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Interactions of fast ions with carbon nanotubes: Self-energy and stopping power
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The interactions of charged particles with carbon nanotubes are studied by means of the linearized hydro-
dynamic theory for electronic excitations on the nanotube surface. General expressions are derived for the
induced potential, the self-energy, and the stopping power for a charged particle moving paraxially in a
nanotube. Numerical results are obtained showing the influence of the damping factor, the nanotube radius, and
the particle position on its self-energy and the stopping power. Results for stopping power in the linearized
hydrodynamic model are compared with those obtained by means of the dielectric formalism in random-phase
approximation, showing a close agreement between the two approaches for high speeds of charged particles.
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[. INTRODUCTION over an infinitely long cylindrical surface of a tubule. At zero
temperature, such a two-dimensio2D) model of electron

Following the discovery of carbon nanotubes, there hagas is completely parametrized by its surface density and the

with the nanotubes, which may be relevant for application$€riPtion of such structures has been recently reported by

in several areas of research and technology. For exampl Iég:k(;'f (z[a?é)'o[rfsﬁavr\]lg?uQggebdegmuecef}ndstr(])? ?Agleﬁtgfo%ronp:r:ic
important information about the electronic structure of car- y y y

) . heory of plasmon excitations in the 2D electron gas on a
bon nanotubes can be obtained using the electron probe tec ylindrical surface, in order to interpret the EELS data for

niques, such as the transmission-electron microsdpgnd ¢, jactive excitations on single-wall carbon nanotubes,
the electron energy-loss spectroscdELS) [2,3]. In par- .5 sed by the incidence of fast electrons perpendicular to the
ticular, in some of the most intriguing applications, it hasnanotube. Very recently, we have used a dielectric formalism
begn demonstrated that carbon nanotubes may be used [1%] to study the energy loss of charged particles moving
efficiently steer(deflect and focuscharged-particle beams parallel to the axis in cylindrical tubules. In that formalism,
[4-8], in the way quite similar to crystal channeling. the elementary excitations of the electron gas are described
A powerful theoretical tool for studying such interactions by a dielectric function in the random-phase approximation
is provided by the dielectric response formalism, which hagRPA), which depends on the angular momentum, the wave
been implemented in restricted geometries in a number afiumber, the frequency, and the tubule geomEgti).
pioneering studies by Ritchie and co-workg9% During the In the present paper, we adopt and extend the hydrody-
past several years, significant progress has been achievedriamic model[15] by including the single-electron excita-
theoretical study of transport, or channeling, of charged partions on nanotube surfaces, in order to study the self-energy
ticles through microcapillaries and nanocapillaries in solidsand the energy loss of charged particles moving paraxially
[10-14. In particular, Aristaet al. [12—14 have calculated inside nanotubes. In particular, we wish to elucidate possible
recently the self-energy and the energy loss of charged pagffects of the ion self-energgakin to the image interaction
ticles moving through cylindrical channels, or cavities, inWith the walls of nanotubgson ion trajectories in the pro-
solids. It should be pointed out that the structures studied i0S€d ion-channeling applications of carbon nanotubes
all those reports contained solid regions characterized by thig—8l- AS & secondary goal, the results presented here for ion

bulk dielectric functions for three-dimension@D) electron ~ StOPPINg provide a possibility to compare the advantages of

; . 1.the hydrodynamic theory with those of the dielectric theory
as models, which were separated, or bounded, by cylindri- . . . .
gal interfaces\{v e w P ) y eyl l|n RPA[16,17 in dealing with the energy losses in carbon

Carbon nanotubes present systems which are quite diﬁep_anotubes. Section Il provides details of calculations of the
ent from the cavities in solids or nanowires made of dif'ferentse”(gleInergg/.I and the stqpplngf pﬁwer n .the hydrodyparr;llc
materials. Although all these systems share the same unddP°del, while a comparison of the stopping powers In the

lying cylindrical geometry, carbon nanotubes cannot be mod_sydrolclllyngmiclagq the RPAI\(dieIectr!c quelss Is ?{/O\Q\ded.m
eled as a part of a 3D structure. Actually, elementary excita>€¢- Il- Concluding remarks are given in Sec. V. Atomic

tions on a nanotube may be modeled by an infinitesimall)}mits (a.u) are used throughout, unless otherwise indicated.
thin layer of quasi-free-electron gas, uniformly distributed Il HYDRODYNAMIC THEORY

