of micrometer-sized m
chanical devices@1,2# and how external noise affects dec
herence in ion traps@3#. Furthermore, various scanning prob
techniques such as atomic force or near-field optical
croscopies rely on the sensitivity of a local probe to pic
Newton forces. A theoretical understanding of underlyi
probe-sample interactions is necessary to assess the ult
achievable sensitivity.

Fluctuating electromagnetic fields are not only genera
by the vacuum but also by thermally activated currents
matter. These thermally excited fields interact with a dyna
cal system, such as a moving object, and give rise to a
tional force ~Brownian motion!. Therefore, any system
comes necessarily to a statistical rest at finite temperatu
In this study, we theoretically investigate this dissipati
force. We consider a small particle moving in a potential a
interacting with the electromagnetic field produced by th
mally excited currents in the environment. The friction exp
rienced by the object is not produced by mechanical cont
but only by the fluctuating field.

Electromagnetically induced friction forces have been
subject of several theoretical studies. For example, Eins
1050-2947/2004/69~2!/022902~14!/$22.50 69 0229
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et al.calculated the damping coefficient acting on an atom
free space in order to find a situation for which the Planc
energy spectrum arises naturally@4,5# ~a detailed review of
these papers is found in Refs.@6,7#!. Some recent studie
were aimed at deriving the friction force arising from th
relative motion of two half-spaces separated by a small
tance@8–12#, and the damping of the motion of an atom
molecule close to a planar interface is derived in Refs.@13–
17# ~for a review see Ref.@18#!. In the nonretarded limit
where interactions occur instantaneously, the theory of Vo
kitin and Persson@16# reproduces the results obtained b
Tomassone and Widom@14#. Our theory shows the sam
correspondence but we find an additional term which can
predominant for certain probe-sample material combinatio
We derive numerical results for particles and substrates m
of combinations of silver and glass and we show that frict
forces are much stronger for dielectric materials.

Our theoretical study closely relates to recent experime
which deal with nanoscale probes in ultrahigh-vacuum c
ditions. These probes experience a friction force which
pends strongly on the probe’s proximity to the surface o
substrate as well as on the temperature of the environm
@19–22#. The linear-velocity damping constantg of a tip in
the proximity of a planar surface has been measured by u
different experimental configurations. Karrai and Tiema
used a tuning fork in which the attached tip was movi
parallel to the surface@19#. Similar experiments with in-
creased sensitivity have been performed by Stipeet al. using
a vertical cantilever oscillating parallel to the surface@20#.
On the other hand, Dorofeyevet al. @21# and Gotsmann and
Fuchs@22# considered a tip moving in the normal directio
to the surface. In all these experiments, the damping co
cient was measured in a range of'5 –100 nm. Other inter-
©2004 The American Physical Society02-1
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action mechanisms prevail at much shorter distances~e.g.,
see Ref.@23#!. In many experimental situations measur
ments werenot performed on bulk metal substrates but
metal films deposited on a dielectric substrate@20–22#.
These experiments render damping coefficients that
many orders of magnitude larger than calculated values
bulk metal substrates@12,16,24#. Because of this large dis
crepancy, it is still unclear whether thermal fields are resp
sible for the observed friction forces at large distances.

In this article, we calculate the linear-velocity dampin
coefficientg experienced by a polarizable particle trapped
a potential. The damping is generated through the interac
with electromagnetic fields caused by fluctuating therm
currents in the environment. The motion of the particle
modeledclassicallywhile the properties of the electromag
netic field are consistent withquantumtheory. The formal-
ism is valid for systems inthermal equilibriumand in the
limit of weak coupling between particle and electromagne
field. Furthermore, it is assumed that the particle move
nonrelativistic speeds and that spectral correlations of
electromagnetic field along the particle’s direction of moti
are spatially invariant and/or the amplitude of the mechan
oscillator is much smaller than the spatial variations of
electromagnetic field spectral correlations. It turns out thag
is only dependent on the stochastic properties of the driv
force and thus the theory also holds for the absence
potential. Our approach for calculatingg is based on the
fluctuation-dissipation theorem@25–27#. We derive the sto-
chastic force spectrum acting on the particle and we rela
to the damping coefficient. The final expression forg in-
volves spectral coherence functions of the electromagn
field. Our theory is applied to the particular situation wher
particle oscillates parallel to the planar surface of a substr

The organization of this article is as follows. Sec. II pr
sents the derivation of the linear-damping coefficient ba
on the fluctuation-dissipation theorem. In Sec. III, we ap
the theory to the case of a small particle oscillating para
to a planar interface. In Sec. IV we consider a spher
particle and we calculate and analyze the damping coeffic
in the nonretarded limit for particles and substrates mad
silver and glass. The analysis includes spectral propertie
the damping coefficient, as well as distance dependenc
the particle-surface separation and temperature. In the s
section we present a discussion and comparison of the th
with the aforementioned experiments. Finally, the conc
sions are presented in Sec. V.

II. THEORY

A. Equation of motion due to force fluctuations

As mentioned previously, the specific properties of t
potential are irrelevant but for simplicity we consider a sm
particle moving in a one-dimensional harmonic potent
The potential gives rise to particle oscillation in thex direc-
tion. The particle is surrounded by vacuum and it can
placed near an arbitrary physical boundary. The particle
interacting with a thermal bath and its motion of the cent
of-mass coordinatex(t) is governed by the classical Lang
vin equation
02290
-

re
or

-

n
l

s

c
at
e

al
e

g
a

it

tic
a
te.

d
y
l
l
nt
of
of
of

me
ry
-

e
l
l.

e
is
-

m
d2

dt2
x~ t !1E

2`

t

g~ t2t8!
d

dt8
x~ t8!dt81mwo

2x~ t !5Fx~ t !.

~1!

Here, m is the mass of the particle,g(t) is the damping
coefficient originating from thermal electromagnetic fie
fluctuations,wo is the natural frequency of the oscillator, an
Fx(t) is the stochastic force. We assume thatFx(t) is a sta-
tionary stochastic process with zero ensemble average
^Fx(t)& does not vanish, a variable transformation@Fx(t)
2^Fx(t)&# can be applied to obtain a system driven by
force with zero average. The spectral force spectrumSF(v)
is given by the Wiener-Khintchine theorem as@28#

SF~v!5
1

2pE2`

`

^Fx~t!Fx~0!&eiv t dt, ~2!

where v is the angular frequency. At thermal equilibrium
with temperatureT, the magnitude of the strength of th
fluctuating force~force spectrum! is related to the friction
coefficient by the fluctuation-dissipation theorem. The lat
is considered in the classical limit because the motion of
macroscopic particle obeys classical mechanical laws@25,26#

kBT

p
g̃~v!5SF~v!. ~3!

kB is Boltzmann’s constant, andg̃(v) is the Fourier trans-
form of g(t) definedonly for t.0. Hereafter, a tilded char
acter denotes the Fourier transform as defined by Eq.~A2!
~see Appendix A!.

