
PHYSICAL REVIEW A 69, 022901 ~2004!
Interactions of fast ions with carbon nanotubes: Self-energy and stopping power
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The interactions of charged particles with carbon nanotubes are studied by means of the linearized hydro-
dynamic theory for electronic excitations on the nanotube surface. General expressions are derived for the
induced potential, the self-energy, and the stopping power for a charged particle moving paraxially in a
nanotube. Numerical results are obtained showing the influence of the damping factor, the nanotube radius, and
the particle position on its self-energy and the stopping power. Results for stopping power in the linearized
hydrodynamic model are compared with those obtained by means of the dielectric formalism in random-phase
approximation, showing a close agreement between the two approaches for high speeds of charged particles.
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I. INTRODUCTION

Following the discovery of carbon nanotubes, there
been a growing interest in interactions of charged partic
with the nanotubes, which may be relevant for applicatio
in several areas of research and technology. For exam
important information about the electronic structure of c
bon nanotubes can be obtained using the electron probe
niques, such as the transmission-electron microscopy@1# and
the electron energy-loss spectroscopy~EELS! @2,3#. In par-
ticular, in some of the most intriguing applications, it h
been demonstrated that carbon nanotubes may be use
efficiently steer~deflect and focus! charged-particle beam
@4–8#, in the way quite similar to crystal channeling.

A powerful theoretical tool for studying such interactio
is provided by the dielectric response formalism, which h
been implemented in restricted geometries in a numbe
pioneering studies by Ritchie and co-workers@9#. During the
past several years, significant progress has been achiev
theoretical study of transport, or channeling, of charged p
ticles through microcapillaries and nanocapillaries in sol
@10–14#. In particular, Aristaet al. @12–14# have calculated
recently the self-energy and the energy loss of charged
ticles moving through cylindrical channels, or cavities,
solids. It should be pointed out that the structures studie
all those reports contained solid regions characterized by
bulk dielectric functions for three-dimensional~3D! electron
gas models, which were separated, or bounded, by cylin
cal interfaces.

Carbon nanotubes present systems which are quite di
ent from the cavities in solids or nanowires made of differ
materials. Although all these systems share the same un
lying cylindrical geometry, carbon nanotubes cannot be m
eled as a part of a 3D structure. Actually, elementary exc
tions on a nanotube may be modeled by an infinitesim
thin layer of quasi-free-electron gas, uniformly distribut
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over an infinitely long cylindrical surface of a tubule. At ze
temperature, such a two-dimensional~2D! model of electron
gas is completely parametrized by its surface density and
radius of the tubule. Important contribution in theoretical d
scription of such structures has been recently reported
Stöckli et al. @15#, who have deduced the dielectric prope
ties of carbon nanotubes by means of the hydrodyna
theory of plasmon excitations in the 2D electron gas on
cylindrical surface, in order to interpret the EELS data f
collective excitations on single-wall carbon nanotub
caused by the incidence of fast electrons perpendicular to
nanotube. Very recently, we have used a dielectric formal
@16# to study the energy loss of charged particles mov
parallel to the axis in cylindrical tubules. In that formalism
the elementary excitations of the electron gas are descr
by a dielectric function in the random-phase approximat
~RPA!, which depends on the angular momentum, the w
number, the frequency, and the tubule geometry@17#.

In the present paper, we adopt and extend the hydro
namic model@15# by including the single-electron excita
tions on nanotube surfaces, in order to study the self-ene
and the energy loss of charged particles moving paraxi
inside nanotubes. In particular, we wish to elucidate poss
effects of the ion self-energy~akin to the image interaction
with the walls of nanotubes! on ion trajectories in the pro
posed ion-channeling applications of carbon nanotu
@4–8#. As a secondary goal, the results presented here for
stopping provide a possibility to compare the advantage
the hydrodynamic theory with those of the dielectric theo
in RPA @16,17# in dealing with the energy losses in carbo
nanotubes. Section II provides details of calculations of
self-energy and the stopping power in the hydrodynam
model, while a comparison of the stopping powers in t
hydrodynamic and the RPA dielectric models is provided
Sec. III. Concluding remarks are given in Sec. IV. Atom
units ~a.u.! are used throughout, unless otherwise indicate