We model a single-wall carbon nanotube as an infinitesi-
*Email address: ynwang@dlut.edu.cn mally thin and infinitely long cylindrical shell with the radius
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a, and assume that the valence electrons can be consideredltzarge polarization on the nanotube surface, so that
free-electron gas distributed uniformly over the cylindrical = ®,+ ®,,4. Taking into account the natural boundary con-
surface, with the density per unit arag We use cylindrical  ditions atp=0 andp=, these potential components can be
coordinates = (p, ¢»,z) and consider a charged particle with expanded in terms of the cylindrical Bessel functidopéx)

the charge), moving within the nanotube, with its trajectory andK,(x) [12,16,19, as follows:

parallel to the nanotube axissuch that the particle’s instan-

taneous position is given by =(pg, ¢g.vt), wherev is the Q Q % L
particle’s speed. The homogeneous electron gas will be pefPo(p.#,2,t) = T=ro 7 m;w jﬁxdkék(z vFimie=go)
turbed by the charged particle and can be regarded as a 0

charged fluid with the velocity fieldi(rs,t) and the per- X1 m(kp<)Km(kp=), (4)
turbed densityper unit arean,(rs,t), wherer s=(¢,z) are

the coordinates of a point at the cylindrical surface of thewherep_ (p-) is the smallerlargen of p andpg, and
nanotube. Note that the velocity fieldhas only tangential

components to the nanotube surface. Based on the linearized - % . .
E dkék(zfvt)ﬂm(gbf(ﬁo)

hydrodynamic mode[15], the electronic excitations on the Ding(p,d,2,t) = DT
cylindrical surface can be described by the continuity equa-
tion X1 m(Kpo) I m(Kp) Am(K). 5
any(rs,t) _ Similarly, the total potential outside the nanotulpe=a) can
gt MoV u(rs,H=0, D pe expanded as

the momentum-balance equation Q . . |
¢2(P,¢,Z,t): _ E dkék(Z—vt)+lm(¢—¢0)
m 0

m=—ow —

au(rg,t)

o
it ZVHCD(F,t)|p:a— n—OV”I'll(I’S,t)

Xl m(kpo)Km(kp)Bm(K). (6

B 2 In order to simplify the notation, we adopt a convention that
+—=V|[V D ]- 1), 2 p , \dop vention that,
No LV mirs, O]=yulrs, @ whenever the momenturk appears in the argument of a
_ ' ) Bessel function, it should be treated as the magnitfieso
and Poisson’s equation that, e.9.Kn(kp)=K(|k|p), etc.[15]. The unknown coef-
ficientsA,,, andB,, in Egs.(5) and(6) can be determined by
VEQ(r,n)=4mlny(rs,t) 8(p—a)=Qa(r—ro)l, (3 e foIIov?ing bomrjnndary conditions at=a;

where® is the scalar potential which results from the exter-

nal charge and the charge-density polarization of the electron ©1(p. 4,20 p=a=P2lp, 4,20l -0 @
gas, n;. Note that, in Egs.(1) and (2), V=€,(d/9z)  and

+a*1é¢,(a/o7¢) differentiates only tangentially to the nano-

tube surfacé18], whereas in Eq(3) the differentiationV is IPa(p,p,zt) | IPa(p,¢Z,1) 4 .
unrestricted. The first term on the right-hand side of &). ap _ dp o m($.21).
is the force on electrons on the nanotube due to the tangential = e (8

component of the electric field, the second and the third
terms may be regarded as parts of the internal interactioBquation(8) means that, due to the polarization of the elec-
force in the electron gas, while the last termu, is the tron gas on the nanotube surface, the radial component of the
frictional force on electrons due to scattering on the positiveelectric field is discontinuous at the cylindgr=a. This
charge background, witly being the friction coefficient. In  boundary condition is different from that used in the studies
particular,a=v?2/2 is the speed of propagation of the density of charged particles moving in cylindrical channels in solids
disturbances in the electron gas with=(27ny)*? being  [12-14,16, in which the radial component of the displace-
the Fermi velocity of the two-dimensional electron gas,ment field at the boundary is assumed to be continuous.
whereas the choice B=1/4 in the term By eliminating the velocity fieldi(r,t), one obtains from
(BINg)V|[VFny(r,t)] in Eqg. (2) describes single-electron Egs.(1) and(2),
excitations in the electron gas. We note that this term has
been neglected in the work of $4di et al.[15], so that, as a i 4 ) )
consequence, a cutoff wave number had to be introduced t E*’ Yo M(rs, )= V(10| ,—at aVing(rs,t)
avoid the divergence of certain integrals.