In the electric-dipole approximation, the force acting on
small particle moving with a velocity much less than t
speed of light is@29#

Fx~ t !5p~ t !•
]

]x
E~ro ,t !1

d

dt
@p~ t !3B~ro ,t !#•nx . ~4!

Here,ro is the equilibrium position of the mechanical osc
lator, nx is the unit vector in thex direction, p(t) is the
electric-dipole moment of the particle, andE(ro ,t) and
B(ro ,t) are the electric field and magnetic induction fiel
respectively. We omit the last term on the right-hand side
Eq. ~4! because, in the Markovian approximation for th
damping coefficient, this term does not contribute to t
force spectrum~see Sec. II B!.

B. Markovian limit for the damping coefficient

In Eq. ~1!, we assumed a general friction force ter
whose magnitude at timet depends on the particle’s velocit
at earlier times. We now consider that the interaction time
the thermal bath with the particle is fast compared with
particle’s dynamics; thus, the change of the velocity of t
particle during the interaction time is very small. The validi
of the Markovian approximation can be estimated as follow
For a system with a constant damping coefficientgo , the
characteristic time istc5m/go ~time for which the ampli-
tude decays 1/e of its initial value!. If the light-matter inter-
2-2
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FRICTION FORCES ARISING FROM FLUCTUATING . . . PHYSICAL REVIEW A69, 022902 ~2004!
action timest int are much smaller thantc (tc /t int@1), the
Markovian limit is a good approximation. Assuming
spherical glass particle with a radius of 50 nm (m
'10218 kg), go,10212 kg/s~according to experiments!, we
find that tc.1 ms. Typical interaction timest int for Ray-
leigh scattering are much shorter thantc and, hence, the
Markovian approximation is valid. We thus write

F friction~ t !52go

d

dt
x~ t !, ~5!

go5E
0

`

g~ t !dt. ~6!

Evaluating Eq.~3! at v50 and using Eq.~6! we find that the
damping constant is related to the force spectrum as

1

p
kBTgo5SF~v50!. ~7!

Equation ~7! is the final expression that relates the line
velocity damping coefficient to the force spectrum. To calc
late go , we need to solve for the force spectrum which,
turn, is defined by the electromagnetic fields due to fluctu
ing currents in the environment and the fluctuating dipo
Notice that, the last term on the right-hand side of Eq.~4!
produces a force spectrum which is proportional tov2 ~be-
cause of the time derivative!. In the Markovian limit this
term vanishes exactly because the damping constant is
portional to the force spectrum atv50.

C. Force spectrum

The particle’s dipole moment consists of two fluctuati
terms: a term (pI) that is induced by external fluctuatin
currents and a term (pF) due to the dipole’s own random
fluctuations@30#. pI andpF are statistically independent be
cause the fluctuating dipole and external currents are un
related. Similarly, the electric field also consists of two u
correlated, additive terms: the field generated by the exte
random currents (EF) and the field produced by the dipole
fluctuations (EI). The latter interacts with the particle after
has been scattered at external boundaries@30#.

To lowest approximation, the induced dipole moment
related to the external field as

p̃I~v!5a~v!ẼF~ro ,v!, ~8!

wherea(v) is the particle polarizability.ẼF and p̃I aresym-
bolic representations of the Fourier transforms ofEF(t) and
pI(t), respectively~a rigorous mathematical formalism re
quires the stochastic processes to be analyzed accordin
the generalized theory of functions!. On the other hand, the
field produced by the fluctuating dipole is defined throu
02290
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the Green’s dyadic of the systemGI as ~assuming a fixed
equilibrium position of the dipole!

ẼI~r ,v!5
v2

«oc2
GI~r ,ro ,v!p̃F~v!. ~9!

Here,c is the vacuum speed of light and«o is the vacuum
electric permittivity. Considering the two terms ofE andp,
the Fourier transform of Eq.~4! yields

F̃x~v!5(
i 51

3

@ p̃Fi~v!1 p̃Ii~v!# ^ F ]

]x
ẼFi~v!1

]

]x
ẼIi~v!G ,

~10!

where^ denotes convolution, and the indexi 51,2,3 refers
to the Cartesian componentsx,y,z, respectively. Hereafter, a
field quantity is implicitly evaluated atro . For a stationary
process, Eq.~2! and Eq.~10! lead to

^F̃x* ~v8!F̃x~v!&5SF~v!d~v2v8!

5 (
i , j 51

3 K F @ p̃Fj* ~v8!1 p̃I j* ~v8!#

^ S ]

]x
ẼFj* ~v8!1

]

]x
ẼI j* ~v8! D G

3F @ p̃Fi~v!1 p̃Ii~v!#

^ S ]

]x
ẼFi~v!1

]

]x
ẼIi~v! D G L , ~11!

where the asterisk * denotes the complex conjugate, andd is
the Dirac delta function. Each of the additive terms

^F̃x* (v8)F̃x(v)& is a fourth-order frequency-domain correl
tion function.

Thermal fluctuating electromagnetic fields can be thou
of as arising from the superposition of a large number
radiating oscillators with a broadband spectrum. Con
quently, the central-limit theorem applies and the elect
magnetic field obeys Gaussian statistics. The same is true
the dipole fluctuations because of their broad thermal sp
trum. Stochastic processes with Gaussian statistics have
property that a fourth-order correlation function can be e
pressed by a sum of pair products of second-order correla
functions. Consequently, Eq.~11! can be calculated by know
ing the second-order correlation of the thermal electrom
netic fields and the electric-dipole fluctuations. Atthermal
equilibrium, the second-order correlation functions for th
fluctuating electric field components~including the electric
field gradient components! can be expressed in terms of th
Green’s tensorGi j (ro ,ro8 ,v) of the system in which the par
2-3
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ticle is embedded as@31–33#

K ]m

]x8m
ẼFj* ~v8!

]n

]xn
ẼFi~v!L 5Wi j

nm~v!d~v2v8!, ~12!

Wi j
nm~v![

\v2

c2p«o

Y~v,T!
]m

]xo8
m

]n

]xo
n

3Im@Gi j ~ro ,ro8 ,v!#ur
o85ro

. ~13!

Similarly, the second-order correlation function of dipo
fluctuations takes on the form@31–33#

^pFi* ~v!pFj~v!&5P~v!d̃ i j d~v2v8!, ~14!

P~v![
\

p
Y~v,T!Im@a~v!#. ~15!

Here,\ is the reduced Planck’s constant,d̃ i j is the Kronecker
tensor, Im@•••# denotes imaginary part, (n,m50,1) with
]0/]x0 representing the unit operator, andY(v,T) is defined
as

Y~v,T!5
1

2 S 11cothF \v

2kBTG D . ~16!