II. HYDRODYNAMIC THEORY

We model a single-wall carbon nanotube as an infinite
mally thin and infinitely long cylindrical shell with the radiu
©2004 The American Physical Society01-1
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a, and assume that the valence electrons can be conside
free-electron gas distributed uniformly over the cylindric
surface, with the density per unit arean0. We use cylindrical
coordinatesr5(r,f,z) and consider a charged particle wi
the chargeQ, moving within the nanotube, with its trajector
parallel to the nanotube axisz, such that the particle’s instan
taneous position is given byr05(r0 ,f0 ,vt), wherev is the
particle’s speed. The homogeneous electron gas will be
turbed by the charged particle and can be regarded
charged fluid with the velocity fieldu(r S ,t) and the per-
turbed density~per unit area! n1(rS ,t), whererS5(f,z) are
the coordinates of a point at the cylindrical surface of
nanotube. Note that the velocity fieldu has only tangentia
components to the nanotube surface. Based on the linea
hydrodynamic model@15#, the electronic excitations on th
cylindrical surface can be described by the continuity eq
tion

]n1~rS ,t !

]t
1n0“ i•u~r S ,t !50, ~1!

the momentum-balance equation

]u~rS ,t !

]t
5“ iF~r ,t !ur5a2

a

n0
“ in1~rS ,t !

1
b

n0
“ i@“ i

2 n1~rS ,t !#2gu~rS ,t !, ~2!

and Poisson’s equation

¹2F~r ,t !54p@n1~rS ,t ! d~r2a!2Qd~r2r0!#, ~3!

whereF is the scalar potential which results from the ext
nal charge and the charge-density polarization of the elec
gas, n1. Note that, in Eqs.~1! and ~2!, “ i5êz(]/]z)
1a21êf(]/]f) differentiates only tangentially to the nano
tube surface@18#, whereas in Eq.~3! the differentiation“ is
unrestricted. The first term on the right-hand side of Eq.~2!
is the force on electrons on the nanotube due to the tange
component of the electric field, the second and the th
terms may be regarded as parts of the internal interac
force in the electron gas, while the last term,2gu, is the
frictional force on electrons due to scattering on the positi
charge background, withg being the friction coefficient. In
particular,a5vF

2/2 is the speed of propagation of the dens
disturbances in the electron gas withvF5(2pn0)1/2 being
the Fermi velocity of the two-dimensional electron ga
whereas the choice b51/4 in the term
(b/n0)“ i@“ i

2 n1(r ,t)# in Eq. ~2! describes single-electro
excitations in the electron gas. We note that this term
been neglected in the work of Sto¨ckli et al. @15#, so that, as a
consequence, a cutoff wave number had to be introduce
avoid the divergence of certain integrals.

It is convenient to consider separately the values of
total potentialF5F1 inside the nanotube (r,a) and F
5F2 outside the nanotube (r.a). The former part of the
potential is composed of the potentialF0 due to the moving
charged particle and the induced potentialF ind due to the
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charge polarization on the nanotube surface, so thatF1
5F01F ind . Taking into account the natural boundary co
ditions atr50 andr5`, these potential components can
expanded in terms of the cylindrical Bessel functionsI m(x)
andKm(x) @12,16,19#, as follows:

F0~r,f,z,t !5
Q

ur2r0u
5

Q

p (
m52`

` E
2`

`

dkeik(z2vt)1 im(f2f0)

3I m~kr,!Km~kr.!, ~4!

wherer, (r.) is the smaller~larger! of r andr0, and

F ind~r,f,z,t !5
Q

p (
m52`

` E
2`

`

dkeik(z2vt)1 im(f2f0)

3I m~kr0!I m~kr!Am~k!. ~5!

Similarly, the total potential outside the nanotube (r.a) can
be expanded as

F2~r,f,z,t !5
Q

p (
m52`

` E
2`

`

dkeik(z2vt)1 im(f2f0)

3I m~kr0!Km~kr!Bm~k!. ~6!

In order to simplify the notation, we adopt a convention th
whenever the momentumk appears in the argument of
Bessel function, it should be treated as the magnitudeuku, so
that, e.g.,Km(kr)[Km(ukur), etc.@15#. The unknown coef-
ficientsAm andBm in Eqs.~5! and~6! can be determined by
the following boundary conditions atr5a;

F1~r,f,z,t !ur5a5F2~r,f,z,t !ur5a ~7!

and

]F2~r,f,z,t !