It is convenient to consider separately the values of the —ﬂVf[Vﬁ ny(rs,t)]. 9
total potential®=®, inside the nanotubepa) and ®
=®, outside the nanotubep>a). The former part of the According to the potential continuity condition, Eq7),
potential is composed of the potentih}, due to the moving ®(r,t) appearing in Eq(9) may be replaced by the potential
charged particle and the induced potentlg),4 due to the ®,(r,t). Upon solving Eq(9) by means of the space-time
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Fourier-Bessel transform for the induced density on the cy-

lindrical surface and using E@8), we obtain

Q - * . ,
n1(¢.z,t)=;nomzz_ ~ dkekz D im(s-do)

X1 m(Kpo)Crn(K), (10)
where
C (k)= (k?>+m?/a?)K (ka)
m(k)= ko (kv +iy) — a(k2+m?/a2) — B(k2+m?/a?)?
X Bm(K). (11)

Using Egs.(4)—(6), (10), and(11) in Egs.(7) and (8), it is
easy to obtain the expressions for the coefficigits B,
andC,,, as follows:

Q2a%(k?+m?a?)Kj (ka)

An(k)= , 12
(0 ko (kv +i7)— wZ(k) 12
5 k)_kv(kv+iy)—a(k2+m2/a2)—ﬁ(k2+m2/a2)2
m(k)= ko (ko +i7) — w2(Kk)
(13
2 2142
C.(k)—— (ke+m/a®)K(ka) (14

kv (kv +iy)— w2(k)
where
w2 (k)= a(k®+m?/a?)+ B(k?*+ m?/a?)?
+Qa%(k2+m?/a?)Ky(ka)l m(ka)  (15)

with Q,=(47ny/a)”2. One can see from Eq$12)—(14)

that the resonant excitations will occur, in the case when th

damping factory is zero, under the conditiokv = w (k).

The resonant frequenay,(k) depends on the longitudinal
wave numbelrk, the angular momenturm, and the nano-
tube’s radiusa. Thus, we may calculate the induced potentia
and other relevant quantities by using the above expressio

for the coefficientA,,, B,,, andC,.

We study here the self-energy and the stopping power
which represent the main effects of the induced electric fiel
on a charged particle moving inside a carbon nanotube. U

ing the expression for the induced potential given in €&,
we obtain the self-energy

1
Eself:§Q¢ind(rat)|r=ro(t)

©

@

T m=-—owx

| iz koorennw. o
0

and the stopping power

S_
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IPing
0z

r=ro(t)

22 & (.

-2 3 [ CakkBkpgm ALk, @7
T m=-x JO

In particular, the integration in Eq17) may be carried out

for infinitesimally small damping ¢y—07), giving

§=2Q%07 2, knl (kna)?+ mP]I7 (Knpo) K (k)

-1

: (18

IZm(K)
k=K,

ak

where Z(k) = (kv)?— w? (k) andk., is determined by the
condition of the plasma resonancé,)?= w2(kny).

In the following calculations, we consider the charged
particle to be protonQ=1, and assume that the surface
electron density of a single-wall carbon nanotube can be ap-
proximated by the electron-gas density of a graphite sheet,
no=4x0.107[20]. Figures 1a) and Xb) show the influence
of the damping factory on the velocity dependence of the
self-energy and the stopping power, respectively, for charged
particles moving along the axip§=0) of a nanotube with
the radiusa=20. It is clear that the magnitudes of both the
self-energy and the stopping power decrease with increasing
v values. In addition, we observe that, with the increasing
values, the regions where the self-energy is negative, as well
as the peaks of the stopping power, shift to lower velocities.
Similar behavior has been found in the case of particles mov-
ing inside cylindrical channels in solid43].