Equations ~12!, ~13!, ~14!, and ~15! follow from the
fluctuation-dissipation theorem applied to the density curr
j—i.e., ^ j̃ n* (r 8,v) j̃ m(r ,v)&}Im@e(r ,v)#d(r2r 8)d(v2v8)

3 d̃mn with m,n denoting any Cartesian vector compone
ande(r ,v) being the dielectric constant@31–33#. Absorption
and emission of electromagnetic energy in a system oc
over a spectrum of positive and negative frequencies.
factor Y(v,T) weights the thermal occurrence of these a
sorption and emission events as a function of temperatuT
and angular frequencyv @33#. It has to be emphasized tha
we assign the full quantum properties to the exterior curre
and to the dipole fluctuations, whereas the motion of
particle is considered in the classical statistical limit@cf. Eq.
~3!#. In summary, the results derived in this section allow
to calculate the force spectrum acting on a polarizable p
ticle in an arbitrary system in thermal equilibrium.

III. FORCE SPECTRUM NEAR A SUBSTRATE WITH A
PLANE SURFACE

We consider a half-space (z,0) filled with a material
having a local complex dielectric constante2(v). A polariz-
able particle is placed at a fixed vertical distancezo from the
surface and it moves in a harmonic potential parallel to
surface (x direction! ~see Fig. 1!.

It turns out that the total force spectrumSF(v) given by
Eq. ~11! can be expressed as a sum of four terms as

SF~v!5SA~v!1SB~v!1SC~v!1SD~v!. ~17!

Each of these terms has a different physical origin which w
be discussed in the following subsections. In the Markov
02290
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limit, the damping coefficientgo is related toSF(v50)
through Eq.~7!, and by using Eq.~17!, go can be expressed
as the sum of four terms as

go5(
l 51

4

g lo , ~18!

kBT

p
g lo5Sl~v50!. ~19!

Here, l 51,2,3,4 refers to letters A,B,C,D, respectively.

A. Interaction between pI and EF

The spectrumSA(v) is related to the correlation of th
induced dipole with the gradient of the external thermal fie
according to

SA~v!d~v2v8!5 (
i , j 51

3 K S p̃I j* ~v8! ^
]

]x
ẼFj* ~v8! D

3S p̃Ii~v! ^
]

]x
ẼFi~v! D L . ~20!

We substitute Eq.~8! into Eq. ~20! and expand the fourth
order correlation functions of Eq.~20! into second-order cor-
relation functions by using Eq.~A3! ~cf. Appendix A!. Then,
we express the second-order correlation functions by
Green’s dyadics of the half-space@34#. The spectrumSA(v)
turns out to be

FIG. 1. A particle in vacuum (e151) oscillates parallel to a
substrate with a planar surface and a dielectric functione2(v). In
the inset, the particle’s environment is modified by adding a la
with thicknessdf and dielectric constante3(v).
2-4
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SA~v!5(
i 51

3

ua~v!u2Wii
00~v! ^ Wii

11~v!1a* ~v!Wzx
10~v!

^ a~v!Wzx
01~v!1a* ~v!Wxz

10~v! ^ a~v!Wxz
01~v!.

~21!

We evaluate the spectrumSA(v) at v50 to obtain the
damping coefficientgAo @see Eq.~19!#. The convolution in-
tegral of Eq.~21! runs from2` to `. However, the convo-
lution for SA(v50) can be expressed by an integral runni
from 0 to ` by using the frequency-inversion properties
a(v) and the explicit form ofWi j

nm(v) for a planar interface.
Therefore, Eq.~19! for SA(v50) can be expressed as

kBT

p
gAo5SA~0!5E

0

`

2h~v,T!

3$ua~v!u2@ f A1~zo ,v!gA1~zo ,v!

1 f A2~zo ,v!gA2~zo ,v!#22 Re@a~v!2#

3@ f A3~zo ,v!#2%dv, ~22!

where

h~v,T![2Y~2v,T!Y~v,T!

5@1/~e\v/kBT21!#@111/~e\v/kBT21!#, ~23!

with Re@•••# denoting the real part. Explicit expressions f
f A1 , f A2 , f A3 , gA1 , andgA2 are presented in Appendix B
f A1 and f A2 are related to the spectral correlation of the C
tesian components of the electric field whilegA1 and gA2
represent the spectral correlation of the partial deriva
with respect to thex coordinate of the Cartesian componen
f A3 is related to the cross-term spectral correlation funct
between thex andz electric field components and the parti
derivative with respect tox of those electric field compo
nents. The factorh(v,T) accounts for the strength of the
mal excitations at frequencyv. f Ai and gA j ( i 51,2,3, j
51,2) contain integral expressions of the formI nm

z defined in
Appendix B. The integralI nm

z has one dimensionless quadr
ture q, and the integration interval can be split into two su
intervals; namely, 0,q,1 andq.1. For 0,q,1, the ar-
gument of the exponential function in the integrand
imaginary giving rise to propagating waves. On the oth
hand, forq.1 the argument of the exponential function b
comes real and negative~evanescent waves!; thus, the inte-
grand decays asq is increased. The decay rate is determin
by the magnitude ofvzo /c.

The interaction of the particle with evanescent wav
(vzo /c!1)—that is, the near-field zone—is dominated
terms I nm

p (p polarization! which allows us to drop
s-polarized terms as well as the contribution of propagat
waves (0,q,1). I nm

p (zo ,v) increases with increasin
value ofn1m. Depending on the intrinsic material prope
ties of the half-space,I nm

p can exhibit resonances~polaritons!
determined through the Fresnel reflection coefficient fop
polarization. The integralI nm

z vanishes in both subinterval
02290
-

e
.
n

-

r

d

s

g

as vzo /c→`. In this limit only free-space terms survive
that is, friction exists even in absence of the interface. T
free-space limit is discussed in Appendix G. Notice that
here derived damping coefficientgAo is determined by the
factorsua(v)u2 and Re@a(v)2#.

B. Interaction betweenpF and EF

The spectrumSB(v) originates from the correlation of th
particle’s dipole fluctuations and the gradient of the exter
fluctuating field according to

SB~v!d~v2v8!5 (
i , j 51

3 K S p̃Fj* ~v8! ^
]

]x
ẼFj* ~v8! D

3S p̃Fi~v! ^
]

]x
ẼFi~v! D L . ~24!

Here, the fluctuations of dipole and field arestatistically in-
dependent. The fourth-order correlation can be split into pa
products of second-order correlation functions as in E
~A3!. Furthermore, second-order correlation functions w
two statistically independent variables can be eliminat
Then, the spectrumSB(v) becomes

SB~v!5P~v! ^ @Wxx
11~v!1Wyy

11~v!1Wzz
11~v!#. ~25!

As before, we evaluate the spectrumSB(v) at v50 to ob-
tain gBo @see Eq. ~19!#. Also, by using the frequency
inversion properties ofP(v) and Wii

11(v) the convolution
can be reduced to positive frequencies only andgBo becomes

kBT

p
gBo5SB~0!52E

0

`

h~v,T!
\

p
Im@a~v!#gB~v!dv.

~26!

The full expression ofgB is given in Appendix C. Similar to
gA1 , gB is related to correlations of fluctuating field grad
ents. Also,gB consists of integral functions of the typeI nm

z

and, consequently, the conclusions from the previous sec
apply here as well. Similar to the case ofgAo , the damping
coefficientgBo doesnot vanish in free space. This limit is
discussed in Appendix G. In the nonretarded limit (vzo /c
!1), Eq. ~26! reduces to the result derived in Ref.@14#
which is further analyzed in Ref.@16# for the case of metallic
particles and substrates. The fact that previous results
recovered by the here presented theory validates our
proach.