]r U
r5a

2
]F1~r,f,z,t !

]r U
r5a

54pn1~f,z,t !.

~8!

Equation~8! means that, due to the polarization of the ele
tron gas on the nanotube surface, the radial component o
electric field is discontinuous at the cylinderr5a. This
boundary condition is different from that used in the stud
of charged particles moving in cylindrical channels in soli
@12–14,16#, in which the radial component of the displac
ment field at the boundary is assumed to be continuous.

By eliminating the velocity fieldu(r ,t), one obtains from
Eqs.~1! and ~2!,

S ]2

]t2
1g

]

]t D n1~rS ,t !52n0“ i
2F~r ,t !ur5a1a¹ i

2 n1~rS ,t !

2b¹ i
2@¹ i

2 n1~rS ,t !#. ~9!

According to the potential continuity condition, Eq.~7!,
F(r ,t) appearing in Eq.~9! may be replaced by the potentia
F2(r ,t). Upon solving Eq.~9! by means of the space-tim
1-2
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Fourier-Bessel transform for the induced density on the
lindrical surface and using Eq.~8!, we obtain

n1~f,z,t !5
Q

p
n0 (

m52`

` E
2`

`

dkeik(z2vt)1 im(f2f0)

3I m~kr0!Cm~k!, ~10!

where

Cm~k!52
~k21m2/a2!Km~ka!

kv~kv1 ig!2a~k21m2/a2!2b~k21m2/a2!2

3Bm~k!. ~11!

Using Eqs.~4!–~6!, ~10!, and ~11! in Eqs. ~7! and ~8!, it is
easy to obtain the expressions for the coefficientsAm , Bm ,
andCm , as follows:

Am~k!5
Vp

2a2~k21m2/a2!Km
2 ~ka!

kv~kv1 ig!2vm
2 ~k!

, ~12!

Bm~k!5
kv~kv1 ig!2a~k21m2/a2!2b~k21m2/a2!2

kv~kv1 ig!2vm
2 ~k!

,

~13!

Cm~k!52
~k21m2/a2!Km~ka!

kv~kv1 ig!2vm
2 ~k!

, ~14!

where

vm
2 ~k!5a~k21m2/a2!1b~k21m2/a2!2

1Vp
2a2~k21m2/a2!Km~ka!I m~ka! ~15!

with Vp5(4pn0 /a)1/2. One can see from Eqs.~12!–~14!
that the resonant excitations will occur, in the case when
damping factorg is zero, under the conditionkv5vm(k).
The resonant frequencyvm(k) depends on the longitudina
wave numberk, the angular momentumm, and the nano-
tube’s radiusa. Thus, we may calculate the induced potent
and other relevant quantities by using the above express
for the coefficientsAm , Bm , andCm.

We study here the self-energy and the stopping po
which represent the main effects of the induced electric fi
on a charged particle moving inside a carbon nanotube.
ing the expression for the induced potential given in Eq.~5!,
we obtain the self-energy

Esel f5
1

2
QF ind~r ,t !ur5r0(t)

5
Q2

p (
m52`

` E
0

`

dkIm
2 ~kr0!ReAm~k!, ~16!

and the stopping power
02290
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]F ind

]z U
r5r0(t)

52
2Q2

p (
m52`

` E
0

`

dkkIm
2 ~kr0!Im Am~k!. ~17!

In particular, the integration in Eq.~17! may be carried out
for infinitesimally small damping (g→01), giving

S52Q2Vp
2 (

m52`

`

km@~kma!21m2#I m
2 ~kmr0!Km

2 ~kma!

3U]Zm~k!

]k U
k5km

21

, ~18!

whereZm(k)5(kv)22vm
2 (k) and km is determined by the

condition of the plasma resonance, (kmv)25vm
2 (km).

In the following calculations, we consider the charg
particle to be proton,Q51, and assume that the surfac
electron density of a single-wall carbon nanotube can be
proximated by the electron-gas density of a graphite sh
n05430.107@20#. Figures 1~a! and 1~b! show the influence
of the damping factorg on the velocity dependence of th
self-energy and the stopping power, respectively, for char
particles moving along the axis (r050) of a nanotube with
the radiusa520. It is clear that the magnitudes of both th
self-energy and the stopping power decrease with increa
g values. In addition, we observe that, with the increasingg
values, the regions where the self-energy is negative, as
as the peaks of the stopping power, shift to lower velociti
Similar behavior has been found in the case of particles m
ing inside cylindrical channels in solids@13#.