Whereas the physical origin of damping lies in the mo-
mentum losses of excited electrons during their scattering on
ion cores on the nanotube, the damping constantay be
also used as a phenomenological factor taking into account
the broadening of the plasmon resonance in excitation spec-
(tara of various material$13]. In the present context, finite
value of y also provides a mathematical convenience in ex-
ecuting the integral in Eq16) which contains dremovable
singularity wheny=0. Thus, while the curve labeled by
¥/Q,=0 in Fig. 1(b) has been easily calculated from Eq.

r%S) for stopping power, we have tested very small values of

¥/Q2,=0.0005 and 0.001 in Eq16) for self-energy and ob-
tained the corresponding curves in Figa)l showing that

dy/Qp=O.001 may be considered practically zero in the sub-

sequent calculations, while rendering the integral in @6)
nonsingular. In passing, we note that the results with fipite
in Fig. 1 should be taken with some discretion, since it is
known that phenomenological damping may lead to violation
of the oscillator-strength sum rule, related to the conserva-
tion of electrons. This problem can be, in principle, regulated
by using Mermin’s approack21] for a dielectric function,
but we do not pursue the issue any further here and regard
the curves with finitey in Fig. 1 only as qualitative descrip-
tion of possible effects of damping.

In Figs. 4a) and 2Zb), we show the self-energy and the
stopping power versus the charged particle’s velogityfor
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FIG. 2. Effects of the nanotube radiason the velocity depen-
dence of(a) the self-energy withy=0.001(,, and(b) the stopping
power withy=0, for a proton moving in a carbon nanotubepgt

FIG. 1. Effects of the damping factar on the velocity depen- ~o

dence of(a) the self-energy antb) the stopping power, for a proton
moving in a carbon nanotube with=20 a.u. angy=0. ]

[17], e(rs—rs,t—t")=e(dp— @', z—2',t—t’), is to use the
several values of the radiasof the nanotube, with the par- Qonstitutive equatiorapprofach of Sten[]Z_Z] for the tangen-
ticle position beingpg=0 and with zero dam’ping One ob tial components of the displacement field at the nanotube

0o— . - . . .

serves that, when the radiasincreases, not only the self- surface Dy, which is related to the external potentib), via
energy and the stopping power decrease in magnitude, but
also their extrema move to higher velocities.

The influence of the charged particle positipg on the  and the total electric field at the nanotube surfége,related
dependence of the self-energy and the energy loss on velog the value of the total potential at the nanotube surface,
ity are shown in Figs. @) and 3b), for a=20 and with zero ¢, =, cf Eq.(7), by
damping. For a fixed velocity, both the self-energy and the
stopping power have the smallest magnitude when the par-
ticle moves along the nanotube axis, and increase in magni-
tude when the particle position shifts closer to the surface ofince the longitudinal dielectric function for the nanotube is
the nanotube. One also observes that the positions of extrengéagonal17] in the Fourier-Bessel representatidort), the
in both sets of curves shift to lower velocities as the particleconstitutive equation simply reads
position moves closer to the wall of the nanotube.

Dy(¢,z,t)=—V | Pg(a,¢,z,1), (19)

EH(QZﬁ,Z,t)E—VH(‘DZ(a,qﬁ,Z,t). (20

DH(k,m,a)):e(k,m,w) EH(k,m,w), (21)

Ill. COMPARISON WITH RPA DIELECTRIC FORMALISM S(t)) that, after using Eqs4) and (6) in Eqs(19)—(21), we
obtain
The simplest way to calculate the induced potential, Eq.

(5), by means of the longitudinal dielectric function in RPA 1 ,(kpg) Kn(ka) = e(k,m,kv )l (kpg) Kn(ka) By(k),
for 2D electron gas on the cylindrical surface of a nanotube (22
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FIG. 3. Effects of the particle positigny, on the velocity depen-
dence of(a) the self-energy withy=0.001Q,, and(b) the stopping

power with y=0, for a proton moving in a carbon nanotube with

a=20 a.u.

and consequently

Bm(k)=¢e(k,m,kv). (23
Since the condition, E(7), gives
I m(kpg) Km(ka) + 1 n(Kpg) I m(ka) An(K)
=Im(kpo) Km(ka) Bm(Kk), (24)
we finally obtain
An(k) = Kl k@) [e 1(k,mkv)—1], (25)