C. Interaction betweenpI and E I

SC(v) is related to the fourth-order correlation of the i
duced electric-dipole and the induced electromagnetic fl
tuations. The spectrumSC(v) is given by the expression

SC~v!d~v2v8!5 (
i , j 51

3 K S p̃I j* ~v8! ^
]

]x
ẼI j* ~v8! D

3S p̃Ii~v! ^
]

]x
ẼIi~v! D L . ~27!
2-5
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ZURITA-SÁNCHEZ, GREFFET, AND NOVOTNY PHYSICAL REVIEW A69, 022902 ~2004!
Here, the induced dipole and the induced field arestatisti-
cally independent. We substitute Eqs.~8! and ~9! into Eq.
~27!. After separating the fourth-order correlation functio
into pairs of second-order correlations we obtain

SC~v!5ua~v!u2@Wxx
00~v!1Wzz

00~v!#

^
v4

c4«o
2

P~v!U ]

]x
G13~r ,ro ,v!ur5ro

U2

. ~28!

To obtaingCo , the spectrumSC(v) is evaluated atv50.
Using the frequency-inversion properties of the differe
terms in Eq.~28! we find

kBT

p
gCo5SC~0!52E

0

`

h~v,T!ua~v!u2f C~zo ,v!

3Im@a~v!#gC~zo ,v!dv. ~29!

Explicit expressions forf C andgC are given in Appendix D.
f C is related to correlations of fluctuating fields whereasgC
originates from correlations of induced field gradients t
are induced by dipole fluctuations. Also,f C and gC contain
integral functions of the typeI nm

z . Furthermore,gB contains
only terms that are due top-polarized fields. Thus, a
vzo /c→` the damping coefficientgCo vanishes. This can
be understood from the fact that the field generated by
dipole fluctuations does not interact with the particle if the
are no scatterers in the environment.

D. Interaction betweenpF and E I

The spectrumSD(v) refers to the fourth-order correlatio
of dipole fluctuations and the gradients of the induced e
tromagnetic field. It is given by

SD~v!d~v2v8!5 (
i , j 51

3 K S p̃Fj* ~v8! ^
]

]x
ẼI j* ~v8! D

3S p̃Fi~v! ^
]

]x
ẼIi~v! D L . ~30!

By substituting Eq.~9! and then repeating the same proc
dure for expressing fourth-order correlations functions
terms of second-order correlation functions yields

SD~v!52P~v! ^
v4

c4«o
2

P~v!U ]

]x
G13~r ,ro ,v!ur5ro

U2

1 S v2

c2«o

P~v!
]

]x
G13~r ,ro ,v!ur5roD

^ S v2

c2«o

P~v!
]

]x
G31* ~r ,ro ,v!ur5roD

1 S v2

c2«o

P~v!
]

]x
G31~r ,ro ,v!ur5roD
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^ S v2

c2«o

P~v!
]

]x
G13* ~r ,ro ,v!ur5roD . ~31!

Evaluating the spectrumSD(v) at v50 and reducing the
convolution integral to positive frequencies leads to

1

p

kB

T
gDo5E

0

`

h~v,T!Im2@a~v!# f D~zo ,v!dv. ~32!

The explicit expression forf D is given in Appendix E. It is
made of purelyp-polarized fields. Consequently, in the lim
vzo /c→` the damping coefficientgDo vanishes.

E. Total damping coefficient

Equations~22!, ~26!, ~29!, and ~32! are the final expres-
sions for calculating the total linear-velocity damping coe
ficient go according to Eq.~19!. For temperatureT50 K, go
vanishes because ofh(v,T50)50. This can be explained
from the fact that zero-point fluctuations are invariant und
the Lorentz transformation@35#. In the following section, we
analyze the properties of the damping coefficientsgAo and
gBo . gCo and gDo are omitted because their contribution
negligible ~see discussion in Appendix F!.

IV. LINEAR DAMPING COEFFICIENT FOR A SPHERICAL
PARTICLE

We consider a spherical particle of radiusa with polariz-
ability

a~v!54p«oa3
ep~v!21

ep~v!12
, ~33!

whereep(v) is the dielectric constant of the particle. In th
limit vzo /c!1, the contribution ofp-polarized evanescen
waves in Eqs.~22! and ~26! dominates and the contributio
of free space terms ands-polarized terms can be discarde
In this limit, r 12

p '@e2(v)21#/@e2(v)11# and ~cf. Appen-
dix B!

I nm
p ~zo ,v!'

e2~v!21

e2~v!11
imE

0

`

qn1me22vzoq/cdq. ~34!

As we will discuss later on, Eq.~34! is of central importance
because it defines the distance dependence of the dam
coefficient and its dependence on the substrate proper
For the cases considered in this section, the condi
vzo /c!1 is fulfilled over the entire frequency spectrum f
all distances and for all considered temperatures.

We consider particles and substrates made of two type
materials: silver~Ag!, a noble metal, and glass (SiO2), a
polar dielectric. The damping coefficient is calculated f
any combination of these materials. Glass and silver pos
2-6
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FRICTION FORCES ARISING FROM FLUCTUATING . . . PHYSICAL REVIEW A69, 022902 ~2004!
opposite dielectric properties and both materials exhibit s
face modes. The surface modes of silver~surface plasmon
polaritons! exist in the visible spectrum, whereas the surfa
modes of glass~surface phonon polaritons! are in the infra-
red.

In the angular frequency range 0.1931015–1531018 Hz
the dielectric constant of silver is obtained by using a lin
interpolation~on a log-log scale! of the data in Ref.@36#. The
Drude model is used to extrapolate the data below 0
31015 Hz. The Drude model parameters for silver arevpl
513.631015 Hz andG527.331012 Hz (vpl is the plasma
frequency, andG is the damping factor! @37#. The same in-
terpolation method is applied to derive the complex diel
tric constant of glass in the frequency ranges of 0.75–
31012 Hz and 3.731012–1.931017 Hz using the data of
Refs. @38,39#. The dielectric constant in the frequency g
between the two data sets is calculated by using a lin
log-log interpolation procedure. In the frequency range
low 0.7531012 Hz, the real part of the dielectric constant
glass is nearly uniform„Re@e2(v)#'3.82…, and the imagi-
nary part is calculated according to

Im@e2~v!#5
1

%g«ov
, ~35!

where%g is the dc resistivity of SiO2. This equation deter-
mines theconductivecontribution to the glass dielectric con
stant. It accounts for defects and the finite thermal occu
tion of the conduction band. The exact value of%g varies
with temperature, but for simplicity we assume a const
value of%g533108 V m ~room temperature! @40#. As will
be discussed later, the damping constant of the oscilla
particle is almost entirely defined by Eq.~35! if the particle
and half-space are made of glass.