Whereas the physical origin of damping lies in the m
mentum losses of excited electrons during their scattering
ion cores on the nanotube, the damping constantg may be
also used as a phenomenological factor taking into acco
the broadening of the plasmon resonance in excitation s
tra of various materials@13#. In the present context, finite
value ofg also provides a mathematical convenience in
ecuting the integral in Eq.~16! which contains a~removable!
singularity wheng50. Thus, while the curve labeled b
g/Vp50 in Fig. 1~b! has been easily calculated from E
~18! for stopping power, we have tested very small values
g/Vp50.0005 and 0.001 in Eq.~16! for self-energy and ob-
tained the corresponding curves in Fig. 1~a!, showing that
g/Vp50.001 may be considered practically zero in the su
sequent calculations, while rendering the integral in Eq.~16!
nonsingular. In passing, we note that the results with finiteg
in Fig. 1 should be taken with some discretion, since it
known that phenomenological damping may lead to violat
of the oscillator-strength sum rule, related to the conser
tion of electrons. This problem can be, in principle, regula
by using Mermin’s approach@21# for a dielectric function,
but we do not pursue the issue any further here and reg
the curves with finiteg in Fig. 1 only as qualitative descrip
tion of possible effects of damping.

In Figs. 2~a! and 2~b!, we show the self-energy and th
stopping power versus the charged particle’s velocityv, for
1-3
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several values of the radiusa of the nanotube, with the par
ticle position beingr050 and with zero damping. One ob
serves that, when the radiusa increases, not only the self
energy and the stopping power decrease in magnitude,
also their extrema move to higher velocities.

The influence of the charged particle positionr0 on the
dependence of the self-energy and the energy loss on ve
ity are shown in Figs. 3~a! and 3~b!, for a520 and with zero
damping. For a fixed velocity, both the self-energy and
stopping power have the smallest magnitude when the
ticle moves along the nanotube axis, and increase in ma
tude when the particle position shifts closer to the surface
the nanotube. One also observes that the positions of extr
in both sets of curves shift to lower velocities as the parti
position moves closer to the wall of the nanotube.

III. COMPARISON WITH RPA DIELECTRIC FORMALISM

The simplest way to calculate the induced potential,
~5!, by means of the longitudinal dielectric function in RP
for 2D electron gas on the cylindrical surface of a nanotu

FIG. 1. Effects of the damping factorg on the velocity depen-
dence of~a! the self-energy and~b! the stopping power, for a proton
moving in a carbon nanotube witha520 a.u. andr050.
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@17#, e(rS2rS8 ,t2t8)5e(f2f8,z2z8,t2t8), is to use the
constitutive equationapproach of Stern@22# for the tangen-
tial components of the displacement field at the nanot
surface,Di , which is related to the external potentialF0 via

Di~f,z,t ![2“ iF0~a,f,z,t !, ~19!

and the total electric field at the nanotube surface,Ei , related
to the value of the total potential at the nanotube surfa
F15F2, cf Eq. ~7!, by

Ei~f,z,t ![2“ iF2~a,f,z,t !. ~20!

Since the longitudinal dielectric function for the nanotube
diagonal@17# in the Fourier-Bessel representation (k,m), the
constitutive equation simply reads

Di~k,m,v!5e~k,m,v! Ei~k,m,v!, ~21!

so that, after using Eqs.~4! and ~6! in Eqs.~19!–~21!, we
obtain

I m~kr0! Km~ka!5e~k,m,kv !I m~kr0! Km~ka! Bm~k!,
~22!

FIG. 2. Effects of the nanotube radiusa on the velocity depen-
dence of~a! the self-energy withg50.001Vp , and~b! the stopping
power withg50, for a proton moving in a carbon nanotube atr0

50.
1-4
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and consequently

Bm~k!5e21~k,m,kv !. ~23!

Since the condition, Eq.~7!, gives

I m~kr0! Km~ka!1I m~kr0! I m~ka! Am~k!

5I m~kr0! Km~ka! Bm~k!, ~24!

we finally obtain

Am~k!5
Km~ka!