 In(ka)
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FIG. 4. Comparison of the velocity dependence of stopping
power calculated by the hydrodynamic model with that calculated
from the dielectric formalism in the RPA, for a proton moving at
po=0 in a nanotube witla=10 a.u. andy=0.

propriate for an isolated single-wall carbon nanotube in free
space. We finally remark that the boundary condition, Eq.
(8), is not required for calculation of the induced potential in
3D space when the dielectric function for the 2D electron gas
is used, but is rather replaced with the constituent equation
(21) giving the condition, Eq(22). Of course, the condition,
Eq. (8), is still valid, and may be used to, e.g., calculate the
induced charge density on the nanotubg, once the values

of the potential®, and®,, are determined on each side of
the nanotube surface.

Since we are interested here in energy losses of charged
particles moving at high speeds through nanotubes, which
are dominated by the collective excitations of the 2D elec-
tron gas, we calculate the stopping power in the RPA dielec-
tric approach, given by Eq.l7) with Eqg. (25), under the
resonance condition, Ie(k,m,kv)=0 [12,13,18. This re-
sult is compared in Fig. 4 with the stopping power obtained
from the hydrodynamic theory of the previous section for
proton moving atpo=0 through a nanotube with radiuzs
=10 andy=0. The two curves in Fig. 4 appear to be very
close, except for lower speeds, indicating that the hydrody-
namic model may be considered as a very good and rather
simple approximation to the RPA dielectric approach, at least
when the energy losses of fast charges are concerned.

IV. CONCLUDING REMARKS

We have used the linearized hydrodynamic model in con-

which is to be used in Eq(17) to evaluate the stopping junction with the Poisson equation to describe the electronic
power in the RPA dielectric function approach. We note thatexcitations of the 2D electron gas confined on surfaces of
the result obtained in this way is different and somewhanhanotubes. General expressions have been derived for the
simpler than the result obtained for stopping power in outinduced potential, the self-energy, and the stopping power for
previous papef16]. Namely, the boundary conditions used charged particles moving parallel to the axis in carbon nano-
in Ref.[16] are not really appropriate for an isolated nano-tubes. The numerical results show that the velocity depen-
tube, but are more appropriate for determining the dielectriclences of these quantities are strongly affected by the damp-
response of a nanotube in a bundle or a rope of carbon nanimg factor, the nanotube radius, and the particle position.
tubes, similar to a nanochannel in a sdli®—-14), whereas From a comparison of the calculations of the stopping power
the boundary conditions, Eq&2) and (24), are strictly ap- in the hydrodynamic model with those based on the dielec-
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tric function in RPA, we find a fairly good agreement be- through nanotubes toward the nanotube walls. We note that
tween the two approaches, indicating that the hydrodynamiseveral author§4—8] have presented computer simulations

model is a very good approximation to the RPA approach foif the charged-particle propagation through nanotubes,
energy losses of fast charges, which are dominated by thghere neither the longitudinal stopping force nor the trans-

collective excitations. On the other hand, the approach basegkrse deflection force due to the electronic excitations were
on the dielectric function in RPA should be considered morgaken into account. We believe that the results obtained in the
reliable in describing the single-electron excitations, WhiChpresent work may be readily used in future simulations of the
give important contribution to the energy losses at lowefransport of charged particles through nanotubes to include

speedg16]. _ _ . ~ the energy losses and the effects of the self-energy on the
Since the particle self-energy mainly arises from virtualparticle trajectories.

excitations of the nanotube-surface collective modes, it is
expected that the hydrodynamic model also provides an ad-
equate description of the self-energy of fast charges moving
through nanotubes. In particular, we have shown that the
self-energy of a fast charged particle takes increasingly large This work was jointly supported by the National Natural
negative values as the particle moves away from the cent&cience Foundation of Chirn&rant No. 10275009and the

of a nanotube, reaching the value of a fraction of eV close tMinistry of Education State of Chin&Y.N.W.). Z.L.M. ac-

the surface of the nanotube. This implies that there shoul&nowledges the support by the Natural Sciences and Engi-
exist a strong transverse force deflecting particles transportateering Research Council of Canada.
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