A. Damping coefficientgAo

By substituting Eq.~33! into Eq. ~22! and by using ap-
proximation~34! in Eqs.~B1!–~B5!, the damping coefficien
gA in the nonretarded limit is found to be

gAo5
9\2

32pkBT

a6

zo
8E0

`S uj~v!u22
1

2
Re@j2~v!# D

3Im2Fe2~v!21

e2~v!11Gh~v,T!dv. ~36!

Here, j(v)[a(v)/(4p«oa3). Notice thatgAo is directly
proportional to the factor

f A5
a6

zo
8

, ~37!

i.e., the square of the particle volume and the inverse e
power of the separation between the particle center and
surface.

It is important to stress that in the low-frequency regio

Im@~e2~v!21!/~e2~v!11!#'2«ov/s, ~38!
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uj~v!u25Re@j2~v!#'1. ~39!

Here s is the conductivity. The frequency range in whic
these approximations are valid depends on the type of m
rial. For glass, this frequency range isDv'20 Hz whereas
for silver it is Dv'1015 Hz. The conductivity of silver is
determined ass5«ovpl

2 /G, whereas the glass conductivity
s51/%g .

Let us define the threshold frequency asVT5kBT/\
50.1331012 T(K) Hz. Then, for frequenciesv,;0.4VT
we can use the approximationh(v,T)'@kBT/(\v)#2. The
low-frequency contribution to the damping coefficientgAo in
Eq. ~36! can now be written as

gAo
low5

9

16p

a6

zo
8

«o
2

ss
2

kBT Min@Dvs,Dvp,0.4VT#, ~40!

where Min@•••# denotes the minimum of the values in th
brackets and the subscripts ‘‘s’’ and ‘‘p’’ refer to surface a
particle, respectively.gAo

low is a valid approximation in the
frequency range 0,v,Min@Dvs,Dvp,0.4VT#.

In general,gAo depends on the pair-correlation produc
of the sort^ẼF* ẼF&^]xẼF* ]xẼF& and ^ẼF* ]xẼF&^ẼF* ]xẼF&.
In the low-frequency regime, the distance dependence (zo

28)
of gAo

low originates from Eq.~34! and together with Eq.~38!
gives the substrate conductivity dependence (ss

22) of gAo
low ,

since ^ẼF* ẼF&}ss
21zo

23 , ^]xẼF* ]xẼF&}ss
21zo

25 , and

^ẼF* ]xẼF&}ss
21zo

24 . The damping coeffient in this regim
dependsonly on the conductive properties of the substra
andnot on the particle properties.

The normalized integrand of Eq.~36!—i.e., the normal-
ized spectral density of the damping coefficient—is plott
in Fig. 2 as a function of the angular frequencyv for the
temperaturesT53 K, 30 K, 300 K. The curves depend o
the material properties of particle and substrate. We ass
that the dielectric constantse2(v) of glass and silver do no
vary with temperature~lack of data for low temperature!.
Notice that the scales in the figures for the glass subst
differ by many orders of magnitude from the scales obtain
for silver substrates. In the case in which the particle a
substrate are made of silver@Fig. 2~a!#, the normalized spec
trum remains flat up to a certain cutoff frequency. The pe
in the curve forT5300 K is an artifact due to the wea
mismatch between the Drude model and the data from R
@36#. This mismatch does not significantly contribute to t
integrated value of the damping constant. The cutoff f
quency corresponds approximately to 0.4VT and depends
linearly on the temperatureT. Below the cutoff frequency,
the damping coefficient is perfectly approximated bygAo

low in
Eq. ~40!. In the case of a silver substrate and a glass part
@Fig. 2~b!#, the spectrum is uniform in two separate interva
with the exception of the situationT5300 K in which reso-
nant peaks appear. These peaks are due to thermally ex
surface polaritons of the glass particle at infrared frequ
cies. At T5300 K, the temperature is not high enough
thermally excite surface plasmons in the visible spectru
The transition between the two uniform spectral interv
2-7
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FIG. 2. Normalized spectral density of the damping coefficientgAo / f A as a function of the angular frequencyv @integrand of Eq.~36!#
for temperaturesT53 K, 30 K, 300 K. f A5a6/zo

8 wherea andzo are defined in nanometers.~a! Substrate and particle: Ag;~b! substrate:
Ag, particle: SiO2; ~c! substrate: SiO2, particle: Ag;~d! particle and substrate: SiO2.
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starts atDvp'20 Hz. For temperaturesT53 K and 30 K,
the damping coefficient is determined by frequencies sma
thanDvp . However, forT5300 K, the largest contribution
is due to the surface polariton peaks of the glass particle
the remaining two figures, Figs. 2~c! and 2~d!, the substrate
is made of glass. For the silver particle the cutoff frequen
turns out to be 50 Hz and for the glass particle 44 Hz, in
pendent of temperature. The two curves are almost ident
Consequently, the integrated damping constantgAo is inde-
pendent of the particle material if a glass substrate is con
ered. In this case,gAo is almost entirely determined by fre
quencies smaller than 100 Hz and Eq.~40! becomes an
excellent approximation for Min@Dvs,Dvp,0.4VT#5Dvs.
The normalized damping coefficientgAo / f A corresponds to
the area under the spectral curves. Numerical integration
ders the values listed in Table I. The normalization const
is f A5a6/zo

8 , wherea andzo are given in nanometers. Th
magnitude of the damping coefficient is largely determin
by the material of the semi-infinite substrate. The parti
properties have only a minor effect. At first glance, the d
ference of 19 orders of magnitude between the glass
silver substrate is very surprising. However, it can be
plained by the following physical picture. The fluctuatin
currents in particle and substrate generate a fluctuating e
tromagnetic field. This field polarizes the particle and
duces an electric dipole with a corresponding image dip
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beneath the surface of the substrate. The motion of the
ticle gives rise to motion of the image dipole and hence t
current beneath the surface. The Joule losses associated
this image current become larger with increasing resistiv
of the substrate. As a consequence, the damping coeffic
increases, too. From Eq.~40!, it is noticed that the damping
coefficient is directly proportional to thesquareof the resis-
tivity of the substrate and to the frequency bandwidt
Min@Dvs,Dvp ,0.4VT# ~if go

low approximatesgo). Since the
ratios of the resistivities and bandwidths of glass and sil
are about 1016 and 10211, respectively, the resulting dampin
coefficients differ by 18 orders of magnitude which is

TABLE I. Normalized damping coefficientgAo / f A for a spheri-
cal particle calculated from Eq.~36! for several temperatures (T
53 K, 30 K, 300 K). f A5a6/zo

8 wherea andzo are defined in na-
nometers.

Substrate Particle gAo / f A ~kg/s!