I m~ka!
@e21~k,m,kv !21#, ~25!

which is to be used in Eq.~17! to evaluate the stopping
power in the RPA dielectric function approach. We note t
the result obtained in this way is different and somew
simpler than the result obtained for stopping power in o
previous paper@16#. Namely, the boundary conditions use
in Ref. @16# are not really appropriate for an isolated nan
tube, but are more appropriate for determining the dielec
response of a nanotube in a bundle or a rope of carbon n
tubes, similar to a nanochannel in a solid@12–14#, whereas
the boundary conditions, Eqs.~22! and ~24!, are strictly ap-

FIG. 3. Effects of the particle positionr0 on the velocity depen-
dence of~a! the self-energy withg50.001Vp , and~b! the stopping
power withg50, for a proton moving in a carbon nanotube wi
a520 a.u.
02290
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propriate for an isolated single-wall carbon nanotube in f
space. We finally remark that the boundary condition, E
~8!, is not required for calculation of the induced potential
3D space when the dielectric function for the 2D electron g
is used, but is rather replaced with the constituent equa
~21! giving the condition, Eq.~22!. Of course, the condition
Eq. ~8!, is still valid, and may be used to, e.g., calculate t
induced charge density on the nanotube,n1, once the values
of the potential,F1 andF2, are determined on each side
the nanotube surface.

Since we are interested here in energy losses of cha
particles moving at high speeds through nanotubes, wh
are dominated by the collective excitations of the 2D el
tron gas, we calculate the stopping power in the RPA diel
tric approach, given by Eq.~17! with Eq. ~25!, under the
resonance condition, Ime(k,m,kv)50 @12,13,16#. This re-
sult is compared in Fig. 4 with the stopping power obtain
from the hydrodynamic theory of the previous section
proton moving atr050 through a nanotube with radiusa
510 andg50. The two curves in Fig. 4 appear to be ve
close, except for lower speeds, indicating that the hydro
namic model may be considered as a very good and ra
simple approximation to the RPA dielectric approach, at le
when the energy losses of fast charges are concerned.

IV. CONCLUDING REMARKS

We have used the linearized hydrodynamic model in c
junction with the Poisson equation to describe the electro
excitations of the 2D electron gas confined on surfaces
nanotubes. General expressions have been derived fo
induced potential, the self-energy, and the stopping power
charged particles moving parallel to the axis in carbon na
tubes. The numerical results show that the velocity dep
dences of these quantities are strongly affected by the da
ing factor, the nanotube radius, and the particle positi
From a comparison of the calculations of the stopping pow
in the hydrodynamic model with those based on the diel

FIG. 4. Comparison of the velocity dependence of stopp
power calculated by the hydrodynamic model with that calcula
from the dielectric formalism in the RPA, for a proton moving
r050 in a nanotube witha510 a.u. andg50.
1-5
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tric function in RPA, we find a fairly good agreement b
tween the two approaches, indicating that the hydrodyna
model is a very good approximation to the RPA approach
energy losses of fast charges, which are dominated by
collective excitations. On the other hand, the approach ba
on the dielectric function in RPA should be considered m
reliable in describing the single-electron excitations, wh
give important contribution to the energy losses at low
speeds@16#.

Since the particle self-energy mainly arises from virtu
excitations of the nanotube-surface collective modes, i
expected that the hydrodynamic model also provides an
equate description of the self-energy of fast charges mov
through nanotubes. In particular, we have shown that
self-energy of a fast charged particle takes increasingly la
negative values as the particle moves away from the ce
of a nanotube, reaching the value of a fraction of eV close
the surface of the nanotube. This implies that there sho
exist a strong transverse force deflecting particles transpo
ds

v

-

el

.
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through nanotubes toward the nanotube walls. We note
several authors@4–8# have presented computer simulatio
of the charged-particle propagation through nanotub
where neither the longitudinal stopping force nor the tra
verse deflection force due to the electronic excitations w
taken into account. We believe that the results obtained in
present work may be readily used in future simulations of
transport of charged particles through nanotubes to incl
the energy losses and the effects of the self-energy on
particle trajectories.
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@15# T. Stöckli, J.M. Bonard, A. Chaˆtelain, Z.L. Wang, and P. Sta

delmann, Phys. Rev. B64, 115424~2001!.
@16# Y.N. Wang and Z.L. Misˇković, Phys. Rev. A66, 042904
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