3 K 30 K 300 K

Silver Silver 2.05310231 2.05310229 6.31310227

Silver Glass 4.82310232 4.87310230 1.07310226

Glass Silver 3.21310209 3.21310208 3.21310207

Glass Glass 2.71310209 2.71310208 2.71310207
2-8
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FRICTION FORCES ARISING FROM FLUCTUATING . . . PHYSICAL REVIEW A69, 022902 ~2004!
qualitative agreement with the calculated values. In the li
of %→` the damping coefficientgA→`, since in Eq.~40!
the bandwith is proportional to 1/% and the remaining facto
to %2. Physically, more work is needed to move the induc
dipole beneath the surface as% increases and, consequent
the damping coefficient becomes larger. In the limit of
perfect dielectric (%→`), the induced dipole cannot be dis
placed and damping becomes infinitely strong. On the
hand, it is surprising to find this result for a perfect~lossless!
dielectric since there is no intrinsic dissipation. On the ot
hand, a lossless dielectric does not exist from the poin
view of causality ~Kramers-Kronig relations! and the
fluctuation-dissipation theorem~fluctuations imply dissipa-
tion!.

B. Damping coefficientgBo

By substituting Eq.~33! into Eq. ~26! and using the ap-
proximation~34! for the integrals ingB , the damping coef-
ficient gB in the nonretarded limit (vzo /d!1) turns out to
be

gBo5
3\2

2pkBT

a3

zo
5E0

`

ImFe2~v!21

e2~v!11G Im@j~v!#h~v,T!dv.

~41!

Here,gBo is directly proportional to the factor

f B5
a3

zo
5

, ~42!

i.e., the particle volume and inverse fifth power of the se
ration between the particle center and surface. Equation~41!
is identical to the result derived in Ref.@14# where it is
analyzed for metallic substrates and particles.

In the low-frequency region we can approxima
Im@j(v)#'3«ov/sp . As in the previous section, the fre
quency interval in which this approximation is valid depen
on the material properties. The low-frequency contribution
the damping coefficientgBo in Eq. ~41! can be written as

gBo
low5

9

p

a3

zo
5

«o
2

sssp
kBT Min@Dvs,Dvp ,0.4VT#. ~43!

gBo
low is a valid approximation in the frequency range 0,v

,Min@Dvs,Dvp,0.4VT#. In general,gBo depends on the
pair-correlation products of the sort^ p̃F* p̃F&^]xẼF* ]xẼF&. In
the low-frequency regime, the distance and substrate con
tivity dependence ofgBo

low is determined by the aformentione

result ^]xẼF* ]xẼF&}ss
21zo

25 @cf. Eq. ~34!#. In contrast to
gAo

low , gBo
low depends on the conductive properties of the p

ticle, since^ p̃F* p̃F&}sp
21 .

The normalized spectral density of the damping coe
cientgBo with respect tof B is plotted in Fig. 3 as a function
of the angular frequencyv for the temperaturesT
53 K, 30 K, 300 K. The curves depend on the mater
properties of the particle and substrate. As shown in Fig
the normalized spectra of the damping coefficient are flat
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all combinations of particle/substrate materials and for
considered temperatures. Consequently, the damping co
cient is correctly approximated bygBo

low . In the case where
the particle and substrate are made of silver, the cutoff
quency of the flat spectrum is approximately 0.4VT and de-
pends linearly on the temperatureT @see Fig. 3~a!#. The peak
in the curve forT5300 K is the same artifact as in Fig. 2~a!.
When the materials of the particle and substrate are diffe
~silver/glass! the cutoff frequency turns out to be indepe
dent of temperature and takes on a value of 65 Hz and 78
for the plots in Figs. 3~b! and 3~c!, respectively. In these
cases, the damping coefficient is well described bygBo

low and
is limited by Dvs ~substrate! or Dvp ~glass!. Finally, Fig.
3~d! shows the situation for a particle and substrate b
made of glass. The flat spectra are limited byDvs,p of glass.
In this case, the cutoff frequency is independent of tempe
ture and the damping coefficientgBo becomes linearly de-
pendent onT @see Eq.~43!#.

The normalized damping coefficientsgBo / f B ~area under
the spectral curves! obtained from numerical integration o
the spectral curves are listed in Table II. The values ofa and
zo are given in nanometers. It turns out that the damp
coefficient for the particle and substrate both made of glas
many orders of magnitude stronger than the damping c
stant in any other case. This can be explained by the fact
gBo

low is inversely proportional to the product of the condu
tivities of the particle and substrate. Thus, the presence
silver material in the system drastically lowers the damp
because of silver’s high conductivity.

Similar to the previous discussion forgoA , the physical
origin for the damping coefficientgoB is the resistivity acting
on the image dipole. However, in the present case it is
image of the self-fluctuating dipole and not of the induc
dipole. This difference gives rise to a weaker distance dep
dence (zo

5 vs zo
8).

C. Comparison of theory and experiment

In Fig. 4, we have plottedgAo and gBo together as a
function ofzo for the aforementioned material combination
We assume a particle radius of 50 nm and a temperatur
T5300 K. We recall thatzo is the distance between the pa
ticle center and surface of the substrate. Thus, the minim
allowed physical distancezo just before the particle contact
the surface is given by the particle’s radius—that is,zo

min

5a. According to Eq.~19!, the total damping coefficient is
go5gAo1gBo ~we have discardedgCo andgDo). We notice
that in Figs. 4~a!, 4~b!, and 4~d! the damping coefficientgBo
is stronger thangAo , and thusgo'gBo . These cases ar
silver substrate—silver particle, silver substrate—glass p
ticle, and glass particle—glass substrate. On the contrary
the substrate made of glass and the particle made of s
@Fig. 4~c!#, gAo is much larger thangBo . Therefore,go
'gAo . According to Fig. 4, the damping coefficient for
silver substrate is much weaker than the damping coeffic
for a glass substrate. However, recent experiments perfor
on metal films lead to damping coefficients that are ma
2-9
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FIG. 3. Normalized spectral density of the damping coefficientgBo / f B as a function of the angular frequencyv @integrand of Eq.~41!#
for temperaturesT53 K, 30 K, 300 K. f B5a3/zo

5 wherea andzo are defined in nanometers.~a! Substrate and particle: Ag;~b! substrate:
Ag, particle: SiO2; ~c! substrate: SiO2, particle: Ag;~d! particle and substrate: SiO2.
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orders of magnitude larger than the values obtained by
oretical predictions. This discrepancy was already poin
out in several previous studies@12,16,24#. However, in the
experiments performed in Refs.@20–22# the substrate didnot
consist of a bulk conductor but of a metal film with a thic
ness of a few hundered nanometers deposited on top
dielectric substrate. Similar procedures were applied for
fabrication of nanoscale probes that are represented in
study by an oscillating particle; e.g., in Ref.@20# a silicon tip
~curvature radius 1mm) covered with gold was used.

According to our theory, the damping coefficient for
glass substrate is determined by the low-frequency regio

TABLE II. Normalized damping coefficientgBo / f B for a spheri-
cal particle calculated from Eq.~41! for several temperatures (T
53 K, 30 K, 300 K). f B5a3/zo

5 wherea andzo are defined in na-
nometers.

Substrate Particle gBo / f B ~kg/s!

3 K 30 K 300 K

Silver Silver 3.28310230 3.28310228 1.01310225

Silver Glass 4.69310224 4.71310223 6.01310222

Glass Silver 5.66310224 5.69310223 7.64310222

Glass Glass 4.65310208 4.65310207 4.65310206
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of

less than 100 Hz. However, in this frequency regime the s
depthdskin of a typical metal@dskin5cA2«o /(sv)# is con-
siderably larger than the metal film thickness used in pre
ous experiments. For example, for silver one finds a s
depth ofdskin

Ag '0.163/Av (Hz) m. Therefore, it is likely that
experimental measurements performed on metal films do
reflect the properties of the metal but of the underlying
electric substrate. If a planar film with thicknessdf and di-
electric constante3(v) lies on a substrate with dielectri
constante2(v) as is depicted in the inset of Fig. 1, the sy
tem response is similar to the single-interface case if
replaces the reflection coefficientsr 12

z (z5s,p) by

rz5
r 13

z 1r 32
z exp~2ivdfb3 /c!

12r 31
z r 32

z exp~2ivdfb3 /c!
. ~44!

Here,r i j
z andb i are defined by Eqs.~B7!–~B9!, respectively.

For evanescent fields—i.e., in the limit ofq@qm (q is the
normalized transverse wave number andqm[Max@Aue i u#, i
51,2,3)—Eq.~44! can be approximated as (p polarization!

rp'
r 13

p 1r 32
p exp~22vdf q/c!

12r 31
p r 32

p exp~22vdf q/c!
. ~45!
2-10
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FIG. 4. Damping coefficientsgAo and gBo as a function ofzo from Eqs.~36! and ~41!, respectively. The radius of the particle isa
550 nm and the temperature isT5300 K. ~a! Substrate and particle: Ag;~b! substrate: Ag, particle: SiO2; ~c! substrate: SiO2, particle: Ag;
~d! particle and substrate: SiO2.
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We can distinguish two regimes~1! q!qo and ~2! q@qo ,
with qo[c/(2vdf). In the former case, Eq.~45! reduces to
rp'r 12

p ; that is, the response is given by the underlyi
interface. On the other hand, forq@qo , Eq. ~45! can be
approximated asrp'r 13

p ; namely, the response is dete
mined by the topmost interface. In the low-frequency regi
and for a metallic layer with a thickness of a few hundreds
nanometers we haveqo /qm@1, whereqm5As/(«ov). In
this case we are in regime~1! and we obtain

qo

qm
5

cA«o

2dfAsv
5

A2dskin

4df
. ~46!

For a single glass interface it was shown that the freque
range contributing to the damping coefficient is abo
,;100 Hz. In this low-frequency regime the skin depth
silver isdskin

Ag .;1.63 cm and for a silver layer with thicknes
df5250 nm we find a valueqo /qm.;2.53104. Conse-
quently, we confirm our previous statement that measu
ments performed on finite metal films deposited on dielec
substrates are insensitive to the metal film and are domin
by the properties of the underlying dielectric.

To compare our theory with experiment we consider
results obtained in Ref.@20# where a 250-nm-thick gold film
was deposited on a mica substrate. Friction measurem
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were performed with a 200-nm gold-coated silicon tip w
radius'1 mm. For T5300 K and a probe-sample distanc
of 10 nm a friction coefficient ofg51.5310213 kg/s is re-
ported. According to our hypothesis that friction is insen
tive to the metal coatings we have to translate the pro
sample distances as

zo5s1~surface layers!1~ tip radius!5s11450 nm.
~47!

Here,s is the tip’s apex-surface separation, and we assum
that the silicon tip can be approximated by a sphere of rad
a51 mm. For the relevant low-frequency regime, this pa
ticle size falls well into the electrostatic limit. However, th
approximation of a tip geometry by a spherical particle w
introduce some errors in our estimates. For a rough comp
son, we consider a particle and substrate made of gl
While mica has a higher resistivity than glass, the situatio
opposite for undoped silicon. We assume that these de
tions roughly compensate and thus we take the values f
Tables I and II. For a distance ofzo51460 nm (s510 nm)
we obtain gAo51.3310214 kg/s andgBo57310213 kg/s,
respectively. These values are in rough agreement with
experimental value reported in Ref.@20#.

In fact, this order-of-magnitude agreement should enco
age more dedicated experiments to prove~or disprove! the
2-11
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ZURITA-SÁNCHEZ, GREFFET, AND NOVOTNY PHYSICAL REVIEW A69, 022902 ~2004!
here developed theory. It is also remarkable that the coo
nate offset betweens andzo according to Eq.~47! weakens
the here calculated strong distance dependence ofzo

25 and
zo

28 . This coordinate translation results in a series of wea
power dependences, leading to qualitative agreement
the measured dependence ofs21.3 in Ref. @20#. A closer look
at the experimental curves shows that the distance de
dence cannot be fitted by a uniform power dependence
the entire measurement range. This could well originate fr
the coordinate translation of Eq.~47!. Deviations between
theory and experiment can partially be attributed to the f
ure of the spherical tip model. In any case, more dedica
experiments are necessary to investigate whether the
developed theory provides the correct explanation for
observed increase of damping near material boundaries.
perimental damping coefficients have to be compared
dielectric and solid metal substrates with well-defined crys
structure. To avoid problems with surface contaminationin
situ sputtering of the tip and surface in ultrahigh-vacuu
conditions is necessary. Measurements on top of a super
ducting material should lead to no change in damping co
ficient if the superconductor is cooled below the critical te
perature. The linear-velocity damping coefficient vanishe
T50 K. Residual damping at this temperature may ar
from higher-order terms that arenot linear in the particle’s
velocity.

V. CONCLUSIONS

We calculated the linear-velocity damping coefficientgo
for a classical oscillator interacting through fluctuating ele
tromagnetic fields with the environment. In the lowest-ord
approximation,go is given by the sum of four terms o
which only two are significant,gAo andgBo . gAo is related
to the correlation of theinducedelectric dipole with the ex-
terior fluctuating thermal field, andgBo is related to the cor-
relation of thefluctuating electric dipole with the exterior
fluctuating thermal field. In the nonretarded limit,gAo is
mainly sensitive to the dielectric properties of the substra
On the other hand, the damping coefficientgBo is sensitive to
both the properties of particle and surface. In the nonretar
limit, gBo reproduces the result derived in Ref.@14#.

We find that the damping coefficient for an oscillat
above a dielectric substrate is many orders of magnit
larger than for an oscillator above a metal surfaces. T
arises from the very different conductive properties of a
electric and a metal. Our theory shows that the damp
coefficient for a dielectric surface is defined by frequenc
smaller than 100 Hz. The order of theoretical values is
rough agreement with the measurements in Ref.@20#. The
here developed theory provides guidance for future exp
ments and shows that there are trade-offs to miniaturiza
because of increased dissipation at short distances. Also
theory should be of importance for the design of nanosc
mechanical systems and for the choice of favorable ma
als.

Note added.Recently, a study was published discussi
the influence of a surface adsorbate layer on thermal fric
@41#. Another article that appeared after our submission d
02290
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cusses free-space damping@42#. It can be shown that this
limit can be derived from our damping coefficientgBo ~cf.
Appendix G!.
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APPENDIX A: FOURTH-ORDER CORRELATION
FUNCTION FOR A GAUSSIAN PROCESS

Let z1(r1 ,t), z2(r2 ,t), z3(r3 ,t), andz4(r4 ,t) be analyti-
cal signals of a stationary Gaussian stochastic process.
real and imaginary parts of each signal are related by
Hilbert transform@28#. We defineQ as

Q[^z̃1* ~r1 ,v1!z̃2* ~r2 ,v2!z̃3~r3 ,v3!z̃4~r4 ,v4!&, ~A1!

where

z̃i~r ,v!5
1

2pE2`

`

zi~r ,t !eiv tdt, i 51, . . . ,4. ~A2!

Insertingz̃i into Q and making use of the central-limit theo
rem gives

Q5W13~r1 ,r3 ,v3!W24~r2 ,r4 ,v4!d~v32v1!d~v42v2!

1W14~r1 ,r4 ,v4!W23~r2 ,r3 ,v3!d~v42v1!

3d~v32v2!, ~A3!

with

Wi j ~r ,r 8,v![
1

2pE2`

`

G i j ~r ,r 8;t!eiv t dt ~A4!

and

G i j ~r ,r 8;t82t5t!5^zi* ~r ,t !zj~r 8,t8!&. ~A5!

APPENDIX B: EXPRESSIONS IN gA

The explicit expressions forf A1(zo ,v), f A2(zo ,v),
f A3(zo ,v), gA1(zo ,v), andgA2(zo ,v) are

f A1~zo ,v!5
\v3

8p2c3«o
S Im@ iI 121

s ~zo ,v!#

2Im@ iI 11
p ~zo ,v!#1

4

3D , ~B1!

f A2~zo ,v!5
\v3

4p2c3«o
S Im@ iI 321

p ~zo ,v!#1
2

3D , ~B2!
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f A3~zo ,v!5
\v4

8p2c4«o

Im@ I 30
p ~zo ,v!#, ~B3!

gA1~zo ,v!5
\v5

8p2c5«o
S Im@ iI 321

s ~zo ,v!#

2Im@ iI 31
p ~zo ,v!#1

4

5D , ~B4!

gA2~zo ,v!5
\v5

8p2c5«o
S Im@ iI 521

p ~zo ,v!#1
8

15D . ~B5!

Here,I nm
z (zo ,v) is defined as

I nm
z ~zo ,v![E

0

`

r 12
z qnb1

mei2v zob 1 /cdq, ~B6!

whereq is a dimensionless parameter andr i j
z are the Fresne

reflection coefficients for polarizationsz5s,p defined as

r i j
s 5

b i2b j

b i1b j
, ~B7!

r i j
p 5

b ie j2b je i

b ie j1b je i
, ~B8!

b i5Ae i~v!2q2. ~B9!

The indexi refers to the medium of incidence and the ind
j designates the medium of transmittance.

APPENDIX C: EXPRESSIONS IN gB

The explicit expression forgB(zo ,v) is

gB~zo ,v!5
\v5

8p2c5«o
S Im@ iI 321

s ~zo ,v!#1Im@2 iI 31
p ~zo ,v!#

1Im@ iI 521
p ~zo ,v!#1

4

3D . ~C1!

APPENDIX D: EXPRESSIONS IN gC

The explicit expressions forf C(zo ,v) andgC(zo ,v) are

f C~zo ,v!5
\v3

8p2c3«o
S Im@ iI 121

s ~zo ,v!#1Im@2 iI 11
p ~zo ,v!#

12 Im@ iI 321
p ~zo ,v!#1

8

3D , ~D1!

gC~zo ,v!5
\v8

64p3c8«o
2

uI 30
p ~zo ,v!u2. ~D2!
02290
APPENDIX E: EXPRESSIONS IN gD

The explicit expression forgD(zo ,v) is

f D~zo ,v!5
\2v8

8p4c8«o
2
Im2@ I 30

p ~zo ,v!#. ~E1!

APPENDIX F: DISCUSSION OF gCO AND gDO

In the nonretarded limit,gCo andgDo are

gCo5
27\2

1024pkBT

a9

zo
11E0

`

uj~v!u2Im@j~v!#

3Ue2~v!21

e2~v!11U
2

ImFe2~v!21

e2~v!11Gh~v,T!dv, ~F1!

gDo5
9\2

32pkBT

a6

zo
8E0

`

Im2@j~v!#Im2Fe2~v!21

e2~v!11Gh~v,T!dv.

~F2!

In the low-frequency limit, the frequency-dependent terms
gCo resemble those ofgBo . However, the different particle
volume, distance dependence (zo

211), and magnitude of the
proportionality constant make this contribution neglible
comparison with the other terms. On the other hand,
damping coefficientgDo is proportional tov2 in the low-
frequency limit which makesgDo small compared with othe
terms.

APPENDIX G: FREE-SPACE DAMPING

Thermal friction is present even in free space. The fr
space damping coefficient is obtained from Eqs.~22! and
~26! in the limit vzo /c→`. The free-space damping coeffi
cient go

F turns out to be

go
F5gAo

F 1gBo
F , ~G1!

gAo
F 5

\2

18p3c8«o
2kBT

E
0

`

ua~v!u2v8h~v,T!dv, ~G2!

gBo
F 5

\2

3p2c5«okBT
E

0

`

Im@a~v!#v5h~v,T!dv. ~G3!

This expression is general since it does not assume any
ticular particle’s polarizabilitya(v). Equation~G2! repro-
duces the damping coefficient derived in Ref.@35# if the
radiative reaction force is included in the expression for
classical polarizability. On the other hand, Eq.~G3! appears
to be unreported so far.
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@32# H.T. Dung, L. Knöll, and D. Welsch, Phys. Rev. A57, 3931

~1998!.
@33# G.S. Agarwal, Phys. Rev. A11, 230 ~1975!.
@34# C. T. Tai,Dyadic Green’s Functions in Electromagnetic Theo

~Intext Educational Publishers, Scranton, 1971!.
@35# T.H. Boyer, Phys. Rev.182, 1374~1969!.
@36# D. W. Lynch and W. R. Hunter, inHandbook of Optical Con-

stants of Solids, edited by E.D. Palik~Academic Press, San
Diego, 1985!, pp. 350–357.

@37# M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W
Alexander, Jr., and C.A. Ward, Appl. Opt.22, 1099~1983!.

@38# M.N. Afsar and K.J. Button, IEEE Trans. Microwave Theo
Tech.31, 217 ~1983!.

@39# H. R. Philipp, in Handbook of Optical Constants of Solid,
edited by E. D. Palik~Academic Press, San Diego, 1985!, pp.
749–763.

@40# Materials Science and Engineering Handbook, 3rd ed., edited
by J.F. Shackelford and W. Alexander~CRC Press, Boca Ra
ton, 2001!.

@41# A.I. Volokitin and B.N.J. Persson, Phys. Rev. Lett.91, 106101
~2003!.

@42# V. Mkrtchian, V.A. Parsegian, R. Podgornik, and W.M. Saslo
Phys. Rev. Lett.91, 220801~2003!.
2-14


